1
|
Wang R, Xu J, Wei S, Liu X. Increased Lipocalin 2 detected by RNA sequencing regulates apoptosis and ferroptosis in COPD. BMC Pulm Med 2024; 24:535. [PMID: 39462322 PMCID: PMC11515215 DOI: 10.1186/s12890-024-03357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a complex respiratory condition influenced by environmental and genetic factors. Using next-generation sequencing, we aimed to identify dysregulated genes and potential therapeutic targets for COPD. METHODS Peripheral blood leukocyte RNA profiles from COPD patients and healthy controls were analyzed using next-generation sequencing. Key genes involved in COPD pathogenesis were identified through protein-protein interaction network analysis. In vitro, bronchial epithelial cells treated with cigarette smoke extract (CSE) were used to study the effects on gene expression, cell viability, apoptosis, and ferroptosis. Additionally, Lipocalin 2 (LCN2) inhibition experiments were conducted to elucidate its role in COPD-related cellular processes. RESULTS Analysis of RNA profiles revealed consistent downregulation of 17 genes and upregulation of 21 genes across all COPD groups. Among these, Cathelicidin Antimicrobial Peptide(CAMP), Defensin Alpha 4(DEFA4), Neutrophil Elastase(ELANE), LCN2 and Lactotransferrin(LTF) were identified as potentially important players in COPD pathogenesis. Particularly, LCN2 exhibited a close association with COPD and was found to be involved in cellular processes. In vitro experiments demonstrated that CSE treatment significantly increased LCN2 expression in bronchial epithelial cells in a concentration-dependent manner. Moreover, CSE-induced apoptosis and ferroptosis were observed, along with alterations in cell viability, Glutathione content, Fe2 + accumulation, ROS: Reactive Oxygen Species and Malondialdehyde levels, Lactate Dehydrogenase(LDH) release and Glutathione Peroxidase 4(GPX4) expression. Inhibition of LCN2 expression partially reversed these effects, indicating the pivotal role of LCN2 in COPD-related cellular processes. CONCLUSION Our study identified six candidate genes: CAMP, DEFA4, ELANE, LCN2, and LTF were upregulated, HSPA1B was downregulated. Notably, LCN2 emerges as a significant biomarker in COPD pathogenesis, exerting its effects by promoting apoptosis and ferroptosis in bronchial epithelial cells.
Collapse
Affiliation(s)
- Ruiying Wang
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China.
| | - Jianying Xu
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Shuang Wei
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China.
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Scieuzo C, Rinaldi R, Giglio F, Salvia R, Ali AlSaleh M, Jakše J, Pain A, Antony B, Falabella P. Identification of Multifunctional Putative Bioactive Peptides in the Insect Model Red Palm Weevil ( Rhynchophorus ferrugineus). Biomolecules 2024; 14:1332. [PMID: 39456265 PMCID: PMC11506011 DOI: 10.3390/biom14101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Innate immunity, the body's initial defense against bacteria, fungi, and viruses, heavily depends on antimicrobial peptides (AMPs), which are small molecules produced by all living organisms. Insects, with their vast biodiversity, are one of the most abundant and innovative sources of AMPs. In this study, AMPs from the red palm weevil (RPW) Rhynchophorus ferrugineus (Coleoptera: Curculionidae), a known invasive pest of palm species, were examined. The AMPs were identified in the transcriptomes from different body parts of male and female adults, under different experimental conditions, including specimens collected from the field and those reared in the laboratory. The RPW transcriptomes were examined to predict antimicrobial activity, and all sequences putatively encoding AMPs were analyzed using several machine learning algorithms available in the CAMPR3 database. Additionally, anticancer, antiviral, and antifungal activity of the peptides were predicted using iACP, AVPpred, and Antifp server tools, respectively. Physicochemical parameters were assessed using the Antimicrobial Peptide Database Calculator and Predictor. From these analyses, 198 putatively active peptides were identified, which can be tested in future studies to validate the in silico predictions. Genome-wide analysis revealed that several AMPs have predominantly emerged through gene duplication. Noticeably, we detect a newly originated defensin allele from an ancestral defensin via the deletion of two amino acids following gene duplication in RPW, which may confer an enhanced resilience to microbial infection. Our study shed light on AMP gene families and shows that high duplication and deletion rates are essential to achieve a diversity of antimicrobial mechanisms; hence, we propose the RPW AMPs as a model for exploring gene duplication and functional variations against microbial infection.
Collapse
Affiliation(s)
- Carmen Scieuzo
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (R.R.); (F.G.); (R.S.)
- Spinoff XFlies s.r.l, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Roberta Rinaldi
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (R.R.); (F.G.); (R.S.)
| | - Fabiana Giglio
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (R.R.); (F.G.); (R.S.)
| | - Rosanna Salvia
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (R.R.); (F.G.); (R.S.)
- Spinoff XFlies s.r.l, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Mohammed Ali AlSaleh
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, Riyadh 11451, Saudi Arabia;
| | - Jernej Jakše
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, SI-1000 Ljubljana, Slovenia;
| | - Arnab Pain
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah 23955-6900, Saudi Arabia;
| | - Binu Antony
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, Riyadh 11451, Saudi Arabia;
| | - Patrizia Falabella
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (R.R.); (F.G.); (R.S.)
| |
Collapse
|
3
|
Lee S, Silverman N, Gao FB. Emerging roles of antimicrobial peptides in innate immunity, neuronal function, and neurodegeneration. Trends Neurosci 2024:S0166-2236(24)00173-5. [PMID: 39389804 DOI: 10.1016/j.tins.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Antimicrobial peptides (AMPs), a collection of small proteins with important roles in classical innate immunity, have been extensively studied in multiple organisms, particularly in Drosophila melanogaster. Advances in CRISPR/Cas9 genome editing have allowed individual AMP functions to be dissected, revealing specific and selective roles in host defense. Recent findings have also revealed many unexpected contributions of endogenous AMPs to neuronal functions and neurodegenerative diseases, and have shed light on the intersections between innate immunity and neurobiology. We explore the intricate relationships between AMPs and sleep regulation, memory formation, as well as traumatic brain injury and several neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal dementia (FTD), and Parkinson's disease (PD). Understanding the diverse functions of AMPs opens new avenues for neuroinflammation and neurodegenerative disease research and potential therapeutic development.
Collapse
Affiliation(s)
- Soojin Lee
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Fen-Biao Gao
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
4
|
Adak A, Castelletto V, Mendes B, Barrett G, Seitsonen J, Hamley IW. Chirality and pH Influence the Self-Assembly of Antimicrobial Lipopeptides with Diverse Nanostructures. ACS APPLIED BIO MATERIALS 2024; 7:5553-5565. [PMID: 39042039 PMCID: PMC11337160 DOI: 10.1021/acsabm.4c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Chirality plays a crucial role in the self-assembly of biomolecules in nature. Peptides show chirality-dependent conformation and self-assembly. Lipidation of peptides occurs in vivo and has recently been exploited in designed conjugates to drive self-assembly and enhance bioactivity. Here, a library of pH-responsive homochiral and heterochiral lipidated tripeptides has been designed. The designed lipopeptides comprise homochiral C16-YKK or C16-WKK (where all the amino acids are l-isomers), and two heterochiral conjugates C16-Ykk and C16-Wkk (where the two lysines are d-isomers). The self-assembly of all the synthesized lipopeptides in aqueous solution was examined using a combination of spectroscopic methods along with cryogenic-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS). Interestingly, it was observed that at acidic pH all the lipopeptides self-assemble into micelles, whereas at basic pH the homochiral lipopeptides self-assemble into nanofibers, whereas the heterochiral lipopeptides self-assemble into nanotapes and nanotubes. A pH switch was demonstrated using a thioflavin T fluorescence probe of β-sheet structure present in the extended structures at pH 8. We demonstrate that both chirality and pH in lipopeptides influence the self-assembly behavior of the model tripeptides, which also show promising bioactivity. Good cytocompatibility is observed in hemolytic assays and antimicrobial activity against both Gram-negative and Gram-positive bacteria is shown through the determination of minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) values and live/dead bacteria staining assay.
Collapse
Affiliation(s)
- Anindyasundar Adak
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Valeria Castelletto
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Bruno Mendes
- School
of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Glyn Barrett
- School
of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Ian W. Hamley
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| |
Collapse
|
5
|
Bezerra DAFVA, Souza KMS, Sales DC, Araújo EOM, Urbano SA, Cipolat-Gotet C, Anaya K, Ribeiro CVDM, Porto ALF, Rangel AHN. Effect of ripening time on the content of bioactive peptides and fatty acids profile of Artisanal Coalho cheese. PLoS One 2024; 19:e0306552. [PMID: 38976689 PMCID: PMC11230568 DOI: 10.1371/journal.pone.0306552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
The present study aimed to investigate the influence of ripening on the physicochemical, microbiological aspects, and fatty acid profile of Artisanal Coalho Cheeses and to detect if there are peptides with bioactive potential in their composition. Artisanal Coalho Cheese samples were kindly provided by a dairy farm located in Brazil in the Rio Grande do Norte state. A completely randomized design was adopted, with four maturation periods (0, 30, 45, and 60 days). Physicochemical traits (pH, total solids, moisture, non-fat solids, fat in total solids, protein, ash, fatty acid profile) and microbiological characterization (Salmonella sp, Listeria monocytogenes, total and thermotolerant coliforms, Staphylococcus aureus) were analyzed on cheese samples. Additionally, assays were performed for antioxidant and antihypertensive bioactivity through ACE and antimicrobial inhibition of the peptides extracted from the samples. There was a linear increase in total solids and ash content and a decrease in moisture content with increasing maturation time. The matured cheese samples had a lower pH than fresh Artisanal Coalho Cheese. Twenty-seven fatty acids were identified in the cheeses: 15 saturated, 07 monounsaturated, and 05 polyunsaturated, with a linear reduction of essential fatty acids (n6 and n3) during maturation. The microbiological quality of the cheeses was satisfactory, with an absence of undesirable bacteria in 92% of the cheese samples. Water-soluble peptide fractions from all periods tested showed antioxidant and antihypertensive potential with ACE control, and the maturation process potentiated these capacities, with a decline in these activities observed at 60 days. The antimicrobial activity against Gram-positive and Gram-negative bacteria increased with maturation, reaching better results until 60 days. The maturation process on wooden planks in the periods of 30, 45, and 60 days allows the production of Artisanal Coalho Cheese of an innovative character, safe to consumers from the microbiological point of view, with differentiated physicochemical and functional characteristics and good quality of lipid fraction compared to fresh cheese, enabling the addition of value to the dairy chain.
Collapse
Affiliation(s)
- Débora A F V A Bezerra
- Academic Unit Specialized in Agricultural, Federal University of Rio Grande do Norte (UFRN), Macaiba, Rio Grande do Norte, Brazil
| | - Karoline M S Souza
- Biosciences Center, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Danielle C Sales
- Academic Unit Specialized in Agricultural, Federal University of Rio Grande do Norte (UFRN), Macaiba, Rio Grande do Norte, Brazil
| | - Emmanuella O M Araújo
- Academic Unit Specialized in Agricultural, Federal University of Rio Grande do Norte (UFRN), Macaiba, Rio Grande do Norte, Brazil
| | - Stela A Urbano
- Academic Unit Specialized in Agricultural, Federal University of Rio Grande do Norte (UFRN), Macaiba, Rio Grande do Norte, Brazil
| | | | - Katya Anaya
- Faculty of Health Sciences of Trairi, Federal University of Rio Grande do Norte (UFRN), Santa Cruz, Rio Grande do Norte, Brazil
| | - Cláudio V D M Ribeiro
- School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Ana Lúcia F Porto
- Morfology and Animal Fisiology Departament, Rural Federal University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Adriano H N Rangel
- Academic Unit Specialized in Agricultural, Federal University of Rio Grande do Norte (UFRN), Macaiba, Rio Grande do Norte, Brazil
| |
Collapse
|
6
|
Su MSW, Cheng YL, Lin YS, Wu JJ. Interplay between group A Streptococcus and host innate immune responses. Microbiol Mol Biol Rev 2024; 88:e0005222. [PMID: 38451081 PMCID: PMC10966951 DOI: 10.1128/mmbr.00052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
SUMMARYGroup A Streptococcus (GAS), also known as Streptococcus pyogenes, is a clinically well-adapted human pathogen that harbors rich virulence determinants contributing to a broad spectrum of diseases. GAS is capable of invading epithelial, endothelial, and professional phagocytic cells while evading host innate immune responses, including phagocytosis, selective autophagy, light chain 3-associated phagocytosis, and inflammation. However, without a more complete understanding of the different ways invasive GAS infections develop, it is difficult to appreciate how GAS survives and multiplies in host cells that have interactive immune networks. This review article attempts to provide an overview of the behaviors and mechanisms that allow pathogenic GAS to invade cells, along with the strategies that host cells practice to constrain GAS infection. We highlight the counteractions taken by GAS to apply virulence factors such as streptolysin O, nicotinamide-adenine dinucleotidase, and streptococcal pyrogenic exotoxin B as a hindrance to host innate immune responses.
Collapse
Affiliation(s)
- Marcia Shu-Wei Su
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Winter J, Jepsen S. Role of innate host defense proteins in oral cancerogenesis. Periodontol 2000 2024. [PMID: 38265172 DOI: 10.1111/prd.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
It is nowadays well accepted that chronic inflammation plays a pivotal role in tumor initiation and progression. Under this aspect, the oral cavity is predestined to examine this connection because periodontitis is a highly prevalent chronic inflammatory disease and oral squamous cell carcinomas are the most common oral malignant lesions. In this review, we describe how particular molecules of the human innate host defense system may participate as molecular links between these two important chronic noncommunicable diseases (NCDs). Specific focus is directed toward antimicrobial polypeptides, such as the cathelicidin LL-37 and human defensins, as well as S100 proteins and alarmins. We report in which way these peptides and proteins are able to initiate and support oral tumorigenesis, showing direct mechanisms by binding to growth-stimulating cell surface receptors and/or indirect effects, for example, inducing tumor-promoting genes. Finally, bacterial challenges with impact on oral cancerogenesis are briefly addressed.
Collapse
Affiliation(s)
- Jochen Winter
- Faculty of Medicine, Department of Periodontology, Operative and Preventive Dentistry, University Hospital, University of Bonn, Bonn, Germany
| | - Søren Jepsen
- Faculty of Medicine, Department of Periodontology, Operative and Preventive Dentistry, University Hospital, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Rangel AHDN, Bezerra DAFVDA, Sales DC, Araújo EDOM, Lucena LMD, Porto ALF, Véras ÍVUM, Lacerda AF, Ribeiro CVDM, Anaya K. An Overview of the Occurrence of Bioactive Peptides in Different Types of Cheeses. Foods 2023; 12:4261. [PMID: 38231707 DOI: 10.3390/foods12234261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 01/19/2024] Open
Abstract
The search for improvements in quality of life has increasingly involved changes in the diet, especially the consumption of foods which, in addition to having good nutritional value, are characterized by offering health benefits. Among the molecules that trigger several beneficial responses are peptides, which are specific fragments of proteins known to produce positive effects on the human body. This review aimed to discuss the bioactive potential of peptides from cheeses. Studies show that the protein composition of some cheese varieties exhibits a potential for the release of bioactive peptides. The production of these peptides can be promoted by some technological procedures that affect the milk structure and constituents. The cheese maturation process stands out for producing bioactive peptides due to the action of enzymes produced by lactic acid bacteria. Thus, in addition to being proteins with high biological value due to their excellent amino acid profile, peptides from some types of cheeses are endowed with functional properties such as anti-hypertensive, antimicrobial, antioxidant, anticarcinogenic, opioid, and zinc-binding activities.
Collapse
Affiliation(s)
| | | | - Danielle Cavalcanti Sales
- Academic Unit Specialized in Agricultural, Federal University of Rio Grande do Norte (UFRN), Macaiba 59280000, Brazil
| | | | - Luis Medeiros de Lucena
- Academic Unit Specialized in Agricultural, Federal University of Rio Grande do Norte (UFRN), Macaiba 59280000, Brazil
| | - Ana Lúcia Figueiredo Porto
- Morfology and Animal Fisiology Departament, Rural Federal University of Pernambuco (UFRPE), Recife 55292901, Brazil
| | | | - Ariane Ferreira Lacerda
- Federal Institute of Education, Science and Technology (IFRN), Currais Novos 59380000, Brazil
| | | | - Katya Anaya
- Faculty of Health Sciences of Trairi, Federal University of Rio Grande do Norte (UFRN), Santa Cruz 59200000, Brazil
| |
Collapse
|
9
|
Guo L, Tang M, Luo S, Zhou X. Screening and Functional Analyses of Novel Cecropins from Insect Transcriptome. INSECTS 2023; 14:794. [PMID: 37887806 PMCID: PMC10607850 DOI: 10.3390/insects14100794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Antibiotic resistance is a significant and growing threat to global public health. However, antimicrobial peptides (AMPs) have shown promise as they exhibit a broad spectrum of antibacterial activities with low potential for resistance development. Insects, which inhabit a wide range of environments and are incredibly diverse, remain largely unexplored as a source of novel AMPs. To address this, we conducted a screening of the representative transcriptomes from the 1000 Insect Transcriptome Evolution (1KITE) dataset, focusing on the homologous reference genes of Cecropins, the first identified AMPs in insects known for its high efficiency. Our analysis identified 108 Cecropin genes from 105 insect transcriptomes, covering all major hexapod lineages. We validated the gene sequences and synthesized mature peptides for three identified Cecropin genes. Through minimal inhibition concentration and agar diffusion assays, we confirmed that these peptides exhibited antimicrobial activities against Gram-negative bacteria. Similar to the known Cecropin, the three Cecropins adopted an alpha-helical conformation in membrane-like environments, efficiently disrupting bacterial membranes through permeabilization. Importantly, none of the three Cecropins demonstrated cytotoxicity in erythrocyte hemolysis tests, suggesting their safety in real-world applications. Overall, this newly developed methodology provides a high-throughput bioinformatic pipeline for the discovery of AMP, taking advantage of the expanding genomic resources available for diverse organisms.
Collapse
Affiliation(s)
- Lizhen Guo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (L.G.); (M.T.)
- Sanya Institute of China Agricultural University, Sanya 572000, China
| | - Min Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (L.G.); (M.T.)
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (L.G.); (M.T.)
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (L.G.); (M.T.)
- Sanya Institute of China Agricultural University, Sanya 572000, China
| |
Collapse
|
10
|
Kling C, Sommer A, Almeida-Hernandez Y, Rodríguez A, Perez-Erviti JA, Bhadane R, Ständker L, Wiese S, Barth H, Pupo-Meriño M, Pulliainen AT, Sánchez-García E, Ernst K. Inhibition of Pertussis Toxin by Human α-Defensins-1 and -5: Differential Mechanisms of Action. Int J Mol Sci 2023; 24:10557. [PMID: 37445740 DOI: 10.3390/ijms241310557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Whooping cough is a severe childhood disease, caused by the bacterium Bordetella pertussis, which releases pertussis toxin (PT) as a major virulence factor. Previously, we identified the human antimicrobial peptides α-defensin-1 and -5 as inhibitors of PT and demonstrated their capacity to inhibit the activity of the PT enzyme subunit PTS1. Here, the underlying mechanism of toxin inhibition was investigated in more detail, which is essential for developing the therapeutic potential of these peptides. Flow cytometry and immunocytochemistry revealed that α-defensin-5 strongly reduced PT binding to, and uptake into cells, whereas α-defensin-1 caused only a mild reduction. Conversely, α-defensin-1, but not α-defensin-5 was taken up into different cell lines and interacted with PTS1 inside cells, based on proximity ligation assay. In-silico modeling revealed specific interaction interfaces for α-defensin-1 with PTS1 and vice versa, unlike α-defensin-5. Dot blot experiments showed that α-defensin-1 binds to PTS1 and even stronger to its substrate protein Gαi in vitro. NADase activity of PTS1 in vitro was not inhibited by α-defensin-1 in the absence of Gαi. Taken together, these results suggest that α-defensin-1 inhibits PT mainly by inhibiting enzyme activity of PTS1, whereas α-defensin-5 mainly inhibits cellular uptake of PT. These findings will pave the way for optimization of α-defensins as novel therapeutics against whooping cough.
Collapse
Affiliation(s)
- Carolin Kling
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Anja Sommer
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yasser Almeida-Hernandez
- Computational Bioengineering, Fakultät Bio- und Chemieingenieurwesen, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Armando Rodríguez
- Core Facility Functional Peptidomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Julio A Perez-Erviti
- Computational Bioengineering, Fakultät Bio- und Chemieingenieurwesen, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Rajendra Bhadane
- Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mario Pupo-Meriño
- Departamento de Bioinformática, Centro de Matemática Computacional, Universidad de las Ciencias Informáticas (UCI), Havana 19370, Cuba
| | - Arto T Pulliainen
- Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland
| | - Elsa Sánchez-García
- Computational Bioengineering, Fakultät Bio- und Chemieingenieurwesen, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
11
|
Biswas S, Sarojini S, Jayaram S, Philip I, Umesh M, Mascarenhas R, Pappuswamy M, Balasubramanian B, Arokiyaraj S. Understanding the Role of Antimicrobial Peptides in Neutrophil Extracellular Traps Promoting Autoimmune Disorders. Life (Basel) 2023; 13:1307. [PMID: 37374090 DOI: 10.3390/life13061307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
AMPs are small oligopeptides acting as integral elements of the innate immune system and are of tremendous potential in the medical field owing to their antimicrobial and immunomodulatory activities. They offer a multitude of immunomodulatory properties such as immune cell differentiation, inflammatory responses, cytokine production, and chemoattraction. Aberrancy in neutrophil or epithelial cell-producing AMPs leads to inflammation culminating in various autoimmune responses. In this review, we have tried to explore the role of prominent mammalian AMPs-defensins and cathelicidins, as immune regulators with special emphasis on their role in neutrophil extracellular traps which promotes autoimmune disorders. When complexed with self-DNA or self-RNA, AMPs act as autoantigens which activate plasmacytoid dendritic cells and myeloid dendritic cells leading to the production of interferons and cytokines. These trigger a series of self-directed inflammatory reactions, leading to the emergence of diverse autoimmune disorders. Since AMPs show both anti- and pro-inflammatory abilities in different ADs, there is a dire need for a complete understanding of their role before developing AMP-based therapy for autoimmune disorders.
Collapse
Affiliation(s)
- Soma Biswas
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Suma Sarojini
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Saranya Jayaram
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Indhu Philip
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Roseanne Mascarenhas
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Manikantan Pappuswamy
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | | | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
12
|
Flores-Alvarez LJ, Jiménez-Alcántar P, Ochoa-Zarzosa A, López-Meza JE. The Antimicrobial Peptide γ-Thionin from Habanero Chile ( Capsicum chinense) Induces Caspase-Independent Apoptosis on Human K562 Chronic Myeloid Leukemia Cells and Regulates Epigenetic Marks. Molecules 2023; 28:molecules28093661. [PMID: 37175071 PMCID: PMC10180109 DOI: 10.3390/molecules28093661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is a relevant health problem worldwide. In 2020, leukemias represented the 13th most commonly reported cancer cases worldwide but the 10th most likely to cause deaths. There has been a progressive increase in the efficacy of treatments for leukemias; however, these still generate important side effects, so it is imperative to search for new alternatives. Defensins are a group of antimicrobial peptides with activity against cancer cells. However, the cytotoxic mechanism of these peptides has been described mainly for animal defensins. This study shows that defensin γ-thionin (Capsicum chinense) is cytotoxic to the K562 leukemia cells with an IC50 = 290 μg/mL (50.26 μM) but not for human peripheral blood mononuclear cells. Results showed that γ-thionin did not affect the membrane potential; however, the peptide modified the mitochondrial membrane potential (ΔΨm) and the intracellular calcium release. In addition, γ-thionin induced apoptosis in K562 cells, but the activation of caspases 8 and 9 was not detected. Moreover, the activation of calpains was detected at one hour of treatment, suggesting that γ-thionin activates the caspase-independent apoptosis. Furthermore, the γ-thionin induced epigenetic modifications on histone 3 in K562 cells, increased global acetylation (~2-fold), and specific acetylation marks at lysine 9 (H3K9Ac) (~1.5-fold). In addition, γ-thionin increased the lysine 9 methylation (H3K9me) and dimethylation marks (H3K9me2) (~2-fold), as well as the trimethylation mark (H3K9me3) (~2-fold). To our knowledge, this is the first report of a defensin that triggers caspase-independent apoptosis in cancer cells via calpains and regulating chromatin remodelation, a novel property for a plant defensin.
Collapse
Affiliation(s)
- Luis José Flores-Alvarez
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia C.P. 58893, Mexico
| | - Paola Jiménez-Alcántar
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia C.P. 58893, Mexico
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia C.P. 58893, Mexico
| | - Joel E López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia C.P. 58893, Mexico
| |
Collapse
|
13
|
Carvajal RI, Silva-Mieres F, Ilabaca A, Rocha J, Arellano-Arriagada L, Zuniga Arbalti FA, García-Cancino A. Isolation and characterization of Lactobacillus casei A14.2, a strain with immunomodulating activity on Apis mellifera. Saudi J Biol Sci 2023; 30:103612. [PMID: 36936701 PMCID: PMC10020679 DOI: 10.1016/j.sjbs.2023.103612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/07/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Considering the economic and environmental role played by bees and their present threats it is necessary to develop food supplements favoring their health. The aim of this work was to isolate and characterize an immunomodulating probiotic capable to improve the health of honeybee colonies. For this purpose, bacterial strains were isolated from Apis mellifera bees (N = 180) obtained at three apiaries. A total of 44 strains were isolated and 9 of them were identified as Lactobacillus having the capacity to grow under saccharose osmotic stress, at pH 4.0 and possessing a wide susceptibility to antibiotics. Results allowed to select two strains but finally only one of them, strain A14.2 showed a very significant immunomodulating activity. This strain increased the expression of mRNA codifying the antimicrobial peptides 24 h post-administration. We evaluated its growth kinetics under aerobic and microaerobic conditions and its survival in the presence of high concentrations of saccharose. Results demonstrated that Lactobacillus casei A14.2 strain was highly tolerant to oxygen and that it was able to adapt to saccharose enriched environments (50% and 100% w/v). Finally, L. casei A14.2 strain was administered monthly during summer and early fall to 4 honeybee colonies (2 controls and 2 treatments). The results showed a gradual sustained decrease of infestation (p < 0.05) by the pathogenic Nosema spp. but no reduction in the infestation by the mite Varroa destructor. These results suggest that the administration of this potential probiotic, may increase the resistance of honeybee colonies to infectious diseases caused by Nosema spp.
Collapse
Affiliation(s)
- Romina I. Carvajal
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
- Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Sede Concepción, Lientur 1457, Concepción 4030000, Chile
| | - Fabiola Silva-Mieres
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
- Millennium Institute on Immunology and Immunotherapy. Laboratory of Integrative Biology (LIBi), Center for Excellence in Translational Medicine (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - Alejandra Ilabaca
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
| | - Jorge Rocha
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
| | - Luciano Arellano-Arriagada
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
| | - Felipe A. Zuniga Arbalti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
| | - Apolinaria García-Cancino
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
| |
Collapse
|
14
|
Applications of antimicrobial peptides (AMPs) as an alternative to antibiotic use in aquaculture: a mini-review. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
The use of antibiotics for the control of infections has not only been banned by FDA for use in food-producing animals, but also several countries have prohibited their use in aquaculture because of several reasons such as the occurrence of antibiotic-tolerant microorganisms, accumulation of antibiotic residues in fish and shrimp flesh, and aquatic environmental effluence concerns. These issues have led researchers and aquaculture scientists to conduct several studies to find antibiotic alternatives. Numerous substitutes have been evaluated, such as probiotics, synbiotics, prebiotics, postbiotics, phytogenics, essential oils, and several others. Results show that these supplements demonstrate proven efficacy in enhancing immune responses, reducing mortalities resulting from experimental infections, and reducing antibiotic usage in medicated aquafeed. Nonetheless, using antimicrobial peptides (AMPs) to control fish diseases and be used as antibiotic alternatives is a promising and interesting research topic. AMPs are a vital class of small peptides that could stimulate the innate immune system against challenging pathogens and also possess significant potent defensive responses against a variety of infectious and non-infectious pathogenic agents, including bacteria, parasites, fungi, and viruses. Regarding their source origin, AMPs can be classified into six main types: mammalian-, amphibian-, insect-, aquatic-, plant-, and microorganism-derived AMPs. On account of their unique structure, they can display an essential function in therapeutic strategies against infectious diseases affecting fish and shrimp. Reports showed several kinds of AMPs had a wide spectrum of antimicrobial properties. These effects are besides their prominent immunostimulatory functions. Thus, they may be considered a functional alternative to antibiotics in aquaculture. This article provides information on the current knowledge about the modes of action, sources, classification, functions, and potential applications for the development of aquatic animal health. The information included in this context will be valuable to enhance the sustainability of aquaculture.
Collapse
|
15
|
Li M, Xin D, Gao J, Yi Q, Yuan J, Bao Y, Gong Y. The protective effect of URP20 on ocular Staphylococcus aureus and Escherichia coli infection in rats. BMC Ophthalmol 2022; 22:517. [PMID: 36585631 PMCID: PMC9801630 DOI: 10.1186/s12886-022-02752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Infectious keratitis, a medical emergency with acute and rapid disease progression may lead to severe visual impairment and even blindness. Herein, an antimicrobial polypeptide from Crassostrea hongkongensis, named URP20, was evaluated for its therapeutic efficacy against keratitis caused by Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) infection in rats, respectively. METHODS A needle was used to scratch the surface of the eyeballs of rats and infect them with S. aureus and E.coli to construct a keratitis model. The two models were treated by giving 100 μL 100 μM URP20 drops. Positive drugs for S. aureus and E. coli infection were cefazolin eye drops and tobramycin eye drops, respectively. For the curative effect, the formation of blood vessels in the fundus was observed by a slit lamp (the third day). At the end of the experiment, the condition of the injured eye was photographed by cobalt blue light using 5 μL of 1% sodium fluorescein. The pathological damage to corneal tissues was assessed using hematoxylin-eosin staining, and the expression level of vascular endothelial growth factor (VEGF) was detected by immunohistochemistry. RESULTS URP20 alleviated the symptoms of corneal neovascularization as observed by slit lamp and cobalt blue lamp. The activity of S. aureus and E.coli is inhibited by URP20 to protect corneal epithelial cells and reduce corneal stromal bacterial invasion. It also prevented corneal thickening and inhibited neovascularization by reducing VEGF expression at the cornea. CONCLUSION URP20 can effectively inhibit keratitis caused by E.coli as well as S. aureus in rats, as reflected by the inhibition of corneal neovascularization and the reduction in bacterial damage to the cornea.
Collapse
Affiliation(s)
- Meng Li
- grid.203507.30000 0000 8950 5267School of Medicine, Ningbo University, Ningbo, 315042 China ,Department of Ophtalmology, Ningbo Eye Hospital, Ningbo, 315042 China
| | - Danli Xin
- Department of Ophtalmology, Ningbo Eye Hospital, Ningbo, 315042 China
| | - Jian Gao
- Department of Ophtalmology, Ningbo Eye Hospital, Ningbo, 315042 China
| | - Quanyong Yi
- Department of Ophtalmology, Ningbo Eye Hospital, Ningbo, 315042 China
| | - Jianshu Yuan
- Department of Ophtalmology, Ningbo Eye Hospital, Ningbo, 315042 China
| | - Yongbo Bao
- grid.413076.70000 0004 1760 3510College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100 China
| | - Yan Gong
- Department of Ophtalmology, Ningbo Eye Hospital, Ningbo, 315042 China ,grid.203507.30000 0000 8950 5267Department of Ophtalmology, Medical College of Ningbo University, Ningbo Eye Hospital, No. 599, Beiming Cheng Road, Yinzhou District, Ningbo, 315042 China
| |
Collapse
|
16
|
Ramírez Thomé S, Ávila Curiel B, Hernández Huerta MT, Solórzano Mata C. β-defensinas como posibles indicadores de la actividad inflamatoria en la enfermedad periodontal. INVESTIGACIÓN CLÍNICA 2022. [DOI: 10.54817/ic.v63n4a08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Periodontal disease (gingivitis and periodontitis) is an inflam-matory process caused by the activity of pathogenic bacteria and their products on the gingival sulcus, with the consequent activation of the immune response. Saliva and crevicular fluid contain a wide variety of enzymes and antimicrobial factors that are in contact with the supragingival and subgingival region, in-cluding β-defensins (hBDs). hHBDs are non-glycosylated, cysteine-rich cationic peptides produced by epithelial cells with antimicrobial and immunoregulatory effects, thus contributing to maintaining homeostasis in periodontal tissues. The changes in the microbiota and the immune response from a healthy peri-odontium to gingivitis and, finally, to periodontitis are complex. Their sever-ity depends on a dynamic balance between bacteria associated with plaque, genetic and environmental factors. Recent advances have made it possible to understand the implication of hBDs in the detection, diagnosis, and therapy of periodontal disease and the relationship between periodontitis and other inflammatory conditions. This review aims to describe the effect of hBDs on the immune response and its use as a possible marker of the inflammatory activity of the periodontal disease.
Collapse
Affiliation(s)
- Saira Ramírez Thomé
- Facultad de Odontología. Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
| | | | | | - Carlos Solórzano Mata
- Facultad de Odontología. Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
| |
Collapse
|
17
|
Naiel MAE, Abd El-Hack ME, Patra AK. The Role of Antimicrobial Peptides (AMPs) in Aquaculture Farming. ANTIBIOTIC ALTERNATIVES IN POULTRY AND FISH FEED 2022:215-234. [DOI: 10.2174/9789815049015122010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Antimicrobial peptides (AMPs) are the vital constituents that stimulate the
innate immune defense system against pathogens and perform several biological
activities, which provide the first defensive line against infectious diseases. Owing to
their unique structure, they can be utilized as a therapeutic strategy for infectious
diseases in fishes. Several kinds of AMPs are reported in fishes with broad-spectrum
antimicrobial properties. Besides, the bacterial cells cannot develop resistance strains
against these cationic compounds with low molecular weight. Thus, AMPs may be
considered an alternative to antibiotics to prevent or control infectious diseases in
aquaculture. It is essential to provide sufficient knowledge about the mode of action of
AMPs against fish pathogenic agents and their future applications.
Collapse
Affiliation(s)
| | | | - Amlan Kumar Patra
- West Bengal University of Animal and Fishery Sciences,Department of Animal Nutrition,Kolkata,India
| |
Collapse
|
18
|
Identification of antiviral peptide inhibitors for receptor binding domain of SARS-CoV-2 omicron and its sub-variants: an in-silico approach. 3 Biotech 2022; 12:198. [PMID: 35923684 PMCID: PMC9342843 DOI: 10.1007/s13205-022-03258-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/08/2022] [Indexed: 11/01/2022] Open
Abstract
Omicron, a variant of concern (VOC) of SARS-CoV-2, emerged in South Africa in November 2021. Omicron has been continuously acquiring a series of new mutations, especially in the spike (S) protein that led to high infectivity and transmissibility. Peptides targeting the receptor-binding domain (RBD) of the spike protein by which omicron and its variants attach to the host receptor, angiotensin-converting enzyme (ACE2) can block the viral infection at the first step. This study aims to identify antiviral peptides from the Antiviral peptide database (AVPdb) and HIV-inhibitory peptide database (HIPdb) against the RBD of omicron by using a molecular docking approach. The lead RBD binder peptides obtained through molecular docking were screened for allergenicity and physicochemical criteria (isoelectric point (pI) and net charge) required for peptide-based drugs. The binding affinity of the best five peptide inhibitors with the RBD of omicron was validated further by molecular dynamics (MD) simulation. Our result introduces five antiviral peptides, including AVP1056, AVP1059, AVP1225, AVP1801, and HIP755, that may effectively hinder omicron-host interactions. It is worth mentioning that all the three major sub-variants of omicron, BA.1 (B.1.1.529.1), BA.2 (B.1.1.529.2), and BA.3 (B.1.1.529.3), exhibits conserved ACE-2 interacting residues. Hence, the screened antiviral peptides with similar affinity can also interrupt the RBD-mediated invasion of different major sub-variants of omicron. Altogether, these peptides can be considered in the peptide-based therapeutics development for omicron treatment after further experimentation. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03258-4.
Collapse
|
19
|
Ernst K. Novel Strategies to Inhibit Pertussis Toxin. Toxins (Basel) 2022; 14:187. [PMID: 35324684 PMCID: PMC8951090 DOI: 10.3390/toxins14030187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
Pertussis, also known as whooping cough, is a respiratory disease caused by infection with Bordetella pertussis, which releases several virulence factors, including the AB-type pertussis toxin (PT). The characteristic symptom is severe, long-lasting paroxysmal coughing. Especially in newborns and infants, pertussis symptoms, such as leukocytosis, can become life-threatening. Despite an available vaccination, increasing case numbers have been reported worldwide, including Western countries such as Germany and the USA. Antibiotic treatment is available and important to prevent further transmission. However, antibiotics only reduce symptoms if administered in early stages, which rarely occurs due to a late diagnosis. Thus, no causative treatments against symptoms of whooping cough are currently available. The AB-type protein toxin PT is a main virulence factor and consists of a binding subunit that facilitates transport of an enzyme subunit into the cytosol of target cells. There, the enzyme subunit ADP-ribosylates inhibitory α-subunits of G-protein coupled receptors resulting in disturbed cAMP signaling. As an important virulence factor associated with severe symptoms, such as leukocytosis, and poor outcomes, PT represents an attractive drug target to develop novel therapeutic strategies. In this review, chaperone inhibitors, human peptides, small molecule inhibitors, and humanized antibodies are discussed as novel strategies to inhibit PT.
Collapse
Affiliation(s)
- Katharina Ernst
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
20
|
Bodahl S, Cerps S, Uller L, Nilsson BO. LL-37 and Double-Stranded RNA Synergistically Upregulate Bronchial Epithelial TLR3 Involving Enhanced Import of Double-Stranded RNA and Downstream TLR3 Signaling. Biomedicines 2022; 10:biomedicines10020492. [PMID: 35203701 PMCID: PMC8962275 DOI: 10.3390/biomedicines10020492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
The human host defense peptide LL-37 influences double-stranded RNA signaling, but this process is not well understood. Here, we investigate synergistic actions of LL-37 and synthetic double-stranded RNA (poly I:C) on toll-like receptor 3 (TLR3) expression and signaling, and examine underlying mechanisms. In bronchial epithelial BEAS-2B cells, LL-37 potentiated poly I:C-induced TLR3 mRNA and protein expression demonstrated by qPCR and Western blot, respectively. Interestingly, these effects were associated with increased uptake of rhodamine-tagged poly I:C visualized by immunocytochemistry. The LL-37/poly I:C-induced upregulation of TLR3 mRNA expression was prevented by the endosomal acidification inhibitor chloroquine, indicating involvement of downstream TLR3 signaling. The glucocorticoid dexamethasone reduced LL-37/poly I:C-induced TLR3 expression on both mRNA and protein levels, and this effect was associated with increased IκBα protein expression, suggesting that dexamethasone acts via attenuation of NF-κB activity. We conclude that LL-37 potentiates poly I:C-induced upregulation of TLR3 through a mechanism that may involve enhanced import of poly I:C and that LL-37/poly I:C-induced TLR3 expression is associated with downstream TLR3 signaling and sensitive to inhibition of NF-κB activity.
Collapse
|
21
|
Răileanu M, Lonetti B, Serpentini CL, Goudounèche D, Gibot L, Bacalum M. Encapsulation of a cationic antimicrobial peptide into self-assembled polyion complex nano-objects enhances its antitumor properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Sandstedt J, Vukusic K, Rekabdar E, Dellgren G, Jeppsson A, Mattsson Hultén L, Rotter Sopasakis V. Markedly reduced myocardial expression of γ-protocadherins and long non-coding RNAs in patients with heart disease. Int J Cardiol 2021; 344:149-159. [PMID: 34592247 DOI: 10.1016/j.ijcard.2021.09.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Adverse cardiac remodeling and tissue damage following heart disease is strongly associated with chronic low grade inflammation. The mechanisms underlying persisting inflammatory signals are not fully understood, but may involve defective and/or non-responsive transcriptional and post-transcriptional regulatory mechanisms. In the current study, we aimed to identify novel mediators and pathways involved in processes associated with inflammation in the development and maintenance of cardiac disease. METHODS AND RESULTS We performed RNA sequencing analysis of cardiac tissue from patients undergoing coronary artery bypass grafting (CABG) or aortic valve replacement (AVR) and compared with control tissue from multi-organ donors. Our results confirmed previous findings of a marked upregulated inflammatory state, but more importantly, we found pronounced reduction of non-protein coding genes, particularly long non-coding RNAs (lncRNA), including several lncRNAs known to be associated with inflammation and/or cardiovascular disease. In addition, Gene Set Enrichment Analysis revealed markedly downregulated microRNA pathways, resulting in aberrant expression of other genes, particularly γ-protocadherins. CONCLUSIONS Our data suggest that aberrant expression of non-coding gene regulators comprise crucial keys in the progression of heart disease, and may be pivotal for chronic low grade inflammation associated with cardiac dysfunction. By unmasking atypical γ-protocadherin expression as a prospective genetic biomarker of myocardial dysfunction, our study provides new insight into the complex molecular framework of heart disease. Creating new approaches to modify non-coding gene regulators, such as those identified in the current study, may define novel strategies to shift γ-protocadherin expression, thereby normalizing part of the molecular architecture associated with heart disease.
Collapse
Affiliation(s)
- Joakim Sandstedt
- Department of Clinical Chemistry, Sahlgrenska University Hospital and Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Kristina Vukusic
- Department of Clinical Chemistry, Sahlgrenska University Hospital and Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Elham Rekabdar
- Genomics Core Facility, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Göran Dellgren
- Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden; Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Anders Jeppsson
- Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden; Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Lillemor Mattsson Hultén
- Department of Clinical Chemistry, Sahlgrenska University Hospital and Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Victoria Rotter Sopasakis
- Department of Clinical Chemistry, Sahlgrenska University Hospital and Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden.
| |
Collapse
|
23
|
Beadell BA, Chieng A, Parducho KR, Dai Z, Ho SO, Fujii G, Wang Y, Porter E. Nano- and Macroscale Imaging of Cholesterol Linoleate and Human Beta Defensin 2-Induced Changes in Pseudomonas aeruginosa Biofilms. Antibiotics (Basel) 2021; 10:antibiotics10111279. [PMID: 34827217 PMCID: PMC8615053 DOI: 10.3390/antibiotics10111279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
The biofilm production of Pseudomonas aeruginosa (PA) is central to establishing chronic infection in the airways in cystic fibrosis. Epithelial cells secrete an array of innate immune factors, including antimicrobial proteins and lipids, such as human beta defensin 2 (HBD2) and cholesteryl lineolate (CL), respectively, to combat colonization by pathogens. We have recently shown that HBD2 inhibits biofilm production by PA, possibly linked to interference with the transport of biofilm precursors. Considering that both HBD2 and CL are increased in airway fluids during infection, we hypothesized that CL synergizes with HBD2 in biofilm inhibition. CL was formulated in phospholipid-based liposomes (CL-PL). As measured by atomic force microscopy of single bacteria, CL-PL alone and in combination with HBD2 significantly increased bacterial surface roughness. Additionally, extracellular structures emanated from untreated bacterial cells, but not from cells treated with CL-PL and HBD2 alone and in combination. Crystal violet staining of the biofilm revealed that CL-PL combined with HBD2 effected a significant decrease of biofilm mass and increased the number of larger biofilm particles consistent with altered cohesion of formed biofilms. These data suggest that CL and HBD2 affect PA biofilm formation at the single cell and community-wide level and that the community-wide effects of CL are enhanced by HBD2. This research may inform future novel treatments for recalcitrant infections in the airways of CF patients.
Collapse
Affiliation(s)
- Brent A. Beadell
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA; (B.A.B.); (K.R.P.)
| | - Andy Chieng
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032, USA; (A.C.); (Y.W.)
| | - Kevin R. Parducho
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA; (B.A.B.); (K.R.P.)
| | - Zhipeng Dai
- Molecular Express, Inc., Rancho Dominguez, CA 90220, USA; (Z.D.); (S.O.H.); (G.F.)
| | - Sam On Ho
- Molecular Express, Inc., Rancho Dominguez, CA 90220, USA; (Z.D.); (S.O.H.); (G.F.)
| | - Gary Fujii
- Molecular Express, Inc., Rancho Dominguez, CA 90220, USA; (Z.D.); (S.O.H.); (G.F.)
| | - Yixian Wang
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032, USA; (A.C.); (Y.W.)
| | - Edith Porter
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA 90032, USA; (B.A.B.); (K.R.P.)
- Correspondence: ; Tel.: +1-323-343-6353
| |
Collapse
|
24
|
Zhang M, Cao M, Xiu Y, Fu Q, Yang N, Su B, Li C. Identification of Antimicrobial Peptide Genes in Black Rockfish Sebastes schlegelii and Their Responsive Mechanisms to Edwardsiella tarda Infection. BIOLOGY 2021; 10:1015. [PMID: 34681113 PMCID: PMC8533284 DOI: 10.3390/biology10101015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023]
Abstract
The black rockfish, Sebastes schlegelii, is a typical viviparous teleost, which belongs to the family Scorpaenidae. Due to its high economic and ecological values, S. schlegelii has been widely cultured in East Asian countries. With the enlargement of cultivation scale, bacterial and viral diseases have become the main threats to the farming industry of S. schlegelii, which have resulted in significant economic losses. In this study, Illumina shotgun sequencing, single-molecule real-time (SMRT) sequencing, 10× genomics and high-throughput chromosome conformation capture (Hi-C) technologies were collectively applied to assemble the genome of S. schlegelii. Then, we identified the antimicrobial peptide genes (AMPs) in the S. schlegelii genome. In total, 214 AMPs were identified in the S. schlegelii genome, which can be divided into 33 classes according to the annotation and cataloging of the Antimicrobial Peptides Database (APD3). Among these AMPs, thrombin-derived C-terminal peptide (TCP) was the dominant type, followed by RegIIIgamma and chemokine. The amino acid sequences of the TCP, cgUbiquitin, RegIIIalpha, RegIIIgamma, chemokine shared 32.55%, 42.63%, 29.87%, 28.09%, and 32.15% similarities among the same type in S. schlegelii. Meanwhile, the expression patterns of these AMPs in nine healthy tissues and at different infection time points in intestine were investigated. The results showed that the numbers and types of AMPs that responded to Edwardsiella tarda infection gradually increased as the infection progressed. In addition, we analyzed the phylogenetic relationships of hepcidins in teleost. The identification of AMPs based on the whole genome could provide a comprehensive database of potential AMPs, and benefit for the understanding of the molecular mechanisms of immune responses to E. tarda infection in S. schlegelii. This would further offer insights into an accurate and effective design and development of AMP for aquaculture therapy in the future.
Collapse
Affiliation(s)
- Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (M.C.); (Y.X.); (Q.F.); (N.Y.)
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (M.C.); (Y.X.); (Q.F.); (N.Y.)
| | - Yunji Xiu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (M.C.); (Y.X.); (Q.F.); (N.Y.)
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (M.C.); (Y.X.); (Q.F.); (N.Y.)
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (M.C.); (Y.X.); (Q.F.); (N.Y.)
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA;
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (M.C.); (Y.X.); (Q.F.); (N.Y.)
| |
Collapse
|
25
|
Shah JN, Guo GQ, Krishnan A, Ramesh M, Katari NK, Shahbaaz M, Abdellattif MH, Singh SK, Dua K. Peptides-based therapeutics: Emerging potential therapeutic agents for COVID-19. Therapie 2021; 77:319-328. [PMID: 34689960 PMCID: PMC8498005 DOI: 10.1016/j.therap.2021.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 is a positive-sense RNA virus and it is the causative agent of the global COVID-19 outbreak. COVID-19 is similar to the previous outbreaks for instance SARS in 2002-2003 and MERS in 2012. As the peptides have many advantages, peptide-based therapeutics might be one of the possible ways in the development of COVID-19 specific drugs. SARS-CoV-2 enters into a human via its S protein by attaching with human hACE2 present on the cell membrane in the lungs and intestines of humans. hACE2 cleaves S protein into the S1 subunit for viral attachment and the S2 subunit for fusion with the host cell membrane. The fusion mechanism forms a six-helical bundle (6-HB) structure which finally fuses the viral envelope with the host cell membrane. hACE2 based peptides such as SBP1 and Spikeplug have shown their potential as antiviral agents. S protein-hACE2 interaction and the SARS-CoV-2 fusion machinery play a crucial part in human viral infection. It is evident that if these interactions could be blocked successfully and efficiently, it could be the way to find the drug for COVID-19. Several peptide-based inhibitors are potent inhibitors of S protein-hACE2 interaction. Similarly, the antiviral activity of the antimicrobial peptide, lactoferrin makes it an important candidate for the COVID-19 drug development process. A candidate drug, RhACE2-APN01 based on recombinant hACE2 peptide has already entered phase II clinical trials. This review sheds light on different aspects of the feasibility of using peptide-based therapeutics as the promising therapeutic route for COVID-19.
Collapse
Affiliation(s)
- Jagat Narayan Shah
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 730000 Lanzhou, China; Department of Plant and Cell Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, 730000 Lanzhou, China
| | - Guang-Qin Guo
- Department of Plant and Cell Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, 730000 Lanzhou, China.
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, 9300 Bloemfontein, South Africa.
| | - Muthusamy Ramesh
- Department of Pharmaceutical Analysis, Omega College of Pharmacy, 501 301 Hyderabad, India
| | - Naresh Kumar Katari
- Department of Chemistry, GITAM Deemed to be University, 502329 Hyderabad, India
| | - Mohd Shahbaaz
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, 7535 Bellville, Cape Town, South Africa; Laboratory of Computational Modeling of Drugs, South Ural State University, 454080 Chelyabinsk, Russia
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Deanship of Scientific Research, Taif University, Al-Haweiah, P.O. Box 11099, 21944 Taif, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, 144411 Phagwara, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Ultimo, Australia
| |
Collapse
|
26
|
Parhi S, Pal S, Das SK, Ghosh P. Strategies toward development of antimicrobial biomaterials for dental healthcare applications. Biotechnol Bioeng 2021; 118:4590-4622. [PMID: 34599764 DOI: 10.1002/bit.27948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/19/2021] [Accepted: 09/26/2021] [Indexed: 12/25/2022]
Abstract
Several approaches for elimination of oral pathogens are being explored at the present time since oral diseases remain prevalent affecting approximately 3.5 billion people worldwide. Need for antimicrobial biomaterials in dental healthcare include but is not restricted to designing resin composites and adhesives for prevention of dental caries. Constant efforts are also being made to develop antimicrobial strategies for clearance of endodontic space prior root canal treatment and for treatment of periimplantitis and periodontitis. This article discusses various conventional and nanotechnology-based strategies to achieve antimicrobial efficacy in dental biomaterials. Recent developments in the design and synthesis of antimicrobial peptides and antifouling zwitterionic polymers to effectively lessen the risks of antimicrobial drug resistance are also outlined in this review. Further, the role of contemporary strategies such as use of smart biomaterials, ionic solvent-based biomaterials and quorum quenchers incorporated biomaterials in the elimination of dental pathogens are described in detail. Lastly, we mentioned the approach of using polymers to print custom-made three-dimensional antibacterial dental products via additive manufacturing technologies. This review provides a critical perspective on the chemical, biomimetic, and engineering strategies intended for developing antimicrobial biomaterials that have the potential to substantially improve the dental health.
Collapse
Affiliation(s)
- Shivangi Parhi
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India
| | - Sreyasi Pal
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sujoy K Das
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India.,Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Paulomi Ghosh
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, India
| |
Collapse
|
27
|
Shulman RJ, Devaraj S, Heitkemper M. Activation of the Innate Immune System in Children With Irritable Bowel Syndrome Evidenced by Increased Fecal Human β-Defensin-2. Clin Gastroenterol Hepatol 2021; 19:2121-2127. [PMID: 32961343 PMCID: PMC8041153 DOI: 10.1016/j.cgh.2020.09.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The role of the innate immune system in functional gastrointestinal pain disorders is unclear. We investigated the role of β-defensin-2 and gut permeability in childhood irritable bowel syndrome (IBS) and functional abdominal pain (FAP) symptom generation. METHODS Fecal β-defensin-2 (and in a subset, gut permeability) was measured in children with IBS (n = 116), FAP (n = 33), and healthy control (HC) children (n = 72). IBS and FAP patients were recruited from tertiary and primary care, and HCs were recruited from primary care. RESULTS β-defensin-2 concentration was greater in children with IBS (P = .003) and FAP (P = .03) than in HCs. β-defensin-2 was greater in girls with IBS than female HCs (P = .007) and in girls with IBS vs boys with IBS (P = .036). There was no difference by sex in the FAP and HC groups. For the entire cohort, β-defensin-2 correlated with multiple pain symptoms. In the IBS group, β-defensin-2 correlated with pain interference (P = .014). No correlation with pain was found in the FAP or HC group. Gut permeability was greater in the IBS vs the FAP and HC groups (P = .038). For the entire cohort, permeability correlated with the number of pain episodes (P = .041) and interfering pain episodes (P = .049). For the entire cohort there was a correlation between β-defensin-2 and permeability (P = .003), with borderline correlation in the IBS group (P = .086). For the cohort and IBS and HC groups, the number of bowel movements was modestly inversely related to fecal β-defensin-2 concentrations. CONCLUSIONS Increased fecal β-defensin-2 concentration in children with IBS suggests activation of the innate immune system in some, which, along with increased gut permeability, appears related to abdominal pain symptoms. Sex is an important variable in interpreting β-defensin-2 concentration in children with IBS.
Collapse
Affiliation(s)
- Robert J Shulman
- Department of Pediatrics; Children's Nutrition Research Center; Texas Children's Hospital; Baylor College of Medicine, Houston, Texas.
| | - Sridevi Devaraj
- Texas Children's Hospital; Baylor College of Medicine, Houston, Texas; Department of Pathology and Immunology
| | | |
Collapse
|
28
|
Weng CY, Xu JL, Sun SP, Wang KJ, Lv B. Helicobacter pylori eradication: Exploring its impacts on the gastric mucosa. World J Gastroenterol 2021; 27:5152-5170. [PMID: 34497441 PMCID: PMC8384747 DOI: 10.3748/wjg.v27.i31.5152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/14/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infects approximately 50% of all humans globally. Persistent H. pylori infection causes multiple gastric and extragastric diseases, indicating the importance of early diagnosis and timely treatment. H. pylori eradication produces dramatic changes in the gastric mucosa, resulting in restored function. Consequently, to better understand the importance of H. pylori eradication and clarify the subsequent recovery of gastric mucosal functions after eradication, we summarize histological, endoscopic, and gastric microbiota changes to assess the therapeutic effects on the gastric mucosa.
Collapse
Affiliation(s)
- Chun-Yan Weng
- Department of Gastroenterology, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Jing-Li Xu
- Department of Gastrointestinal Surgery, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Shao-Peng Sun
- Department of Gastroenterology, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Kai-Jie Wang
- Department of Gastroenterology, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Bin Lv
- Department of Gastroenterology, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
29
|
Almutairi M, Almutairi B, Almutairi M, Parine NR, Alrefaei A, Alanazi M, Semlali A. Human beta-defensin-1 rs2738047 polymorphism is associated with shisha smoking risk among Saudi population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42916-42933. [PMID: 33826097 PMCID: PMC8025738 DOI: 10.1007/s11356-021-13660-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Human β-defensin (HBD), a member of the antimicrobial peptides, is essential for respiratory epithelial cells' microbial defense, and is affected by cigarette smoking (CS). Its expression is upregulated by stimulation from microbes or inflammation. Genetic polymorphisms in the HBD-1 gene have been implicated in the development of various smoking-related diseases, including chronic obstructive pulmonary disease and asthma. Thus, we sought to analyze possible associations between HBD-1 single-nucleotide polymorphism (SNP) in HBD-1 gene and CS in ethnic Saudi Arabian subjects. Variants rs1047031 (C/T), rs1799946 (C/T), rs2738047 (C/T), and rs11362 (C/T) were investigated by genotyping 575 blood specimens from males and females, smokers/non-smokers: 288/287. The CT and CT+TT genotypes of rs1799946 presented an ~5-fold increased correlation with CS among the female smokers, compared with the female controls (OR = 5.473, P = 0.02003; and OR = 5.211, P = 0.02028, respectively), an observation similar to rs11362 SNP in female smokers, but with protective effects in TT genotype, compared with the CC reference allele (OR = 0.143, P = 0.04368). In shisha smokers, the heterozygous CT and the CT/TT genotype of rs2738047 polymorphism showed the same results with ~3-fold increased correlation with CS (OR = 2.788; P = 0.03448), compared with the cigarette smokers category. No significant association was shown in genotypic distributions and allelic frequencies of rs1047031. Further investigations, including large study samples, are required to investigate the effects of shisha on human beta-defensin expression and protein levels.
Collapse
Affiliation(s)
- Mikhlid Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia.
| | - Bader Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Narasimha Reddy Parine
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulwahed Alrefaei
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Alanazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Département de stomatologie, Faculté de Médecine Dentaire, Université Laval, Québec, Québec, Canada
| |
Collapse
|
30
|
Aidoukovitch A, Bankell E, Davies JR, Nilsson BO. Exogenous LL-37 but not homogenates of desquamated oral epithelial cells shows activity against Streptococcus mutans. Acta Odontol Scand 2021; 79:466-472. [PMID: 33687301 DOI: 10.1080/00016357.2021.1892180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The antimicrobial peptide hCAP18/LL-37 is detected in desquamated epithelial cells of human whole saliva, but the functional importance of this pool of hCAP18/LL-37 is not understood. Here, we assess the impact of homogenates of desquamated oral epithelial cells and exogenous, synthetic LL-37 on two oral bacteria: S. mutans and S. gordonii. MATERIAL AND METHODS Desquamated epithelial cells of unstimulated whole saliva were isolated and cellular and extracellular levels of hCAP18/LL-37 analyzed by ELISA. Bacterial viability was determined by BacLight Live/Dead staining and confocal laser scanning microscopy. RESULTS Desquamated oral epithelial cells harboured hCAP18/LL-37, and they spontaneously released/leaked the peptide to their medium. Exogenous, synthetic LL-37 showed cytotoxic activity against S. mutans but not S gordonii, suggesting that LL-37 acts differentially on these two types of oral bacteria. Homogenates of desquamated oral epithelial cells had no effect on S. mutans viability. Treatment with exogenous, synthetic LL-37 (8 and 10 μM) reduced S. mutans viability, whereas lower concentrations (0.1 and 1 µM) of the peptide lacked effect. CONCLUSIONS Desquamated oral epithelial cells contain hCAP18/LL-37, but their cellular levels of hCAP18/LL-37 are too low to affect S. mutans viability, whereas exogenous, synthetic LL-37 has a strong effect on these bacteria.
Collapse
Affiliation(s)
- Alexandra Aidoukovitch
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Folktandvården Skåne, Lund, Sweden
| | - Elisabeth Bankell
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Julia R. Davies
- Section for Oral Biology and Pathology, Faculty of Odontology and Biofilms – Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Bengt-Olof Nilsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
31
|
Kling C, Pulliainen AT, Barth H, Ernst K. Human Peptides α-Defensin-1 and -5 Inhibit Pertussis Toxin. Toxins (Basel) 2021; 13:toxins13070480. [PMID: 34357952 PMCID: PMC8310310 DOI: 10.3390/toxins13070480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 01/13/2023] Open
Abstract
Bordetella pertussis causes the severe childhood disease whooping cough, by releasing several toxins, including pertussis toxin (PT) as a major virulence factor. PT is an AB5-type toxin, and consists of the enzymatic A-subunit PTS1 and five B-subunits, which facilitate binding to cells and transport of PTS1 into the cytosol. PTS1 ADP-ribosylates α-subunits of inhibitory G-proteins (Gαi) in the cytosol, which leads to disturbed cAMP signaling. Since PT is crucial for causing severe courses of disease, our aim is to identify new inhibitors against PT, to provide starting points for novel therapeutic approaches. Here, we investigated the effect of human antimicrobial peptides of the defensin family on PT. We demonstrated that PTS1 enzyme activity in vitro was inhibited by α-defensin-1 and -5, but not β-defensin-1. The amount of ADP-ribosylated Gαi was significantly reduced in PT-treated cells, in the presence of α-defensin-1 and -5. Moreover, both α-defensins decreased PT-mediated effects on cAMP signaling in the living cell-based interference in the Gαi-mediated signal transduction (iGIST) assay. Taken together, we identified the human peptides α-defensin-1 and -5 as inhibitors of PT activity, suggesting that these human peptides bear potential for developing novel therapeutic strategies against whooping cough.
Collapse
Affiliation(s)
- Carolin Kling
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany; (C.K.); (H.B.)
| | - Arto T. Pulliainen
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, FI-20520 Turku, Finland;
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany; (C.K.); (H.B.)
| | - Katharina Ernst
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany; (C.K.); (H.B.)
- Correspondence:
| |
Collapse
|
32
|
Xie L, Chen Z, Guo H, Tao Y, Miao X, Wu R, Li Y. Congenital Asplenia Interrupts Immune Homeostasis and Leads to Excessive Systemic Inflammation in Zebrafish. Front Cell Infect Microbiol 2021; 11:668859. [PMID: 34262881 PMCID: PMC8274418 DOI: 10.3389/fcimb.2021.668859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022] Open
Abstract
Splenectomy or congenital asplenia in humans increases susceptibility to infections. We have previously reported that congenital asplenia in zebrafish reduces resistance to Aeromonas hydrophila infection. However, the molecular mechanism of systemic immune response in congenitally asplenic individuals is largely unexplored. In this study, we found that pro-inflammatory cytokines were more highly induced in congenitally asplenic zebrafish than wild-type after pathogenic A. hydrophila infection and lipopolysaccharide exposure. In addition, a higher aggregation of apoptotic cells was observed in congenitally asplenic zebrafish than that in wild-type. Next, we examined the transcriptome profiles of whole kidneys from wild-type and congenitally asplenic zebrafish to investigate the effects of congenital asplenia on innate and adaptive immune responses induced by the inactivated A. hydrophila. Congenital asplenia inactivated the splenic anti-inflammatory reflex, disrupted immune homeostasis, and induced excessive inflammation as evidenced by the highly induced stress response–related biological processes, inflammatory and apoptosis-associated pathways, and pro-inflammatory cytokines/chemokines in congenitally asplenic zebrafish compared with wild-type after vaccination. In addition, complement component genes (c3a.1, c3a.6, c4, c6, and c9) and several important immune-related genes (tabp.1, tap1, hamp, prg4b, nfil3, defbl1, psmb9a, tfr1a, and sae1) were downregulated in congenitally asplenic zebrafish. Furthermore, congenital asplenia impaired adaptive immunity as demonstrated by downregulation of biological processes and signaling pathways involved in adaptive immune response after vaccination in congenitally asplenic zebrafish. The expression of MHCII/IgM was also significantly reduced in the congenitally asplenic zebrafish when compared with wild-type. Together, our study provides an in-depth understanding of spleen function in controlling immune homeostasis and may offer insight into the pathological response in splenectomized or congenitally asplenic patients after infections.
Collapse
Affiliation(s)
- Lang Xie
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Zheyu Chen
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Hui Guo
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Yixi Tao
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Xiaomin Miao
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Ronghua Wu
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, China.,Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), The Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, China
| | - Yun Li
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, China.,Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), The Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, China
| |
Collapse
|
33
|
De Angelis M, Casciaro B, Genovese A, Brancaccio D, Marcocci ME, Novellino E, Carotenuto A, Palamara AT, Mangoni ML, Nencioni L. Temporin G, an amphibian antimicrobial peptide against influenza and parainfluenza respiratory viruses: Insights into biological activity and mechanism of action. FASEB J 2021; 35:e21358. [PMID: 33538061 DOI: 10.1096/fj.202001885rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/22/2022]
Abstract
Treatment of respiratory viral infections remains a global health concern, mainly due to the inefficacy of available drugs. Therefore, the discovery of novel antiviral compounds is needed; in this context, antimicrobial peptides (AMPs) like temporins hold great promise. Here, we discovered that the harmless temporin G (TG) significantly inhibited the early life-cycle phases of influenza virus. The in vitro hemagglutinating test revealed the existence of TG interaction with the viral hemagglutinin (HA) protein. Furthermore, the hemolysis inhibition assay and the molecular docking studies confirmed a TG/HA complex formation at the level of the conserved hydrophobic stem groove of HA. Remarkably, these findings highlight the ability of TG to block the conformational rearrangements of HA2 subunit, which are essential for the viral envelope fusion with intracellular endocytic vesicles, thereby neutralizing the virus entry into the host cell. In comparison, in the case of parainfluenza virus, which penetrates host cells upon a membrane-fusion process, addition of TG to infected cells provoked ~1.2 log reduction of viral titer released in the supernatant. Nevertheless, at the same condition, an immunofluorescent assay showed that the expression of viral hemagglutinin/neuraminidase protein was not significantly reduced. This suggested a peptide-mediated block of some late steps of viral replication and therefore the impairment of the extracellular release of viral particles. Overall, our results are the first demonstration of the ability of an AMP to interfere with the replication of respiratory viruses with a different mechanism of cell entry and will open a new avenue for the development of novel therapeutic approaches against a large variety of respiratory viruses, including the recent SARS-CoV2.
Collapse
Affiliation(s)
- M De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - B Casciaro
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - A Genovese
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Brancaccio
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - M E Marcocci
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - E Novellino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - A Carotenuto
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - A T Palamara
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - M L Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - L Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
34
|
Liu TC, Kern JT, Jain U, Sonnek NM, Xiong S, Simpson KF, VanDussen KL, Winkler ES, Haritunians T, Malique A, Lu Q, Sasaki Y, Storer C, Diamond MS, Head RD, McGovern DPB, Stappenbeck TS. Western diet induces Paneth cell defects through microbiome alterations and farnesoid X receptor and type I interferon activation. Cell Host Microbe 2021; 29:988-1001.e6. [PMID: 34010595 DOI: 10.1016/j.chom.2021.04.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Intestinal Paneth cells modulate innate immunity and infection. In Crohn's disease, genetic mutations together with environmental triggers can disable Paneth cell function. Here, we find that a western diet (WD) similarly leads to Paneth cell dysfunction through mechanisms dependent on the microbiome and farnesoid X receptor (FXR) and type I interferon (IFN) signaling. Analysis of multiple human cohorts suggests that obesity is associated with Paneth cell dysfunction. In mouse models, consumption of a WD for as little as 4 weeks led to Paneth cell dysfunction. WD consumption in conjunction with Clostridium spp. increased the secondary bile acid deoxycholic acid levels in the ileum, which in turn inhibited Paneth cell function. The process required excess signaling of both FXR and IFN within intestinal epithelial cells. Our findings provide a mechanistic link between poor diet and inhibition of gut innate immunity and uncover an effect of FXR activation in gut inflammation.
Collapse
Affiliation(s)
- Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Justin T Kern
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Umang Jain
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Naomi M Sonnek
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Shanshan Xiong
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Katherine F Simpson
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kelli L VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Talin Haritunians
- The F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Atika Malique
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Qiuhe Lu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Chad Storer
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Richard D Head
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Dermot P B McGovern
- The F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles 90048, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
35
|
Wu M, Zhu KC, Guo HY, Guo L, Liu B, Jiang SG, Zhang DC. Characterization, expression and function analysis of the TLR3 gene in golden pompano (Trachinotus ovatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103977. [PMID: 33340590 DOI: 10.1016/j.dci.2020.103977] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Toll-like receptors (TLRs)are pattern recognition receptors (PRRs) that are important in invertebrate innate immunity for the recognition and elimination of pathogens. Although they were reported in many fishes, Toll-like receptors subfamily contain a large number of members with different functions that need to research in deep. In the present study, the full-length cDNA of TLR3 from the golden pompano, Trachinotus ovatus, was cloned and characterized. The full length of ToTLR3 cDNA was 3710 bp including an open reading frame of 2760 bp encoding a peptide of 919 amino acids. The derived amino acids sequence comprised of 14 leucine-rich repeats (LRR), capped with LRRCT followed by transmembrane domain and cytoplasmic Toll/IL-1R domain (TIR). Multiple sequence alignment and phylogenetic analysis revealed that ToTLR3 shared the highest similarity to the teleost fish and suggested ToTLR3 is fairly conservative in evolution process. Tissues distribution analysis indicated that ToTLR3 showed a tissue-specific variation with high expression in blood and liver. After the fish were stimulated by poly(I:C), flagellin and LPS, ToTLR3 expression in the liver, intestine, blood, kidney, skin and muscle was significantly upregulated in a time-depended manner, especially in immune related tissues such as liver, blood and kidney. Binding assay revealed the specificity of rToTLR3 for pathogen-associated molecular patterns (PAMPs) and bacteria that included Vibrio harveyi, V. vulnificus, V. anguillarum, Photobacterium damselae, Escherichia coli, Aeromonas hydrophila, Staphylococcus aureus and PolyI:C, LPS, Flagellin, and PGN. In addition, a luciferase reporter assay showed that overexpression ToTLR3 significantly increased NF-κB activity. Collectively, our results suggested that ToTLR3 might play an important role as a pattern recognition receptor (PRR) in the immune response towards pathogen infections, and transmiss the danger signal to downstream signaling pathways.
Collapse
Affiliation(s)
- Meng Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 572018 Sanya, Hainan Province, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 572018 Sanya, Hainan Province, China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 572018 Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, Guangdong Province, China
| | - Bo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 572018 Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, 572018, Sanya, Hainan Province, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 572018 Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, 572018, Sanya, Hainan Province, China.
| |
Collapse
|
36
|
Woodby B, Pambianchi E, Ferrara F, Therrien JP, Pecorelli A, Messano N, Lila MA, Valacchi G. Cutaneous antimicrobial peptides: New "actors" in pollution related inflammatory conditions. Redox Biol 2021; 41:101952. [PMID: 33839421 PMCID: PMC8059092 DOI: 10.1016/j.redox.2021.101952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
Ozone (O3) exposure has been reported to contribute to various cutaneous inflammatory conditions, such as eczema, psoriasis, rush etc. via a redox-inflammatory pathway. O3 is too reactive to penetrate cutaneous tissue; it interacts with lipids present in the outermost layer of skin, resulting in formation of oxidized molecules and hydrogen peroxide (H2O2). Interestingly, several inflammatory skin pathologies demonstrate altered levels of antimicrobial peptides (AMPs). These small, cationic peptides are found in various cells, including keratinocytes, eccrine gland cells, and seboctyes. Classically, AMPs function as antimicrobial agents. Recent studies indicate that AMPs also play roles in inflammation, angiogenesis, and wound healing. Since altered levels of AMPs have been detected in pollution-associated skin pathologies, we hypothesized that exposure to O3 could affect the levels of AMPs in the skin. We examined levels of AMPs using qRT-PCR, Western blotting, and immunofluorescence in vitro (human keratinocytes), ex vivo (human skin explants), and in vivo (human volunteer subjects exposed to O3) and observed increased levels of all the measured AMPs upon O3 exposure. In addition, in vitro studies have confirmed the redox regulation of AMPs in keratinocytes. This novel finding suggests that targeting AMPs could be a possible defensive strategy to combat pollution-associated skin conditions. AMPs (hBDs1-3, CAMP) increase in O3 exposed human skin by a redox mechanism. Transcriptional upregulation of AMPs in response to O3 exposure is due to an altered redox status. Pollution increase AMPs could be the connection between pollution exposure and the development/exacerbation of inflammatory skin conditions.
Collapse
Affiliation(s)
- Brittany Woodby
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA
| | - Erika Pambianchi
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA
| | - Francesca Ferrara
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Alessandra Pecorelli
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA
| | - Nicolo' Messano
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA
| | - Mary Ann Lila
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA
| | - Giuseppe Valacchi
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; JP Therrien Consulting, LLC, USA; Kyung Hee University, Department of Food and Nutrition, South Korea.
| |
Collapse
|
37
|
Nowak A, Szczuka D, Górczyńska A, Motyl I, Kręgiel D. Characterization of Apis mellifera Gastrointestinal Microbiota and Lactic Acid Bacteria for Honeybee Protection-A Review. Cells 2021; 10:cells10030701. [PMID: 33809924 PMCID: PMC8004194 DOI: 10.3390/cells10030701] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Numerous honeybee (Apis mellifera) products, such as honey, propolis, and bee venom, are used in traditional medicine to prevent illness and promote healing. Therefore, this insect has a huge impact on humans’ way of life and the environment. While the population of A. mellifera is large, there is concern that widespread commercialization of beekeeping, combined with environmental pollution and the action of bee pathogens, has caused significant problems for the health of honeybee populations. One of the strategies to preserve the welfare of honeybees is to better understand and protect their natural microbiota. This paper provides a unique overview of the latest research on the features and functioning of A. mellifera. Honeybee microbiome analysis focuses on both the function and numerous factors affecting it. In addition, we present the characteristics of lactic acid bacteria (LAB) as an important part of the gut community and their special beneficial activities for honeybee health. The idea of probiotics for honeybees as a promising tool to improve their health is widely discussed. Knowledge of the natural gut microbiota provides an opportunity to create a broad strategy for honeybee vitality, including the development of modern probiotic preparations to use instead of conventional antibiotics, environmentally friendly biocides, and biological control agents.
Collapse
Affiliation(s)
- Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
- Correspondence:
| | - Daria Szczuka
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Anna Górczyńska
- Faculty of Law and Administration, University of Lodz, Kopcińskiego 8/12, 90-232 Łódź, Poland;
| | - Ilona Motyl
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| |
Collapse
|
38
|
Adlakha S, Sharma A, Vaghasiya K, Ray E, Verma RK. Inhalation Delivery of Host Defense Peptides (HDP) using Nano- Formulation Strategies: A Pragmatic Approach for Therapy of Pulmonary Ailments. Curr Protein Pept Sci 2021; 21:369-378. [PMID: 31889487 DOI: 10.2174/1389203721666191231110453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/16/2019] [Accepted: 10/05/2019] [Indexed: 01/15/2023]
Abstract
Host defense peptides (HDP) are small cationic molecules released by the immune systems of the body, having multidimensional properties including anti-inflammatory, anticancer, antimicrobial and immune-modulatory activity. These molecules gained importance due to their broad-spectrum pharmacological activities, and hence being actively investigated. Presently, respiratory infections represent a major global health problem, and HDP has an enormous potential to be used as an alternative therapeutics against respiratory infections and related inflammatory ailments. Because of their short half-life, protease sensitivity, poor pharmacokinetics, and first-pass metabolism, it is challenging to deliver HDP as such inside the physiological system in a controlled way by conventional delivery systems. Many HDPs are efficacious only at practically high molar-concentrations, which is not convincing for the development of drug regimen due to their intrinsic detrimental effects. To avail the efficacy of HDP in pulmonary diseases, it is essential to deliver an appropriate payload into the targeted site of lungs. Inhalable HDP can be a potentially suitable alternative for various lung disorders including tuberculosis, Cystic fibrosis, Pneumonia, Lung cancer, and others as they are active against resistant microbes and cells and exhibit improved targeting with reduced adverse effects. In this review, we give an overview of the pharmacological efficacy of HDP and deliberate strategies for designing inhalable formulations for enhanced activity and issues related to their clinical implications.
Collapse
Affiliation(s)
- Suneera Adlakha
- Institute of Nano Science and Technology (INST), Phase-10, Mohali, Punjab 160062, India
| | - Ankur Sharma
- Institute of Nano Science and Technology (INST), Phase-10, Mohali, Punjab 160062, India
| | - Kalpesh Vaghasiya
- Institute of Nano Science and Technology (INST), Phase-10, Mohali, Punjab 160062, India
| | - Eupa Ray
- Institute of Nano Science and Technology (INST), Phase-10, Mohali, Punjab 160062, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Phase-10, Mohali, Punjab 160062, India
| |
Collapse
|
39
|
Bankell E, Dahl S, Gidlöf O, Svensson D, Nilsson BO. LL-37-induced caspase-independent apoptosis is associated with plasma membrane permeabilization in human osteoblast-like cells. Peptides 2021; 135:170432. [PMID: 33129893 DOI: 10.1016/j.peptides.2020.170432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 11/20/2022]
Abstract
The host defense peptide LL-37 is active against both gram-positive and gram-negative bacteria, but it has also been shown to reduce human host cell viability. However, the mechanisms behind LL-37-induced human host cell cytotoxicity are not yet fully understood. Here, we assess if LL-37-evoked attenuation of human osteoblast-like MG63 cell viability is associated with apoptosis, and if the underlying mechanism may involve LL-37-induced plasma membrane permeabilization. MG63 cell viability and plasma membrane permeabilization were investigated by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and by measuring lactate dehydrogenase (LDH) release, respectively. Apoptosis was assessed by the terminal deoxynucleotidyl dUTP nick end labeling (TUNEL) assay and Annexin V flow cytometry, and caspase-3 and poly (ADP-ribose) polymerase (PARP) cleavage were determined by Western blot. LL-37 (4 and 10 μM) reduced both cell number and cell viability, and these effects were associated with a pro-apoptotic effect demonstrated by positive TUNEL staining and Annexin V flow cytometry. LL-37-induced apoptosis was not coupled to either caspase-3 or PARP cleavage, suggesting that LL-37 causes caspase-independent apoptosis in MG63 cells. Both LL-37 and the well-known plasma membrane permeabilizer Triton X-100 reduced cell viability and stimulated LDH release. Triton X-100-treated cells showed positive TUNEL staining, and the detergent accumulated cells in late apoptosis/necrosis. Similar to LL-37, Triton X-100 caused no PARP cleavage. We conclude that LL-37 promotes caspase-independent apoptosis, and that this effect seems coupled to plasma membrane permeabilization in human MG63 cells.
Collapse
Affiliation(s)
- Elisabeth Bankell
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sara Dahl
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Olof Gidlöf
- Department of Cardiology, Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Daniel Svensson
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Bengt-Olof Nilsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
40
|
Nilsson BO. Mechanisms involved in regulation of periodontal ligament cell production of pro-inflammatory cytokines: Implications in periodontitis. J Periodontal Res 2020; 56:249-255. [PMID: 33305420 PMCID: PMC7984126 DOI: 10.1111/jre.12823] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
It is well recognized that human periodontal ligament cells (PDL cells) may represent local immune cells of the periodontal tissues. However, it is unclear whether they represent “true” immune cells, since they can produce pro‐inflammatory cytokines not only after stimulation with bacterial lipopolysaccharides but also in response to other stimuli such as mechanical stress. Stimulation with bacterial lipopolysaccharides strongly enhances PDL cell production of pro‐inflammatory cytokines through activation of toll‐like receptors and NF‐κB signaling. Less information is available regarding putative modulators of cytokine production and their mechanisms of action in PDL cells. The anti‐inflammatory glucocorticoid dexamethasone reduces lipopolysaccharide‐induced PDL cell production of cytokines. Recent observations show that vitamin D and the antimicrobial peptide LL‐37 antagonize lipopolysaccharide‐stimulated PDL cell production of pro‐inflammatory cytokines. Secretory leukocyte protease inhibitor is endogenously expressed by PDL cells, and this protein negatively regulates PDL cell‐evoked cytokine production. More information and knowledge about the regulation of PDL cell production of cytokines may clarify the role of PDL cells in oral innate immunity and their importance in periodontitis.
Collapse
Affiliation(s)
- Bengt-Olof Nilsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
41
|
Eller CH, Raines RT. Antimicrobial Synergy of a Ribonuclease and a Peptide Secreted by Human Cells. ACS Infect Dis 2020; 6:3083-3088. [PMID: 33054163 DOI: 10.1021/acsinfecdis.0c00594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
LL-37 is a secretory peptide that has antimicrobial activity. Ribonuclease 1 (RNase 1) is a secretory enzyme that is not cytotoxic. We find that human LL-37 and human RNase 1 can act synergistically to kill Gram-negative bacterial cells. In the presence of nontoxic concentrations of LL-37, RNase 1 is toxic to Escherichia coli cells at picomolar levels. Using wild-type RNase 1 and an inactive variant labeled with a fluorophore, we observe the adherence of RNase 1 to E. coli cells and its cellular entry in the presence of LL-37. These data suggest a natural means of modulating the human microbiome via the cooperation of an endogenous peptide (37 residues) and small enzyme (128 residues).
Collapse
Affiliation(s)
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
42
|
Levin A, Hakala TA, Schnaider L, Bernardes GJL, Gazit E, Knowles TPJ. Biomimetic peptide self-assembly for functional materials. Nat Rev Chem 2020. [DOI: 10.1038/s41570-020-0215-y] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
43
|
Antimicrobial Peptide TP4 Targets Mitochondrial Adenine Nucleotide Translocator 2. Mar Drugs 2020; 18:md18080417. [PMID: 32784874 PMCID: PMC7459631 DOI: 10.3390/md18080417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/26/2022] Open
Abstract
Tilapia piscidin (TP) 4 is an antimicrobial peptide derived from Nile tilapia (Oreochromis niloticus), which shows broad-spectrum antibacterial activity and excellent cancer-killing ability in vitro and in vivo. Like many other antimicrobial peptides, TP4 treatment causes mitochondrial toxicity in cancer cells. However, the molecular mechanisms underlying TP4 targeting of mitochondria remain unclear. In this study, we used a pull-down assay on A549 cell lysates combined with LC-MS/MS to discover that TP4 targets adenine nucleotide translocator (ANT) 2, a protein essential for adenine nucleotide exchange across the inner membrane. We further showed that TP4 accumulates in mitochondria and colocalizes with ANT2. Moreover, molecular docking studies showed that the interaction requires Phe1, Ile2, His3, His4, Ser11, Lys14, His17, Arg21, Arg24 and Arg25 residues in TP4 and key residues within the cavity of ANT2. These findings suggest a mechanism by which TP4 may induce mitochondrial dysfunction to disrupt cellular energy metabolism.
Collapse
|
44
|
Rázquin-Olazarán I, Shahrour H, Martínez-de-Tejada G. A synthetic peptide sensitizes multi-drug resistant Pseudomonas aeruginosa to antibiotics for more than two hours and permeabilizes its envelope for twenty hours. J Biomed Sci 2020; 27:85. [PMID: 32762680 PMCID: PMC7412836 DOI: 10.1186/s12929-020-00678-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/30/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a Gram-negative pathogen that frequently causes life-threatening infections in immunocompromised patients. We previously showed that subinhibitory concentrations of short synthetic peptides permeabilize P. aeruginosa and enhance the lethal action of co-administered antibiotics. METHODS Long-term permeabilization caused by exposure of multidrug-resistant P. aeruginosa strains to peptide P4-9 was investigated by measuring the uptake of several antibiotics and fluorescent probes and by using confocal imaging and atomic force microscopy. RESULTS We demonstrated that P4-9, a 13-amino acid peptide, induces a growth delay (i.e. post-antibiotic effect) of 1.3 h on a multidrug-resistant P. aeruginosa clinical isolate. Remarkably, when an independently P4-9-treated culture was allowed to grow in the absence of the peptide, cells remained sensitive to subinhibitory concentrations of antibiotics such as ceftazidime, fosfomycin and erythromycin for at least 2 h. We designated this persistent sensitization to antibiotics occurring in the absence of the sensitizing agent as Post-Antibiotic Effect associated Permeabilization (PAEP). Using atomic force microscopy, we showed that exposure to P4-9 induces profound alterations on the bacterial surface and that treated cells need at least 2 h of growth to repair those lesions. During PAEP, P. aeruginosa mutants overexpressing either the efflux pump MexAB-OprM system or the AmpC β-lactamase were rendered sensitive to antibiotics that are known substrates of those mechanisms of resistance. Finally, we showed for the first time that the descendants of bacteria surviving exposure to a membrane disturbing peptide retain a significant level of permeability to hydrophobic compounds, including propidium iodide, even after 20 h of growth in the absence of the peptide. CONCLUSIONS The phenomenon of long-term sensitization to antibiotics shown here may have important therapeutic implications for a combined peptide-antibiotic treatment because the peptide would not need to be present to exert its antibiotic enhancing activity as long as the target organism retains sensitization to the antibiotic.
Collapse
Affiliation(s)
- Iosu Rázquin-Olazarán
- Department of Microbiology and Parasitology, University of Navarra, E-31008, Pamplona, Spain
| | - Hawraa Shahrour
- Department of Microbiology and Parasitology, University of Navarra, E-31008, Pamplona, Spain
- Laboratory of Microbiology, Department of Life & Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat campus, Beirut, Lebanon
| | - Guillermo Martínez-de-Tejada
- Department of Microbiology and Parasitology, University of Navarra, E-31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
| |
Collapse
|
45
|
The Effect of Antimicrobial Peptides on the Viability of Human Corneal Epithelial Cells. Probiotics Antimicrob Proteins 2020; 13:518-526. [PMID: 32748327 DOI: 10.1007/s12602-020-09692-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Antimicrobial peptides are polypeptides composed of less than 100 amino acids and are a class of antibiotics with strong activity against some infectious bacteria. This study examined the safety of four chosen antimicrobial peptides using primary human corneal epithelial cells (HCEC) and explored their potential therapeutic use. The efficacy of the peptides was also studied by evaluating the minimum inhibitory concentrations (MIC) against Gram-negative and Gram-positive bacteria. One of the peptides (polymyxin E) was found to have antibacterial efficacy against a common Gram-negative bacterium (MIC 1.56 μg/mL for Pseudomonas aeruginosa), and another one (nisin) was found to have antibacterial efficacy against a common Gram-positive bacterium (MIC 125 μg/mL for Staphylococcus aureus). Metabolic activity and live/dead/apoptotic effects were measured with fluorescent dyes after HCEC were exposed to the peptides for 30 min. Three of the peptides exhibited lower toxicity against HCEC than a currently marketed eye drop product. Regarding both efficacy and safety, two of the peptides (polymyxin E and nisin) were found to have potential use for treating ocular infections.
Collapse
|
46
|
Lindhauer NS, Bertrams W, Pöppel A, Herkt CE, Wesener A, Hoffmann K, Greene B, Van Der Linden M, Vilcinskas A, Seidel K, Schmeck B. Antibacterial activity of a Tribolium castaneum defensin in an in vitro infection model of Streptococcus pneumoniae. Virulence 2020; 10:902-909. [PMID: 31657264 PMCID: PMC6844301 DOI: 10.1080/21505594.2019.1685150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) is the most common bacterial cause of community-acquired pneumonia. Increasing rates of antibiotic-resistant S. pneumoniae strains impair therapy and necessitate alternative treatment options. In this study, we analysed insect-derived antimicrobial peptides (AMPs) for antibacterial effects on S. pneumoniae in a human in vitro infection model. AMP effects on bacterial growth were examined by colony forming unit (CFU)-assays, and growth curve measurements. Furthermore, cytotoxicity to primary human macrophages was detected by measuring lactate-dehydrogenase release to the supernatant. One AMP (Defensin 1) was tested in a model of primary human monocyte-derived macrophages infected with S. pneumoniae strain D39 and a multi-resistant clinical isolate. Inflammatory reactions were characterised by qPCR and multiplex-ELISA. In total, the antibacterial effects of 23 AMPs were characterized. Only Tribolium castaneum Defensin 1 showed significant antibacterial effects against S. pneumoniae strain D39 and a multi-resistant clinical isolate. During in vitro infection of primary human macrophages with S. pneumoniae D39, Defensin 1 displayed strong antibacterial effects, and consequently reduced bacteria-induced cytokine expression and release. In summary, Tribolium castaneum Defensin 1 showed profound antibacterial effectivity against Streptococcus pneumoniae D39 and a multi-resistant clinical isolate without unwanted cytotoxic or inflammatory side effects on human blood-derived macrophages.
Collapse
Affiliation(s)
- Nora S Lindhauer
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Anne Pöppel
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Christina E Herkt
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Andre Wesener
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Kerstin Hoffmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Brandon Greene
- Institute of Medical Bioinformatics and Biostatistics, Universities of Giessen and Marburg, Philipps-University Marburg, Marburg, Germany
| | - Mark Van Der Linden
- German National Reference Center for Streptococci, Department of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany.,Institute for Insect Biotechnology, Justus-Liebig-University, Giessen, Germany
| | - Kerstin Seidel
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany.,Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University, Member of the German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
47
|
Uribe-Querol E, Rosales C. Phagocytosis: Our Current Understanding of a Universal Biological Process. Front Immunol 2020; 11:1066. [PMID: 32582172 PMCID: PMC7280488 DOI: 10.3389/fimmu.2020.01066] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Phagocytosis is a cellular process for ingesting and eliminating particles larger than 0.5 μm in diameter, including microorganisms, foreign substances, and apoptotic cells. Phagocytosis is found in many types of cells and it is, in consequence an essential process for tissue homeostasis. However, only specialized cells termed professional phagocytes accomplish phagocytosis with high efficiency. Macrophages, neutrophils, monocytes, dendritic cells, and osteoclasts are among these dedicated cells. These professional phagocytes express several phagocytic receptors that activate signaling pathways resulting in phagocytosis. The process of phagocytosis involves several phases: i) detection of the particle to be ingested, ii) activation of the internalization process, iii) formation of a specialized vacuole called phagosome, and iv) maturation of the phagosome to transform it into a phagolysosome. In this review, we present a general view of our current understanding on cells, phagocytic receptors and phases involved in phagocytosis.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
48
|
Nilsson BO. What can we learn about functional importance of human antimicrobial peptide LL-37 in the oral environment from severe congenital neutropenia (Kostmann disease)? Peptides 2020; 128:170311. [PMID: 32278809 DOI: 10.1016/j.peptides.2020.170311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022]
Abstract
The human antimicrobial peptide LL-37 is produced by neutrophils and epithelial cells, and the peptide can be detected in plasma as well as saliva. LL-37 is active against both gram-positive and gram-negative bacteria including oral pathogens such as Porphyromonas gingivalis and Streptococcus mutans. Besides its antimicrobial properties, LL-37 modulates the innate immune system, and furthermore, it also affects host cell viability. Although, both structural and functional properties of LL-37 have been extensively investigated, its physiological/pathophysiological importance in-vivo is not completely understood. In this review, Kostmann disease (morbus Kostmann) is highlighted since it may represent a LL-37 knockdown model which can provide new important information and insights about the functional role of LL-37 in the human in-vivo setting. Patients with Kostmann disease suffer from neutropenia, and although they are treated with recombinant granulocyte colony-stimulating factor (G-CSF) to normalize their levels of neutrophils, they lack or have very low levels of LL-37 in plasma, saliva and neutrophils. Interestingly, these patients suffer from severe periodontal disease, linking LL-37-deficiency to oral infections. Thus, LL-37 seems to play an important pathophysiological role in the oral environment antagonizing oral pathogens and thereby prevents oral infections.
Collapse
Affiliation(s)
- Bengt-Olof Nilsson
- Department of Experimental Medical Science, Lund University, BMC D12, SE-221 84 Lund, Sweden.
| |
Collapse
|
49
|
Yu Y, Zhao P, Cao L, Gong P, Yuan S, Yao X, Guo Y, Dong H, Jiang W. A Novel Anti-Microbial Peptide from Pseudomonas, REDLK Induced Growth Inhibition of Leishmania tarentolae Promastigote In Vitro. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:173-179. [PMID: 32418386 PMCID: PMC7231825 DOI: 10.3347/kjp.2020.58.2.173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/22/2020] [Indexed: 11/24/2022]
Abstract
Leishmaniasis is a prevalent cause of death and animal morbidity in underdeveloped countries of endemic area. However, there is few vaccine and effective drugs. Antimicrobial peptides are involved in the innate immune response in many organisms and are being developed as novel drugs against parasitic infections. In the present study, we synthesized a 5-amino acid peptide REDLK, which mutated the C-terminus of Pseudomonas exotoxin, to identify its effect on the Leishmania tarentolae. Promastigotes were incubated with different concentration of REDLK peptide, and the viability of parasite was assessed using MTT and Trypan blue dye. Morphologic damage of Leishmania was analyzed by light and electron microscopy. Cellular apoptosis was observed using the annexin V-FITC/PI apoptosis detection kit, mitochondrial membrane potential assay kit and flow cytometry. Our results showed that Leishmania tarentolae was susceptible to REDLK in a dose-dependent manner, disrupt the surface membrane integrity and caused parasite apoptosis. In our study, we demonstrated the leishmanicidal activity of an antimicrobial peptide REDLK from Pseudomonas aeruginosa against Leishmania tarentolae in vitro and present a foundation for further research of anti-leishmanial drugs.
Collapse
Affiliation(s)
- Yanhui Yu
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.,Clinical laboratory, the Second Hospital of Jilin University, Changchun 130000, China
| | - Panpan Zhao
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lili Cao
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.,Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130062, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shuxian Yuan
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130062, China
| | - Xinhua Yao
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130062, China
| | - Yanbing Guo
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130062, China
| | - Hang Dong
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130062, China
| | - Weina Jiang
- Department of Pathology, Qingdao Municipal Hospital, Qingdao 266071, China
| |
Collapse
|
50
|
Meireles D, Pombinho R, Carvalho F, Sousa S, Cabanes D. Listeria monocytogenes Wall Teichoic Acid Glycosylation Promotes Surface Anchoring of Virulence Factors, Resistance to Antimicrobial Peptides, and Decreased Susceptibility to Antibiotics. Pathogens 2020; 9:E290. [PMID: 32316182 PMCID: PMC7238011 DOI: 10.3390/pathogens9040290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 11/24/2022] Open
Abstract
The cell wall of Listeria monocytogenes (Lm), a major intracellular foodborne bacterial pathogen, comprises a thick peptidoglycan layer that serves as a scaffold for glycopolymers such as wall teichoic acids (WTAs). WTAs contain non-essential sugar substituents whose absence prevents bacteriophage binding and impacts antigenicity, sensitivity to antimicrobials, and virulence. Here, we demonstrated, for the first time, the triple function of Lm WTA glycosylations in the following: (1) supporting the correct anchoring of major Lm virulence factors at the bacterial surface, namely Ami and InlB; (2) promoting Lm resistance to antimicrobial peptides (AMPs); and (3) decreasing Lm sensitivity to some antibiotics. We showed that while the decoration of WTAs by rhamnose in Lm serovar 1/2a and by galactose in serovar 4b are important for the surface anchoring of Ami and InlB, N-acetylglucosamine in serovar 1/2a and glucose in serovar 4b are dispensable for the surface association of InlB or InlB/Ami. We found that the absence of a single glycosylation only had a slight impact on the sensibility of Lm to AMPs and antibiotics, however the concomitant deficiency of both glycosylations (rhamnose and N-acetylglucosamine in serovar 1/2a, and galactose and glucose in serovar 4b) significantly impaired the Lm capacity to overcome the action of antimicrobials. We propose WTA glycosylation as a broad mechanism used by Lm, not only to properly anchor surface virulence factors, but also to resist AMPs and antibiotics. WTA glycosyltransferases thus emerge as promising drug targets to attenuate the virulence of bacterial pathogens, while increasing their susceptibility to host immune defenses and potentiating the action of antibiotics.
Collapse
Affiliation(s)
- Diana Meireles
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (D.M.); (R.P.); (F.C.); (S.S.)
- Group of Molecular Microbiology, IBMC–Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
| | - Rita Pombinho
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (D.M.); (R.P.); (F.C.); (S.S.)
- Group of Molecular Microbiology, IBMC–Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
| | - Filipe Carvalho
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (D.M.); (R.P.); (F.C.); (S.S.)
- Group of Molecular Microbiology, IBMC–Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
| | - Sandra Sousa
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (D.M.); (R.P.); (F.C.); (S.S.)
- Cell Biology of Bacterial Infections Group, IBMC–Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Didier Cabanes
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (D.M.); (R.P.); (F.C.); (S.S.)
- Group of Molecular Microbiology, IBMC–Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
| |
Collapse
|