1
|
Jiang H, Zhang J, Liu T, Chen X, Yang G, Li H. The characterization of BCL-xL displays a non-apoptotic role in suppression of NLRP1 inflammasome assembly in common carp (Cyprinus carpio L.). FISH & SHELLFISH IMMUNOLOGY 2024; 155:110001. [PMID: 39489455 DOI: 10.1016/j.fsi.2024.110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The NLRP1 inflammasome is a crucial muti-protein complex in the host anti-pathogen immune response. The previous studies have revealed that the anti-apoptotic protein BCL-xL played a non-apoptotic role by impeding the activation of NLRP1 inflammasome in mammals. However, the potential role of BCL-xL in regulating the inflammasome in fish remains unclear. In the present study, the BCL-xL (CcBCL-xL) was cloned from the head kidney of common carp (Cyprinus carpio L.), and its regulatory effect on the NLRP1 inflammasome was explored. It was found that CcBCL-xL predominantly localized in the brain, spleen and head kidney of common carp, and upon stimulation with Aeromonas hydrophila (A. hydrophila), Edwardsiella tarda (E. tarda), or spring viremia of carp virus (SVCV), the expression of CcBCL-xL significantly increased in multiple immune organs. The interaction between CcBCL-xL and CcNLRP1 was confirmed by co-immunoprecipitation and immunofluorescence. Meanwhile, we also found that CcBCL-xL significantly inhibited the assembly of the CcNLRP1 inflammasome, through ASC oligomerization, ASC specks formation and cytotoxicity experiments. Furthermore, our results revealed that CcBCL-xL interacted with the NACHT, LRR, FIIND, and CARD domains of CcNLRP1. Taken together, the results provide a theoretical foundation for further exploring the regulatory mechanism of NLRP1, and for the prevention and treatment of infectious diseases in fish.
Collapse
Affiliation(s)
- Hong Jiang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Jiahui Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Tingting Liu
- Shandong Industrial Technician College, No.6789 West Ring Road, Weifang, 261000, China
| | - Xinping Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
2
|
Chatterjee S, Sil PC. Mechanistic Insights into Toxicity of Titanium Dioxide Nanoparticles at the Micro- and Macro-levels. Chem Res Toxicol 2024; 37:1612-1633. [PMID: 39324438 DOI: 10.1021/acs.chemrestox.4c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Titanium oxide nanoparticles (TiO2 NPs) have been regarded as a legacy nanomaterial due to their widespread usage across multiple fields. The TiO2 NPs have been and are still extensively used as a food and cosmetic additive and in wastewater and sewage treatment, paints, and industrial catalysis as ultrafine TiO2. Recent developments in nanotechnology have catapulted it into a potent antibacterial and anticancer agent due to its excellent photocatalytic potential that generates substantial amounts of highly reactive oxygen radicals. The method of production, surface modifications, and especially size impact its toxicity in biological systems. The anatase form of TiO2 (<30 nm) has been found to exert better and more potent cytotoxicity in bacteria as well as cancer cells than other forms. However, owing to the very small size, anatase particles are able to penetrate deep tissue easily; hence, they have also been implicated in inflammatory reactions and even as a potent oncogenic substance. Additionally, TiO2 NPs have been investigated to assess their toxicity to large-scale ecosystems owing to their excellent reactive oxygen species (ROS)-generating potential compounded with widespread usage over decades. This review discusses in detail the mechanisms by which TiO2 NPs induce toxic effects on microorganisms, including bacteria and fungi, as well as in cancer cells. It also attempts to shed light on how and why it is so prevalent in our lives and by what mechanisms it could potentially affect the environment on a larger scale.
Collapse
Affiliation(s)
- Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kankurgachi, Kolkata-700054, India
| |
Collapse
|
3
|
Zhao J, Xu Z, Xie J, Liang T, Wang R, Chen W, Mi C, Tian P, Guo J, Zhang H. The novel lnc-HZ12 suppresses autophagy degradation of BBC3 by preventing its interactions with HSPA8 to induce trophoblast cell apoptosis. Autophagy 2024; 20:2255-2274. [PMID: 38836496 PMCID: PMC11423690 DOI: 10.1080/15548627.2024.2362122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Abnormal expression of long non-coding RNAs (lncRNAs) is associated with the dysfunctions of human trophoblast cells and the occurrence of miscarriage (abnormal early embryo loss). BBC3/PUMA (BCL2 binding component 3) plays significant roles in regulation of cell apoptosis. However, whether specific lncRNAs might regulate BBC3 in trophoblast cells and further induce apoptosis and miscarriage remains completely unclear. Through screening, we identified a novel lnc-HZ12, which was significantly highly expressed in villous tissues of recurrent miscarriage (RM) patients relative to their healthy control (HC) group. Lnc-HZ12 suppressed chaperone-mediated autophagy (CMA) degradation of BBC3, promoted trophoblast cell apoptosis, and was associated with miscarriage. In mechanism, lnc-HZ12 downregulated the expression levels of chaperone molecules HSPA8 and LAMP2A in trophoblast cells. Meanwhile, lnc-HZ12 (mainly lnc-HZ12-SO2 region in F2 fragment) and HSPA8 competitively bound with the 169RVLYNL174 patch on BBC3, which prevented BBC3 from interactions with HSPA8 and impaired the formation of BBC3-HSPA8-LAMP2A complex for CMA degradation of BBC3. Thus, lnc-HZ12 upregulated the BBC3-CASP9-CASP3 pathway and induced trophoblast cell apoptosis. In villous tissues, lnc-HZ12 was highly expressed, CMA degradation of BBC3 was suppressed, and the apoptosis levels were higher in RM vs HC villous tissues, all of which were associated with miscarriage. Interestingly, knockdown of murine Bbc3 could efficiently suppress placental apoptosis and alleviate miscarriage in a mouse miscarriage model. Taken together, our results indicated that lnc-HZ12 and BBC3 played important roles in trophoblast cell apoptosis and miscarriage and might act as attractive targets for miscarriage treatment.Abbreviation: 7-AAD: 7-aminoactinomycin D; BaP: benzopyrene; BBC3/PUMA: BCL2 binding component 3; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; CMA: chaperone-mediated autophagy; CQ: chloroquine; DMSO: dimethyl sulfoxide; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HC: healthy control; HSPA8: heat shock protein family A (Hsp70) member 8; IP: immunoprecipitation; LAMP2A: lysosomal associated membrane protein 2; LncRNA: long non-coding RNA; mRNA: messenger RNA; MT: mutant-type; NC: negative control; NSO: nonspecific oligonucleotide; PARP1: poly(ADP-ribose) polymerase 1; RIP: RNA immunoprecipitation; RM: recurrent miscarriage; TBP: TATA-box binding protein; WT: wild-type.
Collapse
Affiliation(s)
- Jingsong Zhao
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Zhongyan Xu
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Jiayu Xie
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Tingting Liang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Rong Wang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Weina Chen
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chenyang Mi
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Peng Tian
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jiarong Guo
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Ding W, Bao S, Zhao Q, Hao W, Fang K, Xiao Y, Lin X, Zhao Z, Xu X, Cui X, Yang X, Yao L, Jin H, Zhang K, Guo J. Blocking ACSL6 Compromises Autophagy via FLI1-Mediated Downregulation of COLs to Radiosensitize Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403202. [PMID: 39206814 PMCID: PMC11516120 DOI: 10.1002/advs.202403202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Lung cancer (LC) is the leading cause of cancer-related mortality worldwide. Radiotherapy is the main component of LC treatment; however, its efficacy is often limited by radioresistance development, resulting in unsatisfactory clinical outcomes. Here, we found that LC radiosensitivity is up-regulated by decreased expression of long-chain acyl-CoA synthase 6 (ACSL6) after irradiation. Deletion of ACSL6 results in significant elevation of Friend leukemia integration 1 transcription factor (FLI1) and a marked decline of collagens (COLs). Blocking of ACSL6 impairs the tumor growth and upregulates FLI1, which reduces the levels of COLs and compromises irradiation-induced autophagy, leading to considerable therapeutic benefits during radiotherapy. Moreover, the direct interaction between ACSL6 and FLI1 and engagement between FLI1 and COLs indicates the involvement of the ACSL6-FLI1-COL axis. Finally, the potently adjusted autophagy flux reduces its otherwise contributive capability in surviving irradiation stress and leads to satisfactory radiosensitization for LC radiotherapy. These results demonstrate that enhanced ACSL6 expression promotes the aggressive performance of irradiated LC through increased FLI1-COL-mediated autophagy flux. Thus, the ACSL6-FLI1-Col-autophagy axis may be targeted to enhance the radiosensitivity of LC and improve the management of LC in radiotherapy.
Collapse
Affiliation(s)
- Wen Ding
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Shijun Bao
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Qingwei Zhao
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Wei Hao
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Kai Fang
- Department of Medicine CollegeJiangnan UniversityWuxiJiangsu214000P. R. China
| | - Yanlan Xiao
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Xiaoting Lin
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Zhemeng Zhao
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Xinyi Xu
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
- College of Basic MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Xinyue Cui
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Xiwen Yang
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Liuhuan Yao
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Hai Jin
- Department of Cardiothoracic SurgeryChanghai HospitalNaval Medical UniversityShanghai200433P. R. China
| | - Kun Zhang
- Department of Laboratory Medicine and Central LaboratorySichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072P. R. China
| | - Jiaming Guo
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| |
Collapse
|
5
|
Kim D, Go SH, Song Y, Lee DK, Park JR. Decursin Induces G1 Cell Cycle Arrest and Apoptosis through Reactive Oxygen Species-Mediated Endoplasmic Reticulum Stress in Human Colorectal Cancer Cells in In Vitro and Xenograft Models. Int J Mol Sci 2024; 25:9939. [PMID: 39337425 PMCID: PMC11432441 DOI: 10.3390/ijms25189939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Decursin, a coumarin isolated from Angelica gigas Nakai, possesses anti-inflammatory and anti-cancer properties. However, the molecular mechanisms underlying its anti-cancer effects against human colorectal cancer (CRC) are unclear. Therefore, this study aimed to evaluate the biological activities of decursin in CRC in vitro and in vivo and to determine its underlying mechanism of action. Decursin exhibited anti-tumor activity in vitro, accompanied by an increase in G1 cell cycle arrest and apoptosis in HCT-116 and HCT-8 CRC cells. Decursin also induced the production of reactive oxygen species (ROS), thereby activating the endoplasmic reticulum (ER) stress apoptotic pathway in CRC cells. Furthermore, the role of ROS in decursin-induced apoptosis was investigated using the antioxidant N-acetyl-L-cysteine. Inhibiting ROS production reversed decursin-induced ER stress. Moreover, decursin significantly suppressed tumor growth in a subcutaneous xenograft mouse model of HCT-116 and HCT-8 CRC cells without causing host toxicity. Decursin also decreased cell proliferation, as documented by Ki-67, and partly increased cleaved caspase 3 expression in tumor tissues by activating ER stress apoptotic pathways. These findings suggest that decursin induces cell cycle arrest and apoptosis in human CRC cells via ROS-mediated ER stress, suggesting that decursin could be a therapeutic agent for CRC.
Collapse
Affiliation(s)
| | | | | | - Dong-Keon Lee
- Division of Research Center, Scripps Korea Antibody Institute, Chuncheon 24341, Republic of Korea; (D.K.); (S.-H.G.); (Y.S.)
| | - Jeong-Ran Park
- Division of Research Center, Scripps Korea Antibody Institute, Chuncheon 24341, Republic of Korea; (D.K.); (S.-H.G.); (Y.S.)
| |
Collapse
|
6
|
Apaydin Yildirim B, Dogan T, Aktas Senocak E, Yildirim S, Kordali S, Yildirim F. Punica granatum L. peel extract protects diabetic nephropathy by activating the Nrf-2/HO-1 pathway. Acta Diabetol 2024:10.1007/s00592-024-02371-5. [PMID: 39259236 DOI: 10.1007/s00592-024-02371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
Diabetes raises cardiovascular morbidity and mortality worldwide and causes retinopathy, neuropathy, and nephropathy. Punica granatum L. (Pomegranate) is a fruit that has been used for its medicinal properties in various cultures. This article aims to investigate the antioxidant, anti-inflammatory, anti-apoptotic activity of Punica granatum L. peel ethanol extract (PGE) and its efficacy on NF-κB and Nrf-2/HO-1 signaling pathways in kidney tissue of rats with streptozotocin-induced diabetes. Single dose STZ 60 mg/kg/i.p. rats were given to induce diabetes and blood glucose measurements were taken 7 days later. PGE 10 mg/kg/p.o. administered to the treatment groups for 20 days. Blood, kidney, and pancreas samples taken from anesthetized rats were analyzed biochemically and histopathologically. It was observed that STZ increased the levels of urea, uric acid and creatine in the blood, while PGE significantly decreased these parameters. The diabetic group had higher MDA and lower renal tissue GSH level, CAT, GPx, and SOD activity than the control group. STZ also enhanced inflammation, apoptosis, Bax, Caspase-3, and NF-κB expression, and decreased Bcl-2, HO-1, and Nrf-2 expression. Experimental results showed that PGE has the potential to alleviate the harmful effects on the kidney and pancreas by altering the mentioned parameters in diabetic rats.
Collapse
Affiliation(s)
- Betul Apaydin Yildirim
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Tuba Dogan
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Esra Aktas Senocak
- Department of Animal Science, Horasan Vocational College, Atatürk University, Erzurum, Türkiye.
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| | - Saban Kordali
- Department of Plant Protection, Faculty of Agriculture, Mugla Sitki Kocaman University, Fethiye, Mugla, Türkiye
| | - Fatih Yildirim
- Department of Animal Science, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
7
|
Franceschi BT, Bezerra PHA, Torqueti MR. Antitumor effects of co-treatment of resveratrol with antitumor drugs in ER- and HER2-positive breast cancer cells are due to induction of apoptosis and modulation of estrogen receptor expression. Breast Cancer 2024; 31:754-768. [PMID: 38780752 DOI: 10.1007/s12282-024-01590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Resveratrol, a natural compound, may be an alternative to improving conventional breast cancer therapy. Thus, we assessed the capability of resveratrol at a low dose to enhance the in vitro effect of conventional theray in estrogen receptor (ER) and human epidermal growth factor receptor type 2 (HER2)-positive breast cancer cells. METHODS Cell viability of breast cancer cells was measured with neutral red uptake assay. Apoptosis, autophagy, cell cycle progression and cell proliferation were detected through hypotonic fluorescent solution assay, formation of acidic vesicular organelles, flow cytometry, and bromodeoxyuridine assay, respectively. Western blotting was performed to study the expression of pro-apoptotic, anti-apoptotic and autophagic proteins, and estrogen receptors. RESULTS Resveratrol combined with tamoxifen metabolites or trastuzumab reduced cell viability of ER- and HER2-positive breast cancer cells, respectively. This effect was mainly associated with induction of apoptosis due to a greater formation of hypodiploid nuclei, reduced protein expression of procaspase-7, Bcl-2, Bcl-xL, and PARP; and increased expression of cleaved PARP. Resveratrol decreased the expression of ERα and increased that of ERβ, contributing to the reduced viability on breast cancer cells. Combined treatments induced autophagy, evidenced by increased levels of acidic vesicular organelles and degradation of p62/SQSTM1 protein. Nevertheless, on inhibiting autophagy with 3-methyladenine, cell viability was further reduced and apoptosis was induced, suggesting a pro-survival role of autophagy, impairing apoptosis. CONCLUSIONS Resveratrol increasead the in vitro cytotoxic effect of conventional therapy in breast cancer cells. However, it was necessary to block resveratrol-induced autophagy to improve the therapeutic response.
Collapse
Affiliation(s)
- Beatriz Tinoco Franceschi
- Laboratory of Clinical Cytology, Department of Clinical Analyses, Toxicology and Food Science. School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Patrícia Heloise Alves Bezerra
- Laboratory of Clinical Cytology, Department of Clinical Analyses, Toxicology and Food Science. School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Regina Torqueti
- Laboratory of Clinical Cytology, Department of Clinical Analyses, Toxicology and Food Science. School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
8
|
Abusaliya A, Bhosale PB, Kim HH, Park MY, Jeong SH, Lee S, Kim GS. Investigation of prunetrin induced G2/M cell cycle arrest and apoptosis via Akt/mTOR/MAPK pathways in hepatocellular carcinoma cells. Biomed Pharmacother 2024; 174:116483. [PMID: 38552440 DOI: 10.1016/j.biopha.2024.116483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
Hepatocellular carcinoma (HCC) stands as a leading cause of mortality, and despite recent advancements in the overall survival rates, the prognosis remains dismal. Prunetin 4-O-glucoside (Prunetrin or PUR), an active compound derived from Prunus sp., was explored for its impact on HepG2 and Huh7 cells. The cytotoxicity assessment revealed a notable reduction in cell viability in both cell lines, while exhibiting non-toxicity towards HaCaT cells. Colony formation studies underscored PUR's inhibitory effect on cell proliferation, dose-dependently. Mechanistically, PUR downregulated cell cycle proteins (CDC25c, Cdk1/CDC2, and Cyclin B1), inducing G2/M phase arrest, corroborated by flow cytometry. Western blot analyses exhibited dose-dependent cleavages of PARP and caspase 3, indicative of apoptosis. Treatment with the apoptotic inhibitor z-vmd-fmk provided evidence of PUR-induced apoptosis. Annexin V and PI flow cytometry further affirmed apoptotic induction. Enhanced expression of cleaved-caspase 9 and the pro-apoptotic protein Bak, coupled with reduced anti-apoptotic Bcl-xL, and affirmed PUR's induction of intrinsic apoptosis. Additionally, PUR activated the MAPK pathway, evidenced by elevated phospho p38 and phospho ERK expressions in both cell lines. Notably, a concentration-dependent decrease in mTOR and Akt expressions indicated PUR's inhibition of the Akt/mTOR pathway in HepG2 and Huh7 cells. These findings illuminate PUR's multifaceted impact, revealing its potential as a promising therapeutic agent against HepG2 and Huh7 cells through modulation of cell cycle, apoptosis, and key signaling pathways.
Collapse
Affiliation(s)
- Abuyaseer Abusaliya
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Hun Hwan Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Min Yeong Park
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Se Hyo Jeong
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Sijoon Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chombok-ro, Daegu 41061, Republic of Korea
| | - Gon Sup Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea.
| |
Collapse
|
9
|
Norouzi M, Mesbah-Namin SA, Sharifi Z, Deyhim MR. L-carnitine contributes to enhancement of viability and quality of platelet concentrates through changing the apoptotic and anti-apoptotic associated microRNAs. Transfus Clin Biol 2024; 31:87-94. [PMID: 38266909 DOI: 10.1016/j.tracli.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Micro RNAs are known as the main regulator of messenger RNA translation in platelets and have a vital role in process of apoptosis during platelet storage. Our pervious study revealed that the expression of miR-145 and miR-326 changed significantly in platelets under maintenance conditions. This study aimed to evaluate the effect of L-carnitine (LC) as an additive to augment platelet quality by changing the microRNA expression. METHODS We used ten platelet concentrate (PC) bags and divided each into two equal parts, LC- treated, and LC free PC. The expression of miR-145 and miR-326 were determined using real-time PCR. Moreover, we measured platelet count, platelet aggregation, platelet viability, and lactate dehydrogenase activity in all samples. RESULTS The miR-326 expression significantly increased during platelet storage with mean fold changes of 3.2 for the control and 2.5 for LC- treated PC. The mean fold changes in miR-145 expression was less in the control PC (0.52) compared to the LC- treated PC (0.79). Increased levels of platelet count, platelet aggregation, and platelet viability were found in the LC-treated compared to the untreated PC. CONCLUSION LC has a protective effect on platelet apoptosis, reduces the expression of apoptotic microRNA, and prevents the reduction of anti-apoptotic microRNA.
Collapse
Affiliation(s)
- Mozhgan Norouzi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Alireza Mesbah-Namin
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohammad Reza Deyhim
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|
10
|
Singh SP, Verma RK, Goel R, Kumar V, Singh RR, Sawant SV. Arabidopsis BECLIN1-induced autophagy mediates reprogramming in tapetal programmed cell death by altering the gross cellular homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108471. [PMID: 38503186 DOI: 10.1016/j.plaphy.2024.108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
In flowering plants, the tapetum degeneration in post-meiotic anther occurs through developmental programmed cell death (dPCD), which is one of the most critical and sensitive steps for the proper development of male gametophytes and fertility. Yet the pathways of dPCD, its regulation, and its interaction with autophagy remain elusive. Here, we report that high-level expression of Arabidopsis autophagy-related gene BECLIN1 (BECN1 or AtATG6) in the tobacco tapetum prior to their dPCD resulted in developmental defects. BECN1 induces severe autophagy and multiple cytoplasm-to-vacuole pathways, which alters tapetal cell reactive oxygen species (ROS)-homeostasis that represses the tapetal dPCD. The transcriptome analysis reveals that BECN1- expression caused major changes in the pathway, resulting in altered cellular homeostasis in the tapetal cell. Moreover, BECN1-mediated autophagy reprograms the execution of tapetal PCD by altering the expression of the key developmental PCD marker genes: SCPL48, CEP1, DMP4, BFN1, MC9, EXI1, and Bcl-2 member BAG5, and BAG6. This study demonstrates that BECN1-mediated autophagy is inhibitory to the dPCD of the tapetum, but the severity of autophagy leads to autophagic death in the later stages. The delayed and altered mode of tapetal degeneration resulted in male sterility.
Collapse
Affiliation(s)
- Surendra Pratap Singh
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Department of Botany, University of Lucknow, Lucknow, 226007, India.
| | - Rishi Kumar Verma
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Ridhi Goel
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Verandra Kumar
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| | | | - Samir V Sawant
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Błaszczyk R, Petniak A, Bogucki J, Kocki J, Wysokiński A, Głowniak A. Association between Resistant Arterial Hypertension, Type 2 Diabetes, and Selected microRNAs. J Clin Med 2024; 13:542. [PMID: 38256676 PMCID: PMC10816137 DOI: 10.3390/jcm13020542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
INTRODUCTION In recent years, a very close relationship between miRNA and cardiovascular diseases has been found. RAH and T2DM are accompanied by a change in the microRNA expression spectrum. OBJECTIVES This study aimed to evaluate the clinical characteristics and expression of selected microRNAs in patients with idiopathic RAH and T2DM. PATIENTS AND METHODS A total of 115 patients with RAH were included in this study. Among them were 53 patients (46.09%) with T2DM. miRNA levels were determined using quantitative real-time polymerase chain reaction. The expression of the examined genes was calculated from the formula RQ = 2-ΔΔCT. RESULTS Analysis using the Mann-Whitney U test showed a statistically significant (p < 0.05) difference in the expression of MIR1-1 (p = 0.031) and MIR195 (p = 0.042) associated with the occurrence of T2DM in the subjects. The value of MIR1-1 gene expression was statistically significantly higher in patients with T2DM (median: 0.352; mean: 0.386; standard deviation: 0.923) compared to patients without T2DM (median: 0.147; mean: -0.02; standard deviation: 0.824). The value of MIR195 gene expression was statistically significantly higher in patients with T2DM (median: 0.389, mean: 0.442; standard deviation: 0.819) compared to patients without T2DM (median: -0.027; mean: 0.08; standard deviation: 0.942). CONCLUSIONS The values of MIR1-1 and MIR195 gene expression were statistically significantly higher in patients with RAH and T2DM compared to patients with RAH and without T2DM. Further studies are necessary to precisely clarify the roles of miRNAs in patients with RAH and T2DM. They should demonstrate the utility of these genetic markers in clinical practice.
Collapse
Affiliation(s)
- Robert Błaszczyk
- Department of Cardiology, Medical University of Lublin, 20-090 Lublin, Poland; (A.W.); (A.G.)
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (A.P.); (J.K.)
| | - Jacek Bogucki
- Department of Organic Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (A.P.); (J.K.)
| | - Andrzej Wysokiński
- Department of Cardiology, Medical University of Lublin, 20-090 Lublin, Poland; (A.W.); (A.G.)
| | - Andrzej Głowniak
- Department of Cardiology, Medical University of Lublin, 20-090 Lublin, Poland; (A.W.); (A.G.)
| |
Collapse
|
12
|
Liu H, Yao Q, Wang X, Xie H, Yang C, Gao H, Xie C. The research progress of crosstalk mechanism of autophagy and apoptosis in diabetic vascular endothelial injury. Biomed Pharmacother 2024; 170:116072. [PMID: 38147739 DOI: 10.1016/j.biopha.2023.116072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
In recent years, the widespread prevalence of diabetes has become a major killer that threatens the health of people worldwide. Of particular concern is hyperglycemia-induced vascular endothelial injury, which is one of the factors that aggravate diabetic vascular disease. During the process of diabetic vascular endothelial injury, apoptosis is an important pathological manifestation and autophagy is a key regulatory mechanism. Autophagy and apoptosis interact with each other. Hence, the crosstalk mechanism between the two processes is an important means of regulating diabetic vascular endothelial injury. This article reviews the research progress in apoptosis in the context of diabetic vascular endothelial injury and discusses the crosstalk mechanism of autophagy and apoptosis and its role in this injury. The purpose is to guide the prevention and treatment of diabetic vascular endothelial injury in the future.
Collapse
Affiliation(s)
- Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Qiyuan Yao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Xueru Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, PR China; Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Chan Yang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, PR China.
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, PR China; Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China.
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, PR China; Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China.
| |
Collapse
|
13
|
Kim GD. Harmine Hydrochloride Induces G2/M Cell Cycle Arrest and Apoptosis in SK-Hep1 Hepatocellular Carcinoma Cells by Regulating Mitogen-Activated Protein Kinases and the PI3K/AKT Pathway. Prev Nutr Food Sci 2023; 28:436-443. [PMID: 38188092 PMCID: PMC10764232 DOI: 10.3746/pnf.2023.28.4.436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024] Open
Abstract
Liver cancer is a globally common form of cancer. Thus, novel drugs derived from natural products are needed to reduce the side effects of chemotherapy. The present study aimed to analyze the anticancer properties and effects of harmine hydrochloride (HMH), a water-soluble metabolite of harmine that can be easily absorbed into tissues, in treating liver cancer cells. HMH dose-dependently inhibited cell growth, migration, invasion, and colony formation in SK-Hep1 cells. It also induced G2/M arrest by reducing the expression of p-cdc2, cyclin B1, and Rb (G2/M phase regulatory proteins) in a dose-dependent manner. HMH treatment reduced the expression of caspase-9, caspase-3, PARP, and Bcl-2 and increased the expression of Bax (a proapoptotic protein). Moreover, it increased the production of reactive oxygen species and decreased the intracellular uptake of rhodamine 123 due to mitochondrial dysfunction because of oxidative stress. HMH treatment also upregulated the phosphorylation of JNK, p38, and FOXO3a in SK-Hep1 cells and downregulated the PI3K/AKT signaling pathway. Our findings suggest that HMH may activate the compounds responsible for anticancer effects in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Gi Dae Kim
- Department of Food and Nutrition, Kyungnam University, Gyeongnam 51767, Korea
| |
Collapse
|
14
|
Kim GD. Induction of Hepatocellular Carcinoma Cell Cycle Arrest and Apoptosis by Dendropanax morbifera Leveille Leaf Extract via the PI3K/AKT/mTOR Pathway. J Cancer Prev 2023; 28:185-193. [PMID: 38205361 PMCID: PMC10774480 DOI: 10.15430/jcp.2023.28.4.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
Liver cancer is prevalent worldwide and associated with a high mortality rate. Therefore, developing novel drugs derived from natural products to reduce the side effects of chemotherapy is urgently needed. In this study, the inhibitory effect of Dendropanax morbifera Leveille extract (DME) on growth of hepatocellular carcinoma (HCC) cells and its underlying mechanisms were investigated. DME suppressed the growth, migration, and invasion of SK-Hep1 human HCC cells. It also reduced the expression of the G0/G1 phase regulator proteins cyclin-dependent kinase (CDK) 4, cyclin D, CDK2, and cyclin E, thereby inducing G0/G1 arrest. Moreover, DME treatment reduced the expression of antiapoptotic proteins, including caspase-9, caspase-3, PARP, and Bcl-2 and increased the expression of the proapoptotic protein, Bax. DME also increased reactive oxygen species production and reduced the cellular uptake of rhodamine 123. DME treatment increased the levels of p-p38 and p-FOXO3a in a dose-dependent manner and decreased those of p-PI3K, p-AKT, p-mTOR, and p-p70 in SK-Hep1 cells. In addition, combined treatment with DME and LY294002, an AKT inhibitor, significantly reduced p-AKT levels. In summary, these results show that the PI3K/AKT/mTOR signaling pathway is involved in DME-mediated inhibition of proliferation, migration, and invasiveness, and induction of apoptosis of HCC cells.
Collapse
Affiliation(s)
- Gi Dae Kim
- Department of Food and Nutrition, Kyungnam University, Changwon, Korea
| |
Collapse
|
15
|
Jaradat NJ, Hatmal M, Alqudah D, Taha MO. Computational workflow for discovering small molecular binders for shallow binding sites by integrating molecular dynamics simulation, pharmacophore modeling, and machine learning: STAT3 as case study. J Comput Aided Mol Des 2023; 37:659-678. [PMID: 37597062 DOI: 10.1007/s10822-023-00528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Abstract
STAT3 belongs to a family of seven transcription factors. It plays an important role in activating the transcription of various genes involved in a variety of cellular processes. High levels of STAT3 are detected in several types of cancer. Hence, STAT3 inhibition is considered a promising therapeutic anti-cancer strategy. However, since STAT3 inhibitors bind to the shallow SH2 domain of the protein, it is expected that hydration water molecules play significant role in ligand-binding complicating the discovery of potent binders. To remedy this issue, we herein propose to extract pharmacophores from molecular dynamics (MD) frames of a potent co-crystallized ligand complexed within STAT3 SH2 domain. Subsequently, we employ genetic function algorithm coupled with machine learning (GFA-ML) to explore the optimal combination of MD-derived pharmacophores that can account for the variations in bioactivity among a list of inhibitors. To enhance the dataset, the training and testing lists were augmented nearly a 100-fold by considering multiple conformers of the ligands. A single significant pharmacophore emerged after 188 ns of MD simulation to represent STAT3-ligand binding. Screening the National Cancer Institute (NCI) database with this model identified one low micromolar inhibitor most likely binds to the SH2 domain of STAT3 and inhibits this pathway.
Collapse
Affiliation(s)
- Nour Jamal Jaradat
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Mamon Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Dana Alqudah
- Cell Therapy Center, the University of Jordan, Amman, 11942, Jordan
| | - Mutasem Omar Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| |
Collapse
|
16
|
Sobhi Amjad Z, Shojaeian A, Sadri Nahand J, Bayat M, Taghizadieh M, Rostamian M, Babaei F, Moghoofei M. Oncoviruses: Induction of cancer development and metastasis by increasing anoikis resistance. Heliyon 2023; 9:e22598. [PMID: 38144298 PMCID: PMC10746446 DOI: 10.1016/j.heliyon.2023.e22598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The phenomenon of cell death is a vital aspect in the regulation of aberrant cells such as cancer cells. Anoikis is a kind of cell death that occurs when cells get separated from the extracellular matrix. Some cancer cells can inhibit anoikis in order to progress metastasis. One of the key variables that might be implicated in anoikis resistance (AR) is viral infections. The most important viruses involved in this process are Epstein-Barr virus, human papillomavirus, hepatitis B virus, human herpes virus 8, human T-cell lymphotropic virus type 1, and hepatitis C virus. A better understanding of how carcinogenic viruses suppress anoikis might be helpful in developing an effective treatment for virus-associated cancers. In the current study, we review the role of the mentioned viruses and their gene products in anoikis inhibition.
Collapse
Affiliation(s)
- Zahra Sobhi Amjad
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mosayeb Rostamian
- Nosocomial Infections Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Babaei
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Infectious Diseases Research Center, Health Research Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
17
|
Chiu CH, Ramesh S, Liao PH, Kuo WW, Chen MC, Kuo CH, Li CC, Wang TF, Lin YM, Lin YJ, Huang CY. Phosphorylation of Bcl-2 by JNK confers gemcitabine resistance in lung cancer cells by reducing autophagy-mediated cell death. ENVIRONMENTAL TOXICOLOGY 2023; 38:2121-2131. [PMID: 37219008 DOI: 10.1002/tox.23836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023]
Abstract
The most common cancer-related death in the world is non-small cell lung cancer (NSCLC). Gemcitabine (GEM) is a common and effective first-line chemotherapeutic drug for the treatment of NSCLC. However, the long-term use of chemotherapeutic drugs in patients usually induces cancer cell drug resistance, leading to poor survival, and prognosis. In this study, to observe and explore the key targets and potential mechanisms of NSCLC resistance to GEM, we first cultured lung cancer CL1-0 cells in a GEM-containing medium to induce CL1-0 cells to develop GEM resistance. Next, we compared protein expression between the parental and GEM-R CL1-0 cell groups. We observed significantly lower expression of autophagy-related proteins in GEM-R CL1-0 cells than in parental CL1-0 cells, indicating that autophagy is associated with GEM resistance in CL1-0 cells. Furthermore, a series of autophagy experiments revealed that GEM-R CL1-0 cells had significantly reduced GEM-induced c-Jun N-terminal kinase phosphorylation, which further affected the phosphorylation of Bcl-2, thereby reducing the dissociation of Bcl-2 and Beclin-1 and ultimately reducing the generation of GEM-induced autophagy-dependent cell death. Our findings suggest that altering the expression of autophagy is a promising therapeutic option for drug-resistant lung cancer.
Collapse
Affiliation(s)
- Chih-Hao Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Research and Innovation, Institute of Biotechnology, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Po-Hsiang Liao
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Chi-Cheng Li
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Yu-Jung Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
18
|
Li Y, Liu T, Li X, Yang M, Liu T, Bao J, Jiang M, Hu L, Wang Y, Shao P, Jiang J. Combined surface functionalization of MSC membrane and PDA inhibits neurotoxicity induced by Fe 3O 4 in mice based on apoptosis and autophagy through the ASK1/JNK signaling pathway. Aging (Albany NY) 2023; 15:6933-6949. [PMID: 37470690 PMCID: PMC10415563 DOI: 10.18632/aging.204884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
The extensive utilization of iron oxide nanoparticles in medical and life science domains has led to a substantial rise in both occupational and public exposure to these particles. The potential toxicity of nanoparticles to living organisms, their impact on the environment, and the associated risks to human health have garnered significant attention and come to be a prominent area in contemporary research. The comprehension of the potential toxicity of nanoparticles has emerged as a crucial concern to safeguard human health and facilitate the secure advancement of nanotechnology. As nanocarriers and targeting agents, the biocompatibility of them determines the use scope and application prospects, meanwhile surface modification becomes an important measure to improve the biocompatibility. Three different types of iron oxide nanoparticles (Fe3O4, Fe3O4@PDA and MSCM-Fe3O4@PDA) were injected into mice through the tail veins. The acute neurotoxicity of them in mice was evaluated by measuring the levels of autophagy and apoptosis in the brain tissues. Our data revealed that iron oxide nanoparticles could cause nervous system damage by regulating the ASK1/JNK signaling pathway. Apoptosis and autophagy may play potential roles in this process. Exposure to combined surface functionalization of mesenchymal stem cell membrane and polydopamine showed the neuroprotective effect and may alleviate brain nervous system disorders.
Collapse
Affiliation(s)
- Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Yibin Jilin University Research Institute, Jilin University, Yibin, Sichuan, China
| | - Xiuying Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Modi Yang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Tianxin Liu
- Jilin University School of Public Health, Changchun, Jilin, China
| | - Jindian Bao
- Jilin University School of Public Health, Changchun, Jilin, China
| | - Miao Jiang
- Jilin University School of Public Health, Changchun, Jilin, China
| | - Lingling Hu
- Jilin University School of Public Health, Changchun, Jilin, China
| | - Yuzhuo Wang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Pu Shao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
19
|
Khaleel A, El-Sheakh AR, Suddek GM. Celecoxib abrogates concanavalin A-induced hepatitis in mice: Possible involvement of Nrf2/HO-1, JNK signaling pathways and COX-2 expression. Int Immunopharmacol 2023; 121:110442. [PMID: 37352567 DOI: 10.1016/j.intimp.2023.110442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/25/2023]
Abstract
Concanavalin A (ConA) is an established model for inducing autoimmune hepatitis (AIH) in mice, mimicking clinical features in human. The aimof the current study is to explore the possible protective effect of celecoxib, a cyclooxygenase-2 inhibitor,on immunological responses elicited in the ConA model of acute hepatitis. ConA (20 mg/kg) was administered intravenously to adult male mice for 6 h. Prior to ConA intoxication, mice in the treatedgroups received daily doses of celecoxib (30 and 60 mg/kg in CMC) for 7 days. Results revealed that administration of celecoxib 60 mg/kg for 7 days significantly protected the liver from ConA-induced liver damage revealed by significant decrease in ALT and AST serum levels. Celecoxib 30 and 60 mg/kg pretreatment enhanced oxidant/antioxidant hemostasis by significantreduction of MDA and NO content and increase hepatic GSH contents and SOD activity. In addition, celecoxib 30 and 60 mg/kg caused significant increase in hepatic nuclear factor erythroid 2-related factor 2 (Nrf2) and the stress protein heme oxygenase-1 (HO-1) levels. Moreover, celecoxib 30 and 60 mg/kg inhibited the release of proinflammatory markers including IL-1β and TNF-α along with significant decrease in p-JNK, AKT phosphorylation ratio and caspase-3 expression. Besides, Con A was correlated to high expression of cyclooxygenase COX-2 and this increasing was improved by administration of celecoxib. These changes were in good agreement with improvement in histological deterioration. The protective effect of celecoxib was also associated with significant reduction of autophagy biomarkers (Beclin-1 and LC3II). In conclusion, celecoxib showed antioxidant, anti-inflammatory, anti-apoptotic and anti-autophagy activity against Con A-induced immune-mediated hepatitis. These effects could be produced by modulation of Nrf2/HO-1, IL-1B /p-JNK/p-AKT, JNK/caspase-3, and Beclin-1/LC3II signaling pathways.
Collapse
Affiliation(s)
- Aya Khaleel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt; Future Studies and Risks Management' National Committee of Drugs, Academy of Scientific Research, Ministry of Higher Education, Elsayeda Zeinab, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
20
|
Lee Y, Roh H, Kim A, Park J, Lee JY, Kim YJ, Kang YR, Kang H, Kim S, Kim HS, Cha HJ, Choi YH, Nam BH, Park CI, Kim DH. Molecular mechanisms underlying the vulnerability of Pacific abalone (Haliotis discus hannai) to Vibrio harveyi infection at higher water temperature. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108844. [PMID: 37225060 DOI: 10.1016/j.fsi.2023.108844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
Climate change is one of the most important threats to farmed abalone worldwide. Although abalone is more susceptible to vibriosis at higher water temperatures, the molecular mode of action underlying this has not been fully elucidated. Therefore, this study aimed to address the high susceptibility of Halitotis discus hannai to V. harveyi infection using abalone hemocytes exposed to low and high temperatures. Abalone hemocytes were divided into four groups, 20C, 20V, 25C, and 25V, depending on co-culture with (V)/without (C) V. harveyi (MOI = 12.8) and incubation temperature (20 °C or 25 °C). After 3 h of incubation, hemocyte viability and phagocytic activity were measured, and RNA sequencing was performed using Illumina Novaseq. The expression of several virulence-related genes in V. harveyi was analyzed using real-time PCR. The viability of hemocytes was significantly decreased in the 25V group compared to cells in the other groups, whereas phagocytic activity at 25 °C was significantly higher than at 20 °C. Although a number of immune-associated genes were commonly upregulated in abalone hemocyte exposed to V. harveyi, regardless of temperature, pathways and genes regarding pro-inflammatory responses (interleukin-17 and tumor necrosis factor) and apoptosis were significantly overexpressed in the 25V group compared to the 25C group. Notably, in the apoptosis pathway, genes encoding executor caspases (casp3 and casp7) and pro-apoptotic factor, bax were significantly up-regulated only in the 25V group, while the apoptosis inhibitor, bcl2L1 was significantly up-regulated only in the 20V group compared to the control group at the respective temperatures. The co-culture of V. harveyi with abalone hemocytes at 25 °C up-regulated several virulence-related genes involved in quorum sensing (luxS), antioxidant activity (katA, katB, and sodC), motility (flgI), and adherence/invasion (ompU) compared to those at 20 °C. Therefore, our results showed that H. discus hannai hemocytes exposed to V. harveyi at 25 °C were highly stressed by vigorously activated inflammatory responses and that the bacterial pathogen overexpressed several virulence-related genes at the high temperature tested. The transcriptomic profile of both abalone hemocytes and V. harveyi in the present study provide insight into differential host-pathogen interactions depending on the temperature conditions and the molecular backgrounds related to increased abalone vulnerability upon global warming.
Collapse
Affiliation(s)
- Yoonhang Lee
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - HyeongJin Roh
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Ahran Kim
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Jiyeon Park
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Ju-Yeop Lee
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Yoon-Jae Kim
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Yu-Ra Kang
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Hyoyeong Kang
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Suhkmann Kim
- Department of Chemistry, Center for Proteome Biophysics, And Chemistry Institute for Functional Materials, Pusan National University, Busan, South Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, South Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, South Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, South Korea.
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea.
| |
Collapse
|
21
|
Perez-Serna AA, Dos Santos RS, Ripoll C, Nadal A, Eizirik DL, Marroqui L. BCL-XL Overexpression Protects Pancreatic β-Cells against Cytokine- and Palmitate-Induced Apoptosis. Int J Mol Sci 2023; 24:5657. [PMID: 36982731 PMCID: PMC10056015 DOI: 10.3390/ijms24065657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes is a chronic disease that affects glucose metabolism, either by autoimmune-driven β-cell loss or by the progressive loss of β-cell function, due to continued metabolic stresses. Although both α- and β-cells are exposed to the same stressors, such as proinflammatory cytokines and saturated free fatty acids (e.g., palmitate), only α-cells survive. We previously reported that the abundant expression of BCL-XL, an anti-apoptotic member of the BCL-2 family of proteins, is part of the α-cell defense mechanism against palmitate-induced cell death. Here, we investigated whether BCL-XL overexpression could protect β-cells against the apoptosis induced by proinflammatory and metabolic insults. For this purpose, BCL-XL was overexpressed in two β-cell lines-namely, rat insulinoma-derived INS-1E and human insulin-producing EndoC-βH1 cells-using adenoviral vectors. We observed that the BCL-XL overexpression in INS-1E cells was slightly reduced in intracellular Ca2+ responses and glucose-stimulated insulin secretion, whereas these effects were not observed in the human EndoC-βH1 cells. In INS-1E cells, BCL-XL overexpression partially decreased cytokine- and palmitate-induced β-cell apoptosis (around 40% protection). On the other hand, the overexpression of BCL-XL markedly protected EndoC-βH1 cells against the apoptosis triggered by these insults (>80% protection). Analysis of the expression of endoplasmic reticulum (ER) stress markers suggests that resistance to the cytokine and palmitate conferred by BCL-XL overexpression might be, at least in part, due to the alleviation of ER stress. Altogether, our data indicate that BCL-XL plays a dual role in β-cells, participating both in cellular processes related to β-cell physiology and in fostering survival against pro-apoptotic insults.
Collapse
Affiliation(s)
- Atenea A. Perez-Serna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Reinaldo S. Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Cristina Ripoll
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| |
Collapse
|
22
|
Wang S, Liu Z, Wang Y, Shi B, Jin Y, Wang Y, Jiang X, Song M, Yu W. Grape seed extract proanthocyanidin antagonizes aristolochic acid I-induced liver injury in rats by activating PI3K-AKT pathway. Toxicol Mech Methods 2023; 33:131-140. [PMID: 35850572 DOI: 10.1080/15376516.2022.2103479] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aristolochic acid is internationally recognized as a carcinogen. It has been shown that the main toxic mechanism of aristolochic acid on the liver and kidney is the induction of ROS-induced oxidative stress damage. To investigate whether proanthocyanidins (GSPE), a natural antioxidant product from grape seed extract, could antagonize AA-I-induced liver injury. Thirty-two SD rats were selected and divided into aristolochic acid exposure group (AA-I), normal control group, GSPE group and GSPE intervention group. The protective effects of GSPE on AA-I liver injury were evaluated by examining the body weight, liver index, liver function and liver pathological sections of rats. The results of body weight, liver index, liver function and liver pathological sections of rats showed that GSPE had antagonistic effects on AA-I-induced liver injury. antioxidant enzyme activity in the GSPE intervention group was significantly higher than that in the aristolochic acid group, apoptotic cells were significantly lower than that in the aristolochic acid group, protein and mRNA expression of PI3K-AKT and BCL-2 were significantly higher than that in the aristolochic acid group, BAX, The protein and mRNA expression of BAX, CASPAES-3, CASPAES-9 were significantly lower than those of the aristolochic acid group. GSPE can antagonize aristolochic acid-induced hepatotoxicity, and its mechanism of action is to antagonize aristolochic acid I-induced liver injury by inhibiting PI3K-AKT pathway-mediated hepatocyte apoptosis.
Collapse
Affiliation(s)
- Shuang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhihui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bendong Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yinzhu Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaowen Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingxin Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenhui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Provincial Key Laboratory of Animal Disease Prevention and Control, Harbin, China.,Institute of Traditional Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
23
|
Jaradat NJ, Alshaer W, Hatmal M, Taha MO. Discovery of new STAT3 inhibitors as anticancer agents using ligand-receptor contact fingerprints and docking-augmented machine learning. RSC Adv 2023; 13:4623-4640. [PMID: 36760267 PMCID: PMC9896621 DOI: 10.1039/d2ra07007c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
STAT3 belongs to a family of seven vital transcription factors. High levels of STAT3 are detected in several types of cancer. Hence, STAT3 inhibition is considered a promising therapeutic anti-cancer strategy. In this work, we used multiple docked poses of STAT3 inhibitors to augment training data for machine learning QSAR modeling. Ligand-Receptor Contact Fingerprints and scoring values were implemented as descriptor variables. Escalating docking-scoring consensus levels were scanned against orthogonal machine learners, and the best learners (Random Forests and XGBoost) were coupled with genetic algorithm and Shapley additive explanations (SHAP) to identify critical descriptors that determine anti-STAT3 bioactivity to be translated into pharmacophore model(s). Two successful pharmacophores were deduced and subsequently used for in silico screening against the National Cancer Institute (NCI) database. A total of 26 hits were evaluated in vitro for their anti-STAT3 bioactivities. Out of which, three hits of novel chemotypes, showed cytotoxic IC50 values in the nanomolar range (35 nM to 6.7 μM). However, two are potent dihydrofolate reductase (DHFR) inhibitors and therefore should have significant indirect STAT3 inhibitory effects. The third hit (cytotoxic IC50 = 0.44 μM) is purely direct STAT3 inhibitor (devoid of DHFR activity) and caused, at its cytotoxic IC50, more than two-fold reduction in the expression of STAT3 downstream genes (c-Myc and Bcl-xL). The presented work indicates that the concept of data augmentation using multiple docked poses is a promising strategy for generating valid machine learning models capable of discriminating active from inactive compounds.
Collapse
Affiliation(s)
- Nour Jamal Jaradat
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan Amman 11492 Jordan +962 6 5339649 +962 6 5355000 ext. 23305
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan Amman 11942 Jordan
| | - Mamon Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University P.O. Box 330127 Zarqa 13133 Jordan
| | - Mutasem Omar Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan Amman 11492 Jordan +962 6 5339649 +962 6 5355000 ext. 23305
| |
Collapse
|
24
|
Moon Y, Jeon SI, Shim MK, Kim K. Cancer-Specific Delivery of Proteolysis-Targeting Chimeras (PROTACs) and Their Application to Cancer Immunotherapy. Pharmaceutics 2023; 15:411. [PMID: 36839734 PMCID: PMC9965039 DOI: 10.3390/pharmaceutics15020411] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) are rapidly emerging as a potential therapeutic strategy for cancer therapy by inducing the degradation of tumor-overexpressing oncogenic proteins. They can specifically catalyze the degradation of target oncogenic proteins by recruiting E3 ligases and utilizing the ubiquitin-proteasome pathway. Since their mode of action is universal, irreversible, recyclable, long-lasting, and applicable to 'undruggable' proteins, PROTACs are gradually replacing the role of conventional small molecular inhibitors. Moreover, their application areas are being expanded to cancer immunotherapy as various types of oncogenic proteins that are involved in immunosuppressive tumor microenvironments. However, poor water solubility and low cell permeability considerably restrict the pharmacokinetic (PK) property, which necessitates the use of appropriate delivery systems for cancer immunotherapy. In this review, the general characteristics, developmental status, and PK of PROTACs are first briefly covered. Next, recent studies on the application of various types of passive or active targeting delivery systems for PROTACs are introduced, and their effects on the PK and tumor-targeting ability of PROTACs are described. Finally, recent drug delivery systems of PROTACs for cancer immunotherapy are summarized. The adoption of an adequate delivery system for PROTAC is expected to accelerate the clinical translation of PROTACs, as well as improve its efficacy for cancer therapy.
Collapse
Affiliation(s)
- Yujeong Moon
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seong Ik Jeon
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea
| | - Man Kyu Shim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kwangmeyung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea
| |
Collapse
|
25
|
Wei Z, Wang Y, Ma W, Xing W, Lu P, Shang Z, Li F, Li H, Wang Y. Serine-arginine splicing factor 2 promotes oesophageal cancer progression by regulating alternative splicing of interferon regulatory factor 3. RNA Biol 2023; 20:359-367. [PMID: 37335045 PMCID: PMC10281462 DOI: 10.1080/15476286.2023.2223939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVE Often, alternative splicing is used by cancer cells to produce or increase proteins that promote growth and survival through alternative splicing. Although RNA-binding proteins are known to regulate alternative splicing events associated with tumorigenesis, their role in oesophageal cancer (EC) has rarely been explored. METHODS We analysed the expression pattern of several relatively well characterized splicing regulators on 183 samples from TCGA cohort of oesophageal cancer; the effectiveness of the knockdown of SRSF2 was subsequently verified by immunoblotting; we measured the ability of cells treated with lenti-sh-SRSF2/lenti-sh2-SRSF2 to invade through an extracellular matrix coating by transwell invasion assay; using RNA-seq data to identify its potential target genes; we performed qRT-PCR to detect the changes of exon 2 usage in lenti-sh-SRSF2 transduced KYSE30 cells to determine the possible effect of SRSF2 on splicing regulation of IRF3; RNA Electrophoretic mobility shift assay (RNA-EMSA) was performed by the incubation of purified SRSF2 protein and biotinylated RNA probes; we performed luciferase assay to confirm the effect of SRSF2 on IFN1 promoter activity. RESULTS We found upregulation of SRSF2 is correlated with the development of EC; Knock-down of SRSF2 inhibits EC cell proliferation, migration, and invasion; SRSF2 regulates the splicing pattern of IRF3 in EC cells; SRSF2 interacts with exon 2 of IRF3 to regulate its exclusion; SRSF2 inhibits the transcription of IFN1 in EC cells. CONCLUSION This study identified a novel regulatory axis involved in EC from the various aspects of splicing regulation.
Collapse
Affiliation(s)
- Ziqing Wei
- Department of Thoracic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yuyao Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Wenyuan Ma
- Department of Thoracic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Wenqing Xing
- Department of Thoracic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Peng Lu
- Department of Thoracic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Zhijie Shang
- Department of Thoracic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Feng Li
- Department of Molecular Biology, Shanxi Cancer Hospital/Institute, Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Huiyu Li
- Department of General Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yuxuan Wang
- Department of Thoracic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
26
|
Yue YL, Zhang MY, Liu JY, Fang LJ, Qu YQ. The role of autophagy in idiopathic pulmonary fibrosis: from mechanisms to therapies. Ther Adv Respir Dis 2022; 16:17534666221140972. [PMID: 36468453 PMCID: PMC9726854 DOI: 10.1177/17534666221140972] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial pulmonary disease with an extremely poor prognosis. Autophagy is a fundamental intracellular process involved in maintaining cellular homeostasis and regulating cell survival. Autophagy deficiency has been shown to play an important role in the progression of pulmonary fibrosis. This review focused on the six steps of autophagy, as well as the interplay between autophagy and other seven pulmonary fibrosis related mechanisms, which include extracellular matrix deposition, myofibroblast differentiation, epithelial-mesenchymal transition, pulmonary epithelial cell dysfunction, apoptosis, TGF-β1 pathway, and the renin-angiotensin system. In addition, this review also summarized autophagy-related signaling pathways such as mTOR, MAPK, JAK2/STAT3 signaling, p65, and Keap1/Nrf2 signaling during the development of IPF. Furthermore, this review also illustrated the commonly used autophagy detection methods, the currently approved antifibrotic drugs pirfenidone and nintedanib, and several prospective compounds targeting autophagy for the treatment of IPF.
Collapse
Affiliation(s)
- Yue-Liang Yue
- Shandong Key Laboratory of Infectious Respiratory Diseases, Laboratory of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Meng-Yu Zhang
- Shandong Key Laboratory of Infectious Respiratory Diseases, Laboratory of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jian-Yu Liu
- Shandong Key Laboratory of Infectious Respiratory Diseases, Laboratory of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Li-Jun Fang
- Shandong Key Laboratory of Infectious Respiratory Diseases, Laboratory of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | | |
Collapse
|
27
|
Lee H, Nguyen Hoang AT, Lee SJ. Ginsenoside protopanaxadiol protects adult retinal pigment epithelial-19 cells from chloroquine by modulating autophagy and apoptosis. PLoS One 2022; 17:e0274763. [PMID: 36454967 PMCID: PMC9714852 DOI: 10.1371/journal.pone.0274763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/04/2022] [Indexed: 12/05/2022] Open
Abstract
Chloroquine often causes serious eye and vision problems, which are mainly mediated by lysosomotropic alteration. In this study, we investigated whether the ginsenoside protopanaxadiol relieves chloroquine-induced retinopathy by restoring lysosomotropic abnormalities in human adult retinal pigment epithelial-19 cells. Cytotoxicity was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Morphological alterations in autophagosomes of adult retinal pigment epithelial-19 cells was detected using confocal microscopy. Apoptosis was examined using flow cytometry, whereas cellular reactive oxygen species levels were determined by measuring the fluorescence intensity of 5-(and-6)-carboxy-2'-7'-dichlorohydrofluorescein diacetate. Lysosomal function was assessed by measuring lysosomal pH and enzyme activity. Immunoprecipitation and western blotting analyses were performed. Adult retinal pigment epithelial-19 cells accumulated autophagosomes with fusion defects in lysosomes and reactive oxygen species formation following exposure to chloroquine. This effect trapped Beclin-1 and B-cell lymphoma 2 interfering with autophagy initiation and autophagosome development. Protopanaxadiol alleviated chloroquine-induced toxicity by modulating the interaction between Beclin-1 and Bcl-2, which was mediated by the AMP-activated protein kinase-mammalian target of rapamycin signal axis. Furthermore, autophagy and apoptosis were simultaneously controlled by protopanaxadiol via upregulation of autophagy flux and decreased reactive oxygen species formation and apoptotic protein expression. These findings suggest that protopanaxadiol is a promising treatment strategy for chloroquine-mediated retinopathy.
Collapse
Affiliation(s)
- Haesung Lee
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Anh Thu Nguyen Hoang
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Sook-Jeong Lee
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
- * E-mail:
| |
Collapse
|
28
|
Gisoldi RC, Lodato G, Balzamino BO, Esposito G, Micera A, Pocobelli A. The usefulness of lutein/trypan blue vital dye for the staining of corneal endothelium: a pilot study on DMEK pretreated tissues. Graefes Arch Clin Exp Ophthalmol 2022; 261:1321-1329. [PMID: 36445446 PMCID: PMC9707145 DOI: 10.1007/s00417-022-05909-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/03/2022] [Accepted: 11/12/2022] [Indexed: 12/02/2022] Open
Abstract
PURPOSE The study aims to evaluate the usefulness of lutein/trypan blue vital dye for the staining of corneal tissues and endothelium-Descemet membrane (EDM) for Descemet membrane endothelial keratoplasty (DMEK). METHODS Sixteen human corneal tissues (Eye Bank, Rome, Italy) were used. Corneal endothelium was tested at 25 s (T0), 1 min (T1), 2 min (T2), and 4 min (T4) from dye addition. Staining intensity and cell counting were compared. Stripped EDM was analyzed for selected apoptotic (AP, caspases, BCL2, BAX) and differentiation (VEGF-A, TGF-β1RI, SMAD3/7, SMA) targets and changes in target expression. Protein extracts were analyzed through SDS-PAGE/IB. RESULTS Although trypan blue staining produced the same color intensity of lutein/trypan blue dye in half the time, lutein/trypan blue reached a good and adequate color intensity at T4, which persisted even on excised and washed EDM grafts. Lutein/trypan blue-stained EDM showed a reduced number of blue-stained cells and AP immunoreactivity was significantly reduced in the same samples. An increased BCL2 transcript and a reduced BAX transcript were detected in lutein/trypan blue-stained EDM. No significant changes were observed for the main effector caspases (3/9) upon both treatments and the target genes representative of endothelial cell trans-differentiation (TGF-β1RI, SMAD3/7, SMA). A trend in vascular endothelial growth factor (VEGF-A) regulation was observed in lutein/trypan blue-treated EDM grafts. CONCLUSION Obtained results suggest that lutein/trypan blue dye deserves attention in the DMEK field and support the potential routine use of this dye as a valid alternative to trypan blue for all procedures devoted to the assessment of endothelial cell viability and visualization of EDM graft before DMEK grafting.
Collapse
Affiliation(s)
| | - Gemma Lodato
- San Giovanni Addolorata Hospital, UOC Oftalmologia, Banca degli Occhi, Rome, Italy
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS, Fondazione Bietti, Rome, Italy
| | - Graziana Esposito
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS, Fondazione Bietti, Rome, Italy
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS, Fondazione Bietti, Rome, Italy
| | - Augusto Pocobelli
- San Giovanni Addolorata Hospital, UOC Oftalmologia, Banca degli Occhi, Rome, Italy
| |
Collapse
|
29
|
Targeting TRAIL Death Receptors in Triple-Negative Breast Cancers: Challenges and Strategies for Cancer Therapy. Cells 2022; 11:cells11233717. [PMID: 36496977 PMCID: PMC9739296 DOI: 10.3390/cells11233717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor necrosis factor (TNF) superfamily member TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells via death receptor (DR) activation with little toxicity to normal cells or tissues. The selectivity for activating apoptosis in cancer cells confers an ideal therapeutic characteristic to TRAIL, which has led to the development and clinical testing of many DR agonists. However, TRAIL/DR targeting therapies have been widely ineffective in clinical trials of various malignancies for reasons that remain poorly understood. Triple negative breast cancer (TNBC) has the worst prognosis among breast cancers. Targeting the TRAIL DR pathway has shown notable efficacy in a subset of TNBC in preclinical models but again has not shown appreciable activity in clinical trials. In this review, we will discuss the signaling components and mechanisms governing TRAIL pathway activation and clinical trial findings discussed with a focus on TNBC. Challenges and potential solutions for using DR agonists in the clinic are also discussed, including consideration of the pharmacokinetic and pharmacodynamic properties of DR agonists, patient selection by predictive biomarkers, and potential combination therapies. Moreover, recent findings on the impact of TRAIL treatment on the immune response, as well as novel strategies to address those challenges, are discussed.
Collapse
|
30
|
Wang X, Jiang L, Liu XQ, Huang YB, Wang AL, Zeng HX, Gao L, Zhu QJ, Xia LL, Wu YG. Paeoniflorin binds to VEGFR2 to restore autophagy and inhibit apoptosis for podocyte protection in diabetic kidney disease through PI3K-AKT signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154400. [PMID: 36049428 DOI: 10.1016/j.phymed.2022.154400] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/27/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniflorin (PF) was found to exhibit renal protection from diabetic kidney disease (DKD) in previous trials, but its specific mechanism remains to be elucidated. AIM OF THE STUDY This study furtherly explored the specific mechanism of PF in protect podocyte injury in DKD. MATERIALS AND METHODS We observed the effects of PF on renal tissue and podocytes in DKD by constructing the vitro and vivo models after measuring the pharmacokinetic characteristics of PF. Target proteins of PF were found through target prediction, and verified by molecular docking, CESTA, and SPR, and then furtherly explored the downstream regulation mechanism related to podocyte autophagy and apoptosis by network prediction and co-immunoprecipitation. Finally, by using the target protein inhibitor in vivo and knocking down the target protein gene in vitro, it was verified that PF played a role in regulating autophagy and apoptosis through the target protein in diabetic nephropathy. RESULTS This study found that in STZ-induced mice model, PF could improve the renal biochemical and pathological damage and podocyte injure (p < 0.05), upregulate autophagy activity (p < 0.05), but inhibit apoptosis (p < 0.01). Vascular endothelial growth factor receptor 2 (VEGFR2), predicted as the target of PF, directly bind with PF reflected by molecular docking and surface plasmon resonance detection. Animal studies demonstrated that VEGFR2 inhibitors have a protective effect similar to that of PF on DKD. Network prediction and co-immunoprecipitation further confirmed that VEGFR2 was able to bind PIK3CA to regulate PI3K-AKT signaling pathway. Furthermore, PF downregulated the phosphorylation of PI3K and AKT (p < 0.05). In vitro, similarly to autophagy inhibitors, PF was also found to improve podocyte markers (p < 0.05) and autophagy activity (p < 0.05), decrease caspase 3 protein (p < 0.05) and further inhibited VEGFR2-PI3K-AKT activity (p < 0.05). Finally, the results of VEGFR2 knockdown were similar to the effect of PF in HG-stimulated podocytes. CONCLUSION In conclusion, PF restores autophagy and inhibits apoptosis by targeting the VEGFR2-mediated PI3K-AKT pathway to improve renal injury in DKD, that provided a theoretical basis for PF treatment in DKD.
Collapse
Affiliation(s)
- Xian Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xue-Qi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yue-Bo Huang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - An-Li Wang
- Department of Infective Disease, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Han-Xu Zeng
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Qi-Jin Zhu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Ling-Ling Xia
- Department of Infective Disease, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China..
| | - Yong-Gui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; Center for Scientific Research of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
31
|
Natrus L, Osadchuk Y, Lisakovska O, Roch T, Babel N, Klys Y, Labudzynskyi D, Chaikovsky Y. Regulation of the apoptosis/autophagy switch by propionic acid in ventromedial hypothalamus of rats with type 2 diabetes mellitus. Heliyon 2022; 8:e11529. [PMID: 36439719 PMCID: PMC9681650 DOI: 10.1016/j.heliyon.2022.e11529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/07/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background Hypothalamic dysregulation may cause abnormal glucose metabolism and type 2 diabetes mellitus (T2DM). The balance between autophagy and apoptosis is important for maintaining cellular/tissue homeostasis and may be disrupted in T2DM. Objectives Since propionic acid (PA) exerts neuroprotective effects, the aim was to investigate its effects on apoptosis/autophagy switch in the ventromedial hypothalamus (VMH) of T2DM rats. Materials and methods Male Wistar rats were divided: 1) control; 2) T2DM; groups that received (14 days, orally): 3) metformin (60 mg/kg); 4) sodium salt of PA (60 mg/kg); 5) PA + metformin. Western blotting (Bax, Bcl-xl, LC3, Beclin-1, caspase-3), RT-PCR (Bax, Bcl-xl, LC3, Beclin-1), transmission electron microscopy and immunohistochemical staining (Bax, Bcl-xl) were performed on the VMH samples. Results T2DM-induced apoptosis and mitoptosis, enlarged endoplasmic reticulum (ER) tubules/cisterns were observed in VMH, and accompanied by an imbalance of pro- and anti-apoptotic factors: elevation of pro-apoptotic markers Bax and caspase-3, decrease in autophagy protein LC3 and anti-apoptotic Bcl-xl. Metformin and PA administration partially improved VMH ultrastructural changes by reducing mitochondrial swelling and diminishing the number of apoptotic neurons. Metformin inhibited neuronal apoptosis, however, caused reactive astrogliosis and accumulation of lipofuscin granules. Elevated number of autophagosomes was associated with the LC3, Beclin-1 and Bcl-xl increase and decrease in Bax and caspase-3 vs. T2DM. PA switched cell fate from apoptosis to autophagy by elevating LC3 and Beclin-1 levels, increasing Bcl-xl content that altogether may represent adaptive response to T2DM-induced apoptosis. PA + metformin administration lowered relative area of ER membranes/cisterns vs. control, T2DM and metformin, and was optimal considering ratio between the pro-apoptotic, anti-apoptotic and autophagy markers. Conclusion T2DM was associated with apoptosis activation leading to impairments in VMH. PA in combination with metformin may be effective against diabetes-induced cell death by switching apoptosis to autophagy in VMH.
Collapse
Affiliation(s)
- Larysa Natrus
- Department of Modern Technologies of Medical Diagnostics & Treatment, Bogomolets National Medical University, 34 Peremoha Avenue, Kyiv 03115, Ukraine
| | - Yuliia Osadchuk
- Department of Histology and Embryology, Bogomolets National Medical University, 34 Peremoha Avenue, Kyiv 03115, Ukraine
| | - Olha Lisakovska
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Toralf Roch
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Yuliia Klys
- Department of Modern Technologies of Medical Diagnostics & Treatment, Bogomolets National Medical University, 34 Peremoha Avenue, Kyiv 03115, Ukraine
| | - Dmytro Labudzynskyi
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Yuri Chaikovsky
- Department of Histology and Embryology, Bogomolets National Medical University, 34 Peremoha Avenue, Kyiv 03115, Ukraine
| |
Collapse
|
32
|
Alizadeh Zeinabad H, Szegezdi E. TRAIL in the Treatment of Cancer: From Soluble Cytokine to Nanosystems. Cancers (Basel) 2022; 14:5125. [PMID: 36291908 PMCID: PMC9600485 DOI: 10.3390/cancers14205125] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022] Open
Abstract
The death ligand tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF cytokine superfamily, has long been recognized for its potential as a cancer therapeutic due to its low toxicity against normal cells. However, its translation into a therapeutic molecule has not been successful to date, due to its short in vivo half-life associated with insufficient tumor accumulation and resistance of tumor cells to TRAIL-induced killing. Nanotechnology has the capacity to offer solutions to these limitations. This review provides a perspective and a critical assessment of the most promising approaches to realize TRAIL's potential as an anticancer therapeutic, including the development of fusion constructs, encapsulation, nanoparticle functionalization and tumor-targeting, and discusses the current challenges and future perspectives.
Collapse
Affiliation(s)
- Hojjat Alizadeh Zeinabad
- Apoptosis Research Centre, Biomedical Sciences Building, School of Biological and Chemical Sciences, University of Galway, H91 W2TY Galway, Ireland
| | - Eva Szegezdi
- Apoptosis Research Centre, Biomedical Sciences Building, School of Biological and Chemical Sciences, University of Galway, H91 W2TY Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 W2TY Galway, Ireland
| |
Collapse
|
33
|
Lae Lae Phoo N, Sukhamwang A, Dejkriengkraikul P, Yodkeeree S. Diclofenac Sensitizes Signet Ring Cell Gastric Carcinoma Cells to Cisplatin by Activating Autophagy and Inhibition of Survival Signal Pathways. Int J Mol Sci 2022; 23:ijms232012066. [PMID: 36292923 PMCID: PMC9602524 DOI: 10.3390/ijms232012066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer has one of the highest incidence rates of cancer worldwide while also contributing to increased drug resistance among patients in clinical practice. Herein, we have investigated the role of diclofenac (DCF) on sensitizing cisplatin resistance in signet ring cell gastric carcinoma cells (SRCGC). Non-toxic concentrations of DCF significantly augmented cisplatin-induced cell death in cisplatin-resistant SRCGC cells (KATO/DDP) but not in cisplatin-sensitive SRCGC cells (KATOIII). Consistently, concomitant treatment of DCF and cisplatin significantly enhanced autophagic cell death due to overproduction of intracellular reactive oxygen species (ROS). At the molecular level, the induction of ROS has been associated with a reduction in antioxidant enzymes expression while inhibiting nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Moreover, the combination of DCF and cisplatin also inhibited the expression of survival proteins including Bcl-2, Bcl-xL, cIAP1 and cyclin D1 in KATO/DDP cells when compared with cisplatin alone. This was due, at least in part, to reduce MAPKs, Akt, NF-κB, AP-1 and STAT-3 activation. Taken together, our results suggested that DCF potentiated the anticancer effect of cisplatin in SRCGC via the regeneration of intracellular ROS, which in turn promoted cell death as an autophagy mechanism and potentially modulated the cell survival signal transduction pathway.
Collapse
Affiliation(s)
- Nang Lae Lae Phoo
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Amonnat Sukhamwang
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|
34
|
The programmed death of fetal oocytes and the correlated surveillance mechanisms. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2022. [DOI: 10.1097/rd9.0000000000000016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
35
|
Bioactive glass selectively promotes cytotoxicity towards giant cell tumor of bone derived neoplastic stromal cells and induces MAPK signalling dependent autophagy. Bioact Mater 2022; 15:456-468. [PMID: 35386334 PMCID: PMC8958388 DOI: 10.1016/j.bioactmat.2022.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/27/2022] [Accepted: 02/18/2022] [Indexed: 12/20/2022] Open
Abstract
Giant cell tumors of bone (GCTB) are associated with massive bone destructions and high recurrence rates. In a previous study, we observed cytotoxic effects of three different compositions of bioactive glasses (BGs) towards GCTSC but not bone marrow derived stromal cells (BMSC) indicating that BGs represent promising candidates for the development of new therapeutic approaches. In the current study we aimed to investigate the molecular mechanisms that are involved in BG induced cytotoxicity. We observed, that BG treatment was not associated with any signs of apoptosis, but rather led to a strong induction of mitogen activated protein kinases (MAPK) and, as a consequence, upregulation of several transcription factors specifically in GCTSC. Genome wide gene expression profiling further revealed a set of fifteen genes that were exclusively induced in GCTSC or induced significantly stronger in GCTSC compared to BMSC. BG treatment further induced autophagy that was significantly more pronounced in GCTSC compared to BMSC and could be inhibited by MAPK inhibitors. Together with the known osteogenic properties of BGs our findings support the suitability of BGs as therapeutic agents for the treatment of GCTB. However, these data have to be verified under in vivo conditions. Bioactive glasses (BG) are selectively cytotoxic towards neoplastic stromal cells. BG induced cell death is independent from apoptosis. BG activates mitogen activated protein kinases and transcription factors. BG trigger differential gene expression in neoplastic versus normal cells. BG induce autophagy.
Collapse
|
36
|
El Mashed S, O’Donovan TR, Kay E, O’Grady A, McManus D, Turkington RC, McKenna SL. Apoptosis and autophagy markers predict survival in neoadjuvant treated oesophageal adenocarcinoma patients. BMC Cancer 2022; 22:908. [PMID: 35986318 PMCID: PMC9392302 DOI: 10.1186/s12885-022-09981-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background Less than 20 % of patients with resectable oesophageal adenocarcinoma obtain a pathological response following neoadjuvant chemotherapy. Studies using oesophageal cancer cell lines have shown that drug sensitive tumour cells undergo apoptosis in response to drug treatment, whereas resistant cells induce autophagy and can recover following withdrawal of drug. In this study, we evaluated markers of apoptosis (active/cleaved caspase-3) and autophagy (LC3B) to establish whether these markers are useful prognostic indicators following neoadjuvant therapy. Methods Oesophageal adenocarcinoma tumour tissue from the Northern Ireland Biobank at Queens University Belfast was examined retrospectively. Tumours from 144 patients treated with platinum-based neoadjuvant chemotherapy followed by surgical resection were assembled into tissue microarrays prior to immunohistochemical analysis. Kaplan-Meier survival curves and log-rank tests were used to assess the impact of cleaved caspase-3 and LC3B expression on survival. Cox regression was used to examine association with clinical risk factors. Results High levels of cleaved caspase-3 were found in 14.6 % of patients and this correlated with a significantly better overall survival (p = 0.03). 38.9 % of patients had high cytoplasmic LC3B expression, which correlated with poor overall survival (p = 0.041). In addition, a distinct globular pattern of LC3B expression was identified in 40.3 % of patients and was also predictive of overall survival (p < 0.001). LC3B globular structures are also associated with tumour recurrence (p = 0.014). When these markers were assessed in combination, it was found that patients who showed low/negative cleaved caspase-3 staining and high/positive staining for both patterns of LC3B had the worst overall survival (p < 0.001). Multi-variate analysis also indicated that this marker combination was an independent predictor of poor prognosis (p = 0.008; HR = 0.046, 95% CI = (0.005-0.443). Conclusions The expression of cleaved caspase-3 and specific LC3B staining patterns are associated with overall survival following neoadjuvant treatment. The combination of these markers is an independent indicator of outcome in neoadjuvant chemotherapy treated oesophageal adenocarcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09981-8.
Collapse
|
37
|
Wang D, Cao H, Hua W, Gao L, Yuan Y, Zhou X, Zeng Z. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Bone Defect Repair. MEMBRANES 2022; 12:membranes12070716. [PMID: 35877919 PMCID: PMC9315966 DOI: 10.3390/membranes12070716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022]
Abstract
The repair of critical bone defects is a hotspot of orthopedic research. With the development of bone tissue engineering (BTE), there is increasing evidence showing that the combined application of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) (MSC-EVs), especially exosomes, with hydrogels, scaffolds, and other bioactive materials has made great progress, exhibiting a good potential for bone regeneration. Recent studies have found that miRNAs, proteins, and other cargo loaded in EVs are key factors in promoting osteogenesis and angiogenesis. In BTE, the expression profile of the intrinsic cargo of EVs can be changed by modifying the gene expression of MSCs to obtain EVs with enhanced osteogenic activity and ultimately enhance the osteoinductive ability of bone graft materials. However, the current research on MSC-EVs for repairing bone defects is still in its infancy, and the underlying mechanism remains unclear. Therefore, in this review, the effect of bioactive materials such as hydrogels and scaffolds combined with MSC-EVs in repairing bone defects is summarized, and the mechanism of MSC-EVs promoting bone defect repair by delivering active molecules such as internal miRNAs is further elucidated, which provides a theoretical basis and reference for the clinical application of MSC-EVs in repairing bone defects.
Collapse
Affiliation(s)
- Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (D.W.); (W.H.); (L.G.)
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (H.C.); (Y.Y.)
| | - Weizhong Hua
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (D.W.); (W.H.); (L.G.)
| | - Lu Gao
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (D.W.); (W.H.); (L.G.)
| | - Yu Yuan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (H.C.); (Y.Y.)
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (D.W.); (W.H.); (L.G.)
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (H.C.); (Y.Y.)
- Correspondence: (X.Z.); (Z.Z.)
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (D.W.); (W.H.); (L.G.)
- Correspondence: (X.Z.); (Z.Z.)
| |
Collapse
|
38
|
Abstract
Apoptosis is an evolutionarily conserved sequential process of cell death to maintain a homeostatic balance between cell formation and cell death. It is a vital process for normal eukaryotic development as it contributes to the renewal of cells and tissues. Further, it plays a crucial role in the elimination of unnecessary cells through phagocytosis and prevents undesirable immune responses. Apoptosis is regulated by a complex signaling mechanism, which is driven by interactions among several protein families such as caspases, inhibitors of apoptosis proteins, B-cell lymphoma 2 (BCL-2) family proteins, and several other proteases such as perforins and granzyme. The signaling pathway consists of both pro-apoptotic and pro-survival members, which stabilize the selection of cellular survival or death. However, any aberration in this pathway can lead to abnormal cell proliferation, ultimately leading to the development of cancer, autoimmune disorders, etc. This review aims to elaborate on apoptotic signaling pathways and mechanisms, interacting members involved in signaling, and how apoptosis is associated with carcinogenesis, along with insights into targeting apoptosis for disease resolution.
Collapse
|
39
|
Abstract
The regulatory mechanism of hypoxia-inducible factor-1α (HIF-1α) is complex. HIF-1α may inhibit or promote apoptosis in osteoblasts under different physiological conditions, and induce bone regeneration and repair injury in coordination with angiogenesis. The relationship between H2O2 and HIFs is complex, and this study aimed to explore the role of HIF-1α in H2O2-induced apoptosis. Dimethyloxallyl glycine (DMOG) and 2-Methoxyestradiol (2ME) were used to stabilize and inhibit HIFs, respectively. Cell viability was assessed with CCK8. Apoptosis and ROS levels were detected by flow cytometry, and HIF mRNA expression was assessed by reverse transcription-polymerase chain reaction (RT-PCR). Western blot was performed to detect HIF-1α, HIF-2α, Bax, Bak, Bcl-2, Bcl-XL, caspase-9, and PCNA protein amounts. Our data suggest that both HIF-1α and HIF-2α play a protective role in oxidative stress. HIF-1α reduces H2O2-induced apoptosis by upregulating Bcl-2 and Bcl-XL, downregulating Bax, Bak, and caspase-9, stabilizing intracellular ROS levels, and promoting the repair of H2O2-induced DNA damage to reduce apoptosis.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Lili Wei
- General Geriatrics Division, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Qiaochuan Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Yongrong Lai
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| |
Collapse
|
40
|
Tsuji K, Kida Y, Koshikawa N, Yamamoto S, Shinozaki Y, Watanabe T, Lin J, Nagase H, Takenaga K. Suppression of NSCLC A549 tumor growth by a mtDNA mutation-targeting pyrrole-imidazole polyamide-TPP and a senolytic drug. Cancer Sci 2022; 113:1321-1337. [PMID: 35112436 PMCID: PMC8990788 DOI: 10.1111/cas.15290] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022] Open
Abstract
Certain somatic mutations in mtDNA were associated with tumor progression and frequently found in a homoplasmic state. We recently reported that pyrrole‐imidazole polyamide conjugated with the mitochondria‐delivering moiety triphenylphosphonium (PIP‐TPP) targeting an mtDNA mutation efficiently induced apoptosis in cancer cells with the mutation but not normal cells. Here, we synthesized the novel PIP‐TPP, CCC‐021‐TPP, targeting ND6 14582A > G homoplasmic missense mutation that is suggested to enhance metastasis of non‐small‐cell lung cancer A549 cells. CCC‐021‐TPP did not induce apoptosis but caused cellular senescence in the cells, accompanied by a significant induction of antiapoptotic BCL‐XL. Simultaneous treatment of A549 cells with CCC‐021‐TPP and the BCL‐XL selective inhibitor A‐1155463 resulted in apoptosis induction. Importantly, the combination induced apoptosis and suppressed tumor growth in an A549 xenografted model. These results highlight the potential of anticancer therapy with PIP‐TPPs targeting mtDNA mutations to induce cell death even in apoptosis‐resistant cancer cells when combined with senolytics.
Collapse
Affiliation(s)
- Kohei Tsuji
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, 666-2 Nitona-cho, Chuoh-ku, Chiba, 260-8717, Japan
| | - Yuki Kida
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, 666-2 Nitona-cho, Chuoh-ku, Chiba, 260-8717, Japan
| | - Nobuko Koshikawa
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, 666-2 Nitona-cho, Chuoh-ku, Chiba, 260-8717, Japan
| | - Seigi Yamamoto
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, 666-2 Nitona-cho, Chuoh-ku, Chiba, 260-8717, Japan
| | - Yoshinao Shinozaki
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, 666-2 Nitona-cho, Chuoh-ku, Chiba, 260-8717, Japan.,Organometallchemie Eduard-Zintl-Institut Technische Universität Darmstadt, Alarich-Weiss-Str. 12, 64206, Darmstadt, Germany
| | - Takayoshi Watanabe
- Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, 666-2 Nitona-cho, Chuoh-ku, 260-8717, Chiba, Japan
| | - Jason Lin
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, 666-2 Nitona-cho, Chuoh-ku, Chiba, 260-8717, Japan
| | - Hiroki Nagase
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, 666-2 Nitona-cho, Chuoh-ku, Chiba, 260-8717, Japan
| | - Keizo Takenaga
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, 666-2 Nitona-cho, Chuoh-ku, Chiba, 260-8717, Japan
| |
Collapse
|
41
|
Bahatyrevich-Kharitonik B, Medina-Guzman R, Flores-Cortes A, García-Cruzado M, Kavanagh E, Burguillos MA. Cell Death Related Proteins Beyond Apoptosis in the CNS. Front Cell Dev Biol 2022; 9:825747. [PMID: 35096845 PMCID: PMC8794922 DOI: 10.3389/fcell.2021.825747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Cell death related (CDR) proteins are a diverse group of proteins whose original function was ascribed to apoptotic cell death signaling. Recently, descriptions of non-apoptotic functions for CDR proteins have increased. In this minireview, we comment on recent studies of CDR proteins outside the field of apoptosis in the CNS, encompassing areas such as the inflammasome and non-apoptotic cell death, cytoskeleton reorganization, synaptic plasticity, mitophagy, neurodegeneration and calcium signaling among others. Furthermore, we discuss the evolution of proteomic techniques used to predict caspase substrates that could potentially explain their non-apoptotic roles. Finally, we address new concepts in the field of non-apoptotic functions of CDR proteins that require further research such the effect of sexual dimorphism on non-apoptotic CDR protein function and the emergence of zymogen-specific caspase functions.
Collapse
Affiliation(s)
- Bazhena Bahatyrevich-Kharitonik
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Rafael Medina-Guzman
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Alicia Flores-Cortes
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Marta García-Cruzado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Edel Kavanagh
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Miguel Angel Burguillos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| |
Collapse
|
42
|
Jameie SB, Kazemian A, Sanadgol Z, Asadzadeh Bayqara S, Jameie MS, Farhadi M. Coenzyme Q10 reduces expression of apoptotic markers in adult rat nucleus accumbens dopaminergic neurons treated with methamphetamine. Mol Biol Rep 2022; 49:2273-2281. [PMID: 35034284 DOI: 10.1007/s11033-021-07049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Abuse of addictive drugs such as methamphetamine (METH) has become a global problem, leading to many social, economic, and health disturbances, including neurological and cognitive disorders. Neuronal damage is reported in chronic METH abusers. The neuroprotective role of CoQ10 has been shown in many studies. In the present study, we aimed to assess the pre and post-efficacy of CoQ10 on the dopaminergic neurons of the Nucleus Accumbens (de Miranda et al. in Food Res Int 121:641-647, 2019) in the male adult rats treated with METH. METHODS 80 rats were randomly divided into eight groups (n = 10), including: negative control (intact), positive control (received 5 mg/kg/day METH/IP), three post-treatment groups (METH + 5, 10, 20 mg/kg CoQ10) and three pre-treatment groups (received 5, 10, 20 mg/kg CoQ10 as pre-treatment for 14 days before METH injection). The expression of Bax, Bcl-2, Bax/Bcl-2 ratio, P53, Caspase-3 and tyrosine hydroxylase in NAc studied using western blotting. Nissl staining was used to study the neuronal density of NAc. RESULTS Our results showed that the different doses of CoQ10 in METH-treated animals significantly changed pro-apoptotic proteins' expression in the benefit of neuronal survival of NAc (P < 0.05). Neuronal density in NAc were significantly lower in the METH group compared to the control and CoQ10 treated groups. Pre- and post-treatment with different doses of CoQ10 restored the neuronal damage in NAc. CONCLUSIONS CoQ10 could decrease the activation of pro-apoptotic proteins and reduce the neurodegenerative effects induced by METH. From a clinical point of view, it seems that certain antioxidants such as CoQ10 should receive more attention in clinical trial research. We believe that antioxidants could be the promising for drug abuse treatment in the future.
Collapse
Affiliation(s)
- S B Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - A Kazemian
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Z Sanadgol
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - S Asadzadeh Bayqara
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mana Sadat Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.,Cardiovascular Diseases Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - M Farhadi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran.
| |
Collapse
|
43
|
Brunet AA, Harvey AR, Carvalho LS. Primary and Secondary Cone Cell Death Mechanisms in Inherited Retinal Diseases and Potential Treatment Options. Int J Mol Sci 2022; 23:ijms23020726. [PMID: 35054919 PMCID: PMC8775779 DOI: 10.3390/ijms23020726] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a leading cause of blindness. To date, 260 disease-causing genes have been identified, but there is currently a lack of available and effective treatment options. Cone photoreceptors are responsible for daylight vision but are highly susceptible to disease progression, the loss of cone-mediated vision having the highest impact on the quality of life of IRD patients. Cone degeneration can occur either directly via mutations in cone-specific genes (primary cone death), or indirectly via the primary degeneration of rods followed by subsequent degeneration of cones (secondary cone death). How cones degenerate as a result of pathological mutations remains unclear, hindering the development of effective therapies for IRDs. This review aims to highlight similarities and differences between primary and secondary cone cell death in inherited retinal diseases in order to better define cone death mechanisms and further identify potential treatment options.
Collapse
Affiliation(s)
- Alicia A. Brunet
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia;
- Lions Eye Institute Ltd., 2 Verdun St, Nedlands, WA 6009, Australia
- Correspondence: ; Tel.: +61-423-359-714
| | - Alan R. Harvey
- School of Human Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia;
- Perron Institute for Neurological and Translational Science, 8 Verdun St, Nedlands, WA 6009, Australia
| | - Livia S. Carvalho
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia;
- Lions Eye Institute Ltd., 2 Verdun St, Nedlands, WA 6009, Australia
| |
Collapse
|
44
|
Wogonin protects glomerular podocytes by targeting Bcl-2-mediated autophagy and apoptosis in diabetic kidney disease. Acta Pharmacol Sin 2022; 43:96-110. [PMID: 34253875 PMCID: PMC8724322 DOI: 10.1038/s41401-021-00721-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/18/2021] [Indexed: 01/31/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the microvascular complications of diabetes mellitus and a major cause of end-stage renal disease with limited treatment options. Wogonin is a flavonoid derived from the root of Scutellaria baicalensis Georgi, which has shown a potent renoprotective effect. But the mechanisms of action in DKD are not fully elucidated. In this study, we investigated the effects of wogonin on glomerular podocytes in DKD using mouse podocyte clone 5 (MPC5) cells and diabetic mice model. MPC5 cells were treated with high glucose (30 mM). We showed that wogonin (4, 8, 16 μM) dose-dependently alleviated high glucose (HG)-induced MPC5 cell damage, accompanied by increased expression of WT-1, nephrin, and podocin proteins, and decreased expression of TNF-α, MCP-1, IL-1β as well as phosphorylated p65. Furthermore, wogonin treatment significantly inhibited HG-induced apoptosis in MPC5 cells. Wogonin reversed HG-suppressed autophagy in MPC5 cells, evidenced by increased ATG7, LC3-II, and Beclin-1 protein, and decreased p62 protein. We demonstrated that wogonin directly bound to Bcl-2 in MPC5 cells. In HG-treated MPC5 cells, knockdown of Bcl-2 abolished the beneficial effects of wogonin, whereas overexpression of Bcl-2 mimicked the protective effects of wogonin. Interestingly, we found that the expression of Bcl-2 was significantly decreased in biopsy renal tissue of diabetic nephropathy patients. In vivo experiments were conducted in STZ-induced diabetic mice, which were administered wogonin (10, 20, 40 mg · kg-1 · d-1, i.g.) every other day for 12 weeks. We showed that wogonin administration significantly alleviated albuminuria, histopathological lesions, and p65 NF-κB-mediated renal inflammatory response. Wogonin administration dose-dependently inhibited podocyte apoptosis and promoted podocyte autophagy in STZ-induced diabetic mice. This study for the first time demonstrates a novel action of wogonin in mitigating glomerulopathy and podocytes injury by regulating Bcl-2-mediated crosstalk between autophagy and apoptosis. Wogonin may be a potential therapeutic drug against DKD.
Collapse
|
45
|
Zhu C, Shen S, Zhang S, Huang M, Zhang L, Chen X. Autophagy in Bone Remodeling: A Regulator of Oxidative Stress. Front Endocrinol (Lausanne) 2022; 13:898634. [PMID: 35846332 PMCID: PMC9279723 DOI: 10.3389/fendo.2022.898634] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022] Open
Abstract
Bone homeostasis involves bone formation and bone resorption, which are processes that maintain skeletal health. Oxidative stress is an independent risk factor, causing the dysfunction of bone homeostasis including osteoblast-induced osteogenesis and osteoclast-induced osteoclastogenesis, thereby leading to bone-related diseases, especially osteoporosis. Autophagy is the main cellular stress response system for the limination of damaged organelles and proteins, and it plays a critical role in the differentiation, apoptosis, and survival of bone cells, including bone marrow stem cells (BMSCs), osteoblasts, osteoclasts, and osteocytes. High evels of reactive oxygen species (ROS) induced by oxidative stress induce autophagy to protect against cell damage or even apoptosis. Additionally, pathways such as ROS/FOXO3, ROS/AMPK, ROS/Akt/mTOR, and ROS/JNK/c-Jun are involved in the regulation of oxidative stress-induced autophagy in bone cells, including osteoblasts, osteocytes and osteoclasts. This review discusses how autophagy regulates bone formation and bone resorption following oxidative stress and summarizes the potential protective mechanisms exerted by autophagy, thereby providing new insights regarding bone remodeling and potential therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Chenyu Zhu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Shiwei Shen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shihua Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- College of Sports and Health, Shandong Sport University, Jinan, China
| | - Mei Huang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lan Zhang
- College of Sports and Health, Shandong Sport University, Jinan, China
- *Correspondence: Xi Chen, ; Lan Zhang,
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xi Chen, ; Lan Zhang,
| |
Collapse
|
46
|
Dinić S, Arambašić Jovanović J, Uskoković A, Mihailović M, Grdović N, Tolić A, Rajić J, Đorđević M, Vidaković M. Oxidative stress-mediated beta cell death and dysfunction as a target for diabetes management. Front Endocrinol (Lausanne) 2022; 13:1006376. [PMID: 36246880 PMCID: PMC9554708 DOI: 10.3389/fendo.2022.1006376] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/05/2022] [Indexed: 11/14/2022] Open
Abstract
The biggest drawback of a current diabetes therapy is the treatment of the consequences not the cause of the disease. Regardless of the diabetes type, preservation and recovery of functional pancreatic beta cells stands as the biggest challenge in the treatment of diabetes. Free radicals and oxidative stress are among the major mediators of autoimmune destruction of beta cells in type 1 diabetes (T1D) or beta cell malfunction and death provoked by glucotoxicity and insulin resistance in type 2 diabetes (T2D). Additionally, oxidative stress reduces functionality of beta cells in T2D by stimulating their de-/trans-differentiation through the loss of transcription factors critical for beta cell development, maturity and regeneration. This review summarizes up to date clarified redox-related mechanisms involved in regulating beta cell identity and death, underlining similarities and differences between T1D and T2D. The protective effects of natural antioxidants on the oxidative stress-induced beta cell failure were also discussed. Considering that oxidative stress affects epigenetic regulatory mechanisms involved in the regulation of pancreatic beta cell survival and insulin secretion, this review highlighted huge potential of epigenetic therapy. Special attention was paid on application of the state-of-the-art CRISPR/Cas9 technology, based on targeted epigenome editing with the purpose of changing the differentiation state of different cell types, making them insulin-producing with ability to attenuate diabetes. Clarification of the above-mentioned mechanisms could provide better insight into diabetes etiology and pathogenesis, which would allow development of novel, potentially more efficient therapeutic strategies for the prevention or reversion of beta cell loss.
Collapse
|
47
|
Kim GD. Harmine Hydrochloride Triggers G2/M Cell Cycle Arrest and Apoptosis in HCT116 Cells through ERK and PI3K/AKT/mTOR Signaling Pathways. Prev Nutr Food Sci 2021; 26:445-452. [PMID: 35047441 PMCID: PMC8747958 DOI: 10.3746/pnf.2021.26.4.445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 01/01/2023] Open
Abstract
Colorectal carcinoma (CRC) is one of the most common and aggressive malignant carcinomas. There is a pressing need to develop naturally derived novel drugs with minimal side effects for treatment of CRC. In this study, we aimed to investigate the anticancer effects of harmine hydrochloride (HMH), a hydrophilic and stable substance that is easily absorbed by tissues and similar to harmine, and the underlying mechanism of action in human CRC HCT116 cells. HMH inhibited the growth, colony formation, and migration ability of HCT116 cells. Additionally, HMH induced G2 cell cycle arrest by reducing expression of p-cdc2, cdc2, and cyclin B1, proteins that regulate the G2/M phase, and expression of Rb, a protein that regulates cell proliferation, in a dose-dependent manner. HMH mediated apoptosis by downregulating expression of apoptotic proteins (such as caspase-3, caspase-9, and PARP) and the anti-apoptotic protein Bcl-2 and by inducing expression of Bax, a pro-apoptotic protein. Furthermore, HMH reduced the levels of p-ERK, p-PI3K, p-AKT, and p-mTOR in HCT116 cells, and significantly inhibited p-ERK and p-AKT expression in cells treated with of HMH and PD98059, an ERK inhibitor, or LY294002, an AKT inhibitor (P<0.05 and P<0.01). These results demonstrate the inhibi-tory effect of HMH on cell proliferation and migration through inducing apoptosis by inhibiting ERK and PI3K/AKT/mTOR signaling pathways, indicating its potential therapeutic applications in CRC.
Collapse
Affiliation(s)
- Gi Dae Kim
- Department of Food and Nutrition, Kyungnam University, Gyeongnam 51767, Korea
| |
Collapse
|
48
|
Sabarwal A, Wedel J, Liu K, Zurakowski D, Chakraborty S, Flynn E, Briscoe DM, Balan M, Pal S. A Combination therapy using an mTOR inhibitor and Honokiol effectively induces autophagy through the modulation of AXL and Rubicon in renal cancer cells and restricts renal tumor growth following organ transplantation. Carcinogenesis 2021; 43:360-370. [PMID: 34965300 PMCID: PMC9118982 DOI: 10.1093/carcin/bgab126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 12/31/2022] Open
Abstract
Development of cancer, including renal cancer, is a major problem in immunosuppressed patients. The mTOR inhibitor Rapamycin (RAPA) is used as an immunosuppressive agent in patients with organ transplants and other immunological disorders; and it also has antitumorigenic potential. However, long-term use of RAPA causes reactivation of Akt, and ultimately leads to enhanced tumor growth. Honokiol (HNK) is a natural compound, which possesses both anti-inflammatory and antitumorigenic properties. In this study, we investigated the effect of a novel combination therapy using RAPA + HNK on allograft survival and post-transplantation renal tumor growth. We observed that it effectively modulated the expression of some key regulatory molecules (like Carabin, an endogenous Ras inhibitor; and Rubicon, a negative regulator of autophagy) that play important roles in tumor cell growth and survival. This combination induced toxic autophagy and apoptosis to promote cancer cell death; and was associated with a reduced expression of the tumor-promoting receptor tyrosine kinase AXL. Finally, we utilized a novel murine model to examine the effect of RAPA + HNK on post-transplantation renal tumor growth. The combination treatment prolonged the allograft survival and significantly inhibited post-transplantation tumor growth. It was associated with reduced tumor expression of Rubicon and the cytoprotective/antioxidant heme oxygenase-1 to overcome therapeutic resistance. It also downregulated the coinhibitory programmed death-1 ligand, which plays major role(s) in the immune escape of tumor cells. Together, this combination treatment has a great potential to restrict renal tumor growth in transplant recipients as well as other immunosuppressed patients.
Collapse
Affiliation(s)
- Akash Sabarwal
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA,Harvard Medical School, Boston, MA 02115, USA
| | - Johannes Wedel
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA,Harvard Medical School, Boston, MA 02115, USA
| | - Kaifeng Liu
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA,Harvard Medical School, Boston, MA 02115, USA
| | - David Zurakowski
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA,Harvard Medical School, Boston, MA 02115, USA
| | - Samik Chakraborty
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA,Harvard Medical School, Boston, MA 02115, USA
| | - Evelyn Flynn
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA,Harvard Medical School, Boston, MA 02115, USA
| | - David M Briscoe
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA,Harvard Medical School, Boston, MA 02115, USA,Transplant Research Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Murugabaskar Balan
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA,Harvard Medical School, Boston, MA 02115, USA
| | - Soumitro Pal
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA,Harvard Medical School, Boston, MA 02115, USA,To whom correspondence should be addressed. Division of Nephrology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA. Tel: +1 617 919 2989; Fax: +1 617 730 0365;
| |
Collapse
|
49
|
Li H, Lismont C, Revenco I, Hussein MAF, Costa CF, Fransen M. The Peroxisome-Autophagy Redox Connection: A Double-Edged Sword? Front Cell Dev Biol 2021; 9:814047. [PMID: 34977048 PMCID: PMC8717923 DOI: 10.3389/fcell.2021.814047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 01/18/2023] Open
Abstract
Peroxisomes harbor numerous enzymes that can produce or degrade hydrogen peroxide (H2O2). Depending on its local concentration and environment, this oxidant can function as a redox signaling molecule or cause stochastic oxidative damage. Currently, it is well-accepted that dysfunctional peroxisomes are selectively removed by the autophagy-lysosome pathway. This process, known as "pexophagy," may serve a protective role in curbing peroxisome-derived oxidative stress. Peroxisomes also have the intrinsic ability to mediate and modulate H2O2-driven processes, including (selective) autophagy. However, the molecular mechanisms underlying these phenomena are multifaceted and have only recently begun to receive the attention they deserve. This review provides a comprehensive overview of what is known about the bidirectional relationship between peroxisomal H2O2 metabolism and (selective) autophagy. After introducing the general concepts of (selective) autophagy, we critically examine the emerging roles of H2O2 as one of the key modulators of the lysosome-dependent catabolic program. In addition, we explore possible relationships among peroxisome functioning, cellular H2O2 levels, and autophagic signaling in health and disease. Finally, we highlight the most important challenges that need to be tackled to understand how alterations in peroxisomal H2O2 metabolism contribute to autophagy-related disorders.
Collapse
Affiliation(s)
- Hongli Li
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Celien Lismont
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Iulia Revenco
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Mohamed A. F. Hussein
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Biochemistry, Faculty of Pharmacy, Assiut University, Asyut, Egypt
| | - Cláudio F. Costa
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Kim YS, Lee YG, Kim MT, Lee HJ. Treatment With Glycogen Synthase Kinase 3β Inhibitor Decreases Apoptotic and Autophagic Reactions in Rat Rotator Cuff Tears. Orthop J Sports Med 2021; 9:23259671211060771. [PMID: 34901295 PMCID: PMC8652192 DOI: 10.1177/23259671211060771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Apoptosis and autophagy are known to be correlated with the extent of damage in torn rotator cuffs, and there is no biological evidence for self-recovery or healing of the rotator cuff tear. Purpose: To establish in a rat model of partial- and full-thickness rotator cuff tears how a glycogen synthase kinase 3β (GSK-3β) inhibitor affects the expression of apoptotic and autophagic markers. Study Design: Controlled laboratory study. Methods: Twelve-week-old Sprague Dawley rats were divided into 3 groups (n = 16 per group). Group 1 acted as the control, with no treatment; group 2 received partial-thickness (right side) and full-thickness (left side) rotator cuff tears only; and group 3 received the same rotator cuff injuries, with GSK-3β inhibitor injected afterward. The tendons from each group were harvested 42 days after surgery. Evaluation of gene expression, immunohistochemistry, and TUNEL staining (terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling) were performed for the following markers: caspases 3, 8, and 9 as well as Bcl-2 (B-cell lymphoma 2); BAX (Bcl-2-associated X protein); beclin 1; p53; and GSK-3β; which represented apoptotic and autophagic reactions. Statistical analysis was performed using 1-way analysis of variance. Results: In the group 2 rats with partial- and full-thickness tears, there were significant increases in the mRNA levels (fold changes) of all 8 markers as compared with group 1 (control). All these increased markers showed significant downregulation by the GSK-3β inhibitor in partial-thickness tears. However, the response to the GSK-3β inhibitor in full-thickness tears was not as prominent as in partial-thickness tears. The number of TUNEL-positive cells in group 2 (partial, 35.08% ± 1.625% [mean ± SE]; full, 46.92% ± 1.319%) was significantly higher than in group 1 (18.02% ± 1.036%; P < .01) and group 3 (partial, 28.04% ± 2.607% [P < .01]; full, 38.97% ± 2.772% [P < .01]), and immunohistochemistry revealed increased expression of all the markers in group 2 as compared with control. Conclusion: The apoptotic and autophagic activity induced in a rat model of an acute rotator cuff tear was downregulated after treatment with a GSK-3β inhibitor, particularly with partial-thickness rotator cuff tears. Clinical Relevance: A GSK-3β inhibitor may be able to modulate deterioration in a torn rotator cuff.
Collapse
Affiliation(s)
- Yang-Soo Kim
- Department of Orthopedic Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yun-Gyoung Lee
- Department of Orthopedic Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min-Tae Kim
- Department of Orthopedic Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyo-Jin Lee
- Department of Orthopedic Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|