1
|
Murphy AJ, Wilton SD, Aung-Htut MT, McIntosh CS. Down syndrome and DYRK1A overexpression: relationships and future therapeutic directions. Front Mol Neurosci 2024; 17:1391564. [PMID: 39114642 PMCID: PMC11303307 DOI: 10.3389/fnmol.2024.1391564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Down syndrome is a genetic-based disorder that results from the triplication of chromosome 21, leading to an overexpression of many triplicated genes, including the gene encoding Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A). This protein has been observed to regulate numerous cellular processes, including cell proliferation, cell functioning, differentiation, and apoptosis. Consequently, an overexpression of DYRK1A has been reported to result in cognitive impairment, a key phenotype of individuals with Down syndrome. Therefore, downregulating DYRK1A has been explored as a potential therapeutic strategy for Down syndrome, with promising results observed from in vivo mouse models and human clinical trials that administered epigallocatechin gallate. Current DYRK1A inhibitors target the protein function directly, which tends to exhibit low specificity and selectivity, making them unfeasible for clinical or research purposes. On the other hand, antisense oligonucleotides (ASOs) offer a more selective therapeutic strategy to downregulate DYRK1A expression at the gene transcript level. Advances in ASO research have led to the discovery of numerous chemical modifications that increase ASO potency, specificity, and stability. Recently, several ASOs have been approved by the U.S. Food and Drug Administration to address neuromuscular and neurological conditions, laying the foundation for future ASO therapeutics. The limitations of ASOs, including their high production cost and difficulty delivering to target tissues can be overcome by further advances in ASO design. DYRK1A targeted ASOs could be a viable therapeutic approach to improve the quality of life for individuals with Down syndrome and their families.
Collapse
Affiliation(s)
- Aidan J. Murphy
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - May T. Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| | - Craig S. McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
2
|
Manubens-Gil L, Pons-Espinal M, Gener T, Ballesteros-Yañez I, de Lagrán MM, Dierssen M. Deficits in neuronal architecture but not over-inhibition are main determinants of reduced neuronal network activity in a mouse model of overexpression of Dyrk1A. Cereb Cortex 2024; 34:bhad431. [PMID: 37997361 PMCID: PMC10793573 DOI: 10.1093/cercor/bhad431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023] Open
Abstract
In this study, we investigated the impact of Dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) overexpression, a gene associated with Down syndrome, on hippocampal neuronal deficits in mice. Our findings revealed that mice overexpressing Dyrk1A (TgDyrk1A; TG) exhibited impaired hippocampal recognition memory, disrupted excitation-inhibition balance, and deficits in long-term potentiation (LTP). Specifically, we observed layer-specific deficits in dendritic arborization of TG CA1 pyramidal neurons in the stratum radiatum. Through computational modeling, we determined that these alterations resulted in reduced storage capacity and compromised integration of inputs, with decreased high γ oscillations. Contrary to prevailing assumptions, our model suggests that deficits in neuronal architecture, rather than over-inhibition, primarily contribute to the reduced network. We explored the potential of environmental enrichment (EE) as a therapeutic intervention and found that it normalized the excitation-inhibition balance, restored LTP, and improved short-term recognition memory. Interestingly, we observed transient significant dendritic remodeling, leading to recovered high γ. However, these effects were not sustained after EE discontinuation. Based on our findings, we conclude that Dyrk1A overexpression-induced layer-specific neuromorphological disturbances impair the encoding of place and temporal context. These findings contribute to our understanding of the underlying mechanisms of Dyrk1A-related hippocampal deficits and highlight the challenges associated with long-term therapeutic interventions for cognitive impairments.
Collapse
Affiliation(s)
- Linus Manubens-Gil
- Institute for Brain Science and Intelligent Technology, Southeast University (SEU), Biomedical engineering, Sipailou street No. 2, Xuanwu district, 210096, Nanjing, China
- School of Biological Science and Medical Engineering, Southeast University (SEU), Sipailou street No. 2, Xuanwu district, 210096, Nanjing, China
| | - Meritxell Pons-Espinal
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Avinguda de la Granvia de l'Hospitalet, 199, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Avda. Diagonal, 643 Edifici Prevosti, planta -108028, Barcelona, Spain
| | - Thomas Gener
- Advanced Electronic Materials and Devices Group (AEMD), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, UAB Campus, Bellaterra Barcelona 08193, Spain
| | - Inmaculada Ballesteros-Yañez
- Inorganic and Organic Chemistry and Biochemistry, Faculty of Medicine, University of Castilla- La Mancha, Camino de Moledores, 13071, Ciudad Real, Spain
| | - María Martínez de Lagrán
- Cellular and Systems Neurobiology, Systems and Synthetic Biology Program, Center for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Mara Dierssen
- Cellular and Systems Neurobiology, Systems and Synthetic Biology Program, Center for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain
- Center for Biomedical Research in the Network of Rare Diseases (CIBERER), v. Monforte de Lemos, 3-5. Pabellón 11. Planta 0 28029, Madrid, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
3
|
Roy B, Amemasor E, Hussain S, Castro K. UBE3A: The Role in Autism Spectrum Disorders (ASDs) and a Potential Candidate for Biomarker Studies and Designing Therapeutic Strategies. Diseases 2023; 12:7. [PMID: 38248358 PMCID: PMC10814747 DOI: 10.3390/diseases12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Published reports from the CDC's Autism and Development Disabilities Monitoring Networks have shown that an average of 1 in every 44 (2.3%) 8-year-old children were estimated to have ASD in 2018. Many of the ASDs exhibiting varying degrees of autism-like phenotypes have chromosomal anomalies in the Chr15q11-q13 region. Numerous potential candidate genes linked with ASD reside in this chromosomal segment. However, several clinical, in vivo, and in vitro studies selected one gene more frequently than others randomly and unbiasedly. This gene codes for UBE3A or Ubiquitin protein ligase E3A [also known as E6AP ubiquitin-protein ligase (E6AP)], an enzyme involved in the cellular degradation of proteins. This gene has been listed as one of the several genes with a high potential of causing ASD in the Autism Database. The gain of function mutations, triplication, or duplication in the UBE3A gene is also associated with ASDs like Angelman Syndrome (AS) and Dup15q Syndrome. The genetic imprinting of UBE3A in the brain and a preference for neuronal maternal-specific expression are the key features of various ASDs. Since the UBE3A gene is involved in two main important diseases associated with autism-like symptoms, there has been widespread research going on in understanding the link between this gene and autism. Additionally, since no universal methodology or mechanism exists for identifying UBE3A-mediated ASD, it continues to be challenging for neurobiologists, neuroscientists, and clinicians to design therapies or diagnostic tools. In this review, we focus on the structure and functional aspects of the UBE3A protein, discuss the primary relevance of the 15q11-q13 region in the cause of ASDs, and highlight the link between UBE3A and ASD. We try to broaden the knowledge of our readers by elaborating on the possible mechanisms underlying UBE3A-mediated ASDs, emphasizing the usage of UBE3A as a prospective biomarker in the preclinical diagnosis of ASDs and discuss the positive outcomes, advanced developments, and the hurdles in the field of therapeutic strategies against UBE3A-mediated ASDs. This review is novel as it lays a very detailed and comprehensive platform for one of the most important genes associated with diseases showing autistic-like symptoms. Additionally, this review also attempts to lay optimistic feedback on the possible steps for the diagnosis, prevention, and therapy of these UBE3A-mediated ASDs in the upcoming years.
Collapse
Affiliation(s)
- Bidisha Roy
- Life Science Centre, Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA; (E.A.); (S.H.); (K.C.)
| | | | | | | |
Collapse
|
4
|
Tello JA, Jiang L, Zohar Y, Restifo LL. Drosophila CASK regulates brain size and neuronal morphogenesis, providing a genetic model of postnatal microcephaly suitable for drug discovery. Neural Dev 2023; 18:6. [PMID: 37805506 PMCID: PMC10559581 DOI: 10.1186/s13064-023-00174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND CASK-related neurodevelopmental disorders are untreatable. Affected children show variable severity, with microcephaly, intellectual disability (ID), and short stature as common features. X-linked human CASK shows dosage sensitivity with haploinsufficiency in females. CASK protein has multiple domains, binding partners, and proposed functions at synapses and in the nucleus. Human and Drosophila CASK show high amino-acid-sequence similarity in all functional domains. Flies homozygous for a hypomorphic CASK mutation (∆18) have motor and cognitive deficits. A Drosophila genetic model of CASK-related disorders could have great scientific and translational value. METHODS We assessed the effects of CASK loss of function on morphological phenotypes in Drosophila using established genetic, histological, and primary neuronal culture approaches. NeuronMetrics software was used to quantify neurite-arbor morphology. Standard nonparametric statistics methods were supplemented by linear mixed effects modeling in some cases. Microfluidic devices of varied dimensions were fabricated and numerous fluid-flow parameters were used to induce oscillatory stress fields on CNS tissue. Dissociation into viable neurons and neurite outgrowth in vitro were assessed. RESULTS We demonstrated that ∆18 homozygous flies have small brains, small heads, and short bodies. When neurons from developing CASK-mutant CNS were cultured in vitro, they grew small neurite arbors with a distinctive, quantifiable "bushy" morphology that was significantly rescued by transgenic CASK+. As in humans, the bushy phenotype showed dosage-sensitive severity. To overcome the limitations of manual tissue trituration for neuronal culture, we optimized the design and operation of a microfluidic system for standardized, automated dissociation of CNS tissue into individual viable neurons. Neurons from CASK-mutant CNS dissociated in the microfluidic system recapitulate the bushy morphology. Moreover, for any given genotype, device-dissociated neurons grew larger arbors than did manually dissociated neurons. This automated dissociation method is also effective for rodent CNS. CONCLUSIONS These biological and engineering advances set the stage for drug discovery using the Drosophila model of CASK-related disorders. The bushy phenotype provides a cell-based assay for compound screening. Nearly a dozen genes encoding CASK-binding proteins or transcriptional targets also have brain-development mutant phenotypes, including ID. Hence, drugs that improve CASK phenotypes might also benefit children with disorders due to mutant CASK partners.
Collapse
Affiliation(s)
- Judith A Tello
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
- Department of Neurology, University of Arizona Health Sciences, 1501 N. Campbell Ave, Tucson, AZ, 85724-5023, USA
- Present address: Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Linda L Restifo
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Neurology, University of Arizona Health Sciences, 1501 N. Campbell Ave, Tucson, AZ, 85724-5023, USA.
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Cellular & Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, 85724, USA.
| |
Collapse
|
5
|
Yang Y, Song R, Gao Y, Yu H, Wang S. Regulatory mechanisms and therapeutic potential of JAB1 in neurological development and disorders. Mol Med 2023; 29:80. [PMID: 37365502 DOI: 10.1186/s10020-023-00675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
c-Jun activation domain binding protein-1 (JAB1) is a multifunctional regulator that plays vital roles in diverse cellular processes. It regulates AP-1 transcriptional activity and also acts as the fifth component of the COP9 signalosome complex. While JAB1 is considered an oncoprotein that triggers tumor development, recent studies have shown that it also functions in neurological development and disorders. In this review, we summarize the general features of the JAB1 gene and protein, and present recent updates on the regulation of JAB1 expression. Moreover, we also highlight the functional roles and regulatory mechanisms of JAB1 in neurodevelopmental processes such as neuronal differentiation, synaptic morphogenesis, myelination, and hair cell development and in the pathogenesis of some neurological disorders such as Alzheimer's disease, multiple sclerosis, neuropathic pain, and peripheral nerve injury. Furthermore, current challenges and prospects are discussed, including updates on drug development targeting JAB1.
Collapse
Affiliation(s)
- Yu Yang
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Ruying Song
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Yiming Gao
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China.
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China.
| | - Shuai Wang
- Department of Psychiatry, Jining Medical University, Jianshe South Road No. 45, Jining, Shandong, China.
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
6
|
Manubens-Gil L, Pons-Espinal M, Gener T, Ballesteros-Yañez I, de Lagrán MM, Dierssen M. Deficits in neuronal architecture but not over-inhibition are main determinants of reduced neuronal network activity in a mouse model of overexpression of Dyrk1A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531874. [PMID: 36945607 PMCID: PMC10028951 DOI: 10.1101/2023.03.09.531874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Abnormal dendritic arbors, dendritic spine "dysgenesis" and excitation inhibition imbalance are main traits assumed to underlie impaired cognition and behavioral adaptation in intellectual disability. However, how these modifications actually contribute to functional properties of neuronal networks, such as signal integration or storage capacity is unknown. Here, we used a mouse model overexpressing Dyrk1A (Dual-specificity tyrosine [Y]-regulated kinase), one of the most relevant Down syndrome (DS) candidate genes, to gather quantitative data regarding hippocampal neuronal deficits produced by the overexpression of Dyrk1A in mice (TgDyrk1A; TG). TG mice showed impaired hippocampal recognition memory, altered excitation-inhibition balance and deficits in hippocampal CA1 LTP. We also detected for the first time that deficits in dendritic arborization in TG CA1 pyramidal neurons are layer-specific, with a reduction in the width of the stratum radiatum, the postsynaptic target site of CA3 excitatory neurons, but not in the stratum lacunosum-moleculare, which receives temporo-ammonic projections. To interrogate about the functional impact of layer-specific TG dendritic deficits we developed tailored computational multicompartmental models. Computational modelling revealed that neuronal microarchitecture alterations in TG mice lead to deficits in storage capacity, altered the integration of inputs from entorhinal cortex and hippocampal CA3 region onto CA1 pyramidal cells, important for coding place and temporal context and on connectivity and activity dynamics, with impaired the ability to reach high γ oscillations. Contrary to what is assumed in the field, the reduced network activity in TG is mainly contributed by the deficits in neuronal architecture and to a lesser extent by over-inhibition. Finally, given that therapies aimed at improving cognition have also been tested for their capability to recover dendritic spine deficits and excitation-inhibition imbalance, we also tested the short- and long-term changes produced by exposure to environmental enrichment (EE). Exposure to EE normalized the excitation inhibition imbalance and LTP, and had beneficial effects on short-term recognition memory. Importantly, it produced massive but transient dendritic remodeling of hippocampal CA1, that led to recovery of high γ oscillations, the main readout of synchronization of CA1 neurons, in our simulations. However, those effects where not stable and were lost after EE discontinuation. We conclude that layer-specific neuromorphological disturbances produced by Dyrk1A overexpression impair coding place and temporal context. Our results also suggest that treatments targeting structural plasticity, such as EE, even though hold promise towards improved treatment of intellectual disabilities, only produce temporary recovery, due to transient dendritic remodeling.
Collapse
Affiliation(s)
- Linus Manubens-Gil
- SEU-Allen Joint Center, Institute for Brain and Intelligence, Southeast University (SEU), China
| | - Meritxell Pons-Espinal
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
- Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Barcelona, Spain
| | - Thomas Gener
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, Spain
| | - Inmaculada Ballesteros-Yañez
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain (UCLM), CRIB, Spain
| | - María Martínez de Lagrán
- Centre for Genomic Regulation (CRG), BIST, Spain
- Center for Biomedical Research in the Network of Rare Diseases (CIBERER), Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), BIST, Spain
- Center for Biomedical Research in the Network of Rare Diseases (CIBERER), Spain
| |
Collapse
|
7
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Introduction: What Are Dendritic Spines? ADVANCES IN NEUROBIOLOGY 2023; 34:1-68. [PMID: 37962793 DOI: 10.1007/978-3-031-36159-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines are cellular specializations that greatly increase the connectivity of neurons and modulate the "weight" of most postsynaptic excitatory potentials. Spines are found in very diverse animal species providing neural networks with a high integrative and computational possibility and plasticity, enabling the perception of sensorial stimuli and the elaboration of a myriad of behavioral displays, including emotional processing, memory, and learning. Humans have trillions of spines in the cerebral cortex, and these spines in a continuum of shapes and sizes can integrate the features that differ our brain from other species. In this chapter, we describe (1) the discovery of these small neuronal protrusions and the search for the biological meaning of dendritic spines; (2) the heterogeneity of shapes and sizes of spines, whose structure and composition are associated with the fine-tuning of synaptic processing in each nervous area, as well as the findings that support the role of dendritic spines in increasing the wiring of neural circuits and their functions; and (3) within the intraspine microenvironment, the integration and activation of signaling biochemical pathways, the compartmentalization of molecules or their spreading outside the spine, and the biophysical properties that can affect parent dendrites. We also provide (4) examples of plasticity involving dendritic spines and neural circuits relevant to species survival and comment on (5) current research advancements and challenges in this exciting research field.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
8
|
Deng Y, Liu B, Huang Z, Liu X, He S, Li Q, Guo D. Fractional Spiking Neuron: Fractional Leaky Integrate-and-Fire Circuit Described with Dendritic Fractal Model. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:1375-1386. [PMID: 36315548 DOI: 10.1109/tbcas.2022.3218294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
As dendrites are essential parts of neurons, they are crucial factors for neuronal activities to follow multiple timescale dynamics, which ultimately affect information processing and cognition. However, in the common SNN (Spiking Neural Networks), the hardware-based LIF (Leaky Integrate-and-Fire) circuit only simulates the single timescale dynamic of soma without relating dendritic morphologies, which may limit the capability of simulating neurons to process information. This study proposes the dendritic fractal model mainly for quantifying dendritic morphological effects containing branch and length. To realize this model, We design multiple analog fractional-order circuits (AFCs) which match their extended structures and parameters with the dendritic features. Then introducing AFC into FLIF (Fractional Leaky Integrate-and-Fire) neuron circuits can demonstrate the same multiple timescale dynamics of spiking patterns as biological neurons, including spiking adaptation, inter-spike variability with power-law distribution, first-spike latency, and intrinsic memory. By contrast, it further enhances the degree of mimicry of neuron models and provides a more accurate model for understanding neural computation and cognition mechanisms.
Collapse
|
9
|
Stagni F, Bartesaghi R. The Challenging Pathway of Treatment for Neurogenesis Impairment in Down Syndrome: Achievements and Perspectives. Front Cell Neurosci 2022; 16:903729. [PMID: 35634470 PMCID: PMC9130961 DOI: 10.3389/fncel.2022.903729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Down syndrome (DS), also known as trisomy 21, is a genetic disorder caused by triplication of Chromosome 21. Gene triplication may compromise different body functions but invariably impairs intellectual abilities starting from infancy. Moreover, after the fourth decade of life people with DS are likely to develop Alzheimer’s disease. Neurogenesis impairment during fetal life stages and dendritic pathology emerging in early infancy are thought to be key determinants of alterations in brain functioning in DS. Although the progressive improvement in medical care has led to a notable increase in life expectancy for people with DS, there are currently no treatments for intellectual disability. Increasing evidence in mouse models of DS reveals that pharmacological interventions in the embryonic and neonatal periods may greatly benefit brain development and cognitive performance. The most striking results have been obtained with pharmacotherapies during embryonic life stages, indicating that it is possible to pharmacologically rescue the severe neurodevelopmental defects linked to the trisomic condition. These findings provide hope that similar benefits may be possible for people with DS. This review summarizes current knowledge regarding (i) the scope and timeline of neurogenesis (and dendritic) alterations in DS, in order to delineate suitable windows for treatment; (ii) the role of triplicated genes that are most likely to be the key determinants of these alterations, in order to highlight possible therapeutic targets; and (iii) prenatal and neonatal treatments that have proved to be effective in mouse models, in order to rationalize the choice of treatment for human application. Based on this body of evidence we will discuss prospects and challenges for fetal therapy in individuals with DS as a potential means of drastically counteracting the deleterious effects of gene triplication.
Collapse
Affiliation(s)
- Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- *Correspondence: Renata Bartesaghi,
| |
Collapse
|
10
|
Brar HK, Dey S, Bhardwaj S, Pande D, Singh P, Dey S, Ghosh-Roy A. Dendrite regeneration in C. elegans is controlled by the RAC GTPase CED-10 and the RhoGEF TIAM-1. PLoS Genet 2022; 18:e1010127. [PMID: 35344539 PMCID: PMC8989329 DOI: 10.1371/journal.pgen.1010127] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 04/07/2022] [Accepted: 02/28/2022] [Indexed: 01/30/2023] Open
Abstract
Neurons are vulnerable to physical insults, which compromise the integrity of both dendrites and axons. Although several molecular pathways of axon regeneration are identified, our knowledge of dendrite regeneration is limited. To understand the mechanisms of dendrite regeneration, we used the PVD neurons in C. elegans with stereotyped branched dendrites. Using femtosecond laser, we severed the primary dendrites and axon of this neuron. After severing the primary dendrites near the cell body, we observed sprouting of new branches from the proximal site within 6 hours, which regrew further with time in an unstereotyped manner. This was accompanied by reconnection between the proximal and distal dendrites, and fusion among the higher-order branches as reported before. We quantified the regeneration pattern into three aspects–territory length, number of branches, and fusion phenomena. Axonal injury causes a retraction of the severed end followed by a Dual leucine zipper kinase-1 (DLK-1) dependent regrowth from the severed end. We tested the roles of the major axon regeneration signalling hubs such as DLK-1-RPM-1, cAMP elevation, let-7 miRNA, AKT-1, Phosphatidylserine (PS) exposure/PS in dendrite regeneration. We found that neither dendrite regrowth nor fusion was affected by the axon injury pathway molecules. Surprisingly, we found that the RAC GTPase, CED-10 and its upstream GEF, TIAM-1 play a cell-autonomous role in dendrite regeneration. Additionally, the function of CED-10 in epidermal cell is critical for post-dendrotomy fusion phenomena. This work describes a novel regulatory mechanism of dendrite regeneration and provides a framework for understanding the cellular mechanism of dendrite regeneration using PVD neuron as a model system. The knowledge of the repair of injured neural circuits comes from the study of the regeneration of injured axons. The information receiving neurites, namely dendrites, are also vulnerable to physical insult during stroke and trauma. However, little knowledge is available on the mechanism of dendrite regeneration since the study of Cajal. In order to get insight into this process, we severed both axon and dendrites of PVD neuron in C. elegans using laser. By comparing the roles of axon regeneration pathways in both dendrite and axon regeneration in this neuron, we found that dendrite regeneration is independent of molecular mechanisms involving axon regrowth. We discovered that dendrite regeneration is dependent on the RAC GTPase CED-10 and GEF TIAM-1. Moreover, we found that CED-10 plays roles within both neuron and in the surrounding epithelia for mounting regeneration response to dendrite injury. This work provides mechanistic insight into the process of dendrite repair after physical injury.
Collapse
Affiliation(s)
- Harjot Kaur Brar
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Swagata Dey
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Smriti Bhardwaj
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Devashish Pande
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Pallavi Singh
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Shirshendu Dey
- Fluorescence Microscopy Division, Bruker India Scientific Pvt. Ltd., International Trade Tower, Nehru Place, New Delhi, India
| | - Anindya Ghosh-Roy
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
- * E-mail:
| |
Collapse
|
11
|
Kulminski AM, Loiko E, Loika Y, Culminskaya I. Pleiotropic predisposition to Alzheimer's disease and educational attainment: insights from the summary statistics analysis. GeroScience 2022; 44:265-280. [PMID: 34743297 PMCID: PMC8572080 DOI: 10.1007/s11357-021-00484-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
Epidemiological studies report beneficial associations of higher educational attainment (EDU) with Alzheimer's disease (AD). Prior genome-wide association studies (GWAS) also reported variants associated with AD and EDU separately. The analysis of pleiotropic associations with these phenotypes may shed light on EDU-related protection against AD. We performed pleiotropic meta-analyses using Fisher's method and omnibus test applied to summary statistics for single nucleotide polymorphisms (SNPs) associated with AD and EDU in large-scale univariate GWAS at suggestive-effect (5 × 10-8 < p < 0.1) and genome-wide (p ≤ 5 × 10-8) significance levels. We report 53 SNPs that attained p ≤ 5 × 10-8 at least in one of the pleiotropic meta-analyses and were reported in the univariate GWAS at 5 × 10-8 < p < 0.1. Of them, there were 46 pleiotropic SNPs according to Fisher's method. Additionally, Fisher's method identified 25 of 206 SNPs with pleiotropic effects, which attained p ≤ 5 × 10-8 in the univariate GWAS. We showed that a large fraction of the pleiotropic associations was affected by a counterintuitive phenomenon of antagonistic genetic heterogeneity, which explains the increase, rather than decrease, of the significance of the pleiotropic associations in the omnibus test. Functional enrichment analysis showed that apart from cancers, gene set harboring the non-pleiotropic SNPs was characterized by late-onset AD and neurodevelopmental disorders. The pleiotropic gene set was characterized by a broad spectrum of progressive neurological and neuromuscular diseases and immune-mediated conditions, including progressive motor neuropathy, multiple sclerosis, Parkinson's disease, and severe AD. Our results suggest that disentangling genes harboring variants with and without pleiotropic associations with AD and EDU is promising for dissecting heterogeneity in biological mechanisms of AD.
Collapse
Affiliation(s)
- Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA.
| | - Elena Loiko
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA
| | - Yury Loika
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27708-0408, USA
| |
Collapse
|
12
|
Noguchi A, Ito K, Uosaki Y, Ideta-Otsuka M, Igarashi K, Nakashima H, Kakizaki T, Kaneda R, Uosaki H, Yanagawa Y, Nakashima K, Arakawa H, Takizawa T. Decreased Lamin B1 Levels Affect Gene Positioning and Expression in Postmitotic Neurons. Neurosci Res 2021; 173:22-33. [PMID: 34058264 DOI: 10.1016/j.neures.2021.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/01/2023]
Abstract
Gene expression programs and concomitant chromatin regulation change dramatically during the maturation of postmitotic neurons. Subnuclear positioning of gene loci is relevant to transcriptional regulation. However, little is known about subnuclear genome positioning in neuronal maturation. Using cultured murine hippocampal neurons, we found genomic locus 14qD2 to be enriched with genes that are upregulated during neuronal maturation. Reportedly, the locus is homologous to human 8p21.3, which has been extensively studied in neuropsychiatry and neurodegenerative diseases. Mapping of the 14qD2 locus in the nucleus revealed that it was relocated from the nuclear periphery to the interior. Moreover, we found a concomitant decrease in lamin B1 expression. Overexpression of lamin B1 in neurons using a lentiviral vector prevented the relocation of the 14qD2 locus and repressed the transcription of the Egr3 gene on this locus. Taken together, our results suggest that reduced lamin B1 expression during the maturation of neurons is important for appropriate subnuclear positioning of the genome and transcriptional programs.
Collapse
Affiliation(s)
- Azumi Noguchi
- Gunma University Graduate School of Medicine, Department of Pediatrics, Maebashi, 371-8511, Japan
| | - Kenji Ito
- Gunma University Graduate School of Medicine, Department of Pediatrics, Maebashi, 371-8511, Japan; University of Pennsylvania, Perelman School of Medicine, Institute for Regenerative Medicine, Department of Cell and Developmental Biology, Philadelphia, PA, 19104-5157, USA
| | - Yuichi Uosaki
- Gunma University Graduate School of Medicine, Department of Pediatrics, Maebashi, 371-8511, Japan
| | - Maky Ideta-Otsuka
- Hoshi University School of Pharmacy Pharmaceutical Science, Life Science Tokyo Advanced Research Center (L-StaR), Tokyo, 142 8501, Japan
| | - Katsuhide Igarashi
- Hoshi University School of Pharmacy Pharmaceutical Science, Life Science Tokyo Advanced Research Center (L-StaR), Tokyo, 142 8501, Japan
| | - Hideyuki Nakashima
- Kyushu University, Department of Stem Cell Biology and Medicine Graduate School of Medical Sciences, Fukuoka, 812 8582, Japan
| | - Toshikazu Kakizaki
- Gunma University Graduate School of Medicine, Department of Genetic and Behavioral Neuroscience, Maebashi, 371 8511, Japan
| | - Ruri Kaneda
- Jichi Medical University, Support Center for Clinical Investigation, Shimotsuke, 329 0498, Japan
| | - Hideki Uosaki
- Jichi Medical University, Division of Regenerative Medicine, Center for Molecular Medicine, Shimotsuke, 329 0498, Japan; Jichi Medical University, Center for Development of Advanced Medical Technology, Shimotsuke, 329 0498, Japan
| | - Yuchio Yanagawa
- Gunma University Graduate School of Medicine, Department of Genetic and Behavioral Neuroscience, Maebashi, 371 8511, Japan
| | - Kinichi Nakashima
- Kyushu University, Department of Stem Cell Biology and Medicine Graduate School of Medical Sciences, Fukuoka, 812 8582, Japan
| | - Hirokazu Arakawa
- Gunma University Graduate School of Medicine, Department of Pediatrics, Maebashi, 371-8511, Japan
| | - Takumi Takizawa
- Gunma University Graduate School of Medicine, Department of Pediatrics, Maebashi, 371-8511, Japan.
| |
Collapse
|
13
|
Uguagliati B, Stagni F, Emili M, Giacomini A, Russo C, Guidi S, Bartesaghi R. Early appearance of dendritic alterations in neocortical pyramidal neurons of the Ts65Dn model of Down syndrome. Dev Neurosci 2021; 44:23-38. [PMID: 34852343 DOI: 10.1159/000520925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Abstract
Down syndrome (DS), which is due to triplication of chromosome 21, is constantly associated with intellectual disability (ID). ID can be ascribed to both neurogenesis impairment and dendritic pathology. These defects are replicated in the Ts65Dn mouse, a widely used model of DS. While neurogenesis impairment in DS is a fetal event, dendritic pathology occurs after the first postnatal months. Neurogenesis alterations across the lifespan have been extensively studied in the Ts65Dn mouse. In contrast, there is scarce information regarding dendritic alterations at early life stages in this and other models, although there is evidence for dendritic alterations in adult mouse models. Thus, the goal of the current study was to establish whether dendritic alterations are already present in the neonatal period in Ts65Dn mice. In Golgi-stained brains we quantified the dendritic arbors of layer II/III pyramidal neurons in the frontal cortex of Ts65Dn mice aged 2 (P2) and 8 (P8) days and their euploid littermates. In P2 Ts65Dn mice we found a moderate hypotrophy of the apical and collateral dendrites but a patent hypotrophy of the basal dendrites. In P8 Ts65Dn mice the distalmost apical branches were missing or reduced in number but there were no alterations in the collateral and basal dendrites. No genotype effects were detected on either somatic or dendritic spine density. This study shows dendritic branching defects that mainly involve the basal domain in P2 Ts65Dn mice, and the apical but not the other domains in P8 Ts65Dn mice. This suggests that dendritic defects may be related to dendritic compartment and age. The lack of a severe dendritic pathology in Ts65Dn pups is reminiscent of the delayed appearance of patent dendritic alterations in newborns with DS. This similarly highlights the usefulness of the Ts65Dn model for the study of the mechanisms underlying dendritic alterations in DS and the design of possible therapeutic interventions.
Collapse
Affiliation(s)
- Beatrice Uguagliati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Marco Emili
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Andrea Giacomini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carla Russo
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Esnafoglu E, Adıgüzel Ö. Association of BDNF levels with IQ: comparison of S100B and BDNF levels in typically developing children and subjects with neurologically normal nonsyndromic intellectual disability. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2021; 65:1073-1084. [PMID: 34750906 DOI: 10.1111/jir.12896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) and S100B are reported to play an important role in neurodevelopment and may contribute to developmental pathogenesis in neuropsychiatric diseases. In this study, we aimed to examine the possible roles of BDNF and S100B in the pathogenesis of nonsyndromic intellectual disability (NS-ID) and their relationship with cognitive performance. METHODS Thirty-three patients with intellectual disability (ID) and 30 typically developing children were compared. BDNF and S100B serum levels were measured with ELISA. The Wechsler Intelligence Scale for Children-Revised Short form (WISC-R) and Leiter intelligence test were administered to determine the intelligence levels of subjects. Leiter intelligence test was applied to 10 participants (30.31%) in the ID group because they had speech and communication problems. All other participants underwent WISC-R. RESULTS Brain-derived neurotrophic factor levels were found to be significantly low in the patient group (mean ± SD, 67.43 ± 29.74 pg/mL) compared with the control group (94.67 ± 32.55 pg/mL) (P = 0.002). When S100B is assessed, there was no significant difference found between the patient group (335.05 ± 279.89 pg/mL) and control group (295.30 ± 146.55 pg/mL) (P = 0.901). There was a significant positive correlation between BDNF and performance IQ (r = 0.424 and P = 0.001) in all participants. In addition, positive correlations were found between BDNF levels and initiating speech time (r = -0.369 and P = 0.003). CONCLUSIONS Brain-derived neurotrophic factor deficiency is proposed to have a possible role in the pathology of NS-ID. High BDNF levels may be associated with better cognitive performance.
Collapse
Affiliation(s)
- E Esnafoglu
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Ö Adıgüzel
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Ordu University, Ordu, Turkey
| |
Collapse
|
15
|
Khanal P, Hotulainen P. Dendritic Spine Initiation in Brain Development, Learning and Diseases and Impact of BAR-Domain Proteins. Cells 2021; 10:cells10092392. [PMID: 34572042 PMCID: PMC8468246 DOI: 10.3390/cells10092392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Dendritic spines are small, bulbous protrusions along neuronal dendrites where most of the excitatory synapses are located. Dendritic spine density in normal human brain increases rapidly before and after birth achieving the highest density around 2-8 years. Density decreases during adolescence, reaching a stable level in adulthood. The changes in dendritic spines are considered structural correlates for synaptic plasticity as well as the basis of experience-dependent remodeling of neuronal circuits. Alterations in spine density correspond to aberrant brain function observed in various neurodevelopmental and neuropsychiatric disorders. Dendritic spine initiation affects spine density. In this review, we discuss the importance of spine initiation in brain development, learning, and potential complications resulting from altered spine initiation in neurological diseases. Current literature shows that two Bin Amphiphysin Rvs (BAR) domain-containing proteins, MIM/Mtss1 and SrGAP3, are involved in spine initiation. We review existing literature and open databases to discuss whether other BAR-domain proteins could also take part in spine initiation. Finally, we discuss the potential molecular mechanisms on how BAR-domain proteins could regulate spine initiation.
Collapse
Affiliation(s)
- Pushpa Khanal
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland;
- HiLIFE-Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland;
- Correspondence:
| |
Collapse
|
16
|
Dendrites of Neocortical Pyramidal Neurons: The Key to Understand Intellectual Disability. Cell Mol Neurobiol 2021; 42:147-153. [PMID: 34216332 PMCID: PMC8732981 DOI: 10.1007/s10571-021-01123-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/27/2021] [Indexed: 12/02/2022]
Abstract
Pyramidal neurons (PNs) are the most abundant cells of the neocortex and display a vast dendritic tree, divided into basal and apical compartments. Morphological and functional anomalies of PN dendrites are at the basis of virtually all neurological and mental disorders, including intellectual disability. Here, we provide evidence that the cognitive deficits observed in different types of intellectual disability might be sustained by different parts of the PN dendritic tree, or by a dysregulation of their interaction.
Collapse
|
17
|
Ambrozkiewicz MC, Borisova E, Schwark M, Ripamonti S, Schaub T, Smorodchenko A, Weber AI, Rhee HJ, Altas B, Yilmaz R, Mueller S, Piepkorn L, Horan ST, Straussberg R, Zaqout S, Jahn O, Dere E, Rosário M, Boehm-Sturm P, Borck G, Willig KI, Rhee J, Tarabykin V, Kawabe H. The murine ortholog of Kaufman oculocerebrofacial syndrome protein Ube3b regulates synapse number by ubiquitinating Ppp3cc. Mol Psychiatry 2021; 26:1980-1995. [PMID: 32249816 DOI: 10.1038/s41380-020-0714-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
Kaufman oculocerebrofacial syndrome (KOS) is a severe autosomal recessive disorder characterized by intellectual disability, developmental delays, microcephaly, and characteristic dysmorphisms. Biallelic mutations of UBE3B, encoding for a ubiquitin ligase E3B are causative for KOS. In this report, we characterize neuronal functions of its murine ortholog Ube3b and show that Ube3b regulates dendritic branching in a cell-autonomous manner. Moreover, Ube3b knockout (KO) neurons exhibit increased density and aberrant morphology of dendritic spines, altered synaptic physiology, and changes in hippocampal circuit activity. Dorsal forebrain-specific Ube3b KO animals show impaired spatial learning, altered social interactions, and repetitive behaviors. We further demonstrate that Ube3b ubiquitinates the catalytic γ-subunit of calcineurin, Ppp3cc, the overexpression of which phenocopies Ube3b loss with regard to dendritic spine density. This work provides insights into the molecular pathologies underlying intellectual disability-like phenotypes in a genetically engineered mouse model.
Collapse
Affiliation(s)
- Mateusz C Ambrozkiewicz
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany. .,International Max Planck Research School for Neurosciences, Georg-August-Universität Göttingen, Griesebachstr. 5, 37077, Göttingen, Germany. .,Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Ekaterina Borisova
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, pr. Gagarina 24, Nizhny Novgorod, Russian Federation
| | - Manuela Schwark
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Silvia Ripamonti
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Theres Schaub
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Alina Smorodchenko
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - A Ioana Weber
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Hong Jun Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Bekir Altas
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany.,International Max Planck Research School for Neurosciences, Georg-August-Universität Göttingen, Griesebachstr. 5, 37077, Göttingen, Germany
| | - Rüstem Yilmaz
- Center for Rare Diseases (ZSE Ulm), Ulm University Hospital, Eythstraße 24, 89075, Ulm, Germany
| | - Susanne Mueller
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lars Piepkorn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Stephen T Horan
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Rachel Straussberg
- Institute of Child Neurology, Schneider's Children Medical Center, Petah Tikvah, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Sami Zaqout
- Basic Medical Science Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Ekrem Dere
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Marta Rosário
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Guntram Borck
- Center for Rare Diseases (ZSE Ulm), Ulm University Hospital, Eythstraße 24, 89075, Ulm, Germany
| | - Katrin I Willig
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.,Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.,Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, pr. Gagarina 24, Nizhny Novgorod, Russian Federation
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany. .,Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan. .,Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-minamimachi Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
18
|
Kojic M, Gawda T, Gaik M, Begg A, Salerno-Kochan A, Kurniawan ND, Jones A, Drożdżyk K, Kościelniak A, Chramiec-Głąbik A, Hediyeh-Zadeh S, Kasherman M, Shim WJ, Sinniah E, Genovesi LA, Abrahamsen RK, Fenger CD, Madsen CG, Cohen JS, Fatemi A, Stark Z, Lunke S, Lee J, Hansen JK, Boxill MF, Keren B, Marey I, Saenz MS, Brown K, Alexander SA, Mureev S, Batzilla A, Davis MJ, Piper M, Bodén M, Burne THJ, Palpant NJ, Møller RS, Glatt S, Wainwright BJ. Elp2 mutations perturb the epitranscriptome and lead to a complex neurodevelopmental phenotype. Nat Commun 2021; 12:2678. [PMID: 33976153 PMCID: PMC8113450 DOI: 10.1038/s41467-021-22888-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are the most common neurodevelopmental disorders and are characterized by substantial impairment in intellectual and adaptive functioning, with their genetic and molecular basis remaining largely unknown. Here, we identify biallelic variants in the gene encoding one of the Elongator complex subunits, ELP2, in patients with ID and ASD. Modelling the variants in mice recapitulates the patient features, with brain imaging and tractography analysis revealing microcephaly, loss of white matter tract integrity and an aberrant functional connectome. We show that the Elp2 mutations negatively impact the activity of the complex and its function in translation via tRNA modification. Further, we elucidate that the mutations perturb protein homeostasis leading to impaired neurogenesis, myelin loss and neurodegeneration. Collectively, our data demonstrate an unexpected role for tRNA modification in the pathogenesis of monogenic ID and ASD and define Elp2 as a key regulator of brain development.
Collapse
Affiliation(s)
- Marija Kojic
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Tomasz Gawda
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Gaik
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alexander Begg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Anna Salerno-Kochan
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Katarzyna Drożdżyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Kościelniak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Soroor Hediyeh-Zadeh
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Maria Kasherman
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Woo Jun Shim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Enakshi Sinniah
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Laura A Genovesi
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Rannvá K Abrahamsen
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - Christina D Fenger
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - Camilla G Madsen
- Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark
| | - Julie S Cohen
- Department of Neurology and Developmental Medicine, Division of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ali Fatemi
- Department of Neurology and Developmental Medicine, Division of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zornitza Stark
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Australian Genomics Health Alliance, Parkville, VIC, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Australian Genomics Health Alliance, Parkville, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
| | - Joy Lee
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Department of Metabolic Medicine, Royal Children's Hospital, Parkville, VIC, Australia
| | - Jonas K Hansen
- Department of Paediatrics, Regional Hospital Viborg, Viborg, Denmark
| | - Martin F Boxill
- Department of Paediatrics, Regional Hospital Viborg, Viborg, Denmark
| | - Boris Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Isabelle Marey
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Margarita S Saenz
- The University of Colorado Anschutz, Children's Hospital Colorado, Aurora, CO, USA
| | - Kathleen Brown
- The University of Colorado Anschutz, Children's Hospital Colorado, Aurora, CO, USA
| | - Suzanne A Alexander
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Brisbane, QLD, Australia
| | - Sergey Mureev
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Bio-commodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Alina Batzilla
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- The Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Melissa J Davis
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Brisbane, QLD, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Department for Regional Health Research, The University of Southern Denmark, Odense, Denmark
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Brandon J Wainwright
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
19
|
Is there a “g-neuron”? Establishing a systematic link between general intelligence (g) and the von Economo neuron. INTELLIGENCE 2021. [DOI: 10.1016/j.intell.2021.101540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Hilgenkamp TIM, Lefferts EC, White DW, Baynard T, Fernhall B. Blunted autonomic response to standing up and head-up tilt in individuals with intellectual disabilities. J Appl Physiol (1985) 2021; 130:1778-1785. [PMID: 33914659 DOI: 10.1152/japplphysiol.00328.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previous research suggests individuals with intellectual disabilities (ID) may experience autonomic dysfunction, however, this has not been thoroughly investigated. The aim of this study was to compare the autonomic response to standing up (active orthostasis) and head-up tilt (passive orthostasis) in individuals with ID to a control group without ID. Eighteen individuals with and 18 individuals without ID were instrumented with an ECG-lead and finger-photoplethysmography for continuous heart rate and blood pressure recordings. The active and passive orthostasis protocol consisted of 10-min supine rest, 10-min standing, 10-min supine recovery, 5-min head-up tilt at 70°, followed by 10-min supine recovery. The last 5 min of each position was used to calculate hemodynamic and autonomic function (time- and frequency-domain heart rate and blood pressure variability measures and baroreflex sensitivity). Individuals with ID had higher heart rate during baseline and recovery (P < 0.05), and an attenuated hemodynamic (stroke volume, heart rate) and heart rate variability response to active and passive orthostasis (interaction effect P < 0.05) compared with individuals without ID. Mean arterial pressure (MAP) was higher in individuals with ID at all timepoints. Individuals with ID demonstrated altered hemodynamic and autonomic regulation compared with a sex- and age-matched control group, evidenced by a higher mean arterial pressure and a reduced response in parasympathetic modulation to active and passive orthostasis.NEW & NOTEWORTHY Individuals with ID demonstrated altered hemodynamic and autonomic regulation to the clinical autonomic function tasks standing up and head-up tilt (active and passive orthostasis). Higher resting heart rate and higher MAP throughout the protocol suggest a higher arousal level, and individuals with ID showed a blunted response in parasympathetic modulation. Further research should investigate the relationship of these findings with clinical outcomes.
Collapse
Affiliation(s)
- Thessa I M Hilgenkamp
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois.,Chair of Intellectual Disability Medicine, Department of General Practice, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Elizabeth C Lefferts
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Daniel W White
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Tracy Baynard
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Bo Fernhall
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
21
|
Neuromuscular Fatigue in Individuals With Intellectual Disability: Comparison Between Sedentary Individuals and Athletes. Motor Control 2021; 25:264-282. [PMID: 33581687 DOI: 10.1123/mc.2020-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/16/2020] [Accepted: 12/03/2020] [Indexed: 11/18/2022]
Abstract
The authors explored neuromuscular fatigue in athletes with intellectual disability (AID) compared with sedentary individuals with intellectual disability (SID) and individuals with typical development. Force, voluntary activation level, potentiated resting twitch, and electromyography signals were assessed during isometric maximal voluntary contractions performed before and immediately after an isometric submaximal exhaustive contraction (15% isometric maximal voluntary contractions) and during recovery period. AID presented shorter time to task failure than SID (p < .05). The three groups presented similar isometric maximal voluntary contraction decline and recovery kinetic. Both groups with intellectual disability presented higher voluntary activation level and root mean square normalized to peak-to-peak M-wave amplitude declines (p < .05) compared with individuals with typical development. These declines were more pronounced in SID (p < .05) than in AID. The AID recovered their initial voluntary activation level later than controls, whereas SID did not. SID presented lower potentiated resting twitch decline compared with AID and controls with faster recovery (p < .05). AID presented attenuated central fatigue and accentuated peripheral fatigue compared with their sedentary counterparts, suggesting a neuromuscular profile close to that of individuals with typical development.
Collapse
|
22
|
Affes S, Borji R, Zarrouk N, Sahli S, Rebai H. Effects of running exercises on reaction time and working memory in individuals with intellectual disability. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2021; 65:99-112. [PMID: 33164281 DOI: 10.1111/jir.12798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND This study explored the effect of running exercises at low [30% heart rate reserve (HRR)] and moderate (60%HRR) intensities on cognitive performances in individuals with intellectual disability (ID). METHODS Participants performed randomly reaction time (RT) tests: visual RT [simple RT (SRT) and choice RT (CRT)], auditory SRT (ASRT) and working memory (WM) (Corsi test) before and after the exercises. RESULTS The results showed that after both exercises, SRT decreased significantly (P < 0.001) in both groups with higher extent (P < 0.05) at 60%HRR compared with 30%HRR. CRT decreased (P < 0.01), similarly, after the both exercises in both groups with higher (P < 0.001) extent in the intellectual disability group (IDG). ASRT decreased significantly, at 30%HRR, in IDG (P < 0.001) and in control group (CG) (P < 0.01) with greater extent in IDG (P < 0.001). At 60%HRR, ASRT decreased significantly in both groups (P < 0.001) with greater extent in IDG (P < 0.001). The ΔASRT% was significantly (P < 0.05) higher at 30%HRR compared with 60%HRR in IDG. In CG, no significant (P = 0.21) difference was reported between intensities. The Corsi forward and the Corsi backward scores increased significantly (P < 0.01) in both groups after both intensities with higher extent in IDG (P < 0.01). CONCLUSIONS Our results suggest that low and moderate running exercises improve similarly simple and choice visual RT as well as WM in individuals with ID. Furthermore, low-intensity exercise could be more appropriate to enhance ASRT compared the moderate one in these individuals. Therefore, low-intensity exercise seems to be an efficient strategy to improve cognitive performances in individuals with ID.
Collapse
Affiliation(s)
- S Affes
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - R Borji
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - N Zarrouk
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - S Sahli
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - H Rebai
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
23
|
The Na +-activated K + channel Slack contributes to synaptic development and plasticity. Cell Mol Life Sci 2021; 78:7569-7587. [PMID: 34664085 PMCID: PMC8629810 DOI: 10.1007/s00018-021-03953-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
Human mutations of the Na+-activated K+ channel Slack (KCNT1) are associated with epilepsy and intellectual disability. Accordingly, Slack knockout mice (Slack-/-) exhibit cognitive flexibility deficits in distinct behavioral tasks. So far, however, the underlying causes as well as the role of Slack in hippocampus-dependent memory functions remain enigmatic. We now report that infant (P6-P14) Slack-/- lack both hippocampal LTD and LTP, likely due to impaired NMDA receptor (NMDAR) signaling. Postsynaptic GluN2B levels are reduced in infant Slack-/-, evidenced by lower amplitudes of NMDAR-meditated excitatory postsynaptic potentials. Low GluN2B affected NMDAR-mediated Ca2+-influx, rendering cultured hippocampal Slack-/-neurons highly insensitive to the GluN2B-specific inhibitor Ro 25-6981. Furthermore, dephosphorylation of the AMPA receptor (AMPAR) subunit GluA1 at S845, which is involved in AMPAR endocytosis during homeostatic and neuromodulator-regulated plasticity, is reduced after chemical LTD (cLTD) in infant Slack-/-. We additionally detect a lack of mGluR-induced LTD in infant Slack-/-, possibly caused by upregulation of the recycling endosome-associated small GTPase Rab4 which might accelerate AMPAR recycling from early endosomes. Interestingly, LTP and mGluR LTD, but not LTD and S845 dephosphorylation after cLTD are restored in adult Slack-/-. This together with normalized expression levels of GluN2B and Rab4 hints to developmental "restoration" of LTP expression despite Slack ablation, whereas in infant and adult brain, NMDAR-dependent LTD induction depends on this channel. Based on the present findings, NMDAR and vesicular transport might represent novel targets for the therapy of intellectual disability associated with Slack mutations. Consequently, careful modulation of hippocampal Slack activity should also improve learning abilities.
Collapse
|
24
|
Fernández-Blanco Á, Dierssen M. Rethinking Intellectual Disability from Neuro- to Astro-Pathology. Int J Mol Sci 2020; 21:E9039. [PMID: 33261169 PMCID: PMC7730506 DOI: 10.3390/ijms21239039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022] Open
Abstract
Neurodevelopmental disorders arise from genetic and/or from environmental factors and are characterized by different degrees of intellectual disability. The mechanisms that govern important processes sustaining learning and memory, which are severely affected in intellectual disability, have classically been thought to be exclusively under neuronal control. However, this vision has recently evolved into a more integrative conception in which astroglia, rather than just acting as metabolic supply and structural anchoring for neurons, interact at distinct levels modulating neuronal communication and possibly also cognitive processes. Recently, genetic tools have made it possible to specifically manipulate astrocyte activity unraveling novel functions that involve astrocytes in memory function in the healthy brain. However, astrocyte manipulation has also underscored potential mechanisms by which dysfunctional astrocytes could contribute to memory deficits in several neurodevelopmental disorders revealing new pathogenic mechanisms in intellectual disability. Here, we review the current knowledge about astrocyte dysfunction that might contribute to learning and memory impairment in neurodevelopmental disorders, with special focus on Fragile X syndrome and Down syndrome.
Collapse
Affiliation(s)
- Álvaro Fernández-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain;
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
25
|
Piriform cortex alterations in the Ts65Dn model for down syndrome. Brain Res 2020; 1747:147031. [PMID: 32726601 DOI: 10.1016/j.brainres.2020.147031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/02/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
The piriform cortex is involved in olfactory information processing, that is altered in Down Syndrome. Moreover, piriform cortex has a crucial involvement in epilepsy generation and is one of the first regions affected in Alzheimer's Disease, both maladies being prevalent among Down Syndrome individuals. In this work, we studied the alterations in neuronal morphology, synaptology and structural plasticity in the piriform cortex of the Ts65Dn mouse model, which is the most used model for the study of this syndrome and mimics some of their alterations. We have observed that Ts65Dn piriform cortex displays: a reduction in dendritic arborisation, a higher density of inhibitory synapses (GAD67), a lower density of excitatory synapses (vGLUT1) and a higher density of inhibitory postsynaptic puncta (gephyrin). Under electron microscopy the excitatory presynaptic and postsynaptic elements were larger in trisomic mice than in controls. Similar results were obtained using confocal microscopy. There were less immature neurons in piriform cortex layer II in addition to a reduction in the expression of PSA-NCAM in the neuropil that subsequently can reflect impairment in structural plasticity. These data support the idea of an impaired environment with altered ratio of inhibition and excitation that involves a reduction in plasticity and dendritic atrophy, providing a possible substrate for the olfactory processing impairment observed in DS individuals.
Collapse
|
26
|
Molecular Evolution, Neurodevelopmental Roles and Clinical Significance of HECT-Type UBE3 E3 Ubiquitin Ligases. Cells 2020; 9:cells9112455. [PMID: 33182779 PMCID: PMC7697756 DOI: 10.3390/cells9112455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination belongs to the best characterized pathways of protein degradation in the cell; however, our current knowledge on its physiological consequences is just the tip of an iceberg. The divergence of enzymatic executors of ubiquitination led to some 600–700 E3 ubiquitin ligases embedded in the human genome. Notably, mutations in around 13% of these genes are causative of severe neurological diseases. Despite this, molecular and cellular context of ubiquitination remains poorly characterized, especially in the developing brain. In this review article, we summarize recent findings on brain-expressed HECT-type E3 UBE3 ligases and their murine orthologues, comprising Angelman syndrome UBE3A, Kaufman oculocerebrofacial syndrome UBE3B and autism spectrum disorder-associated UBE3C. We summarize evolutionary emergence of three UBE3 genes, the biochemistry of UBE3 enzymes, their biology and clinical relevance in brain disorders. Particularly, we highlight that uninterrupted action of UBE3 ligases is a sine qua non for cortical circuit assembly and higher cognitive functions of the neocortex.
Collapse
|
27
|
Adegbola A, Lutz R, Nikkola E, Strom SP, Picker J, Wynshaw-Boris A. Disruption of CTNND2, encoding delta-catenin, causes a penetrant attention deficit disorder and myopia. HGG ADVANCES 2020; 1:100007. [PMID: 33718894 PMCID: PMC7948131 DOI: 10.1016/j.xhgg.2020.100007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/24/2020] [Indexed: 11/21/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common and highly heritable neurodevelopmental disorder with poorly understood pathophysiology and genetic mechanisms. A balanced chromosomal translocation interrupts CTNND2 in several members of a family with profound attentional deficit and myopia, and disruption of the gene was found in a separate unrelated individual with ADHD and myopia. CTNND2 encodes a brain-specific member of the adherens junction complex essential for postsynaptic and dendritic development, a site of potential pathophysiology in attentional disorders. Therefore, we propose that the severe and highly penetrant nature of the ADHD phenotype in affected individuals identifies CTNND2 as a potential gateway to ADHD pathophysiology similar to the DISC1 translocation in psychosis or AUTS2 in autism.
Collapse
Affiliation(s)
- Abidemi Adegbola
- Department of Psychiatry, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Genetics and Genome Sciences and Center for Human Genetics, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA
| | - Richard Lutz
- Department of Genetic Medicine, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | - Jonathan Picker
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Child and Adolescent Psychiatry, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences and Center for Human Genetics, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
28
|
Li X, Han X, Tu X, Zhu D, Feng Y, Jiang T, Yang Y, Qu J, Chen JG. An Autism-Related, Nonsense Foxp1 Mutant Induces Autophagy and Delays Radial Migration of the Cortical Neurons. Cereb Cortex 2020; 29:3193-3208. [PMID: 30124790 DOI: 10.1093/cercor/bhy185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that has a strong genetic component. Disruptions of FOXP1, a transcription factor expressed in the developing cerebral cortex, were associated with ASD. FOXP1(R525X) is a de novo heterozygous mutation found in patients with autism and severe mental retardation. To explore the neuronal basis of FOXP1(R525X) in ASD, we created Foxp1(R521X), a mouse homolog of the human variant. Ectopic expression of Foxp1(R521X) led to cytoplasmic aggregates and activated macroautophagy in neuroblastoma N2a cells and the developing neuronal cells. Cortical neurons expressing Foxp1(R521X) exhibited delayed migration and altered dendritic morphology. As a control, mutant Y435X that was expressed diffusively in the cytoplasm did not induce autophagy and migration delay in the cortex. The embryonic cortical cells had a minimal activity of nonsense-mediated mRNA decay (NMD) as assayed by a splicing-dependent NMD reporter. We hypothesize that the developing neuronal cells use autophagy but not NMD as a safeguard mechanism against nonsense mutant aggregates, resulting in impairment of the cortical development. This study suggests a novel mechanism other than heterozygous loss of FOXP1 for the development of ASD and may advance our understanding of the complex relationships between gene mutation and the related psychiatric disorders.
Collapse
Affiliation(s)
- Xue Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Xin Han
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Xiaomeng Tu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Dan Zhu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Yue Feng
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Tian Jiang
- Research Center for Translational Medicine, the Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, PR China
| | - Youping Yang
- Research Center for Translational Medicine, the Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, PR China
| | - Jia Qu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| | - Jie-Guang Chen
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, Zhejiang, PR China
| |
Collapse
|
29
|
Glennon JM, D'Souza H, Mason L, Karmiloff-Smith A, Thomas MSC. Visuo-attentional correlates of Autism Spectrum Disorder (ASD) in children with Down syndrome: A comparative study with children with idiopathic ASD. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 104:103678. [PMID: 32505966 PMCID: PMC7429984 DOI: 10.1016/j.ridd.2020.103678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Children with Down syndrome (DS) are at increased likelihood of Autism Spectrum Disorder (ASD) relative to the general population. To better understand the nature of this comorbidity, we examined the visuo-attentional processes associated with autistic trait expression in children with DS, focusing specifically on attentional disengagement and visual search performance. METHOD We collected eye-tracking data from children with DS (n = 15) and children with idiopathic ASD (iASD, n = 16) matched according to chronological age. Seven children with DS had a formal clinical diagnosis of ASD (DS+ASD). RESULTS In children with iASD, but not DS, higher autistic trait levels were associated with decreased temporal facilitation on a gap-overlap task, implying increased visuospatial orienting efficiency. In all cases, higher autistic trait levels were associated with improved visual search performance according to decreased target detection latency. On a visual search task, children with DS+ASD outperformed their peers with DS-ASD, mirroring the phenotypic advantage associated with iASD. We found no evidence of a relationship between attentional disengagement and visual search performance, providing preliminary evidence of a differentiation in terms of underlying visuo-attentional mechanism. CONCLUSION We illustrate the value of progressing beyond insensitive behavioural measures of phenotypic description to examine, in a more fine-grained way, the attentional features associated with ASD comorbidity in children with DS.
Collapse
Affiliation(s)
- Jennifer M Glennon
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck College, University of London, United Kingdom.
| | - Hana D'Souza
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck College, University of London, United Kingdom; Department of Psychology & Newnham College, University of Cambridge, United Kingdom
| | - Luke Mason
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck College, University of London, United Kingdom
| | - Annette Karmiloff-Smith
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck College, University of London, United Kingdom
| | - Michael S C Thomas
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck College, University of London, United Kingdom
| |
Collapse
|
30
|
Roper RJ, Goodlett CR, Martínez de Lagrán M, Dierssen M. Behavioral Phenotyping for Down Syndrome in Mice. ACTA ACUST UNITED AC 2020; 10:e79. [PMID: 32780566 DOI: 10.1002/cpmo.79] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Down syndrome (DS) is the most frequent genetic cause of intellectual disability, characterized by alterations in different behavioral symptom domains: neurodevelopment, motor behavior, and cognition. As mouse models have the potential to generate data regarding the neurological basis for the specific behavioral profile of DS, and may indicate pharmacological treatments with the potential to affect their behavioral phenotype, it is important to be able to assess disease-relevant behavioral traits in animal models in order to provide biological plausibility to the potential findings. The field is at a juncture that requires assessments that may effectively translate the findings acquired in mouse models to humans with DS. In this article, behavioral tests are described that are relevant to the domains affected in DS. A neurodevelopmental behavioral screen, the balance beam test, and the Multivariate Concentric Square Field test to assess multiple behavioral phenotypes and locomotion are described, discussing the ways to merge these findings to more fully understand cognitive strengths and weaknesses in this population. New directions for approaches to cognitive assessment in mice and humans are discussed. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Preweaning neurodevelopmental battery Basic Protocol 2: Balance beam Basic Protocol 3: Multivariate concentric square field test (MCSF).
Collapse
Affiliation(s)
| | | | - María Martínez de Lagrán
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
31
|
Schoof M, Hellwig M, Harrison L, Holdhof D, Lauffer MC, Niesen J, Virdi S, Indenbirken D, Schüller U. The basic helix-loop-helix transcription factor TCF4 impacts brain architecture as well as neuronal morphology and differentiation. Eur J Neurosci 2020; 51:2219-2235. [PMID: 31919899 DOI: 10.1111/ejn.14674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Germline mutations in the basic helix-loop-helix transcription factor 4 (TCF4) cause the Pitt-Hopkins syndrome (PTHS), a developmental disorder with severe intellectual disability. Here, we report findings from a new mouse model with a central nervous system-specific truncation of Tcf4 leading to severe phenotypic abnormalities. Furthermore, it allows the study of a complete TCF4 knockout in adult mice, circumventing early postnatal lethality of previously published mouse models. Our data suggest that a TCF4 truncation results in an impaired hippocampal architecture affecting both the dentate gyrus as well as the cornu ammonis. In the cerebral cortex, loss of TCF4 generates a severe differentiation delay of neural precursors. Furthermore, neuronal morphology was critically affected with shortened apical dendrites and significantly increased branching of dendrites. Our data provide novel information about the role of Tcf4 in brain development and may help to understand the mechanisms leading to intellectual deficits observed in patients suffering from PTHS.
Collapse
Affiliation(s)
- Melanie Schoof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany
| | - Malte Hellwig
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany
| | - Luke Harrison
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany
| | - Marlen C Lauffer
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Judith Niesen
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany
| | - Sanamjeet Virdi
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Daniela Indenbirken
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
32
|
Martínez Cué C, Dierssen M. Plasticity as a therapeutic target for improving cognition and behavior in Down syndrome. PROGRESS IN BRAIN RESEARCH 2020; 251:269-302. [DOI: 10.1016/bs.pbr.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Puspitasari A, Yamazaki H, Kawamura H, Nakano T, Takahashi A, Shirao T, Held KD. X-irradiation of developing hippocampal neurons causes changes in neuron population phenotypes, dendritic morphology and synaptic protein expression in surviving neurons at maturity. Neurosci Res 2019; 160:11-24. [PMID: 31711782 DOI: 10.1016/j.neures.2019.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/16/2019] [Accepted: 11/06/2019] [Indexed: 01/02/2023]
Abstract
The effects of X-irradiation on developing neurons and their functions are unclear. We used primary cultures of mouse hippocampal neurons to investigate the effects of X-irradiation on cell death in developing neurons by analyzing caspase-3, MAP2 and DAPI-labeled cells, and the phenotypes and function of surviving neurons, by examining GAD67-positive cells as a GABAergic marker, and the synaptic markers synapsin 1, drebrin and PSD-95 through its maturation. One-day in vitro (DIV 1) cells were exposed to 0.5 Gy or 1 Gy of X-rays. A significant increase in the percentage of activated caspase-3, a decrease in the number of MAP2/DAPI-positive cells and change in the percentage of GAD67 positive neurons, compared with sham controls, were found 6 days after 1 Gy and 13 days after 0.5 Gy of X-rays. The expression of PSD-95 and drebrin, as well as drebrin clusters, in the remaining neurons was decreased at DIV 21, in both 0.5 Gy and on 1 Gy-irradiation there was a reduced number of dendritic intersection as well. Together, our findings show that 0.5 Gy and 1 Gy of X-irradiation at DIV 1 not only causes neuronal cell death but elicits an increase in the percentage of inhibitory neurons, changes in the dendrites and decrease in expression of important synaptic proteins in the surviving neurons at maturity 3 weeks after exposure.
Collapse
Affiliation(s)
| | - Hiroyuki Yamazaki
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hidemasa Kawamura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, Maebashi, Graduate School of Medicine, Gunma, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kathryn D Held
- Gunma University Initiative for Advanced Research, Maebashi, Japan; Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Hawkins E, Akarca D, Zhang M, Brkić D, Woolrich M, Baker K, Astle D. Functional network dynamics in a neurodevelopmental disorder of known genetic origin. Hum Brain Mapp 2019; 41:530-544. [PMID: 31639257 PMCID: PMC7268087 DOI: 10.1002/hbm.24820] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/17/2019] [Accepted: 09/30/2019] [Indexed: 01/03/2023] Open
Abstract
Dynamic connectivity in functional brain networks is a fundamental aspect of cognitive development, but we have little understanding of the mechanisms driving variability in these networks. Genes are likely to influence the emergence of fast network connectivity via their regulation of neuronal processes, but novel methods to capture these rapid dynamics have rarely been used in genetic populations. The current study redressed this by investigating brain network dynamics in a neurodevelopmental disorder of known genetic origin, by comparing individuals with a ZDHHC9-associated intellectual disability to individuals with no known impairment. We characterised transient network dynamics using a Hidden Markov Model (HMM) on magnetoencephalography (MEG) data, at rest and during auditory oddball stimulation. The HMM is a data-driven method that captures rapid patterns of coordinated brain activity recurring over time. Resting-state network dynamics distinguished the groups, with ZDHHC9 participants showing longer state activation and, crucially, ZDHHC9 gene expression levels predicted the group differences in dynamic connectivity across networks. In contrast, network dynamics during auditory oddball stimulation did not show this association. We demonstrate a link between regional gene expression and brain network dynamics, and present the new application of a powerful method for understanding the neural mechanisms linking genetic variation to cognitive difficulties.
Collapse
Affiliation(s)
- Erin Hawkins
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Danyal Akarca
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Mengya Zhang
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Diandra Brkić
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Mark Woolrich
- Oxford Centre for Human Brain Activity, University of Oxford, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Duncan Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Cresto N, Pillet LE, Billuart P, Rouach N. Do Astrocytes Play a Role in Intellectual Disabilities? Trends Neurosci 2019; 42:518-527. [PMID: 31300246 DOI: 10.1016/j.tins.2019.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 05/31/2019] [Indexed: 11/29/2022]
Abstract
Neurodevelopmental disorders, including those involving intellectual disability, are characterized by abnormalities in formation and functions of synaptic circuits. Traditionally, research on synaptogenesis and synaptic transmission in health and disease focused on neurons, however, a growing number of studies have highlighted the role of astrocytes in this context. Tight structural and functional interactions of astrocytes and synapses indeed play important roles in brain functions, and the repertoire of astroglial regulations of synaptic circuits is large and complex. Recently, genetic studies of intellectual disabilities have underscored potential contributions of astrocytes in the pathophysiology of these disorders. Here we review how alterations of astrocyte functions in disease may interfere with neuronal excitability and the balance of excitatory and inhibitory transmission during development, and contribute to intellectual disabilities.
Collapse
Affiliation(s)
- Noémie Cresto
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, 75005 Paris, France; Université de Paris, Institut de Psychiatrie et de Neuroscience de Paris, INSERM U1266, Paris, France
| | - Laure-Elise Pillet
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, 75005 Paris, France; Université de Paris, Institut de Psychiatrie et de Neuroscience de Paris, INSERM U1266, Paris, France; Doctoral School N°562, Paris Descartes University, Paris 75006, France
| | - Pierre Billuart
- Université de Paris, Institut de Psychiatrie et de Neuroscience de Paris, INSERM U1266, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, 75005 Paris, France.
| |
Collapse
|
36
|
Borji R, Zghal F, Zarrouk N, Martin V, Sahli S, Rebai H. Neuromuscular fatigue and recovery profiles in individuals with intellectual disability. JOURNAL OF SPORT AND HEALTH SCIENCE 2019; 8:242-248. [PMID: 31193221 PMCID: PMC6523034 DOI: 10.1016/j.jshs.2017.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/01/2017] [Accepted: 02/14/2017] [Indexed: 06/09/2023]
Abstract
PURPOSE This study aimed to explore neuromuscular fatigue and recovery profiles in individuals with intellectual disability (ID) after exhausting submaximal contraction. METHODS Ten men with ID were compared to 10 men without ID. The evaluation of neuromuscular function consisted in brief (3 s) isometric maximal voluntary contraction (IMVC) of the knee extension superimposed with electrical nerve stimulation before, immediately after, and during 33 min after an exhausting submaximal isometric task at 15% of the IMVC. Force, voluntary activation level (VAL), potentiated twitch (Ptw), and electromyography (EMG) signals were measured during IMVC and then analyzed. RESULTS Individuals with ID developed lower baseline IMVC, VAL, Ptw, and RMS/Mmax ratio (root-mean-square value normalized to the maximal peak-to-peak amplitude of the M-wave) than controls (p < 0.05). Nevertheless, the time to task failure was significantly longer in ID vs. controls (p < 0.05). The 2 groups presented similar IMVC decline and recovery kinetics after the fatiguing exercise. However, individuals with ID presented higher VAL and RMS/Mmax ratio declines but lower Ptw decline compared to those without ID. Moreover, individuals with ID demonstrated a persistent central fatigue but faster recovery from peripheral fatigue. CONCLUSION These differences in neuromuscular fatigue profiles and recovery kinetics should be acknowledged when prescribing training programs for individuals with ID.
Collapse
Affiliation(s)
- Rihab Borji
- Research Unit Education, Motor Skills, Sports and Health (EM2S, UR15JS01), Higher Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Firas Zghal
- Research Unit Education, Motor Skills, Sports and Health (EM2S, UR15JS01), Higher Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Nidhal Zarrouk
- Research Unit Education, Motor Skills, Sports and Health (EM2S, UR15JS01), Higher Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Vincent Martin
- Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological Conditions, Blaise Pascal University, Clermont-Ferrand 63000, France
| | - Sonia Sahli
- Research Unit Education, Motor Skills, Sports and Health (EM2S, UR15JS01), Higher Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Haithem Rebai
- Research Unit Education, Motor Skills, Sports and Health (EM2S, UR15JS01), Higher Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
| |
Collapse
|
37
|
Inflammation-dependent ISG15 upregulation mediates MIA-induced dendrite damages and depression by disrupting NEDD4/Rap2A signaling. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1477-1489. [PMID: 30826466 DOI: 10.1016/j.bbadis.2019.02.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Maternal immune activation (MIA) is an independent risk factor for psychiatric disorders including depression spectrum in the offsprings, but the molecular mechanism is unclear. Recent studies show that interferon-stimulated gene-15 (ISG15) is involved in inflammation and neuronal dendrite development; here we studied the role of ISG15 in MIA-induced depression and the underlying mechanisms. METHODS By vena caudalis injecting polyinosinic: polycytidylic acid (poly I:C) into the pregnant rats to mimic MIA, we used AAV or lentivirus to introduce or silence ISG15 expression. Synaptic plasticity was detected by confocal microscope and Golgi staining. Cognitive performances of the offspring were measured by Open field, Forced swimming and Sucrose preference test. RESULTS We found that MIA induced depression-like behaviors with dendrite impairments in the offspring with ISG15 level increased in the offsprings' brain. Overexpressing ISG15 in the prefrontal cortex of neonatal cubs (P0) could mimic dendritic pathology and depressive like behaviors, while downregulating ISG15 rescued these abnormalities in the offsprings. Further studies demonstrated that MIA-induced upregulation of inflammatory cytokines promoted ISG15 expression in the offspring' brain which suppressed Rap2A ubiquitination via NEDD4 and thus induced Rap2A accumulation, while upregulating NEDD4 abolished ISG15-induced dendrite impairments. CONCLUSIONS These data reveal that MIA impedes offsprings' dendrite development and causes depressive like behaviors by upregulating ISG15 and suppressing NEDD4/Rap2A signaling. The current findings suggest that inhibiting ISG15 may be a promising intervention of MIA-induced psychiatric disorders in the offsprings.
Collapse
|
38
|
Poberezhnyi VI, Marchuk OV, Shvidyuk OS, Petrik IY, Logvinov OS. Fundamentals of the modern theory of the phenomenon of "pain" from the perspective of a systematic approach. Neurophysiological basis. Part 1: A brief presentation of key subcellular and cellular ctructural elements of the central nervous system. PAIN MEDICINE 2019. [DOI: 10.31636/pmjua.v3i4.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The phenomenon of “pain” is a psychophysiological phenomenon that is actualized in the mind of a person as a result of the systemic response of his body to certain external and internal stimuli. The heart of the corresponding mental processes is certain neurophysiological processes, which in turn are caused by a certain form of the systemic structural and functional organization of the central nervous system (CNS). Thus, the systemic structural and functional organization of the central nervous system of a person, determining the corresponding psychophysiological state in a specific time interval, determines its psycho-emotional states or reactions manifested by the pain phenomenon. The nervous system of the human body has a hierarchical structure and is a morphologically and functionally complete set of different, interconnected, nervous and structural formations. The basis of the structural formations of the nervous system is nervous tissue. It is a system of interconnected differentials of nerve cells, neuroglia and glial macrophages, providing specific functions of perception of stimulation, excitation, generation of nerve impulses and its transmission. The neuron and each of its compartments (spines, dendrites, catfish, axon) is an autonomous, plastic, active, structural formation with complex computational properties. One of them – dendrites – plays a key role in the integration and processing of information. Dendrites, due to their morphology, provide neurons with unique electrical and plastic properties and cause variations in their computational properties. The morphology of dendrites: 1) determines – a) the number and type of contacts that a particular neuron can form with other neurons; b) the complexity, diversity of its functions; c) its computational operations; 2) determines – a) variations in the computational properties of a neuron (variations of the discharges between bursts and regular forms of pulsation); b) back distribution of action potentials. Dendritic spines can form synaptic connection – one of the main factors for increasing the diversity of forms of synaptic connections of neurons. Their volume and shape can change over a short period of time, and they can rotate in space, appear and disappear by themselves. Spines play a key role in selectively changing the strength of synaptic connections during the memorization and learning process. Glial cells are active participants in diffuse transmission of nerve impulses in the brain. Astrocytes form a three-dimensional, functionally “syncytia-like” formation, inside of which there are neurons, thus causing their specific microenvironment. They and neurons are structurally and functionally interconnected, based on which their permanent interaction occurs. Oligodendrocytes provide conditions for the generation and transmission of nerve impulses along the processes of neurons and play a significant role in the processes of their excitation and inhibition. Microglial cells play an important role in the formation of the brain, especially in the formation and maintenance of synapses. Thus, the CNS should be considered as a single, functionally “syncytia-like”, structural entity. Because the three-dimensional distribution of dendritic branches in space is important for determining the type of information that goes to a neuron, it is necessary to consider the three-dimensionality of their structure when analyzing the implementation of their functions.
Collapse
|
39
|
Arbones ML, Thomazeau A, Nakano-Kobayashi A, Hagiwara M, Delabar JM. DYRK1A and cognition: A lifelong relationship. Pharmacol Ther 2019; 194:199-221. [PMID: 30268771 DOI: 10.1016/j.pharmthera.2018.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dosage of the serine threonine kinase DYRK1A is critical in the central nervous system (CNS) during development and aging. This review analyzes the functions of this kinase by considering its interacting partners and pathways. The role of DYRK1A in controlling the differentiation of prenatal newly formed neurons is presented separately from its role at the pre- and post-synaptic levels in the adult CNS; its effects on synaptic plasticity are also discussed. Because this kinase is positioned at the crossroads of many important processes, genetic dosage errors in this protein produce devastating effects arising from DYRK1A deficiency, such as in MRD7, an autism spectrum disorder, or from DYRK1A excess, such as in Down syndrome. Effects of these errors have been shown in various animal models including Drosophila, zebrafish, and mice. Dysregulation of DYRK1A levels also occurs in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Finally, this review describes inhibitors that have been assessed in vivo. Accurate targeting of DYRK1A levels in the brain, with either inhibitors or activators, is a future research challenge.
Collapse
Affiliation(s)
- Maria L Arbones
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain.
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jean M Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
40
|
Abstract
Reelin is an extracellular matrix glycoprotein that modulates synaptic function and plasticity, with a crucial role in neuronal migration. Changes in the expression of this protein have been reported in neurodegenerative diseases, such as Alzheimer's disease (AD). This molecule is produced by Cajal-Retzius neurons during development and by inhibitory neurons in the adult nervous system. Individuals with Down syndrome (DS) present an early development of AD; therefore, we analyzed the alterations in this molecule and its receptors in the murine model for DS Ts65Dn as well as in human with DS. We performed immunofluorescence analysis for reelin and its receptors very-low-density lipoprotein receptor and apolipoprotein R receptor 2 in the temporal cortex of mice and humans and have quantified the density of reelin-expressing neurons and the intensity of expression of both receptors. We have observed an increment in the density of reelin immunoreactive neurons in both the temporal cortex of adult Ts65Dn mice and humans with DS. Moreover, these reelin immunoreactive neurons displayed a disorganized distribution when compared with wild-type mice. Regarding reelin receptors, very-low-density lipoprotein receptor expression remained unaltered in both Ts65Dn and humans with DS, whereas apolipoprotein R receptor 2 decreased in both individuals with DS and Ts65Dn mice. These alterations are similar to those observed in individuals with AD.
Collapse
|
41
|
Nagy S, Maurer GW, Hentze JL, Rose M, Werge TM, Rewitz K. AMPK signaling linked to the schizophrenia-associated 1q21.1 deletion is required for neuronal and sleep maintenance. PLoS Genet 2018; 14:e1007623. [PMID: 30566533 PMCID: PMC6317821 DOI: 10.1371/journal.pgen.1007623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/03/2019] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
The human 1q21.1 deletion of ten genes is associated with increased risk of schizophrenia. This deletion involves the β-subunit of the AMP-activated protein kinase (AMPK) complex, a key energy sensor in the cell. Although neurons have a high demand for energy and low capacity to store nutrients, the role of AMPK in neuronal physiology is poorly defined. Here we show that AMPK is important in the nervous system for maintaining neuronal integrity and for stress survival and longevity in Drosophila. To understand the impact of this signaling system on behavior and its potential contribution to the 1q21.1 deletion syndrome, we focused on sleep, an important role of which is proposed to be the reestablishment of neuronal energy levels that are diminished during energy-demanding wakefulness. Sleep disturbances are one of the most common problems affecting individuals with psychiatric disorders. We show that AMPK is required for maintenance of proper sleep architecture and for sleep recovery following sleep deprivation. Neuronal AMPKβ loss specifically leads to sleep fragmentation and causes dysregulation of genes believed to play a role in sleep homeostasis. Our data also suggest that AMPKβ loss may contribute to the increased risk of developing mental disorders and sleep disturbances associated with the human 1q21.1 deletion. The human 1q21.1 chromosomal deletion is associated with increased risk of schizophrenia. Because this deletion affects only a small number of genes, it provides a unique opportunity to identify the specific disease-causing gene(s) using animal models. Here, we report the use of a Drosophila model to identify the potential contribution of one gene affected by the 1q21.1 deletion–PRKAB2 –to the pathology of the 1q21.1 deletion syndrome. PRKAB2 encodes a subunit of the AMP-activated protein kinase (AMPK) complex, the main cellular energy sensor. We show that AMPK deficiency reduces lifespan and causes structural abnormalities in neuronal dendritic structures, a phenotype which has been linked to schizophrenia. Furthermore, cognitive impairment and altered sleep patterning are some of the most common symptoms of schizophrenia. Therefore, to understand the potential contribution of PRKAB2 to the 1q21.1 syndrome, we tested whether AMPK alterations might cause defects in learning and sleep. Our studies show that lack of PRKAB2 and AMPK-complex activity in the nervous system leads to reduced learning and to dramatic sleep disturbances. Thus, our data links a single 1q21.1-related gene with phenotypes that resemble common symptoms of neuropsychiatric disorders, suggesting that this gene, PRKAB2, may contribute to the risk of developing schizophrenia.
Collapse
Affiliation(s)
- Stanislav Nagy
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Gianna W Maurer
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Julie L Hentze
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Institute for Biological Psychiatry, Mental Health Centre Sct. Hans, Roskilde, Denmark.,Department of Pathology, Herlev Hospital, Herlev, Denmark
| | - Morten Rose
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas M Werge
- Institute for Biological Psychiatry, Mental Health Centre Sct. Hans, Roskilde, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
mRNA expression of transient receptor potential melastatin (TRPM) channels 2 and 7 in perinatal brain development. Int J Dev Neurosci 2018; 69:23-31. [DOI: 10.1016/j.ijdevneu.2018.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/04/2018] [Accepted: 05/18/2018] [Indexed: 12/31/2022] Open
|
43
|
De novo and inherited mutations in the X-linked gene CLCN4 are associated with syndromic intellectual disability and behavior and seizure disorders in males and females. Mol Psychiatry 2018; 23:222-230. [PMID: 27550844 PMCID: PMC5794876 DOI: 10.1038/mp.2016.135] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/14/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022]
Abstract
Variants in CLCN4, which encodes the chloride/hydrogen ion exchanger CIC-4 prominently expressed in brain, were recently described to cause X-linked intellectual disability and epilepsy. We present detailed phenotypic information on 52 individuals from 16 families with CLCN4-related disorder: 5 affected females and 2 affected males with a de novo variant in CLCN4 (6 individuals previously unreported) and 27 affected males, 3 affected females and 15 asymptomatic female carriers from 9 families with inherited CLCN4 variants (4 families previously unreported). Intellectual disability ranged from borderline to profound. Behavioral and psychiatric disorders were common in both child- and adulthood, and included autistic features, mood disorders, obsessive-compulsive behaviors and hetero- and autoaggression. Epilepsy was common, with severity ranging from epileptic encephalopathy to well-controlled seizures. Several affected individuals showed white matter changes on cerebral neuroimaging and progressive neurological symptoms, including movement disorders and spasticity. Heterozygous females can be as severely affected as males. The variability of symptoms in females is not correlated with the X inactivation pattern studied in their blood. The mutation spectrum includes frameshift, missense and splice site variants and one single-exon deletion. All missense variants were predicted to affect CLCN4's function based on in silico tools and either segregated with the phenotype in the family or were de novo. Pathogenicity of all previously unreported missense variants was further supported by electrophysiological studies in Xenopus laevis oocytes. We compare CLCN4-related disorder with conditions related to dysfunction of other members of the CLC family.
Collapse
|
44
|
Cheng GR, Li XY, Xiang YD, Liu D, McClintock SM, Zeng Y. The implication of AMPA receptor in synaptic plasticity impairment and intellectual disability in fragile X syndrome. Physiol Res 2017; 66:715-727. [PMID: 28730825 DOI: 10.33549/physiolres.933473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fragile X syndrome (FXS) is the most frequently inherited form of intellectual disability and prevalent single-gene cause of autism. A priority of FXS research is to determine the molecular mechanisms underlying the cognitive and social functioning impairments in humans and the FXS mouse model. Glutamate ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPARs) mediate a majority of fast excitatory neurotransmission in the central nervous system and are critically important for nearly all aspects of brain function, including neuronal development, synaptic plasticity, and learning and memory. Both preclinical and clinical studies have indicated that expression, trafficking, and functions of AMPARs are altered and result in altered synapse development and plasticity, cognitive impairment, and poor mental health in FXS. In this review, we discuss the contribution of AMPARs to disorders of FXS by highlighting recent research advances with a specific focus on change in AMPARs expression, trafficking, and dependent synaptic plasticity. Since changes in synaptic strength underlie the basis of learning, development, and disease, we suggest that the current knowledge base of AMPARs has reached a unique point to permit a comprehensive re-evaluation of their roles in FXS.
Collapse
Affiliation(s)
- Gui-Rong Cheng
- Brain and Cognition Research Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, China, Hubei Key Laboratory of Hazard Identification and Control for Occupational Disease, Wuhan, China.
| | | | | | | | | | | |
Collapse
|
45
|
The X-Linked Intellectual Disability Protein IL1RAPL1 Regulates Dendrite Complexity. J Neurosci 2017; 37:6606-6627. [PMID: 28576939 DOI: 10.1523/jneurosci.3775-16.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/17/2017] [Accepted: 05/04/2017] [Indexed: 11/21/2022] Open
Abstract
Mutations and deletions of the interleukin-1 receptor accessory protein like 1 (IL1RAPL1) gene, located on the X chromosome, are associated with intellectual disability (ID) and autism spectrum disorder (ASD). IL1RAPL1 protein is located at the postsynaptic compartment of excitatory synapses and plays a role in synapse formation and stabilization. Here, using primary neuronal cultures and Il1rapl1-KO mice, we characterized the role of IL1RAPL1 in regulating dendrite morphology. In Il1rapl1-KO mice we identified an increased number of dendrite branching points in CA1 and CA2 hippocampal neurons associated to hippocampal cognitive impairment. Similarly, induced pluripotent stem cell-derived neurons from a patient carrying a null mutation of the IL1RAPL1 gene had more dendrites. In hippocampal neurons, the overexpression of full-length IL1RAPL1 and mutants lacking part of C-terminal domains leads to simplified neuronal arborization. This effect is abolished when we overexpressed mutants lacking part of N-terminal domains, indicating that the IL1RAPL1 extracellular domain is required for regulating dendrite development. We also demonstrate that PTPδ interaction is not required for this activity, while IL1RAPL1 mediates the activity of IL-1β on dendrite morphology. Our data reveal a novel specific function for IL1RAPL1 in regulating dendrite morphology that can help clarify how changes in IL1RAPL1-regulated pathways can lead to cognitive disorders in humans.SIGNIFICANCE STATEMENT Abnormalities in the architecture of dendrites have been observed in a variety of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Here we show that the X-linked intellectual disability protein interleukin-1 receptor accessory protein like 1 (IL1RAPL1) regulates dendrite morphology of mice hippocampal neurons and induced pluripotent stem cell-derived neurons from a patient carrying a null mutation of IL1RAPL1 gene. We also found that the extracellular domain of IL1RAPL1 is required for this effect, independently of the interaction with PTPδ, but IL1RAPL1 mediates the activity of IL-1β on dendrite morphology. Our data reveal a novel specific function for IL1RAPL1 in regulating dendrite morphology that can help clarify how changes in IL1RAPL1-regulated pathways can lead to cognitive disorders in humans.
Collapse
|
46
|
De Giorgio A. The roles of motor activity and environmental enrichment in intellectual disability. Somatosens Mot Res 2017; 34:34-43. [PMID: 28140743 DOI: 10.1080/08990220.2016.1278204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In people with intellectual disabilities, an enriched environment can stimulate the acquisition of motor skills and could partially repair neuronal impairment thanks to exploration and motor activity. A deficit in environmental and motor stimulation leads to low scores in intelligence tests and can cause serious motor skill problems. Although studies in humans do not give much evidence for explaining basic mechanisms of intellectual disability and for highlighting improvements due to enriched environmental stimulation, animal models have been valuable in the investigation of these conditions. Here, we discuss the role of environmental enrichment in four intellectual disabilities: Foetal Alcohol Spectrum Disorder (FASD), Down, Rett, and Fragile X syndromes.
Collapse
Affiliation(s)
- Andrea De Giorgio
- a Department of Psychology , eCampus University , Novedrate , Italy.,b Department of Psychology , Universita Cattolica del Sacro Cuore , Milano , Italy
| |
Collapse
|
47
|
Annus T, Wilson LR, Acosta-Cabronero J, Cardenas-Blanco A, Hong YT, Fryer TD, Coles JP, Menon DK, Zaman SH, Holland AJ, Nestor PJ. The Down syndrome brain in the presence and absence of fibrillar β-amyloidosis. Neurobiol Aging 2017; 53:11-19. [PMID: 28192686 PMCID: PMC5391869 DOI: 10.1016/j.neurobiolaging.2017.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/01/2017] [Accepted: 01/06/2017] [Indexed: 11/26/2022]
Abstract
People with Down syndrome (DS) have a neurodevelopmentally distinct brain and invariably developed amyloid neuropathology by age 50. This cross-sectional study aimed to provide a detailed account of DS brain morphology and the changes occuring with amyloid neuropathology. Forty-six adults with DS underwent structural and amyloid imaging—the latter using Pittsburgh compound B (PIB) to stratify the cohort into PIB-positive (n = 19) and PIB-negative (n = 27). Age-matched controls (n = 30) underwent structural imaging. Group differences in deep gray matter volumetry and cortical thickness were studied. PIB-negative people with DS have neurodevelopmentally atypical brain, characterized by disproportionately thicker frontal and occipitoparietal cortex and thinner motor cortex and temporal pole with larger putamina and smaller hippocampi than controls. In the presence of amyloid neuropathology, the DS brains demonstrated a strikingly similar pattern of posterior dominant cortical thinning and subcortical atrophy in the hippocampus, thalamus, and striatum, to that observed in non-DS Alzheimer's disease. Care must be taken to avoid underestimating amyloid-associated morphologic changes in DS due to disproportionate size of some subcortical structures and thickness of the cortex.
Collapse
Affiliation(s)
- Tiina Annus
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Cambridge, UK.
| | - Liam R Wilson
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Cambridge, UK
| | - Julio Acosta-Cabronero
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK
| | | | - Young T Hong
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jonathan P Coles
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Shahid H Zaman
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Elizabeth House, Fulbourn Hospital, Fulbourn, Cambridge, UK
| | - Anthony J Holland
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Elizabeth House, Fulbourn Hospital, Fulbourn, Cambridge, UK
| | - Peter J Nestor
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| |
Collapse
|
48
|
Salzberg Y, Coleman AJ, Celestrin K, Cohen-Berkman M, Biederer T, Henis-Korenblit S, Bülow HE. Reduced Insulin/Insulin-Like Growth Factor Receptor Signaling Mitigates Defective Dendrite Morphogenesis in Mutants of the ER Stress Sensor IRE-1. PLoS Genet 2017; 13:e1006579. [PMID: 28114319 PMCID: PMC5293268 DOI: 10.1371/journal.pgen.1006579] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/06/2017] [Accepted: 01/11/2017] [Indexed: 11/18/2022] Open
Abstract
Neurons receive excitatory or sensory inputs through their dendrites, which often branch extensively to form unique neuron-specific structures. How neurons regulate the formation of their particular arbor is only partially understood. In genetic screens using the multidendritic arbor of PVD somatosensory neurons in the nematode Caenorhabditis elegans, we identified a mutation in the ER stress sensor IRE-1/Ire1 (inositol requiring enzyme 1) as crucial for proper PVD dendrite arborization in vivo. We further found that regulation of dendrite growth in cultured rat hippocampal neurons depends on Ire1 function, showing an evolutionarily conserved role for IRE-1/Ire1 in dendrite patterning. PVD neurons of nematodes lacking ire-1 display reduced arbor complexity, whereas mutations in genes encoding other ER stress sensors displayed normal PVD dendrites, specifying IRE-1 as a selective ER stress sensor that is essential for PVD dendrite morphogenesis. Although structure function analyses indicated that IRE-1's nuclease activity is necessary for its role in dendrite morphogenesis, mutations in xbp-1, the best-known target of non-canonical splicing by IRE-1/Ire1, do not exhibit PVD phenotypes. We further determined that secretion and distal localization to dendrites of the DMA-1/leucine rich transmembrane receptor (DMA-1/LRR-TM) is defective in ire-1 but not xbp-1 mutants, suggesting a block in the secretory pathway. Interestingly, reducing Insulin/IGF1 signaling can bypass the secretory block and restore normal targeting of DMA-1, and consequently normal PVD arborization even in the complete absence of functional IRE-1. This bypass of ire-1 requires the DAF-16/FOXO transcription factor. In sum, our work identifies a conserved role for ire-1 in neuronal branching, which is independent of xbp-1, and suggests that arborization defects associated with neuronal pathologies may be overcome by reducing Insulin/IGF signaling and improving ER homeostasis and function.
Collapse
Affiliation(s)
- Yehuda Salzberg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Andrew J. Coleman
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States of America
| | - Kevin Celestrin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Moran Cohen-Berkman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States of America
| | - Sivan Henis-Korenblit
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
49
|
Borji R, Rebai H, Baccouch R, Laatar R, Sahli S. Unilateral Fatigue Affects the Unipedal Postural Balance in Individuals With Intellectual Disability. J Mot Behav 2016; 49:407-413. [PMID: 27935434 DOI: 10.1080/00222895.2016.1219309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aimed to explore the effect of local muscle fatigue on the unipedal stance in men with intellectual disability (ID). The Centre of pressure (CoP) excursions and the isometric maximal voluntary contraction (MVC) were measured before and after a fatiguing exercise. Higher baseline values of CoP excursions and lower MVC values were recorded in the ID group. After the fatiguing exercise, this group showed higher MVC decrease and higher percentage of increase of the mean CoP velocity. In conclusion, men with ID are more vulnerable to the disturbing effects of fatigue during the unipedal stance compared to men without ID.
Collapse
Affiliation(s)
- Rihab Borji
- a Unité de Recherche Education, Motricité, Sports et santé (EM2S, UR15SJ01), Institut Supérieur du Sport et de l'Education Physique de Sfax, Université de Sfax , Tunisia
| | - Haithem Rebai
- a Unité de Recherche Education, Motricité, Sports et santé (EM2S, UR15SJ01), Institut Supérieur du Sport et de l'Education Physique de Sfax, Université de Sfax , Tunisia
| | - Rym Baccouch
- a Unité de Recherche Education, Motricité, Sports et santé (EM2S, UR15SJ01), Institut Supérieur du Sport et de l'Education Physique de Sfax, Université de Sfax , Tunisia.,b Faculté des Sciences de Bizerte, Université de Carthage , Tunisia
| | - Rabeb Laatar
- a Unité de Recherche Education, Motricité, Sports et santé (EM2S, UR15SJ01), Institut Supérieur du Sport et de l'Education Physique de Sfax, Université de Sfax , Tunisia
| | - Sonia Sahli
- a Unité de Recherche Education, Motricité, Sports et santé (EM2S, UR15SJ01), Institut Supérieur du Sport et de l'Education Physique de Sfax, Université de Sfax , Tunisia
| |
Collapse
|
50
|
Tsc1 haploinsufficiency is sufficient to increase dendritic patterning and Filamin A levels. Neurosci Lett 2016; 629:15-18. [PMID: 27345385 DOI: 10.1016/j.neulet.2016.06.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 12/22/2022]
Abstract
Most individuals with tuberous sclerosis complex (TSC) are born with a mutant allele of either TSC1 or TSC2 and a mosaic of psychological and cognitive defects. Tsc1 loss of heterozygosity contributes to severe dendritic abnormalities that are rescued by normalizing the levels of the actin-cross linking protein, Filamin A (FLNA). However, it is unclear whether dendrites and FLNA levels are abnormal in an heterozygote Tsc1 condition. Here, we examined dendritic morphology and FLNA levels in the olfactory bulb of Tsc1 wild type and heterozygote mice. Using in vivo neonatal electroporation to label newborn neurons followed by sholl analysis, we found that Tsc1 haploinsufficiency is associated with increased dendritic complexity and total dendritic length as well as increased FLNA levels. Since reducing FLNA levels has been shown to decrease Tsc1(+/-) dendritic complexity, these data suggest that increased FLNA levels in Tsc1(+/-) mice contribute to abnormal dendritic patterning in the Tsc1 heterozygote condition of individuals with TSC.
Collapse
|