1
|
Kazanovich I, Itzhak S, Resnik J. Experience-driven development of decision-related representations in the auditory cortex. EMBO Rep 2024:10.1038/s44319-024-00309-0. [PMID: 39528730 DOI: 10.1038/s44319-024-00309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Associating sensory stimuli with behavioral significance induces substantial changes in stimulus representations. Recent studies suggest that primary sensory cortices not only adjust representations of task-relevant stimuli, but actively participate in encoding features of the decision-making process. We sought to determine whether this trait is innate in sensory cortices or if choice representation develops with time and experience. To trace choice representation development, we perform chronic two-photon calcium imaging in the primary auditory cortex of head-fixed mice while they gain experience in a tone detection task with a delayed decision window. Our results reveal a progressive increase in choice-dependent activity within a specific subpopulation of neurons, aligning with growing task familiarity and adapting to changing task rules. Furthermore, task experience correlates with heightened synchronized activity in these populations and the ability to differentiate between different types of behavioral decisions. Notably, the activity of this subpopulation accurately decodes the same action at different task phases. Our findings establish a dynamic restructuring of population activity in the auditory cortex to encode features of the decision-making process that develop over time and refines with experience.
Collapse
Affiliation(s)
- Itay Kazanovich
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
- Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Shir Itzhak
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
- Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Jennifer Resnik
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
- Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
| |
Collapse
|
2
|
Martin JC, Reeves KC, Carter KA, Davis M, Schneider A, Meade E, Lebonville CL, Nimitvilai S, Hoffman M, Woodward JJ, Mulholland PJ, Rinker JA. Genetic and functional adaptations and alcohol-biased signaling in the mediodorsal thalamus of alcohol dependent mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620696. [PMID: 39553931 PMCID: PMC11565778 DOI: 10.1101/2024.10.28.620696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Alcohol Use Disorder (AUD) is a significant health concern characterized by an individual's inability to control alcohol intake. With alcohol misuse increasing and abstinence rates declining, leading to severe social and health consequences, it is crucial to uncover effective treatment strategies for AUD by focusing on understanding neuroadaptations and cellular mechanisms. The mediodorsal thalamus (MD) is a brain region essential for cognitive functioning and reward-guided choices. However, the effects of alcohol (ethanol) dependence on MD neuroadaptations and how dependence alters MD activity during choice behaviors for alcohol and a natural reward (sucrose) are not well understood. Adult C57BL/6J mice treated with chronic intermittent ethanol (CIE) exposure were used to assess genetic and functional adaptations in the MD. Fiber photometry-based recordings of GCaMP6f expressed in the MD of C57BL/6J mice were acquired to investigate in vivo neural adaptations during choice drinking sessions for alcohol (15%) and either water or sucrose (3%). There were time-dependent changes in cFos and transcript expression during acute withdrawal and early abstinence. Differentially expressed genes were identified in control mice across different circadian time points and when comparing control and alcohol dependent mice. Gene Ontology enrichment analysis of the alcohol-sensitive genes revealed disruption of genes that control glial function, axonal myelination, and protein binding. CIE exposure also increased evoked firing in MD cells at 72 hours of withdrawal. In alcohol-dependent male and female mice that show increased alcohol drinking and preference for alcohol over water, we observed an increase in alcohol intake and preference for alcohol when mice were given a choice between alcohol and sucrose. Fiber photometry recordings demonstrated that MD activity is elevated during and after licking bouts for alcohol, water, and sucrose, and the signal for alcohol is significantly higher than that for water or sucrose during drinking. The elevated signal during alcohol bouts persisted in alcohol dependent mice. These findings demonstrate that CIE causes genetic and functional neuroadaptations in the MD and that alcohol dependence enhances alcohol-biased behaviors, with the MD uniquely responsive to alcohol, even in dependent mice.
Collapse
|
3
|
Monfared MS, Mascret Q, Marroquin-Rivera A, Blanc-Árabe L, Lebouleux Q, Lévesque J, Gosselin B, Labonté B. High-throughput low-cost digital lickometer system for the assessment of licking behaviours in mice. J Neurosci Methods 2024; 410:110221. [PMID: 39053773 DOI: 10.1016/j.jneumeth.2024.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Proper hydration is essential for maintaining health and supports various biological processes, including temperature regulation, immune function, nutrient delivery, and organ function. Visual assessment has traditionally been used to quantify liquid intake, although technological advances in optical and electrical sensors now offer higher accuracy and larger potential for automatic operation with millisecond precision and individual lick resolution. NEW METHOD We describe an inexpensive electronic sensor board to monitor mouse licking behavior. The system is equipped with integrated filtering and data preprocessing steps. It measures lick count, frequency, width and interlick intervals with high resolution, allowing the real-time monitoring of complex licking patterns in several mice in their respective home cages over prolonged periods. RESULTS Our lickometer provides two-millisecond resolution, efficiently detecting variations in licking behaviors in mice. The system is adapted to monitor licking behaviors in up to 12 mice simultaneously. Lick count, duration and interlick intervals, along with preference for sweet water were monitored over two days, revealing variations in licking patterns across light and dark phases extended over prolonged periods. COMPARISON WITH EXISTING METHODS Our lickometer allows for monitoring licking behaviors and dynamics. It can be adapted to conventional mouse cages using electrical circuits. It is open-source, cost-effective, efficient, and can be utilized in real-time for large cohorts, representing an ideal tool for studying ingestive dynamics in different environmental and pathological contexts. CONCLUSION We have developed a novel, cost-effective, and efficient device to monitor ingestive behaviors in mice. The throughput of our device allows for monitoring several mice simultaneously while it can be applied directly to a conventional mouse cage, simplifying its implementation into pre-existing experimental setups.
Collapse
Affiliation(s)
- M S Monfared
- Université Laval, Department of Electrical and Computer Engineering, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Q Mascret
- Université Laval, Department of Electrical and Computer Engineering, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - A Marroquin-Rivera
- Université Laval, Department of Psychiatry and Neuroscience, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - L Blanc-Árabe
- Université Laval, Department of Psychiatry and Neuroscience, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Q Lebouleux
- Université Laval, Department of Psychiatry and Neuroscience, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - J Lévesque
- Université Laval, Department of Electrical and Computer Engineering, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - B Gosselin
- Université Laval, Department of Electrical and Computer Engineering, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - B Labonté
- Université Laval, Department of Psychiatry and Neuroscience, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada.
| |
Collapse
|
4
|
Islam S, Gleber-Netto FO, Mulcahy CF, Glaun MDE, Srivastava S, Hunt PJ, Williams MD, Barbon CE, Spiotto M, Zhao W, Adebayo A, Akhter S, Xie T, Debnath KC, Sathishkumar HN, Myers B, Lothumalla S, Yaman I, Burks JK, Gomez J, Rao X, Wang J, Woodman K, Mansour J, Arenkiel B, Osman KL, Haxton C, Lever TE, Hutcheson KA, Amit M. Neural landscape is associated with functional outcomes in irradiated patients with oropharyngeal squamous cell carcinoma. Sci Transl Med 2024; 16:eabq5585. [PMID: 39083586 DOI: 10.1126/scitranslmed.abq5585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 01/02/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
The incidence of human papilloma virus-mediated oropharyngeal squamous cell carcinoma (OPSCC) has increased over the past 40 years, particularly among young individuals with a favorable prognosis; however, current therapy often leads to unfortunate side effects, such as dysphagia. Despite the emphasis on dysphagia in previous studies, there is an important research gap in understanding the correlation between neuronal changes and patient-reported and functional outcomes in patients with OPSCC. To address this issue, we examined pathologic tissue samples from patients with OPSCC using multiplex immunofluorescence staining and machine learning to correlate tumor-associated neuronal changes with prospectively collected patient-reported and functional outcomes. We found that tumor enrichment of adrenergic (TH+) and CGRP+ sensory-afferent nerves correlated with poorer swallowing outcomes. Functional electromyography recordings showed correlations between growing (GAP43+) and immature cholinergic (ChAT+DCX+) nerves and denervation patterns in survivors of OPSCC. A murine model of radiation-induced dysphagia further confirmed that immature cholinergic and CGRP+ nerves were correlated with impaired swallowing. Preclinical interventional studies also supported the independent contributions of CGRP+ and cholinergic (ChAT+) nerves to dysphagia in treated mouse models of OPSCC. Our results suggest that CGRP+ and ChAT+ neuronal signaling play distinct roles in tumor- and radiation-induced dysphagia in OPSCC and offer a comprehensive dataset on the neural landscape of OPSCC. These insights may guide early interventions for swallow preservation and the repurposing of neurology-related drugs, such as CGRP blockers, in clinical oncology and survivorship.
Collapse
Affiliation(s)
- Shajedul Islam
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Collin F Mulcahy
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mica D E Glaun
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Snigdha Srivastava
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patrick J Hunt
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michelle D Williams
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carly E Barbon
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Spiotto
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Weilu Zhao
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston (UTHealth Houston) School of Public Health, Houston, TX 77030, USA
| | - Adewale Adebayo
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shamima Akhter
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tongxin Xie
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kala Chand Debnath
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hinduja Naidu Sathishkumar
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Blake Myers
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Sahana Lothumalla
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ismail Yaman
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jared K Burks
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Leukemia and Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Javier Gomez
- Department of Leukemia and Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Karin Woodman
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jobran Mansour
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University Shreveport Medical Center, Shreveport, LA 71103, USA
| | - Benjamin Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kate L Osman
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Chandler Haxton
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Teresa E Lever
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Katherine A Hutcheson
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Moran Amit
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Quass GL, Rogalla MM, Ford AN, Apostolides PF. Mixed Representations of Sound and Action in the Auditory Midbrain. J Neurosci 2024; 44:e1831232024. [PMID: 38918064 PMCID: PMC11270520 DOI: 10.1523/jneurosci.1831-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Linking sensory input and its consequences is a fundamental brain operation. During behavior, the neural activity of neocortical and limbic systems often reflects dynamic combinations of sensory and task-dependent variables, and these "mixed representations" are suggested to be important for perception, learning, and plasticity. However, the extent to which such integrative computations might occur outside of the forebrain is less clear. Here, we conduct cellular-resolution two-photon Ca2+ imaging in the superficial "shell" layers of the inferior colliculus (IC), as head-fixed mice of either sex perform a reward-based psychometric auditory task. We find that the activity of individual shell IC neurons jointly reflects auditory cues, mice's actions, and behavioral trial outcomes, such that trajectories of neural population activity diverge depending on mice's behavioral choice. Consequently, simple classifier models trained on shell IC neuron activity can predict trial-by-trial outcomes, even when training data are restricted to neural activity occurring prior to mice's instrumental actions. Thus, in behaving mice, auditory midbrain neurons transmit a population code that reflects a joint representation of sound, actions, and task-dependent variables.
Collapse
Affiliation(s)
- Gunnar L Quass
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Meike M Rogalla
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Alexander N Ford
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Pierre F Apostolides
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
6
|
Silva A, Carriço P, Fernandes AB, Saraiva T, Oliveira-Maia AJ, da Silva JA. High-Precision Optical Fiber-Based Lickometer. eNeuro 2024; 11:ENEURO.0189-24.2024. [PMID: 39025674 PMCID: PMC11258538 DOI: 10.1523/eneuro.0189-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 07/20/2024] Open
Abstract
Quantifying and analyzing licking behavior can offer valuable insights into fundamental neurobiological mechanisms controlling animal consummatory behaviors. Lickometers are typically based on electrical properties, a strategy that comes with limitations, including susceptibility to electrical interference and generation of electrical disturbances in electrophysiological measurements. While optical lickometers offer an alternative method to measure licks and quantify fluid intake in animals, they are prone to false readings and susceptibility to outside light sources. To overcome this problem, we propose a low-cost open-source lickometer that combines a restricted infrared beam defined by optical fibers, with a poke design that allows easy access to the tongue while limiting access of other body parts and external light sources. This device also includes features for detecting nose pokes and presenting visual cues during behavioral tasks. We provide validation experiments that demonstrate the optical lickometer's reliability, high-sensitivity and precision, and its application in a behavioral task, showcasing the potential of this tool to study lick microstructure in combination with other techniques, such as imaging of neural activity, in freely moving mice.
Collapse
Affiliation(s)
- Artur Silva
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Paulo Carriço
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Ana B Fernandes
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Tatiana Saraiva
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Department of Neurology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Albino J Oliveira-Maia
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
- Champalimaud Clinical Centre, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Joaquim Alves da Silva
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
7
|
Li J, Zumpano KT, Lemon CH. Separation of Oral Cooling and Warming Requires TRPM8. J Neurosci 2024; 44:e1383232024. [PMID: 38316563 PMCID: PMC10941239 DOI: 10.1523/jneurosci.1383-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
Cooling sensations arise inside the mouth during ingestive and homeostasis behaviors. Oral presence of cooling temperature engages the cold and menthol receptor TRPM8 (transient receptor potential melastatin 8) on trigeminal afferents. Yet, how TRPM8 influences brain and behavioral responses to oral temperature is undefined. Here we used in vivo neurophysiology to record action potentials stimulated by cooling and warming of oral tissues from trigeminal nucleus caudalis neurons in female and male wild-type and TRPM8 gene deficient mice. Using these lines, we also measured orobehavioral licking responses to cool and warm water in a novel, temperature-controlled fluid choice test. Capture of antidromic electrophysiological responses to thalamic stimulation identified that wild-type central trigeminal neurons showed diverse responses to oral cooling. Some neurons displayed relatively strong excitation to cold <10°C (COLD neurons) while others responded to only a segment of mild cool temperatures below 30°C (COOL neurons). Notably, TRPM8 deficient mice retained COLD-type but lacked COOL cells. This deficit impaired population responses to mild cooling temperatures below 30°C and allowed warmth-like (≥35°C) neural activity to pervade the normally innocuous cool temperature range, predicting TRPM8 deficient mice would show anomalously similar orobehavioral responses to warm and cool temperatures. Accordingly, TRPM8 deficient mice avoided both warm (35°C) and mild cool (≤30°C) water and sought colder temperatures in fluid licking tests, whereas control mice avoided warm but were indifferent to mild cool and colder water. Results imply TRPM8 input separates cool from warm temperature sensing and suggest other thermoreceptors also participate in oral cooling sensation.
Collapse
Affiliation(s)
- Jinrong Li
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019
| | - Kyle T Zumpano
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019
| | - Christian H Lemon
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
8
|
Quass GL, Rogalla MM, Ford AN, Apostolides PF. Mixed representations of sound and action in the auditory midbrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558449. [PMID: 37786676 PMCID: PMC10541616 DOI: 10.1101/2023.09.19.558449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Linking sensory input and its consequences is a fundamental brain operation. Accordingly, neural activity of neo-cortical and limbic systems often reflects dynamic combinations of sensory and behaviorally relevant variables, and these "mixed representations" are suggested to be important for perception, learning, and plasticity. However, the extent to which such integrative computations might occur in brain regions upstream of the forebrain is less clear. Here, we conduct cellular-resolution 2-photon Ca2+ imaging in the superficial "shell" layers of the inferior colliculus (IC), as head-fixed mice of either sex perform a reward-based psychometric auditory task. We find that the activity of individual shell IC neurons jointly reflects auditory cues and mice's actions, such that trajectories of neural population activity diverge depending on mice's behavioral choice. Consequently, simple classifier models trained on shell IC neuron activity can predict trial-by-trial outcomes, even when training data are restricted to neural activity occurring prior to mice's instrumental actions. Thus in behaving animals, auditory midbrain neurons transmit a population code that reflects a joint representation of sound and action.
Collapse
Affiliation(s)
- GL Quass
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - MM Rogalla
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - AN Ford
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - PF Apostolides
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Wulff AB, Cooper P, Kodjo E, Abel E, Thompson SM. How Sucrose Preference Is Gained and Lost: An In-Depth Analysis of Drinking Behavior during the Sucrose Preference Test in Mice. eNeuro 2023; 10:ENEURO.0195-23.2023. [PMID: 37699705 PMCID: PMC10540674 DOI: 10.1523/eneuro.0195-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
The sucrose preference test (SPT) is a widely used preclinical assay for studying stress-sensitive reward behaviors and antidepressant treatments in rodents, with some face, construct, and predictive validity. However, while stress-induced loss of sucrose preference is presumed to reflect an anhedonic-like state, little detail is known about what behavioral components may influence performance in the SPT in stress-naive or stressed rodents. We analyzed the licking microstructure of mice during the SPT to evaluate how preference is expressed and lost following chronic stress. In stress-naive mice, preference is expressed as both longer and more numerous drinking bouts at the sucrose bottle, compared with the water bottle. We also found evidence that memory of the sucrose bottle location supports preference. Through manipulations of the caloric content of the sweetener or caloric need of the mouse, we found that energy demands and satiety signals do not affect either preference or the underlying drinking behavior. Both acute and chronic stress impaired sucrose location memory and reduced the number of drinking bouts at the sucrose bottle, the latter of which explained the loss of sucrose preference in stress susceptible mice compared with stress resilient mice. Female mice generally exhibited similar drinking behavior to male mice but may be less susceptible to chronic stress and display better memory performance than male mice, both before and after chronic stress. Our data suggest that chronic stress inhibits a sucrose preference by reducing reward seeking behavior without affecting palatability.
Collapse
Affiliation(s)
- Andreas B Wulff
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Neuroscience, Graduate Program in Life Sciences, University of Maryland Baltimore, Baltimore, MD 21201
| | - Phylicia Cooper
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Neuroscience, Graduate Program in Life Sciences, University of Maryland Baltimore, Baltimore, MD 21201
- ASCEND Scholars Program, Morgan State University, Baltimore, MD 21251
| | - Emmanuela Kodjo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- ASCEND Scholars Program, Morgan State University, Baltimore, MD 21251
| | - Eliana Abel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
10
|
Petersen N, Adank DN, Raghavan R, Winder DG, Doyle MA. LIQ HD (Lick Instance Quantifier Home Cage Device): An Open-Source Tool for Recording Undisturbed Two-Bottle Drinking Behavior in a Home Cage Environment. eNeuro 2023; 10:ENEURO.0506-22.2023. [PMID: 36997312 PMCID: PMC10112549 DOI: 10.1523/eneuro.0506-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023] Open
Abstract
Investigation of rodent drinking behavior has provided insight into drivers of thirst, circadian rhythms, anhedonia, and drug and ethanol consumption. Traditional methods of recording fluid intake involve weighing bottles, which is cumbersome and lacks temporal resolution. Several open-source devices have been designed to improve drink monitoring, particularly for two-bottle choice tasks. However, beam-break sensors lack the ability to detect individual licks for bout microstructure analysis. Thus, we designed LIQ HD (Lick Instance Quantifier Home cage Device) with the goal of using capacitive sensors to increase accuracy and analyze lick microstructure, building a device compatible with ventilated home cages, increasing scale with prolonged undisturbed recordings, and creating a design that is easy to build and use with an intuitive touchscreen graphical user interface. The system tracks two-bottle choice licking behavior in up to 18 rodent cages, or 36 single bottles, on a minute-to-minute timescale controlled by a single Arduino microcontroller. The data are logged to a single SD card, allowing for efficient downstream analysis. LIQ HD accuracy was validated with sucrose, quinine, and ethanol two-bottle choice tasks. The system measures preference over time and changes in bout microstructure, with undisturbed recordings tested up to 7 d. All designs and software are open-source to allow other researchers to build on the system and adapt LIQ HD to their animal home cages.
Collapse
Affiliation(s)
- Nicholas Petersen
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Danielle N Adank
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Ritika Raghavan
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Danny G Winder
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Marie A Doyle
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
11
|
Melo MC, Alves PE, Cecyn MN, Eduardo PMC, Abrahao KP. Development of eight wireless automated cages system with two lick-o-meters each for rodents. eNeuro 2022; 9:ENEURO.0526-21.2022. [PMID: 35851299 PMCID: PMC9355285 DOI: 10.1523/eneuro.0526-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Drinking behavior has been used in basic research to study metabolism, motivation, decision-making and different aspects of health problems, such as anhedonia and alcohol use disorders. In the majority of studies, liquid intake is measured by weighing the bottles before and after the experiment. This method does not tell much about the drinking microstructure, e.g., licking bouts and periods of preference for each liquid, which could be valuable to understand drinking behavior. To improve the data acquisition of drinking microstructure, companies have developed lick-o-meters devices that acquire timestamps when animals approach or drink from a specific sipper. Nevertheless, commercially available devices have elevated costs. Here, we present a low-cost alternative for a lick-o-meter system that allows wireless data acquisition of licking from eight cages with two sippers each. We run a three-phase validation protocol to ensure 1) proper choice of the sensor to detect licks; 2) adaptation of the device to a wireless transmission and realistic in silico tests; and 3) in vivo tests to correlate the amount of licks measured by the prototype and the bottle weight. The capacitive sensor presented appropriate recall and precision for our device. After adaptation to wireless transmission, the in silico validation demonstrated low reading and transmission errors for the device even when tested in extreme simultaneous licking conditions. Finally, a positive correlation between volume consumption and lick's count in the in vivo test was observed, showing that the prototype can be used for in vivo studies interested in rodent drinking microstructure.Significant StatementThis study presents an innovative and low-cost solution for drinking behavioral studies: a lick-o-meter system based on an open-source hardware platform with a user-friendly interface software, capable of simultaneously receiving data from eight automated cages with two drinking bottles each. The lick-o-meter brings an accessible device to acquire high-quality and detailed data. This device also has the possibility to be adaptable to new types of sensors or other neuroscience tools capable of measuring brain activity simultaneously to the behavior.
Collapse
Affiliation(s)
- Mariana Cardoso Melo
- Departamento de Psicobiologia da Universidade Federal de São Paulo-UNIFESP, Rua Botucatu,862, Edificio de Ciencias Biomedicas, 1st floor, Sao Paulo, Zip Code: 04724-000, Brazil
| | - Paulo Eduardo Alves
- Departamento de Psicobiologia da Universidade Federal de São Paulo-UNIFESP, Rua Botucatu,862, Edificio de Ciencias Biomedicas, 1st floor, Sao Paulo, Zip Code: 04724-000, Brazil
| | - Marianna Nogueira Cecyn
- Departamento de Psicobiologia da Universidade Federal de São Paulo-UNIFESP, Rua Botucatu,862, Edificio de Ciencias Biomedicas, 1st floor, Sao Paulo, Zip Code: 04724-000, Brazil
| | - Paula Mendonça C Eduardo
- Departamento de Psicobiologia da Universidade Federal de São Paulo-UNIFESP, Rua Botucatu,862, Edificio de Ciencias Biomedicas, 1st floor, Sao Paulo, Zip Code: 04724-000, Brazil
| | - Karina Possa Abrahao
- Departamento de Psicobiologia da Universidade Federal de São Paulo-UNIFESP, Rua Botucatu,862, Edificio de Ciencias Biomedicas, 1st floor, Sao Paulo, Zip Code: 04724-000, Brazil
| |
Collapse
|
12
|
Murphy ER, Thompson R, Osman KL, Haxton C, Brothers M, Lee L, Warncke K, Smith CL, Keilholz AN, Hamad A, Golzy M, Bunyak F, Ma L, Nichols NL, Lever TE. A Strength Endurance Exercise Paradigm Mitigates Deficits in Hypoglossal-Tongue Axis Function, Strength, and Structure in a Rodent Model of Hypoglossal Motor Neuron Degeneration. Front Neurosci 2022; 16:869592. [PMID: 35844238 PMCID: PMC9279620 DOI: 10.3389/fnins.2022.869592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
The tongue plays a crucial role in the swallowing process, and impairment can lead to dysphagia, particularly in motor neuron diseases (MNDs) resulting in hypoglossal-tongue axis degeneration (e.g., amyotrophic lateral sclerosis and progressive bulbar palsy). This study utilized our previously established inducible rodent model of dysphagia due to targeted degeneration of the hypoglossal-tongue axis. This model was created by injecting cholera toxin B conjugated to saporin (CTB-SAP) into the genioglossus muscle of the tongue base for retrograde transport to the hypoglossal (XII) nucleus via the hypoglossal nerve, which provides the sole motor control of the tongue. Our goal was to investigate the effect of high-repetition/low-resistance tongue exercise on tongue function, strength, and structure in four groups of male rats: (1) control + sham exercise (n = 13); (2) control + exercise (n = 10); (3) CTB-SAP + sham exercise (n = 13); and (4) CTB-SAP + exercise (n = 12). For each group, a custom spout with adjustable lick force requirement for fluid access was placed in the home cage overnight on days 4 and 6 post-tongue injection. For the two sham exercise groups, the lick force requirement was negligible. For the two exercise groups, the lick force requirement was set to ∼40% greater than the maximum voluntary lick force for individual rats. Following exercise exposure, we evaluated the effect on hypoglossal-tongue axis function (via videofluoroscopy), strength (via force-lickometer), and structure [via Magnetic Resonance Imaging (MRI) of the brainstem and tongue in a subset of rats]. Results showed that sham-exercised CTB-SAP rats had significant deficits in lick rate, swallow timing, and lick force. In exercised CTB-SAP rats, lick rate and lick force were preserved; however, swallow timing deficits persisted. MRI revealed corresponding degenerative changes in the hypoglossal-tongue axis that were mitigated by tongue exercise. These collective findings suggest that high-repetition/low-resistance tongue exercise in our model is a safe and effective treatment to prevent/diminish signs of hypoglossal-tongue axis degeneration. The next step is to leverage our rat model to optimize exercise dosing parameters and investigate corresponding treatment mechanisms of action for future translation to MND clinical trials.
Collapse
Affiliation(s)
- Erika R. Murphy
- Department of Speech, Language and Hearing Sciences, School of Health Professions, University of Missouri, Columbia, MO, United States
| | - Rebecca Thompson
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Kate L. Osman
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Chandler Haxton
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Margaret Brothers
- Department of Speech, Language and Hearing Sciences, School of Health Professions, University of Missouri, Columbia, MO, United States
| | - Li Lee
- Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, United States
- Research Division, Biomolecular Imaging Center, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
| | - Kristen Warncke
- Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, United States
- Research Division, Biomolecular Imaging Center, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
| | - Catherine L. Smith
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Amy N. Keilholz
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Ali Hamad
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, United States
| | - Mojgan Golzy
- Biostatistics Unit, Department of Family and Community Medicine, University of Missouri, Columbia, MO, United States
| | - Filiz Bunyak
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, United States
| | - Lixin Ma
- Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, United States
- Research Division, Biomolecular Imaging Center, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
| | - Nicole L. Nichols
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- *Correspondence: Nicole L. Nichols,
| | - Teresa E. Lever
- Department of Speech, Language and Hearing Sciences, School of Health Professions, University of Missouri, Columbia, MO, United States
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Teresa E. Lever,
| |
Collapse
|
13
|
Andrade-Gonzalez RD, Perrusquia-Hernández E, Zepeda-Reyes KI, Campos Me H, Perez-Martinez IO. Sensory-motor response elicited by first time intraoral administered ethanol after trigeminal neuropathic injury. Alcohol 2022; 103:9-17. [PMID: 35714863 DOI: 10.1016/j.alcohol.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Recent findings have shown a relationship between alcohol use disorders (AUD) and chronic pain. Preclinical models have demonstrated that chronic pain, including trigeminal nerve injury, increases ethanol consumption throughout extended administration periods. Nevertheless, it remains unclear whether chronic pain induces a greater susceptibility to developing AUD by altering motor control consumption regardless of the symptomatology of neuropathic pain and if sex influences this susceptibility. We used a former prolonged pain experience model induced by a constriction of the mental nerve (mNC) to answer this question. We analyzed ethanol consumption in a short access protocol to reduce the post-ingestional effects and compared licking microstructure between groups. The constriction of the mental nerve induced evoked and spontaneous pain and reduction in the hedonic value of sucrose. The differences in alcohol consumption were not reflective of the former prolonged pain experience. Female mice showed a more efficient dynamic of consumption of alcohol reflected in a long burst of licking and a less variable licking rate within a cluster.
Collapse
Affiliation(s)
- R D Andrade-Gonzalez
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México; Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - E Perrusquia-Hernández
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México; Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - K I Zepeda-Reyes
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México; Bioquímica Diagnóstica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México Av. 1ro. De Mayo S/N, Col. Santa María De Las Torres Cuautitlán Izcalli, 54740, Mexico
| | - Hernandez Campos Me
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - I O Perez-Martinez
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México.
| |
Collapse
|
14
|
Ito KN, Isobe K, Osakada F. Fast z-focus controlling and multiplexing strategies for multiplane two-photon imaging of neural dynamics. Neurosci Res 2022; 179:15-23. [DOI: 10.1016/j.neures.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
|
15
|
Kauvar IV, Machado TA, Yuen E, Kochalka J, Choi M, Allen WE, Wetzstein G, Deisseroth K. Cortical Observation by Synchronous Multifocal Optical Sampling Reveals Widespread Population Encoding of Actions. Neuron 2020; 107:351-367.e19. [PMID: 32433908 PMCID: PMC7687350 DOI: 10.1016/j.neuron.2020.04.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/01/2020] [Accepted: 04/26/2020] [Indexed: 01/05/2023]
Abstract
To advance the measurement of distributed neuronal population representations of targeted motor actions on single trials, we developed an optical method (COSMOS) for tracking neural activity in a largely uncharacterized spatiotemporal regime. COSMOS allowed simultaneous recording of neural dynamics at ∼30 Hz from over a thousand near-cellular resolution neuronal sources spread across the entire dorsal neocortex of awake, behaving mice during a three-option lick-to-target task. We identified spatially distributed neuronal population representations spanning the dorsal cortex that precisely encoded ongoing motor actions on single trials. Neuronal correlations measured at video rate using unaveraged, whole-session data had localized spatial structure, whereas trial-averaged data exhibited widespread correlations. Separable modes of neural activity encoded history-guided motor plans, with similar population dynamics in individual areas throughout cortex. These initial experiments illustrate how COSMOS enables investigation of large-scale cortical dynamics and that information about motor actions is widely shared between areas, potentially underlying distributed computations.
Collapse
Affiliation(s)
- Isaac V Kauvar
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Timothy A Machado
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Elle Yuen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - John Kochalka
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Neuroscience Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Minseung Choi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Neuroscience Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - William E Allen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Neuroscience Graduate Program, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Gordon Wetzstein
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Welby L, Ukatu CC, Thombs L, Lever TE. A Mouse Model of Dysphagia After Facial Nerve Injury. Laryngoscope 2020; 131:17-24. [PMID: 32096879 DOI: 10.1002/lary.28560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 12/27/2019] [Accepted: 01/21/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Dysphagia is common following facial nerve injury; however, research is sparse regarding swallowing-related outcomes and targeted treatments. Previous animal studies have used eye blink and vibrissae movement as measures of facial nerve impairment and recovery. The purpose of this study was to create a mouse model of facial nerve injury that results in dysphagia to enhance translational research outcomes. STUDY DESIGN Prospective animal study. METHODS Twenty C57BL/6J mice underwent surgical transection of the main trunk (MT) (n = 10) or marginal mandibular branch (MMB) (n = 10) of the left facial nerve. Videofluoroscopic swallow study (VFSS) assays for drinking and eating were performed at baseline and 14 days postsurgery to quantify several deglutition-related outcome measures. RESULTS VFSS analysis revealed that MT transection resulted in significantly slower lick and swallow rates during drinking (P ≤ .05) and significantly slower swallow rates and longer inter-swallow intervals during eating (P ≤ .05), congruent with oral and pharyngeal dysphagia. After MMB transection, these same VFSS metrics were not statistically significant (P > .05). CONCLUSION The main finding of this study was that transection of the facial nerve MT leads to oral and pharyngeal stage dysphagia in mice; MMB transection does not. These results from mice provide novel insight into specific VFSS metrics that may be used to characterize dysphagia in humans following facial nerve injury. We are currently using this surgical mouse model to explore promising treatment modalities such as electrical stimulation to hasten recovery and improve outcomes following various iatrogenic and idiopathic conditions affecting the facial nerve. LEVEL OF EVIDENCE NA Laryngoscope, 131:17-24, 2021.
Collapse
Affiliation(s)
- Lauren Welby
- Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, Missouri, U.S.A
| | - Ceisha C Ukatu
- Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, Missouri, U.S.A
| | - Lori Thombs
- Statistics, University of Missouri, Columbia, Missouri, U.S.A
| | - Teresa E Lever
- Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, Missouri, U.S.A
| |
Collapse
|
17
|
Alexander TC, Kiffer F, Groves T, Anderson J, Wang J, Hayar A, Chen MT, Rodriguez A, Allen AR. Effects of thioTEPA chemotherapy on cognition and motor coordination. Synapse 2019; 73:e22085. [PMID: 30586195 DOI: 10.1002/syn.22085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 01/10/2023]
Abstract
Cancer survivorship has increased greatly as therapies have become more advanced and effective. Thus, we must now focus on improving the quality of life of patients after treatment. After chemotherapy, many patients experience chemotherapy-induced cognitive decline, indicating a need to investigate pathologies associated with this condition. In this study, we addressed cognitive impairment after thioTEPA treatment by assessing behavior and assaying cytokine production and the structure of dendrites in the hippocampus. Male mice were given three intraperitoneal injections of thioTEPA. Five weeks later, the mice underwent behavior testing, and brains were collected for Golgi staining and cytokine analysis. Behavior tests included y-maze and Morris water maze and licking behavioral task. Cytokines measured include: IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-10, IL-12p70, MCP-1, TNF-α, GMCSF, and RANTES. We observed decreased memory retention in behavioral tasks. Also, dendritic arborization and length were decreased after chemotherapy treatment. Finally, thioTEPA decreased cytokine production in animals treated with chemotherapy, compared to saline-treated controls. Here, we used a mouse model to correlate the decreases in dendritic complexity and inflammatory cytokine production with cognitive impairment after chemotherapy.
Collapse
Affiliation(s)
- Tyler C Alexander
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Frederico Kiffer
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Thomas Groves
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Ocala West Veterans Affairs, Ocala, Florida
| | - Julie Anderson
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jing Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Abdallah Hayar
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
18
|
Williams B, Speed A, Haider B. A novel device for real-time measurement and manipulation of licking behavior in head-fixed mice. J Neurophysiol 2018; 120:2975-2987. [PMID: 30256741 PMCID: PMC6442917 DOI: 10.1152/jn.00500.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/13/2018] [Accepted: 09/24/2018] [Indexed: 01/12/2023] Open
Abstract
The mouse has become an influential model system for investigating the mammalian nervous system. Technologies in mice enable recording and manipulation of neural circuits during tasks where they respond to sensory stimuli by licking for liquid rewards. Precise monitoring of licking during these tasks provides an accessible metric of sensory-motor processing, particularly when combined with simultaneous neural recordings. There are several challenges in designing and implementing lick detectors during head-fixed neurophysiological experiments in mice. First, mice are small, and licking behaviors are easily perturbed or biased by large sensors. Second, neural recordings during licking are highly sensitive to electrical contact artifacts. Third, submillisecond lick detection latencies are required to generate control signals that manipulate neural activity at appropriate time scales. Here we designed, characterized, and implemented a contactless dual-port device that precisely measures directional licking in head-fixed mice performing visual behavior. We first determined the optimal characteristics of our detector through design iteration and then quantified device performance under ideal conditions. We then tested performance during head-fixed mouse behavior with simultaneous neural recordings in vivo. We finally demonstrate our device's ability to detect directional licks and generate appropriate control signals in real time to rapidly suppress licking behavior via closed-loop inhibition of neural activity. Our dual-port detector is cost effective and easily replicable, and it should enable a wide variety of applications probing the neural circuit basis of sensory perception, motor action, and learning in normal and transgenic mouse models. NEW & NOTEWORTHY Mice readily learn tasks in which they respond to sensory cues by licking for liquid rewards; tasks that involve multiple licking responses allow study of neural circuits underlying decision making and sensory-motor integration. Here we design, characterize, and implement a novel dual-port lick detector that precisely measures directional licking in head-fixed mice performing visual behavior, enabling simultaneous neural recording and closed-loop manipulation of licking.
Collapse
Affiliation(s)
- Brice Williams
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia
| | - Anderson Speed
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia
| | - Bilal Haider
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia
| |
Collapse
|
19
|
Dhanushkodi A, Xue Y, Roguski EE, Ding Y, Matta SG, Heck D, Fan GH, McDonald MP. Lentiviral-mediated knock-down of GD3 synthase protects against MPTP-induced motor deficits and neurodegeneration. Neurosci Lett 2018; 692:53-63. [PMID: 30391320 DOI: 10.1016/j.neulet.2018.10.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022]
Abstract
Converging evidence demonstrates an important role for gangliosides in brain function and neurodegenerative diseases. Exogenous GM1 is broadly neuroprotective, including in rodent, feline, and primate models of Parkinson's disease, and has shown positive effects in clinical trials. We and others have shown that inhibition of the ganglioside biosynthetic enzyme GD3 synthase (GD3S) increases endogenous levels GM1 ganglioside. We recently reported that targeted deletion of St8sia1, the gene that codes for GD3S, prevents motor impairments and significantly attenuates neurodegeneration induced by 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The current study investigated the effects of GD3S inhibition on the neurotoxicity and parkinsonism induced by MPTP. Mice were injected intrastriatally with a lentiviral-vector-mediated shRNA construct targeting GD3S (shGD3S) or a scrambled-sequence control (scrRNA). An MPTP regimen of 18 mg/kg x 5 days reduced tyrosine-hydroxylase-positive neurons in the substantia nigra pars compacta of scrRNA-treated mice by nearly two-thirds. In mice treated with shGD3S the MPTP-induced lesion was approximately half that size. MPTP induced bradykinesia and deficits in fine motor skills in mice treated with scrRNA. These deficits were absent in shGD3S-treated mice. These results suggest that inhibition of GD3S protects against the nigrostriatal damage, bradykinesia, and fine-motor-skill deficits associated with MPTP administration.
Collapse
Affiliation(s)
- Anandh Dhanushkodi
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN 38163, United States
| | - Yi Xue
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN 38163, United States
| | - Emily E Roguski
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Yun Ding
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Shannon G Matta
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Detlef Heck
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, TN 38163, United States
| | - Guo-Huang Fan
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Michael P McDonald
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN 38163, United States; Department of Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, TN 38163, United States.
| |
Collapse
|
20
|
Gupta A, Li X, DiCicco-Bloom E, Bello NT. Altered salt taste response and increased tongue epithelium Scnna1 expression in adult Engrailed-2 null mice. Physiol Behav 2018; 194:410-419. [PMID: 29953887 DOI: 10.1016/j.physbeh.2018.06.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023]
Abstract
Sensory impairments are critical for diagnosing and characterizing neurodevelopmental disorders. Taste is a sensory modality often not well characterized. Engrailed-2 (En2) is a transcription factor critical for neural development, and mice lacking En2 (En2-/-) display signs of impaired social interaction, cognitive processes (e.g., learning and memory, conditioned fear), and neurodevelopmental alterations. As such, En2-/- mice display the behavioral deficits and neural impairments characteristic of the core symptoms associated with autism spectrum disorder (ASD). The objective of this study was to characterize the taste function in En2-/- compared with En2+/+ in adult male mice. Measuring taste responsiveness by an automated gustometer, En2 null mice had decreased lick responses for 1.6 M fructose, whereas they demonstrated an increased taste responsivity (i.e., relative to water) at 0.3 M sodium chloride and 1 M monosodium glutamate. In a separate cohort of mice, En2-/- mice had an increased preference for sodium chloride over a range of concentrations (0.032-0.3 M) compared with En2+/+ mice. Regional gene expression of the tongue epithelium demonstrated an increase in Scnn1a, T2R140, T1R3, and Trpm5 and a decrease in Pkd1l3 in En2 null mice. Taken together, such data indicate that deficits in En2 can produce sensory impairments that can have a measurable impact on taste, particularly salt taste.
Collapse
Affiliation(s)
- Ankita Gupta
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Xinyi Li
- Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology/Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nicholas T Bello
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
21
|
Baltz ET, Yalcinbas EA, Renteria R, Gremel CM. Orbital frontal cortex updates state-induced value change for decision-making. eLife 2018; 7:35988. [PMID: 29897332 PMCID: PMC6039177 DOI: 10.7554/elife.35988] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/08/2018] [Indexed: 12/29/2022] Open
Abstract
Recent hypotheses have posited that orbital frontal cortex (OFC) is important for using inferred consequences to guide behavior. Less clear is OFC's contribution to goal-directed or model-based behavior, where the decision to act is controlled by previous experience with the consequence or outcome. Investigating OFC's role in learning about changed outcomes separate from decision-making is not trivial and often the two are confounded. Here we adapted an incentive learning task to mice, where we investigated processes controlling experience-based outcome updating independent from inferred action control. We found chemogenetic OFC attenuation did not alter the ability to perceive motivational state-induced changes in outcome value but did prevent the experience-based updating of this change. Optogenetic inhibition of OFC excitatory neuron activity selectively when experiencing an outcome change disrupted the ability to update, leaving mice unable to infer the appropriate behavior. Our findings support a role for OFC in learning that controls decision-making.
Collapse
Affiliation(s)
- Emily T Baltz
- Department of Psychology, University of California, San Diego, La Jolla, United States
| | - Ege A Yalcinbas
- Department of Psychology, University of California, San Diego, La Jolla, United States.,The Neurosciences Graduate Program, University of California, San Diego, La Jolla, United States
| | - Rafael Renteria
- Department of Psychology, University of California, San Diego, La Jolla, United States
| | - Christina M Gremel
- Department of Psychology, University of California, San Diego, La Jolla, United States.,The Neurosciences Graduate Program, University of California, San Diego, La Jolla, United States
| |
Collapse
|
22
|
Cao Y, Liu Y, Jaeger D, Heck DH. Cerebellar Purkinje Cells Generate Highly Correlated Spontaneous Slow-Rate Fluctuations. Front Neural Circuits 2017; 11:67. [PMID: 28979195 PMCID: PMC5611370 DOI: 10.3389/fncir.2017.00067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/05/2017] [Indexed: 11/30/2022] Open
Abstract
Cerebellar Purkinje cells (PC) fire action potentials at high, sustained rates. Changes in spike rate that last a few tens of milliseconds encode sensory and behavioral events. Here we investigated spontaneous fluctuations of PC simple spike rate at a slow time scale of the order of 1 s. Simultaneous recordings from pairs of PCs that were aligned either along the sagittal or transversal axis of the cerebellar cortex revealed that simple spike rate fluctuations at the 1 s time scale were highly correlated. Each pair of PCs had either a predominantly positive or negative slow-rate correlation, with negative correlations observed only in PC pairs aligned along the transversal axis. Slow-rate correlations were independent of faster rate changes that were correlated with fluid licking behavior. Simultaneous recordings from PCs and cerebellar nuclear (CN) neurons showed that slow-rate fluctuations in PC and CN activity were also highly correlated, but their correlations continually alternated between periods of positive and negative correlation. The functional significance of this new aspect of cerebellar spike activity remains to be determined. Correlated slow-rate fluctuations seem too slow to be involved in the real-time control of ongoing behavior. However, slow-rate fluctuations of PCs converging on the same CN neuron are likely to modulate the excitability of the CN neuron, thus introduce a possible slow modulation of cerebellar output activity.
Collapse
Affiliation(s)
- Ying Cao
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, United States
| | - Yu Liu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, United States
| | - Dieter Jaeger
- Department of Biology, Emory UniversityAtlanta, GA, United States
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, United States
| |
Collapse
|
23
|
Abstract
Both physiological and imaging approaches have led to often-disparate conclusions about the organization of taste information in gustatory cortex (GC). In this study, we used neuroanatomical and imaging approaches to delineate the likely area of insular cortex given to gustatory function and to characterize taste responses within this delineated area in female and male C57BL/6J mice. Anterograde tracers were injected into the taste thalamus (the medial parvicellular portion of the ventral posterior medial division, VPMpc) of mice and the thalamic terminal field was investigated across the cortex. Working within the delineated area, we used two-photon imaging to measure basic taste responses in >780 neurons in layer 2/3 located just posterior to the middle cerebral artery. A nonbiased, hierarchical cluster analysis revealed multiple clusters of cells responding best to either individual or combinations of taste stimuli. Taste quality was represented in the activity of taste-responsive cells; however, there was no apparent spatial organization of primary taste qualities in this region.SIGNIFICANCE STATEMENT Recent studies investigating taste coding within the gustatory cortex have reported highly segregated, taste-specific regions containing only narrowly tuned cells responding to a single taste separated by large non-taste-coding areas. However, focusing on the center of this area, we found a large number of taste responsive cells ranging from narrowly to broadly responsive with no apparent local spatial organization. Further, population analysis reveals that activity in the neuronal population in this area appears to be related to measures of taste quality or hedonics.
Collapse
|
24
|
Overlapping Representation of Primary Tastes in a Defined Region of the Gustatory Cortex. J Neurosci 2017; 37:7595-7605. [PMID: 28674169 DOI: 10.1523/jneurosci.0649-17.2017] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/25/2017] [Accepted: 06/23/2017] [Indexed: 01/01/2023] Open
Abstract
Both physiological and imaging approaches have led to often-disparate conclusions about the organization of taste information in gustatory cortex (GC). In this study, we used neuroanatomical and imaging approaches to delineate the likely area of insular cortex given to gustatory function and to characterize taste responses within this delineated area in female and male C57BL/6J mice. Anterograde tracers were injected into the taste thalamus (the medial parvicellular portion of the ventral posterior medial division, VPMpc) of mice and the thalamic terminal field was investigated across the cortex. Working within the delineated area, we used two-photon imaging to measure basic taste responses in >780 neurons in layer 2/3 located just posterior to the middle cerebral artery. A nonbiased, hierarchical cluster analysis revealed multiple clusters of cells responding best to either individual or combinations of taste stimuli. Taste quality was represented in the activity of taste-responsive cells; however, there was no apparent spatial organization of primary taste qualities in this region.SIGNIFICANCE STATEMENT Recent studies investigating taste coding within the gustatory cortex have reported highly segregated, taste-specific regions containing only narrowly tuned cells responding to a single taste separated by large non-taste-coding areas. However, focusing on the center of this area, we found a large number of taste responsive cells ranging from narrowly to broadly responsive with no apparent local spatial organization. Further, population analysis reveals that activity in the neuronal population in this area appears to be related to measures of taste quality or hedonics.
Collapse
|
25
|
Genetic control of oromotor phenotypes: A survey of licking and ingestive behaviors in highly diverse strains of mice. Physiol Behav 2017; 177:34-43. [PMID: 28411104 DOI: 10.1016/j.physbeh.2017.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 02/08/2023]
Abstract
In order to examine genetic influences on fluid ingestion, 20-min intake of either water or 0.1M sucrose was measured in a lickometer in 18 isogenic strains of mice, including 15 inbred strains and 3 F1 hybrid crosses. Intake and licking data were examined at a number of levels, including lick rate as defined by mean or median interlick interval, as well as several microstructural parameters (i.e. burst-pause structure). In general, strain variation for ingestive phenotypes were correlated across water and sucrose in all strains, indicating fundamental, rather than stimulus-specific, mechanisms of intake. Strain variation was substantial and robust, with heritabilities for phenotypes ranging from 0.22 to 0.73. For mean interlick interval (MPI; a measure of lick rate) strains varied continuously from 94.3 to 127.0ms, a range consistent with previous studies. Furthermore, variation among strains for microstructural traits such as burst size and number suggested that strains possess different overall ingestive strategies, with some favoring more short bursts, and others favoring fewer, long bursts. Strains also varied in cumulative intake functions, exhibiting both linear and decelerated rates of intake across the session.
Collapse
|
26
|
Gaillard D, Stratford JM. Measurement of Behavioral Taste Responses in Mice: Two-Bottle Preference, Lickometer, and Conditioned Taste-Aversion Tests. ACTA ACUST UNITED AC 2016; 6:380-407. [PMID: 27906463 DOI: 10.1002/cpmo.18] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The natural like and dislike of foods based on taste is one of the most easily observed behaviors in animals. Animals eat palatable foods and reject aversive foods, which makes measurement of taste perception possible using various behavioral techniques. Three different methods to accurately measure taste behavior are described here. First, two-bottle preference tests evaluate whether a taste compound (tastant) is preferred over water. Second, lickometer tests quantify the like and dislike for multiple concentrations of the same tastant or multiple tastants at the same time. Finally, conditioned taste aversion tests accurately determine the perceived taste threshold for palatable tastants. Together, these diverse methods enable researchers to observe and measure behavioral taste responses in mice to any tastant. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Dany Gaillard
- Department of Cell and Developmental Biology and the Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer M Stratford
- Department of Cell and Developmental Biology and the Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
27
|
Austen JM, Strickland JA, Sanderson DJ. Memory-dependent effects on palatability in mice. Physiol Behav 2016; 167:92-99. [PMID: 27614065 PMCID: PMC5105885 DOI: 10.1016/j.physbeh.2016.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/09/2016] [Accepted: 09/02/2016] [Indexed: 11/24/2022]
Abstract
While palatability depends on the properties of particular foods, it is also determined by prior experience, suggesting that memory affects the hedonic value of a substance. Here, we report two procedures that affect palatability in mice: negative contrast and flavour habituation. A microstructure analysis of licking behaviour was employed, with the lick cluster size (the number of licks made in quick succession before a pause) used as a measure of palatability. It was first confirmed that lick cluster size increased monotonically as a function of sucrose concentration, whereas consumption followed an inverted U-shaped function. In a successive negative contrast procedure it was found that when shifted from a high sucrose concentration (32%) to a low sucrose concentration (4%), mice made smaller lick clusters than a group that only received the low concentration. Mice exposed to flavours (cherry or grape Kool Aid) mixed with sucrose (16%) made larger lick clusters for familiar flavours compared to novel flavours. This habituation effect was evident after short (5 min) and long (24 h) test intervals. Both successive negative contrast and flavour habituation failed to affect levels of consumption. Collectively, the results show that prior experience can have effects on lick cluster size that are equivalent to increasing or decreasing the sweetness of a solution. Thus, palatability is not a fixed property of a substance but is dependent on expectation or familiarity that occurs as a result of memory. Consumption in mice is maximal with intermediate concentrations of sucrose. Lick cluster size increases monotonically as a function of sucrose concentration. A successive negative contrast procedure reduced lick cluster size. Flavour habituation led to an increase in lick cluster size. Memory has effects on palatability similar to altering the sweetness of a solution.
Collapse
Affiliation(s)
- Joseph M Austen
- Department of Psychology, Durham University, Science Site, South Road, Durham DH1 3LE, UK.
| | - Jasmin A Strickland
- Department of Psychology, Durham University, Science Site, South Road, Durham DH1 3LE, UK
| | - David J Sanderson
- Department of Psychology, Durham University, Science Site, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
28
|
Stratford JM, Thompson JA. MSG-Evoked c-Fos Activity in the Nucleus of the Solitary Tract Is Dependent upon Fluid Delivery and Stimulation Parameters. Chem Senses 2016; 41:211-20. [PMID: 26762887 DOI: 10.1093/chemse/bjv082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2015] [Indexed: 01/20/2023] Open
Abstract
The marker of neuronal activation, c-Fos, can be used to visualize spatial patterns of neural activity in response to taste stimulation. Because animals will not voluntarily consume aversive tastes, these stimuli are infused directly into the oral cavity via intraoral cannulae, whereas appetitive stimuli are given in drinking bottles. Differences in these 2 methods make comparison of taste-evoked brain activity between results that utilize these methods problematic. Surprisingly, the intraoral cannulae experimental conditions that produce a similar pattern of c-Fos activity in response to taste stimulation remain unexplored. Stimulation pattern (e.g., constant/intermittent) and hydration state (e.g., water-restricted/hydrated) are the 2 primary differences between delivering tastes via bottles versus intraoral cannulae. Thus, we quantified monosodium glutamate (MSG)-evoked brain activity, as measured by c-Fos, in the nucleus of the solitary tract (nTS; primary taste nucleus) across several conditions. The number and pattern of c-Fos neurons in the nTS of animals that were water-restricted and received a constant infusion of MSG via intraoral cannula most closely mimicked animals that consumed MSG from a bottle. Therefore, in order to compare c-Fos activity between cannulae-stimulated and bottle-stimulated animals, cannulated animals should be water restricted prior to stimulation, and receive taste stimuli at a constant flow.
Collapse
Affiliation(s)
- Jennifer M Stratford
- Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA and
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
29
|
Rebecca Glatt A, St John SJ, Lu L, Boughter JD. Temporal and qualitative dynamics of conditioned taste aversions in C57BL/6J and DBA/2J mice self-administering LiCl. Physiol Behav 2015; 153:97-108. [PMID: 26524511 DOI: 10.1016/j.physbeh.2015.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/27/2022]
Abstract
Self-administration of LiCl solution has been shown to result in the formation of a conditioned taste aversion (CTA) that generalizes to NaCl in rats. This paradigm may have considerable ecological validity as it models CTA learning in natural settings, and also allows for the investigation of drinking microstructure as an assay of potential shifts in stimulus palatability. We used this paradigm to examine possible mouse strain differences in CTA acquisition, generalization, and extinction. In the first experiment, C57BL/6J (B6) and DBA/2J (D2) mice self-administered LiCl (or control NaCl) over a 20-minute free access acquisition period and were tested on the following day with a panel of taste solutions available in brief (5-s) trials delivered in random order. In the second experiment, mice again self-administered LiCl or NaCl (at low, 0.12 M, or high, 0.24 M concentrations) in a 20-minute session, and on the following day received a 20-minute free access period to equimolar NaCl. Strain differences were found for aspects of ingestive behavior, with B6 mice showing greater consumption of all stimuli, including water, while D2 mice lick faster, in less frequent but longer bursts. We did not, however, find evidence of a robust strain difference in taste aversion learning. Both strains demonstrated profound alterations in licking microstructure in the generalization session relative to controls. We suggest that a decrease in "lick efficiency" (the percentage of inter-lick intervals within a burst of short duration vs. longer duration) reflects avoidance behavior, and signals a shift in palatability of a stimulus following CTA.
Collapse
Affiliation(s)
- A Rebecca Glatt
- Department of Department of Anatomy & Neurobiology, University of Tennessee Health Science, USA
| | | | - Lianyi Lu
- Department of Department of Anatomy & Neurobiology, University of Tennessee Health Science, USA
| | - John D Boughter
- Department of Department of Anatomy & Neurobiology, University of Tennessee Health Science, USA.
| |
Collapse
|
30
|
Breadth of tuning in taste afferent neurons varies with stimulus strength. Nat Commun 2015; 6:8171. [PMID: 26373451 PMCID: PMC4573454 DOI: 10.1038/ncomms9171] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/27/2015] [Indexed: 12/20/2022] Open
Abstract
Gustatory stimuli are detected by taste buds and transmitted to the hindbrain via sensory afferent neurons. Whether each taste quality (sweet, bitter and so on) is encoded by separate neurons (‘labelled lines') remains controversial. We used mice expressing GCaMP3 in geniculate ganglion sensory neurons to investigate taste-evoked activity. Using confocal calcium imaging, we recorded responses to oral stimulation with prototypic taste stimuli. Up to 69% of neurons respond to multiple tastants. Moreover, neurons tuned to a single taste quality at low concentration become more broadly tuned when stimuli are presented at higher concentration. Responses to sucrose and monosodium glutamate are most related. Although mice prefer dilute NaCl solutions and avoid concentrated NaCl, we found no evidence for two separate populations of sensory neurons that encode this distinction. Altogether, our data suggest that taste is encoded by activity in patterns of peripheral sensory neurons and challenge the notion of strict labelled line coding. How taste information is encoded and transmitted from the periphery to the cortex is not well understood. Here the authors provide evidence for population-based coding of taste by demonstrating that more than half of individual geniculate ganglion neurons are broadly tuned to basic taste stimuli.
Collapse
|
31
|
McCool BA, Chappell AM. Chronic intermittent ethanol inhalation increases ethanol self-administration in both C57BL/6J and DBA/2J mice. Alcohol 2015; 49:111-20. [PMID: 25659650 DOI: 10.1016/j.alcohol.2015.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/30/2014] [Accepted: 01/06/2015] [Indexed: 02/01/2023]
Abstract
Inbred mouse strains provide significant opportunities to understand the genetic mechanisms controlling ethanol-directed behaviors and neurobiology. They have been specifically employed to understand cellular mechanisms contributing to ethanol consumption, acute intoxication, and sensitivities to chronic effects. However, limited ethanol consumption by some strains has restricted our understanding of clinically relevant endpoints such as dependence-related ethanol intake. Previous work with a novel tastant-substitution procedure using monosodium glutamate (MSG or umami flavor) has shown that the procedure greatly enhances ethanol consumption by mouse strains that express limited drinking phenotypes using other methods. In the current study, we employ this MSG-substitution procedure to examine how ethanol dependence, induced with passive vapor inhalation, modifies ethanol drinking in C57BL/6J and DBA/2J mice. These strains represent 'high' and 'low' drinking phenotypes, respectively. We found that the MSG substitution greatly facilitates ethanol drinking in both strains, and likewise, ethanol dependence increased ethanol consumption regardless of strain. However, DBA/2J mice exhibited greater sensitivity dependence-enhanced drinking, as represented by consumption behaviors directed at lower ethanol concentrations and relative to baseline intake levels. DBA/2J mice also exhibited significant withdrawal-associated anxiety-like behavior while C57BL/6J mice did not. These findings suggest that the MSG-substitution procedure can be employed to examine dependence-enhanced ethanol consumption across a range of drinking phenotypes, and that C57BL/6J and DBA/2J mice may represent unique neurobehavioral pathways for developing dependence-enhanced ethanol consumption.
Collapse
|
32
|
Gasparini S, Menani JV, Daniels D. Moxonidine into the lateral parabrachial nucleus modifies postingestive signals involved in sodium intake control. Neuroscience 2014; 284:768-774. [PMID: 25264033 DOI: 10.1016/j.neuroscience.2014.09.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 09/03/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
The activation of α2-adrenoceptors with bilateral injections of moxonidine (α2-adrenoceptor and imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) increases 1.8% NaCl intake induced by treatment with furosemide (FURO)+captopril (CAP) subcutaneously. In the present study, we analyzed licking microstructure during water and 1.8% NaCl intake to investigate the changes in orosensory and postingestive signals produced by moxonidine injected into the LPBN. Male Sprague-Dawley rats were treated with FURO+CAP combined with bilateral injections of vehicle or moxonidine (0.5 nmol/0.2 μl) into the LPBN. Bilateral injections of moxonidine into the LPBN increased FURO+CAP-induced 1.8% NaCl intake, without changing water intake. Microstructural analysis of licking behavior found that this increase in NaCl intake was a function of increased number of licking bursts from 15 to 75 min of the test (maximum of 49±9 bursts/bin, vs. vehicle: 2±2 bursts/bin). Analysis of the first 15 min of the test, when most of the licking behavior occurred, found no effect of moxonidine on the number of licks/burst for sodium intake (24±5 licks/burst, vs. vehicle: 27±8 licks/burst). This finding suggests that activation of α2-adrenoceptors in the LPBN affects postingestive signals that are important to inhibit and limit sodium intake by FURO+CAP-treated rats.
Collapse
Affiliation(s)
- S Gasparini
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - J V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil.
| | - D Daniels
- Department of Psychology, University at Buffalo, The State University of New York, United States
| |
Collapse
|
33
|
Wang T, Han W, Wang B, Jiang Q, Solberg-Woods LC, Palmer AA, Chen H. Propensity for social interaction predicts nicotine-reinforced behaviors in outbred rats. GENES BRAIN AND BEHAVIOR 2013; 13:202-12. [PMID: 24289793 DOI: 10.1111/gbb.12112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/14/2013] [Accepted: 11/26/2013] [Indexed: 12/30/2022]
Abstract
Social and genetic factors can influence smoking behavior. Using olfactogustatory stimuli as the sensory cue for intravenous nicotine self-administration (SA), we previously showed that social learning of nicotine contingent odor cue prevented rats from developing conditioned taste aversion and allowed them to instead establish stable nicotine SA. We hypothesized that genetic factors influenced socially acquired nicotine SA. A heterogeneous stock (HS; N/NIH) of outbred rats was trained to self-administer nicotine using the social learning protocol. Both male and female HS rats acquired nicotine SA, but females self-administered more nicotine than males. After extinction, the context previously paired with nicotine SA, in conjunction with socially transmitted drug cues, was sufficient to cause reinstatement of drug-seeking behavior. Wide variation in both nicotine intake and reinstatement was observed. Using multiple regression analysis, we found that measures of social interaction were significant predictors of nicotine intake and reinstatement of drug seeking in both males and females. Furthermore, measures of depression were predictors of nicotine intake in both males and females, anxiety was a predictor only in males and response to novelty was a predictor only in females. In males, measures of both depression and anxiety predicted nicotine reinstatement. Together, these data supported the ideas that genetically determined propensities for emotional and social phenotypes are significant determinants for nicotine-reinforced behavior, and that the HS rat is a suitable tool for dissecting genetic mechanisms that may underlie the interaction between social behavior, anxiety, depression and smoking.
Collapse
Affiliation(s)
- T Wang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Lin XB, Pierce DR, Light KE, Hayar A. The fine temporal structure of the rat licking pattern: what causes the variabiliy in the interlick intervals and how is it affected by the drinking solution? Chem Senses 2013; 38:685-704. [PMID: 23902635 DOI: 10.1093/chemse/bjt038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Licking is a repetitive behavior controlled by a central pattern generator. Even though interlick intervals (ILIs) within bursts of licks are considered fairly regular, the conditions that affect their variability are unknown. We analyzed the licking pattern in rats that licked water, 10% sucrose solution, or 10% ethanol solution, in 90-min recording sessions after 4h of water deprivation. The histograms of ILIs indicate that licking typically occurred at a preferred ILI of about 130-140ms with evidence of bimodal or multimodal distributions due to occasional licking failures. We found that the longer the pause between bursts of licks, the shorter was the first ILI of the burst. When bursts of licks were preceded by a pause >4 s, the ILI was the shortest (~110ms) at the beginning of the burst, and then it increased rapidly in the first few licks and slowly in subsequent licks. Interestingly, the first ILI of a burst of licks was not significantly different when licking any of the 3 solutions, but subsequent licks exhibited a temporal pattern characteristic of each solution. The rapid deceleration in intraburst licking rate was due to an increase from ~27ms to ~56ms in the tongue-spout contact duration while the intercontact interval was only slightly changed (80-90ms). Therefore, the contact duration seems to be the major factor that increases the variability in the ILIs and could be another means for the rat to adjust the amount of fluid ingested in each individual lick.
Collapse
Affiliation(s)
- Xiong Bin Lin
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301W. Markham Street Slot# 847, Little Rock, AR 72205, USA.
| | | | | | | |
Collapse
|
35
|
Gini B, Hager R. Recombinant inbred systems can advance research in behavioral ecology. Front Genet 2012; 3:198. [PMID: 23060902 PMCID: PMC3463890 DOI: 10.3389/fgene.2012.00198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 09/14/2012] [Indexed: 01/22/2023] Open
Abstract
Recombinant inbred (RI) systems such as the BXD mouse family represent a population with defined genetic architecture and variation that approximates those of natural populations. With the development of novel RI lines and sophisticated methods that conjointly analyze phenotype, gene sequence, and expression data, RI systems such as BXD are a timely and powerful tool to advance the field of behavioral ecology. The latter traditionally focused on functional questions such as the adaptive value of behavior but largely ignored underlying genetics and mechanisms. In this perspective, we argue that using RI systems to address questions in behavioral ecology and evolutionary biology has great potential to advance research in these fields. We outline key questions and how they can be tackled using RI systems and BXD in particular. The unique opportunity to analyze genetic and phenotypic data from studies conducted in different laboratories and at different times is a key benefit of RI systems and may lead the way to a better understanding of how adaptive phenotypes arise from genetic and environmental factors.
Collapse
Affiliation(s)
- Beatrice Gini
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester Manchester, UK
| | | |
Collapse
|
36
|
Heck DH, Gu W, Cao Y, Qi S, Lacaria M, Lupski JR. Opposing phenotypes in mice with Smith-Magenis deletion and Potocki-Lupski duplication syndromes suggest gene dosage effects on fluid consumption behavior. Am J Med Genet A 2012; 158A:2807-14. [PMID: 22991245 DOI: 10.1002/ajmg.a.35601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/12/2012] [Indexed: 11/12/2022]
Abstract
A quantitative long-term fluid consumption and fluid-licking assay was performed in two mouse models with either an ∼2 Mb genomic deletion, Df(11)17, or the reciprocal duplication copy number variation (CNV), Dp(11)17, analogous to the human genomic rearrangements causing either Smith-Magenis syndrome [SMS; OMIM #182290] or Potocki-Lupski syndrome [PTLS; OMIM #610883], respectively. Both mouse strains display distinct quantitative alterations in fluid consumption compared to their wild-type littermates; several of these changes are diametrically opposing between the two chromosome engineered mouse models. Mice with duplication versus deletion showed longer versus shorter intervals between visits to the waterspout, generated more versus less licks per visit and had higher versus lower variability in the number of licks per lick-burst as compared to their respective wild-type littermates. These findings suggest that copy number variation can affect long-term fluid consumption behavior in mice. Other behavioral differences were unique for either the duplication or deletion mutants; the deletion CNV resulted in increased variability of the licking rhythm, and the duplication CNV resulted in a significant slowing of the licking rhythm. Our findings document a readily quantitated complex behavioral response that can be directly and reciprocally influenced by a gene dosage effect.
Collapse
Affiliation(s)
- Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Talishinsky A, Rosen GD. Systems genetics of the lateral septal nucleus in mouse: heritability, genetic control, and covariation with behavioral and morphological traits. PLoS One 2012; 7:e44236. [PMID: 22952935 PMCID: PMC3432065 DOI: 10.1371/journal.pone.0044236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022] Open
Abstract
The lateral septum has strong efferent projections to hypothalamic and midbrain regions, and has been associated with modulation of social behavior, anxiety, fear conditioning, memory-related behaviors, and the mesolimbic reward pathways. Understanding natural variation of lateral septal anatomy and function, as well as its genetic modulation, may provide important insights into individual differences in these evolutionarily important functions. Here we address these issues by using efficient and unbiased stereological probes to estimate the volume of the lateral septum in the BXD line of recombinant inbred mice. Lateral septum volume is a highly variable trait, with a 2.5-fold difference among animals. We find that this trait covaries with a number of behavioral and physiological phenotypes, many of which have already been associated with behaviors modulated by the lateral septum, such as spatial learning, anxiety, and reward-seeking. Heritability of lateral septal volume is moderate (h(2) = 0.52), and much of the heritable variation is caused by a locus on the distal portion of chromosome (Chr) 1. Composite interval analysis identified a secondary interval on Chr 2 that works additively with the Chr 1 locus to increase lateral septum volume. Using bioinformatic resources, we identified plausible candidate genes in both intervals that may influence the volume of this key nucleus, as well as associated behaviors.
Collapse
Affiliation(s)
- Alexander Talishinsky
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Glenn D. Rosen
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| |
Collapse
|
38
|
Boughter JD, Mulligan MK, St John SJ, Tokita K, Lu L, Heck DH, Williams RW. Genetic control of a central pattern generator: rhythmic oromotor movement in mice is controlled by a major locus near Atp1a2. PLoS One 2012; 7:e38169. [PMID: 22675444 PMCID: PMC3364982 DOI: 10.1371/journal.pone.0038169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/04/2012] [Indexed: 12/21/2022] Open
Abstract
Fluid licking in mice is a rhythmic behavior that is controlled by a central pattern generator (CPG) located in a complex of brainstem nuclei. C57BL/6J (B6) and DBA/2J (D2) strains differ significantly in water-restricted licking, with a highly heritable difference in rates (h(2)≥0.62) and a corresponding 20% difference in interlick interval (mean ± SEM = 116.3±1 vs 95.4±1.1 ms). We systematically quantified motor output in these strains, their F(1) hybrids, and a set of 64 BXD progeny strains. The mean primary interlick interval (MPI) varied continuously among progeny strains. We detected a significant quantitative trait locus (QTL) for a CPG controlling lick rate on Chr 1 (Lick1), and a suggestive locus on Chr 10 (Lick10). Linkage was verified by testing of B6.D2-1D congenic stock in which a segment of Chr 1 of the D2 strain was introgressed onto the B6 parent. The Lick1 interval on distal Chr 1 contains several strong candidate genes. One of these is a sodium/potassium pump subunit (Atp1a2) with widespread expression in astrocytes, as well as in a restricted population of neurons. Both this subunit and the entire Na(+)/K(+)-ATPase molecule have been implicated in rhythmogenesis for respiration and locomotion. Sequence variants in or near Apt1a2 strongly modulate expression of the cognate mRNA in multiple brain regions. This gene region has recently been sequenced exhaustively and we have cataloged over 300 non-coding and synonymous mutations segregating among BXD strains, one or more of which is likely to contribute to differences in central pattern generator tempo.
Collapse
Affiliation(s)
- John D Boughter
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.
| | | | | | | | | | | | | |
Collapse
|
39
|
Barkley-Levenson AM, Crabbe JC. Ethanol drinking microstructure of a high drinking in the dark selected mouse line. Alcohol Clin Exp Res 2012; 36:1330-9. [PMID: 22524154 DOI: 10.1111/j.1530-0277.2012.01749.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 12/13/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND The High Drinking in the Dark (HDID) selected mouse line was bred for high blood ethanol (EtOH) concentration (BEC) following the limited access drinking in the dark (DID) test and is a genetic animal model of binge-like drinking. This study examines the microstructure of EtOH drinking in these mice and their control line during 3 versions of the DID test to determine how drinking structure differences might relate to overall intake and BEC. METHODS Male mice from the HDID-1 replicate line and HS/Npt progenitor stock were tested in separate experiments on 2- and 4-day versions of the DID test, and on a 2-day 2-bottle choice DID test with 20% EtOH and water. Testing took place in home cages connected to a continuous fluid intake monitoring system, and drinking during the DID test was analyzed for drinking microstructure. RESULTS HDID-1 mice had more drinking bouts, shorter interbout interval, larger bout size, greater total EtOH intake, and higher BECs than HS/Npt mice on the second day of the 2-day DID test. The 4-day DID test showed greater bout size, total EtOH intake, and BEC in the HDID-1 mice than the HS/Npt mice. Total EtOH intake and BECs for the HDID-1 mice in the DID tests averaged 2.6 to 3.0 g/kg and 0.4 to 0.5 mg/ml, respectively. The 2-bottle choice test showed no genotype differences in drinking microstructure or total consumption but did show greater preference for the EtOH solution in HDID-1 mice than HS/Npt. CONCLUSIONS These results suggest that inherent differences in EtOH drinking structure between the HDID-1 and HS/Npt mice, especially the larger bout size in the HDID-1 mice, contribute to the difference in intake during the standard DID test.
Collapse
|
40
|
Shires CB, Saputra JM, Stocks RMS, Sebelik ME, Boughter JD. Effects of sensory or motor nerve deafferentation on oromotor function in mice. Otolaryngol Head Neck Surg 2011; 144:915-20. [PMID: 21493323 DOI: 10.1177/0194599811399722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the effect of sensory or motor nerve damage to the tongue using a mouse model. STUDY DESIGN Animal study. SETTING Research laboratory. SUBJECTS AND METHODS Adult male and female mice from inbred strains B6 (n = 19) and D2 (n = 25). Following lick training, bilateral lingual-chorda tympani nerve cuts (LX) (n = 6 B6, n = 7 D2), unilateral hypoglossal nerve cuts (HX) (n = 7 B6, n = 9 D2), or sham surgery (n = 6 B6, n = 9 D2) was performed. Mice were lick tested postsurgically with both water and sucrose (4 days total). Following testing, post mortem dissections and microscopic analysis of tongue papillae were performed. RESULTS In both strains, HX and LX mice demonstrated a significant reduction in volume per lick (VPL) in the surgical groups relative to shams. Neither motor nor sensory nerve transection affected local lick rate. In most LX mice in both strains, taste papillae were reduced compared with HX or sham mice. CONCLUSION Mice of either strain with either a sensory or a motor nerve injury have a significant loss of VPL during ingestion of either a neutral (water) or preferred (sucrose) stimulus. This reduction in VPL reflects a deficit in licking. Lick rate was not affected by deafferentation. A reduction in fungiform papillae following LX but not HX mice was noted.
Collapse
Affiliation(s)
- Courtney B Shires
- University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
41
|
Johnson AW, Gallagher M. Greater effort boosts the affective taste properties of food. Proc Biol Sci 2010; 278:1450-6. [PMID: 21047860 DOI: 10.1098/rspb.2010.1581] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Actions can create preferences, increasing the value ascribed to commodities acquired at greater cost. This behavioural finding has been observed in a variety of species; however, the causal factors underlying the phenomenon are relatively unknown. We sought to develop a behavioural platform to examine the relationship between effort and reinforcer value in mice trained under demanding or lenient schedules of reinforcement to obtain food. In the initial experiment, expenditure of effort enhanced the value of the associated food via relatively lasting changes in its hedonic attributes, promoting an acquired preference for these reinforcers when tested outside of the training environment. Moreover, otherwise neutral cues associated with those reinforcers during training similarly acquired greater reinforcing value, as assessed under conditioned reinforcement. In a separate experiment, expenditure of effort was also capable of enhancing the value of less-preferred low-caloric reinforcers. Analysis of licking microstructure revealed the basis for this increased valuation was, in part, due to increased palatability of the associated reinforcer. This change in the hedonic taste properties of the food can not only serve as a basis for preference, but also guide decision-making and foraging behaviour by coordinating a potentially adaptive repertoire of incentive motivation, goal-directed action and consumption.
Collapse
Affiliation(s)
- Alexander W Johnson
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| | | |
Collapse
|
42
|
Bryant JL, Boughter JD, Gong S, LeDoux MS, Heck DH. Cerebellar cortical output encodes temporal aspects of rhythmic licking movements and is necessary for normal licking frequency. Eur J Neurosci 2010; 32:41-52. [PMID: 20597972 DOI: 10.1111/j.1460-9568.2010.07244.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Rodents consume water by performing stereotypic, rhythmic licking movements that are believed to be controlled by brainstem pattern-generating circuits. Previous work has shown that synchronized population activity of inferior olive neurons was phase-locked to the licking rhythm in rats, suggesting a cerebellar involvement in temporal aspects of licking behavior. However, what role the cerebellum has in licking behavior and whether licking is represented in the high-frequency simple spike output of Purkinje cells remains unknown. We recorded Purkinje cell simple and complex spike activity in awake mice during licking, and determined the behavioral consequences of loss of cerebellar function. Mouse cerebellar cortex contained a multifaceted representation of licking behavior encoded in the simple spike activities of Purkinje cells distributed across Crus I, Crus II and lobus simplex of the right cerebellar hemisphere. Lick-related Purkinje cell simple spike activity was modulated rhythmically, phase-locked to the lick rhythm, or non-rhythmically. A subpopulation of lick-related Purkinje cells differentially represented lick interval duration in their simple spike activity. Surgical removal of the cerebellum or temporary pharmacological inactivation of the cerebellar nuclei significantly slowed the licking frequency. Fluid licking was also less efficient in mice with impaired cerebellar function, indicated by a significant decline in the volume per lick fluid intake. The gross licking movement appeared unaffected. Our results suggest a cerebellar role in modulating the frequency of the central pattern-generating circuits controlling fluid licking and in the fine coordination of licking, while contributing little to the coordination of the gross licking movement.
Collapse
Affiliation(s)
- Jerí L Bryant
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | |
Collapse
|
43
|
Murovets VO, Zolotarev VA, Bachmanov AA. The role of the Sac locus in the alcohol taste preference in inbred mouse strains. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2010; 432:181-3. [PMID: 20665148 DOI: 10.1134/s001249661003004x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Indexed: 11/23/2022]
Affiliation(s)
- V O Murovets
- Pavlov Institute of Physiology, Russian Academy of Sciences, nab. Makarova 6, St. Petersburg, 199034, Russia
| | | | | |
Collapse
|
44
|
An analysis of licking microstructure in three strains of mice. Appetite 2009; 54:320-30. [PMID: 20006663 DOI: 10.1016/j.appet.2009.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 11/24/2009] [Accepted: 12/08/2009] [Indexed: 01/17/2023]
Abstract
Mouse models of feeding provide a useful tool for elucidating the molecular pathways of energy regulation. The majority of studies in mice have been limited to intake analyses conducted over extended periods of time, which fail to distinguish between a variety of factors that influence nutrient intake. Using licking microstructure analyses we examined both the size and number of licking bursts for water, polycose, sucrose and lecithin in three strains of mice (C57BL/6J, 129Sv/ImJ and C57129F1 hybrids), using pause criteria (250-500, >500 and >1000 ms) that have previously been described in the rat. Burst size and number varied both as a function of tastant concentration and mouse strain; however, these differences were most evident with the >1000 ms pause criterion. Consistent with previous reports, during water consumption C57 mice showed longer mean interlick intervals, a larger number of bursts but reduced burst size relative to the two other strains. F1 mice showed larger burst sizes for polycose, while C57 mice displayed a greater number of bursts for both polycose and sucrose. Both 129 and F1 mice were insensitive to sucrose concentration, whereas C57 mice showed attenuated lecithin intake influenced by a reduction in the size of bursts for this tastant. These results suggest that these strains of mice display differences in the pattern of licking that are most evident with the use of larger pause criteria. These differences in licking behavior might reflect influences of genetic background on pre- and post-ingestive factors controlling intake, the reinforcing properties of each tastant, or native differences in licking style.
Collapse
|
45
|
Slotnick B. A simple 2-transistor touch or lick detector circuit. J Exp Anal Behav 2009; 91:253-5. [PMID: 19794837 DOI: 10.1901/jeab.2009.91-253] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Accepted: 11/24/2008] [Indexed: 11/22/2022]
Abstract
An easily constructed and inexpensive battery operated circuit is described for use as a lickometer or contact detector in behavioral studies with rodents.
Collapse
Affiliation(s)
- Burton Slotnick
- Department of Psychology, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
46
|
Tokita K, Inoue T, Boughter JD. Afferent connections of the parabrachial nucleus in C57BL/6J mice. Neuroscience 2009; 161:475-88. [PMID: 19327389 PMCID: PMC2705209 DOI: 10.1016/j.neuroscience.2009.03.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 10/21/2022]
Abstract
Although the mouse is an experimental model with an increasing importance in various fields of neuroscience, the characteristics of its central gustatory pathways have not yet been well documented. Recent electrophysiological studies using the rat and hamster have revealed that taste processing in the brainstem gustatory relays is under the strong influence of inputs from forebrain gustatory structures. In the present study, we investigated the organization of afferent projections to the mouse parabrachial nucleus (PbN), which is located at a key site between the brainstem and gustatory, viscerosensory and autonomic centers in the forebrain. We made injections of the retrograde tracer fluorogold centered around the "waist" area of the PbN, whose neurons are known to be highly responsive to taste stimuli. Retrogradely labeled neurons were found in the infralimbic, dysgranular and agranular insular cortex as well as the claustrum; the bed nucleus of the stria terminalis and the substantia innominata; the central nucleus of the amygdala; the lateral and medial preoptic areas, the paraventricular, the dorsomedial, the ventromedial, the arcuate, and the lateral hypothalamic areas; the periaqueductal gray, the substantia nigra pars compacta, and the ventral tegmental area; the supratrigeminal nucleus, rostral and caudal nucleus of the solitary tract; the parvicellular intermediate and gigantocellular reticular nucleus; the caudal and interpolar divisions of the spinal trigeminal nucleus, dorsomedial spinal trigeminal nucleus, and the area postrema. Numbers of labeled neurons in the main components of the gustatory system including the insular cortex, bed nucleus of the stria terminalis, central nucleus of the amygdala, lateral hypothalamus, and rostral nucleus of the solitary tract were quantified. These results are basically consistent with those of the previous rat and hamster studies, but some species differences were found. Functional implications of these afferent inputs are discussed with an emphasis on their role in taste.
Collapse
Affiliation(s)
- K Tokita
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 515, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
47
|
Bryant JL, Roy S, Heck DH. A technique for stereotaxic recordings of neuronal activity in awake, head-restrained mice. J Neurosci Methods 2009; 178:75-9. [PMID: 19073214 PMCID: PMC2728350 DOI: 10.1016/j.jneumeth.2008.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/04/2008] [Accepted: 11/19/2008] [Indexed: 10/21/2022]
Abstract
Neurophysiological recordings of brain activity during behavior in awake animals have traditionally been performed in primates because of their evolutionary close relationship to humans and comparable behavioral skills. However, with properly designed behavioral tasks, many fundamental questions about how the brain controls behavior can also be addressed in small rodents. Today, the rapid progress in mouse neurogenetics, including the development of mouse models of human brain disorders, provides unique and unparalleled opportunities for the investigation of normal and pathological brain function. The development of experimental procedures for the recording of neuronal activity in awake and behaving mice is an important and necessary step towards neurophysiological investigation of normal and pathological mouse brain function. Here we describe a method for stereotaxic recordings of neuronal activity from head-restrained mice during fluid licking. Fluid licking is a natural and spontaneous behavior in rodents, which mice readily perform under head-restrained conditions. Using a head-restrained preparation allows recordings of well-isolated single units at multiple sites during repeated experimental sessions. Thus, a large number of neurons can be tested for their relationship with behavior and detailed spatial maps of behavior related neuronal activity can be generated as exemplified here with recordings from lick-related Purkinje cells in the cerebellum.
Collapse
Affiliation(s)
- Jeri L. Bryant
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Snigdha Roy
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Detlef H. Heck
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
48
|
Glatt AR, Denton K, Boughter JD. Variation in nicotine consumption in inbred mice is not linked to orosensory ability. Chem Senses 2008; 34:27-35. [PMID: 18775876 DOI: 10.1093/chemse/bjn049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic studies of nicotine addiction in mice have utilized the oral self-administration model. However, it is unclear if strain differences in nicotine consumption are influenced by variation in bitter taste sensitivity. We measured both nicotine consumption and nicotine brief-access licking behavior in several commonly used inbred strains of mice that were previously shown to differ in nicotine consumption. A/J (A), C57BL/6J (B6), and DBA/2J (D2) mice were given a 2-bottle choice test with a single concentration of nicotine (75 microg/ml; nicotine vs. water). Mice of these strains were also tested with a range of nicotine concentrations (5-400 microg/ml) using a brief-access test, which measures orosensory response and minimizes postingestive effects. Although B6 mice consumed more 75-microg/ml nicotine than A or D2 mice in the 2-bottle test, these strains did not differ in level of aversion to nicotine when tested with the brief-access procedure. Strain differences in orosensory response to nicotine were not found; yet, differences emerged during the 2-bottle tests. This study provides evidence that variation in intake level of nicotine is likely not due to differences in taste or trigeminal sensitivity but likely due to postingestive factors.
Collapse
Affiliation(s)
- A Rebecca Glatt
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|
49
|
Ford MM, Beckley EH, Nickel JD, Eddy S, Finn DA. Ethanol intake patterns in female mice: influence of allopregnanolone and the inhibition of its synthesis. Drug Alcohol Depend 2008; 97:73-85. [PMID: 18486362 PMCID: PMC2577122 DOI: 10.1016/j.drugalcdep.2008.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 03/11/2008] [Accepted: 03/16/2008] [Indexed: 11/16/2022]
Abstract
The neurosteroid allopregnanolone (ALLO) is a positive modulator of GABA(A) receptors that exhibits a psychopharmacological profile similar to ethanol (i.e., anxiolytic, sedative-hypnotic). Based on research suggesting that manipulation of ALLO levels altered ethanol self-administration in male rodents, the current studies determined whether exogenous ALLO administration or the inhibition of its synthesis in vivo modulated ethanol intake patterns in female C57BL/6J mice. Lickometer circuits collected temporal lick records of ethanol (10%, v/v) and water consumption during daily 2h limited access sessions. Following the establishment of stable ethanol intake, studies examined the effect of an acute ALLO challenge (3.2-24.0 mg/kg) or a 7-day blockade of ALLO production with finasteride (FIN; 50 or 100 mg/kg) on ethanol intake in a within-subjects design. In contrast to results in male mice, ethanol dose (g/kg), ethanol preference and most of the bout parameters were unaltered by ALLO pretreatment in female mice. Ethanol intake in females also was recalcitrant to 7-day treatment with 50 mg/kg FIN, whereas 100 mg/kg FIN significantly reduced the ethanol dose consumed by 35%. The FIN-attenuated ethanol intake was attributable to a significant decrease in bout frequency (up to 45%), with lick patterns indicating reduced maintenance of consumption throughout the 2-h session. FIN also produced a dose-dependent decrease in brain ALLO levels. In conjunction with data in male mice, the present findings indicate that there are sex differences in the physiological regulation of ethanol intake patterns by GABAergic neurosteroids.
Collapse
Affiliation(s)
- Matthew M. Ford
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Ethan H. Beckley
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Jeffrey D. Nickel
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Sarah Eddy
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | - Deborah A. Finn
- Veterans Affairs Medical Research, Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239-3098, USA,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098, USA,Corresponding author: Deborah A. Finn, Ph.D., VAMC Research (R&D-49), 3710 SW U.S. Veterans Hospital Road, Portland, OR 97239, phone: (503) 721-7984, FAX: (503) 273-5351,
| |
Collapse
|
50
|
Reiner DJ, Jan TA, Boughter JD, Li CX, Lu L, Williams RW, Waters RS. Genetic analysis of tongue size and taste papillae number and size in recombinant inbred strains of mice. Chem Senses 2008; 33:693-707. [PMID: 18653645 DOI: 10.1093/chemse/bjn025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Quantitative trait loci (QTLs) analysis has been used to examine natural variation of phenotypes in the mouse somatosensory cortex, hippocampus, cerebellum, and amygdala. QTL analysis has also been utilized to map and identify genes underlying anatomical features such as muscle, organ, and body weights. However, this methodology has not been previously applied to identification of anatomical structures related to gustatory phenotypes. In this study, we used QTL analysis to map and characterize genes underlying tongue size, papillae number, and papillae area. In a set of 43 BXD recombinant inbred (RI) mice (n = 111) and 2 parental strains (C57BL/6J and DBA/2J; n = 7), we measured tongue length, width, and weight. In a subset of 23 BXD RI mice and the parental mice, we measured filiform and fungiform papillae number and fungiform papillae area. Using QTL linkage analysis (through WebQTL), we detected 2 significant and noninteracting QTLs influencing tongue length on chromosomes 5 and 7. We also found a significant QTL on chromosome 19 underlying fungiform papillae area and a suggestive QTL on chromosome 2 linked to fungiform papillae number. From these QTLs, we identified a number of candidate genes within the QTL intervals that include SRY-box containing gene, nebulin-related anchoring protein, and actin-binding LIM protein 1. This study is an important first step in identifying genetic factors underlying tongue size, papillae size, and papillae number using QTL analysis.
Collapse
Affiliation(s)
- David J Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Memphis, TN 38163, USA
| | | | | | | | | | | | | |
Collapse
|