1
|
Choi S, Yoo SA, Ji KY, Jung DH, Lee S, Lee KG, Kim KM, Lee JY, Jung MA, Pyun BJ, Hur J, Choi JY, Rhee CK, Kim WU, Kim T. Asthma Alleviation by Ginsenoside Rb1 via Promotion of Treg Proliferation and Inflammatory T Cell Inhibition. Allergy 2025. [PMID: 40251907 DOI: 10.1111/all.16551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/09/2025] [Accepted: 02/20/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Regulatory T cells (Tregs) are living drugs with feasibility, tolerability, and therapeutic benefits. Although Tregs are linked to asthma prognosis through inflammation regulation, no therapeutic agents specifically designed to manage asthma by upregulating Tregs have been developed to date. METHODS We screened a library of 250 natural products using a cytometric bead array. Among the selected candidates, gRb1 was identified for further investigation. The effects of gRb1 on Treg and Th17 populations were evaluated in mouse asthma models and human PBMCs from both healthy donors and asthma patients using flow cytometry and cytokine analysis. RESULTS In inflammatory conditions, ginsenoside Rb1 (gRb1, a major ginseng component) increased IL-10- and TGF-β-expressing Treg populations and decreased the Th17 population; activated phospho-STAT5 and NFAT1 in Tregs; inhibited NFAT1 activation in conventional T cells (Tconvs); increased Treg proliferation and Tconv-Treg differentiation, inhibiting Tconv proliferation; and reduced inflammatory cytokine secretion by Tconvs. In asthma model mice, suppression of asthma symptoms by gRb1 was associated with elevated Treg and lower Th17, Th1, and Th2 counts. gRb1 treatment of stimulated PBMCs from patients with asthma and healthy donors increased IL-10- and TGF-β-expressing Treg populations and decreased IL-17A-, IL-22-, IFN-γ-, and TNF-α-expressing T-cell populations. CONCLUSIONS gRb1 alleviate asthma by shifting the Treg-inflammatory T cell balance. These findings suggest a strategy for enhancing Treg activity through treatment with gRb1. This may provide a novel therapeutic approach for asthma and related disorders.
Collapse
Affiliation(s)
- Susanna Choi
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Seung-Ah Yoo
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kon-Young Ji
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Dong Ho Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Saseong Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kang-Gu Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Myo Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - Joo Young Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Myung-A Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Bo-Jeong Pyun
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Jung Hur
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Feng J, Cui Y, Jiang C, Bai X, Zhao D, Liu M, Dong Z, Yu S, Wang S. Analysis of sediment re-formation factors after ginseng beverage clarification based on XGBoost machine learning algorithm. Food Chem 2025; 463:141304. [PMID: 39321649 DOI: 10.1016/j.foodchem.2024.141304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
The aim of this study was to explore the sediment re-formation factors of ginseng beverages subjected to four clarification ways (11 subgroups) including the ethanol precipitation, enzymatic treatment, clarifier clarification, and Hollow Fiber Column (HFC) methods, based on the Extreme Gradient Boosting (XGBoost) model. The results showed that the clarity of the ginseng beverages was significantly improved by all the clarification treatments, but still formed sediment after storage. HFC method exhibited the highest transmittance, the least sediment, and stronger antioxidant activity in the clarification treatment groups. According to the results of chemical composition analyses and partition coefficients, carbohydrates, saponins, proteins and metal elements were involved in varying degrees in the re-formation of the sediments in ginseng beverage after clarification. Based on the above data, the XGBoost model predicted that protein, Rd, Na, K, and total saponins were the five most important chemical components affecting the sediment re-formation in ginseng beverages.
Collapse
Affiliation(s)
- Jiabao Feng
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Yuan Cui
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Chunyan Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Xueyuan Bai
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Zhengqi Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development, Beijing 100193, PR China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China.
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China.
| |
Collapse
|
3
|
Shang S, Yang H, Qu L, Fan D, Deng J. Ginsenoside, a potential natural product against liver diseases: a comprehensive review from molecular mechanisms to application. Crit Rev Food Sci Nutr 2025:1-25. [PMID: 39810734 DOI: 10.1080/10408398.2025.2451761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Liver disease constitutes a significant cause of global mortality, with its pathogenesis being multifaceted. Identifying effective pharmacological and preventive strategies is imperative for liver protection. Ginsenosides, the major bioactive compounds found in ginseng, exhibit multiple pharmacological activities including protection against liver-related diseases by mitigating liver fat accumulation and inflammation, preventing hepatic fibrosis, and exerting anti-hepatocarcinogenic effects. However, a comprehensive overview elucidating the regulatory pathways associated with ginsenosides in liver disease remains elusive. This review aims to consolidate the molecular mechanisms through which different ginsenosides ameliorate distinct liver diseases, alongside the pathogenic factors underlying liver ailments. Notably, ginsenosides Rb1 and Rg1 demonstrate significantly effective in treating fatty liver, hepatitis, and liver fibrosis, and ginsenosides CK and Rh2 exhibit potent anti-hepatocellular carcinogenic effects. Their molecular mechanisms underlying these effects primarily involve the modulation of AMPK, NF-κB, TGF-β, NFR2, JNK, and other pathways, thereby attenuating hepatic fat accumulation, inflammation, inhibition of hepatic stellate cell activation, and promoting apoptosis in hepatocellular carcinoma cells. Furthermore, it provides insights into the safety profile and current applications of ginsenosides, thereby facilitating their clinical development. Consequently, ginsenosides present promising prospects for liver disease management, underscoring their potential as valuable therapeutic agents in this context.
Collapse
Affiliation(s)
- Shiyan Shang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Lu Z, Fu Y, Fu Q, Chang Y, Zhang M, Jin T. Ginsenoside RG3 Synergizes With STING Agonist to Reverse Cisplatin Resistance in Gastric Cancer. Food Sci Nutr 2025; 13:e4744. [PMID: 39834553 PMCID: PMC11745231 DOI: 10.1002/fsn3.4744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
This study investigates the synergistic inhibitory effects of combining the stimulator of interferon genes (STING) agonist cyclic diadenylate monophosphate (c-di-AMP) and ginsenoside RG3 on cisplatin (DDP)-resistant gastric cancer (GC) cells. The objective is to identify novel therapeutic targets and offers insights for the clinical management of DDP resistance. Various techniques were employed, including western blot, MTT assay, colony formation assay, scratch assay, transwell assay, tubule formation assay, flow cytometry, Hoechst 33342 fluorescence staining, and in vivo experiments, to investigate the potential mechanisms and effects of the combined application of the STING agonist and ginsenoside RG3 in reversing cisplatin resistance in gastric cancer. The combination markedly suppressed key malignant behaviors, including proliferation, migration, invasion, and angiogenesis of SGC-7901/DDP cells. Additionally, this treatment inhibited the epithelial-mesenchymal transition (EMT) process and stem cell-like characteristics of SGC-7901/DDP cells, while downregulating the expression of resistance-related proteins. The STING agonist effectively suppresses the growth and proliferation of gastric cancer cells. Ginsenoside RG3, well-documented for its multifaceted properties, including antioxidant, anti-aging, and anti-cancer effects, is widely used in cancer treatment and in managing chemotherapy-related side effects. Furthermore, RG3 enhances anti-tumor immunity by regulating signal transduction. This study comprehensively evaluated the efficacy of the STING agonist and RG3 combination through in vitro and in vivo experiments, demonstrating significant inhibition of malignant progression and reversal of drug resistance in gastric cancer. These findings offer a robust theoretical foundation for clinical applications and highlight new therapeutic targets for future research.
Collapse
Affiliation(s)
- Zhongqi Lu
- Department of Central LaboratoryYanbian University HospitalYanjiChina
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiChina
- Department of Ultrasound MedicineShaanxi Provincial People's HospitalXi'AnShaanxiChina
| | - Yihang Fu
- Department of Central LaboratoryYanbian University HospitalYanjiChina
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiChina
| | - Qiang Fu
- Department of Central LaboratoryYanbian University HospitalYanjiChina
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiChina
- Department of Ultrasound MedicineYanbian University HospitalYanjiJilinChina
| | - Ying Chang
- Department of Central LaboratoryYanbian University HospitalYanjiChina
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiChina
- Department of Ultrasound MedicineYanbian University HospitalYanjiJilinChina
| | - Meihua Zhang
- Department of Central LaboratoryYanbian University HospitalYanjiChina
- Department of Ultrasound MedicineYanbian University HospitalYanjiJilinChina
- Department of Health Examination CentreYanbian University HospitalYanjiChina
| | - Tiefeng Jin
- Department of Central LaboratoryYanbian University HospitalYanjiChina
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiChina
| |
Collapse
|
5
|
Wang Y, Guan WX, Zhou Y, Zhang XY, Zhao HJ. Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Cancer Biol Ther 2024; 25:2284849. [PMID: 38051132 PMCID: PMC10761076 DOI: 10.1080/15384047.2023.2284849] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
OBJECTIVE This study aims to investigate the effect of red ginseng polysaccharide (RGP) on gastric cancer (GC) development and explore its mechanism. METHODS GC cell lines AGS were treated with varying concentrations of RGP (50, 100, and 200 μg/mL). AGS cells treated with 200 μg/mL RGP were transfected with aquaporin 3 (AQP3) overexpression vector. Cell proliferation, viability, and apoptosis were evaluated by MTT, colony formation assay, and flow cytometry, respectively. Real-time quantitative reverse transcription PCR (qRT-PCR) was used to detect the expression of AQP3. The levels of Fe2+, malondialdehyde, and lactate dehydrogenase were measured using their respective detection kits, and the reactive oxygen species levels was determined by probe 2',7'-dichlorodihydrofluorescein diacetate. The expression of ferroptosis-related protein and PI3K/Akt pathway-related protein were assessed by western blot. In vivo experiments in nude mice were performed and the mice were divided into four groups (n = 5/group) which gavage administrated with 150 mg/kg normal saline, and 75, 150, 300 mg/kg RGP, respectively. Their tumor weight and volume were recorded. RESULTS RGP treatment effectively inhibited the proliferation and viability of AGS cells in a dosage-dependent manner and induced apoptosis. It induced ferroptosis in AGS cells, as well as inhibiting the expression of PI3K/Akt-related proteins. AQP3 overexpression could reversed the effect of RGP treatment on ferroptosis. Confirmatory in vivo experiments showed that RGP could reduce the growth of implanted tumor, with increased RGP concentration resulting in greater tumor inhibitory effects. CONCLUSION RGP might have therapeutic potential against GC, effectively inhibiting the proliferation and viability of AGS cells.
Collapse
Affiliation(s)
- Yan Wang
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Gastrointestinal Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Wen-Xian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Zhou
- Department of Gastrointestinal Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xiao-Yu Zhang
- Department of Gastrointestinal Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Hai-Jian Zhao
- Department of Gastrointestinal Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
6
|
Godiyal Y, Maheshwari D, Taniguchi H, Zinzuwadia SS, Morera-Díaz Y, Tewari D, Bishayee A. Role of PD-1/PD-L1 signaling axis in oncogenesis and its targeting by bioactive natural compounds for cancer immunotherapy. Mil Med Res 2024; 11:82. [PMID: 39690423 DOI: 10.1186/s40779-024-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Cancer is a global health problem and one of the leading causes of mortality. Immune checkpoint inhibitors have revolutionized the field of oncology, emerging as a powerful treatment strategy. A key pathway that has garnered considerable attention is programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1). The interaction between PD-L1 expressed on tumor cells and PD-1 reduces the innate immune response and thus compromises the capability of the body's immune system. Furthermore, it controls the phenotype and functionality of innate and adaptive immune components. A range of monoclonal antibodies, including avelumab, atezolizumab, camrelizumab, dostarlimab, durvalumab, sinitilimab, toripalimab, and zimberelimab, have been developed for targeting the interaction between PD-1 and PD-L1. These agents can induce a broad spectrum of autoimmune-like complications that may affect any organ system. Recent studies have focused on the effect of various natural compounds that inhibit immune checkpoints. This could contribute to the existing arsenal of anticancer drugs. Several bioactive natural agents have been shown to affect the PD-1/PD-L1 signaling axis, promoting tumor cell apoptosis, influencing cell proliferation, and eventually leading to tumor cell death and inhibiting cancer progression. However, there is a substantial knowledge gap regarding the role of different natural compounds targeting PD-1 in the context of cancer. Hence, this review aims to provide a common connection between PD-1/PD-L1 blockade and the anticancer effects of distinct natural molecules. Moreover, the primary focus will be on the underlying mechanism of action as well as the clinical efficacy of bioactive molecules. Current challenges along with the scope of future research directions targeting PD-1/PD-L1 interactions through natural substances are also discussed.
Collapse
Affiliation(s)
- Yogesh Godiyal
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Drishti Maheshwari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Magdalenka, Poland
- African Genome Center, Mohammed VI Polytechnic University, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Shweta S Zinzuwadia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Yanelys Morera-Díaz
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology, 11600, Havana, Cuba
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
7
|
Zhang X, Yang H, Wang X, Wang X, Chen C. Genome-Wide Identification and Characterization of OSC Gene Family in Gynostemma pentaphyllum (Cucurbitaceae). Life (Basel) 2024; 14:1599. [PMID: 39768308 PMCID: PMC11676476 DOI: 10.3390/life14121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Gynostemma pentaphyllum is a traditional Chinese medicinal plant of considerable application value and commercial potential, primarily due to its production of various bioactive compounds, particularly dammarane-type triterpenoid saponins that are structurally analogous to ginsenosides. Oxidosqualene cyclase (OSC), a pivotal enzyme in the biosynthesis of triterpenoid metabolites in plants, catalyzes the conversion of oxidosqualene into triterpenoid precursors, which are essential components of the secondary metabolites found in G. pentaphyllum. To elucidate the role of OSC gene family members in the synthesis of gypenosides within G. pentaphyllum, this study undertook a comprehensive genome-wide identification and characterization of OSC genes within G. pentaphyllum and compared their expression levels across populations distributed over different geographical regions by both transcriptome sequencing and qRT-PCR experimental validation. The results identified a total of 11 members of the OSC gene family within the genome of G. pentaphyllum. These genes encode proteins ranging from 356 to 767 amino acids, exhibiting minor variations in their physicochemical properties, and are localized in peroxisomes, cytoplasm, plasma membranes, and lysosomes. All GpOSCs contain highly conserved DCTAE and QW sequences that are characteristic of the OSC gene family. A phylogenetic analysis categorized the GpOSCs into four distinct subfamilies. A cis-element analysis of the GpOSC promoters revealed a substantial number of abiotic stress-related elements, indicating that these genes may respond to drought conditions, low temperatures, and anaerobic environments, thus potentially contributing to the stress resistance observed in G. pentaphyllum. Expression analyses across different G. pentaphyllum populations demonstrated significant variability in OSC gene expression among geographically diverse samples of G. pentaphyllum, likely attributable to genetic variation or external factors such as environmental conditions and soil composition. These differences may lead to the synthesis of various types of gypenosides within geographically distinct G. pentaphyllum populations. The findings from this study enhance our understanding of both the evolutionary history of the OSC gene family in G. pentaphyllum and the biosynthetic mechanisms underlying triterpenoid compounds. This knowledge is essential for investigating molecular mechanisms involved in forming dammarane-type triterpenoid saponins as well as comprehending geographical variations within G. pentaphyllum populations. Furthermore, this research lays a foundation for employing plant genetic engineering techniques aimed at increasing gypenoside content.
Collapse
Affiliation(s)
- Xiao Zhang
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, Xi’an 710061, China; (X.Z.); (X.W.); (X.W.)
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, No. 17 Cuihua South Road, Xi’an 710061, China
- College of Life Sciences, Northwest University, Xi’an 710069, China;
| | - Huan Yang
- College of Life Sciences, Northwest University, Xi’an 710069, China;
| | - Xuan Wang
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, Xi’an 710061, China; (X.Z.); (X.W.); (X.W.)
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, No. 17 Cuihua South Road, Xi’an 710061, China
| | - Xiaoting Wang
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, Xi’an 710061, China; (X.Z.); (X.W.); (X.W.)
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, No. 17 Cuihua South Road, Xi’an 710061, China
- School of Life Science, Shaanxi Normal University, Xi’an 710119, China
| | - Chen Chen
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, Xi’an 710061, China; (X.Z.); (X.W.); (X.W.)
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, No. 17 Cuihua South Road, Xi’an 710061, China
| |
Collapse
|
8
|
Cho W, Jang W, Shim H, Kim J, Oh Y, Park JY, Kim YC, Lee JW, Jo IH, Lee M, Gil J, Mascher M, Jayakodi M, Liao X, Xu J, Dou D, Lee Y, Yang TJ. High-resolution genetic map and SNP chip for molecular breeding in Panax ginseng, a tetraploid medicinal plant. HORTICULTURE RESEARCH 2024; 11:uhae257. [PMID: 39664690 PMCID: PMC11630301 DOI: 10.1093/hr/uhae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/02/2024] [Indexed: 12/13/2024]
Abstract
Ginseng (Panax ginseng) renowned as the king of medicinal plants. Ginseng grows slowly under shade conditions, requiring at least 4 years to produce a limited number of seeds. Molecular breeding of ginseng faces challenges due to its the tetraploid genome and the absence of an efficient molecular marker system. To overcome these obstacles, we adopted genotyping-by-sequencing to delve into genetic mapping and survey genetic diversity. We constructed a comprehensive genetic map comprising 24 linkage groups, each corresponding to one of the 24 chromosomes in the ginseng genome, based on 1216 nonredundant SNPs obtained from an F 2 mapping population. Additionally, 431 103 SNPs were identified from 119 diverse ginseng genotypes. From these, 192 informative subgenome-specific single copy SNPs were selected to develop a SNP chip. The SNP chip was used to genotype a large ginseng collection, encompassing registered cultivars, breeding lines, wild-simulated ginseng, and wild ginseng from various countries and regions. We evaluated the utility of the assay for molecular breeding with 919 ginseng genotypes. This breeder-friendly SNP chip promises versatility, enabling purity assessments of seeds and products, the authentication of species and cultivars, and the determination of homozygosity and homogeneity rates for breeding lines. Genotype data for 1200 ginseng genotypes are now stored in our database. This SNP chip lays the foundation for a molecular breeding in ginseng and will facilitate the breeding process in this medicinal crop.
Collapse
Affiliation(s)
- Woohyeon Cho
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture & Life Sciences, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Woojong Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju, Jeollanam-do 58245, Republic of Korea
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture & Life Sciences, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jiseok Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture & Life Sciences, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Youngju Oh
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture & Life Sciences, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jee Young Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture & Life Sciences, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young Chang Kim
- Department of Herbal Crop Research, National Institution of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Jung-Woo Lee
- Department of Herbal Crop Research, National Institution of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Ick-Hyun Jo
- Department of Crop Science and Biotechnology, Dankook University, Cheonan 31116, South Korea
| | - Misun Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jinsu Gil
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland 06466, Germany
| | - Murukarthick Jayakodi
- Department of Soil and Crop Sciences, Texas A&M AgriLife Research-Dallas, Dallas, Texas, USA
| | - Xuejiao Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Deqiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture & Life Sciences, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Kang M, Park S, Son SR, Noh Y, Jang DS, Lee S. Anti-Aging and Anti-Inflammatory Effects of Compounds from Fresh Panax ginseng Roots: A Study on TNF-α/IFN-γ-Induced Skin Cell Damage. Molecules 2024; 29:5479. [PMID: 39598869 PMCID: PMC11597146 DOI: 10.3390/molecules29225479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Panax ginseng (Korean ginseng) is renowned for its health-promoting properties, attributed to its bioactive compounds, including saponins, polyphenols, and polysaccharides, which possess both antioxidant and anti-aging activities. This study investigated the anti-aging and anti-inflammatory effects of compounds isolated from the hot water extract of fresh P. ginseng roots, evaluating their resistance to TNF-α/IFN-γ-induced skin cell damage. Among 14 compounds, ginsenoside Rf (compound 2) showed significant multi-target effects. In NHDFs, ginsenoside Rf and others effectively reduced intracellular ROS, demonstrating strong antioxidant properties. Additionally, they inhibited MMP-1 expression, a key enzyme in collagen degradation, and promoted pro-collagen Type I synthesis, countering the negative effects of TNF-α and supporting skin health. Further analysis showed that ginsenoside Rf reduced the secretion of inflammatory cytokines like IL-1β and IL-6, exhibiting anti-inflammatory effects. It also promoted the expression of crucial skin barrier proteins, including LOR, AQP3, FLG, and KRT1 in TNF-α/IFN-γ-stimulated NHEKs, enhancing skin hydration and structural integrity. These results suggest that compounds from P. ginseng roots, especially ginsenoside Rf, hold promise as skincare agents targeting skin aging and inflammation. Future research should further explore their mechanisms and optimize their applications in dermatological treatments.
Collapse
Affiliation(s)
- Minseo Kang
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Republic of Korea;
| | - Somin Park
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.P.); (S.-R.S.); (Y.N.)
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.P.); (S.-R.S.); (Y.N.)
| | - Yedam Noh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.P.); (S.-R.S.); (Y.N.)
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.P.); (S.-R.S.); (Y.N.)
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Republic of Korea;
| |
Collapse
|
10
|
Kim B, Jeon HJ, Rhee MH, Kim JH, Han JE. The effects of Panax ginseng on growth enhancement, innate immunity, and microbiome profiling in Penaeus vannamei. J Ginseng Res 2024; 48:552-558. [PMID: 39583171 PMCID: PMC11583340 DOI: 10.1016/j.jgr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 11/26/2024] Open
Abstract
Background In aquaculture, feed additives are widely explored. Among them, Panax ginseng Meyer, a natural herbal remedy, has demonstrated its efficacy in many aquaculture species. However, research regarding Penaeus vannamei shrimp, one of the most significant species in aquaculture, remains limited. Methods This study investigates the benefits of P. ginseng for P. vannamei, specifically its effects on growth, innate immunity, and shrimp microbiome. Juvenile P. vannamei were fed commercial feed mixed with red ginseng extract at 5 concentrations (0.00 %, 0.05 %, 0.10 %, 0.50 %, and 1.00 %) for 6 weeks. Body weight was measured on days 21 and 42. On day 42, three shrimp per group were selected for further analysis. Results In the growth study, Group 0.10 % displayed significantly improved FBW, WG, SGR, and FCR compared to those in Group 0.00 % on day 42. The qPCR assay showed significantly higher IGF-BP gene expression in Groups 0.05 %, 0.10 %, and 1.00 % compared to Group 0.00 %. In the innate immunity analysis, SOD activity was significantly higher in Groups 0.05 % and 0.50 % compared to that in Group 0.00 %. In the bacterial community analysis, Group 0.10 % exhibited higher Flavobacteriaceae and lower Vibrionaceae at the family level compared to Group 0.00 %. At the genus level, Group 0.10 % showed increased unspecified Flavobacteriaceae and decreased Vibrio compared to Group 0.00 %. Conclusion Adding P. ginseng to the feed enhanced growth, immune response, and microbiome composition in P. vannamei. Further research on refining dosage levels and utilizing red ginseng residues could boost commercial productivity and economic benefits in aquaculture practices.
Collapse
Affiliation(s)
- Bumkeun Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hye Jin Jeon
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Republic of Korea
| | - Jee Eun Han
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
11
|
Hong J, Han S, Geem KR, Bae W, Kim J, Jee MG, Lee JW, Kim JU, Lee G, Joo Y, Shim D, Ryu H. Identification of a key signaling network regulating perennating bud dormancy in Panax ginseng. J Ginseng Res 2024; 48:511-519. [PMID: 39263311 PMCID: PMC11385393 DOI: 10.1016/j.jgr.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background The cycle of seasonal dormancy of perennating buds is an essential adaptation of perennial plants to unfavorable winter conditions. Plant hormones are key regulators of this critical biological process, which is intricately connected with diverse internal and external factors. Recently, global warming has increased the frequency of aberrant temperature events that negatively affect the dormancy cycle of perennials. Although many studies have been conducted on the perennating organs of Panax ginseng, the molecular aspects of bud dormancy in this species remain largely unknown. Methods In this study, the molecular physiological responses of three P. ginseng cultivars with different dormancy break phenotypes in the spring were dissected using comparative genome-wide RNA-seq and network analyses. These analyses identified a key role for abscisic acid (ABA) activity in the regulation of bud dormancy. Gene set enrichment analysis revealed that a transcriptional network comprising stress-related hormone responses made a major contribution to the maintenance of dormancy. Results Increased expression levels of cold response and photosynthesis-related genes were associated with the transition from dormancy to active growth in perennating buds. Finally, the expression patterns of genes encoding ABA transporters, receptors (PYRs/PYLs), PROTEIN PHOSPHATASE 2Cs (PP2Cs), and DELLAs were highly correlated with different dormancy states in three P. ginseng cultivars. Conclusion This study provides evidence that ABA and stress signaling outputs are intricately connected with a key signaling network to regulate bud dormancy under seasonal conditions in the perennial plant P. ginseng.
Collapse
Affiliation(s)
- Jeoungeui Hong
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Soeun Han
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyoung Rok Geem
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Wonsil Bae
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Jiyong Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Moo-Geun Jee
- Ginseng & Medicinal Plant Research Institute, Chungnam Agricultural Research & Extention Service, Keumsan, Republic of Korea
| | - Jung-Woo Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Jang-Uk Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Gisuk Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, Republic of Korea
| | - Youngsung Joo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
12
|
Liao K, Wang F, Xia C, Xu Z, Zhong S, Bi W, Ruan J. The cGAS-STING pathway in COPD: targeting its role and therapeutic potential. Respir Res 2024; 25:302. [PMID: 39113033 PMCID: PMC11308159 DOI: 10.1186/s12931-024-02915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Chronic obstructive pulmonary disease(COPD) is a gradually worsening and fatal heterogeneous lung disease characterized by airflow limitation and increasingly decline in lung function. Currently, it is one of the leading causes of death worldwide. The consistent feature of COPD is airway inflammation. Several inflammatory factors are known to be involved in COPD pathogenesis; however, anti-inflammatory therapy is not the first-line treatment for COPD. Although bronchodilators, corticosteroids and roflumilast could improve airflow and control symptoms, they could not reverse the disease. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway plays an important novel role in the immune system and has been confirmed to be a key mediator of inflammation during infection, cellular stress, and tissue damage. Recent studies have emphasized that abnormal activation of cGAS-STING contributes to COPD, providing a direction for new treatments that we urgently need to develop. Here, we focused on the cGAS-STING pathway, providing insight into its molecular mechanism and summarizing the current knowledge on the role of the cGAS-STING pathway in COPD. Moreover, we explored antagonists of cGAS and STING to identify potential therapeutic strategies for COPD that target the cGAS-STING pathway.
Collapse
Affiliation(s)
- Kexin Liao
- First Clinical Medical College, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Fengshuo Wang
- College of Pharmacy, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Chenhao Xia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Ze Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Sen Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Wenqi Bi
- First Clinical Medical College, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Jingjing Ruan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| |
Collapse
|
13
|
Zhang J, Duan M, Wu S, Jiang S, Hu S, Chen W, Zhang J, Quan H, Yang W, Wang C. Comprehensive pharmacological and experimental study of Ginsenoside Re as a potential therapeutic agent for non-alcoholic fatty liver disease. Biomed Pharmacother 2024; 177:116955. [PMID: 38906030 DOI: 10.1016/j.biopha.2024.116955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
OBJECTIVE Ginsenoside Re, a unique tetracyclic triterpenoid compound found in ginseng, has been suggested in previous reports to improve non-alcoholic fatty liver disease (NAFLD) by modulating lipid imbalance. This study aims to elucidate the potential mechanisms of Ginsenoside Re in treating NAFLD through a combination of bioinformatics analysis and biological experiments. METHODS Network pharmacology methods were employed to systematically depict the effective components and mechanisms of Ginsenoside Re in improving NAFLD. Molecular docking was utilized to evaluate the binding affinity of Ginsenoside Re with NAFLD-related targets and identify potential targets. NAFLD-related target genes were obtained from the GEO database for gene enrichment analysis, revealing signaling pathways, biological processes, and gene differential expression. Finally, animal experiments were conducted to verify the mechanism of action of Ginsenoside Re in NAFLD. RESULTS Network pharmacology analysis revealed that Ginsenoside Re improves NAFLD by modulating targets such as AKT1 and TLR4, findings corroborated by molecular docking, GEO database analysis, and experimental validation. Further investigation found that Ginsenoside Re ameliorates lipid metabolism disorders and inflammatory responses induced by NAFLD by modulating the PI3K/AKT and TLR4/NF-κB signaling pathways. CONCLUSION Our study demonstrates the pharmacological effects of Ginsenoside Re in treating NAFLD, implicating multiple components, targets, and pathways. This provides a solid foundation for considering Ginsenoside Re as an alternative therapy for NAFLD, with promising clinical applications.
Collapse
Affiliation(s)
- Jinshan Zhang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Mingfei Duan
- Department of Thyroid and Breast Surgery, Zhuhai People's Hospital, Zhuhai, China
| | - Shaohong Wu
- Medical College of Jinan University, Guangzhou, China
| | - Shan Jiang
- Medical College of Jinan University, Guangzhou, China
| | - Songhao Hu
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenhui Chen
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Junchang Zhang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haiyan Quan
- Central Laboratory, Affiliated Hospital of Yanbian University, Yanji, China.
| | - Wah Yang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
14
|
Wang Q, Lei X, Wang Y, Di P, Meng X, Peng W, Rong J, Wang Y. Genome-wide identification of the LEA gene family in Panax ginseng: Evidence for the role of PgLEA2-50 in plant abiotic stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108742. [PMID: 38772166 DOI: 10.1016/j.plaphy.2024.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/21/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
Ginseng frequently encounters environmental stress during its growth and development. Late Embryogenesis Abundant (LEA) proteins play a crucial role in combating adversity stress, particularly against abiotic challenges In this study, 107 LEA genes from ginseng, spanning eight subfamilies, were identified, demonstrating significant evolutionary conservation, with the LEA2 subfamily being most prominent. Gene duplication events, primarily segmental duplications, have played a major role in the expansion of the LEA gene family, which has undergone strong purifying selection. PgLEAs were unevenly distributed across 22 chromosomes, with each subfamily featuring unique structural domains and conserved motifs. PgLEAs were expressed in various tissues, exhibiting distinct variations in abundance and tissue specificity. Numerous regulatory cis-elements, related to abiotic stress and hormones, were identified in the promoter region. Additionally, PgLEAs were regulated by a diverse array of abiotic stress-related transcription factors. A total of 35 PgLEAs were differentially expressed following treatments with ABA, GA, and IAA. Twenty-three PgLEAs showed significant but varied responses to drought, extreme temperatures, and salinity stress. The transformation of tobacco with the key gene PgLEA2-50 enhanced osmoregulation and antioxidant levels in transgenic lines, improving their resistance to abiotic stress. This study offers insights into functional gene analysis, focusing on LEA proteins, and establishes a foundational framework for research on ginseng's resilience to abiotic stress.
Collapse
Affiliation(s)
- Qi Wang
- Jilin Agricultural University, Changchun, Jilin, China
| | - Xiujuan Lei
- Jilin Agricultural University, Changchun, Jilin, China
| | - Yihan Wang
- Jilin Agricultural University, Changchun, Jilin, China
| | - Peng Di
- Jilin Agricultural University, Changchun, Jilin, China
| | - Xiangru Meng
- Jilin Agricultural University, Changchun, Jilin, China
| | - Wenyue Peng
- Jilin Agricultural University, Changchun, Jilin, China
| | - Junbo Rong
- Jilin Agricultural University, Changchun, Jilin, China
| | - Yingping Wang
- Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
15
|
Jiang Y, He G, Li R, Wang K, Wang Y, Zhao M, Zhang M. Functional Validation of the Cytochrome P450 Family PgCYP309 Gene in Panax ginseng. Biomolecules 2024; 14:715. [PMID: 38927118 PMCID: PMC11201774 DOI: 10.3390/biom14060715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Ginseng (Panax ginseng C. A. Meyer) is an ancient and valuable Chinese herbal medicine, and ginsenoside, as the main active ingredient of ginseng, has received wide attention because of its various pharmacological active effects. Cytochrome P450 is the largest family of enzymes in plant metabolism and is involved in the biosynthesis of terpenoids, alkaloids, lipids, and other primary and secondary plant metabolites. It is significant to explore more PgCYP450 genes with unknown functions and reveal their roles in ginsenoside synthesis. In this study, based on the five PgCYP450 genes screened in the pre-laboratory, through the correlation analysis with the content of ginsenosides and the analysis of the interactions network of the key enzyme genes for ginsenoside synthesis, we screened out those highly correlated with ginsenosides, PgCYP309, as the target gene from among the five PgCYP450 genes. Methyl jasmonate-induced treatment of ginseng adventitious roots showed that the PgCYP309 gene responded to methyl jasmonate induction and was involved in the synthesis of ginsenosides. The PgCYP309 gene was cloned and the overexpression vector pBI121-PgCYP309 and the interference vector pART27-PgCYP309 were constructed. Transformation of ginseng adventitious roots by the Agrobacterium fermentum-mediated method and successful induction of transgenic ginseng hairy roots were achieved. The transformation rate of ginseng hairy roots with overexpression of the PgCYP309 gene was 22.7%, and the transformation rate of ginseng hairy roots with interference of the PgCYP309 gene was 40%. Analysis of ginseng saponin content and relative gene expression levels in positive ginseng hairy root asexual lines revealed a significant increase in PPD, PPT, and PPT-type monomeric saponins Re and Rg2. The relative expression levels of PgCYP309 and PgCYP716A53v2 genes were also significantly increased. PgCYP309 gene promotes the synthesis of ginsenosides, and it was preliminarily verified that PgCYP309 gene can promote the synthesis of dammarane-type ginsenosides.
Collapse
Affiliation(s)
- Yang Jiang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
| | - Gaohui He
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
| | - Ruiqi Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
16
|
Liu Y, Mou L, Yi Z, Lin Q, Banu K, Wei C, Yu X. Integrative informatics analysis identifies that ginsenoside Re improves renal fibrosis through regulation of autophagy. J Nat Med 2024; 78:722-731. [PMID: 38683298 DOI: 10.1007/s11418-024-01800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/01/2024] [Indexed: 05/01/2024]
Abstract
We previously demonstrated that ginsenoside Re (G-Re) has protective effects on acute kidney injury. However, the underlying mechanism is still unclear. In this study, we conducted a meta-analysis and pathway enrichment analysis of all published transcriptome data to identify differentially expressed genes (DEGs) and pathways of G-Re treatment. We then performed in vitro studies to measure the identified autophagy and fibrosis markers in HK2 cells. In vivo studies were conducted using ureteric obstruction (UUO) and aristolochic acid nephropathy (AAN) models to evaluate the effects of G-Re on autophagy and kidney fibrosis. Our informatics analysis identified autophagy-related pathways enriched for G-Re treatment. Treatment with G-Re in HK2 cells reduced autophagy and mRNA levels of profibrosis markers with TGF-β stimulation. In addition, induction of autophagy with PP242 neutralized the anti-fibrotic effects of G-Re. In murine models with UUO and AAN, treatment with G-Re significantly improved renal function and reduced the upregulation of autophagy and profibrotic markers. A combination of informatics analysis and biological experiments confirmed that ginsenoside Re could improve renal fibrosis and kidney function through the regulation of autophagy. These findings provide important insights into the mechanisms of G-Re's protective effects in kidney injuries.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lingyun Mou
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Zhengzi Yi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qisheng Lin
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Khadija Banu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chengguo Wei
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Xiaoxia Yu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Division of Nephrology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.
| |
Collapse
|
17
|
Cho YY, Park JH, Lee JH, Chung S. Ginsenosides Decrease β-Amyloid Production via Potentiating Capacitative Calcium Entry. Biomol Ther (Seoul) 2024; 32:301-308. [PMID: 38586949 PMCID: PMC11063476 DOI: 10.4062/biomolther.2023.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/13/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder characterized by extracellular amyloid plaques composed of amyloid β-peptide (Aβ). Studies have indicated that Ca2+ dysregulation is involved in AD pathology. It is reported that decreased capacitative Ca2+ entry (CCE), a refilling mechanism of intracellular Ca2+, resulting in increased Aβ production. In contrast, constitutive activation of CCE could decrease Aβ production. Panax ginseng Meyer is known to enhance memory and cognitive functions in healthy human subjects. We have previously reported that some ginsenosides decrease Aβ levels in cultured primary neurons and AD mouse model brains. However, mechanisms involved in the Aβ-lowering effect of ginsenosides remain unclear. In this study, we investigated the relationship between CCE and Aβ production by examining the effects of various ginsenosides on CCE levels. Aβ-lowering ginsenosides such as Rk1, Rg5, and Rg3 potentiated CCE. In contrast, ginsenosides without Aβ-lowering effects (Re and Rb2) failed to potentiate CCE. The potentiating effect of ginsenosides on CCE was inhibited by the presence of 2-aminoethoxydipherryl borate (2APB), an inhibitor of CCE. 2APB alone increased Aβ42 production. Furthermore, the presence of 2APB prevented the effects of ginsenosides on Aβ42 production. Our results indicate that ginsenosides decrease Aβ production via potentiating CCE levels, confirming a close relationship between CCE levels and Aβ production. Since CCE levels are closely related to Aβ production, modulating CCE could be a novel target for AD therapeutics.
Collapse
Affiliation(s)
- Yoon Young Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Jeong Hill Park
- Research Institute of Pharmaceutical Sciences, Seoul National University, College of Pharmacy, Seoul 08826, Republic of Korea
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Sungkwon Chung
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
18
|
Kim S, Jeong JS, Kim W, Ham O, Quah Y, Jung S, Park DJ, Kim MJ, Han BC, Kim E, Lee SJ, Yu WJ. Assessing systemic, developmental, and reproductive toxicity and estrogenicity of Korean red ginseng extract G1899 in juvenile Sprague-Dawley Rats. J Ginseng Res 2024; 48:333-340. [PMID: 38707647 PMCID: PMC11068984 DOI: 10.1016/j.jgr.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 05/07/2024] Open
Abstract
Background Korean red ginseng (KRG) is a product from ginseng roots, which is enriched with ginsenosides and has been utilized for a long time as an adaptogen to alleviate various physiological or disease conditions. While KRG is generally considered safe, conducting a thorough toxicological assessment of the spray-dried powder G1899 during the juvenile period is essential to establish its safety profile. This study aimed to assess the safety of G1899 during the juvenile period using Sprague-Dawley rats. Methods Two studies were conducted separately: a juvenile toxicity study and a uterotrophic bioassay. To assess the potential toxicity at systemic, postnatal developmental, and reproductive levels, G1899 was orally gavaged once a day in post-weaning juvenile Sprague-Dawley (SD) rats at 0, 1250, 2500, or 5000 mg/kg/day. Estrogenicity was assessed by orally gavaging G1899 in immature female SD rats at 0, 2500, or 5000 mg/kg/day on postnatal days (PND) 19-21, followed by a uterotrophic bioassay. These studies were conducted in accordance with the Good Laboratory Practice (GLP) regulations and regulatory test guidelines. Results Regarding juvenile toxicity, no abnormalities related to the G1899 treatment were observed in any group during the experiment. Moreover, no uterotrophic responses were observed in the dosed female group. Based on these results, the no observed adverse effect level (NOAEL) of G1899 was determined to be at least 5000 mg/kg/day for general systemic function, developmental/reproductive function, and estrogenic activity. Conclusion Our results suggest that G1899 is not toxic to juveniles at doses of up to 5000 mg/kg/day.
Collapse
Affiliation(s)
- Sangyun Kim
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Ji-Seong Jeong
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Woojin Kim
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Onju Ham
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Yixian Quah
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Soontag Jung
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Dong-Ju Park
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Min Jae Kim
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Byung-Cheol Han
- R&D Headquarters, Korea Ginseng Corp., Gyeonggi-do, Republic of Korea
| | - Eunji Kim
- R&D Headquarters, Korea Ginseng Corp., Gyeonggi-do, Republic of Korea
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Wook-Joon Yu
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| |
Collapse
|
19
|
Zhou H, Liu Y, Su Y, Ji P, Kong L, Sun R, Zhang D, Xu H, Li W, Li W. Ginsenoside Rg1 attenuates lipopolysaccharide-induced chronic liver damage by activating Nrf2 signaling and inhibiting inflammasomes in hepatic cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117794. [PMID: 38244950 DOI: 10.1016/j.jep.2024.117794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng (Panax ginseng C. A. Meyer) is a precious traditional Chinese medicine with multiple pharmacological effects. Ginsenoside Rg1 is a main active ingredient extracted from ginseng, which is known for its age-delaying and antioxidant effects. Increasing evidence indicates that Rg1 exhibits anti-inflammatory properties in numerous diseases and may ameliorate oxidative damage and inflammation in many chronic liver diseases. AIM OF THE STUDY Chronic inflammatory injury in liver cells is an important pathological basis of many liver diseases. However, its mechanism remains unclear and therapeutic strategies to prevent its development need to be further explored. Thus, our study is to delve the protective effect and mechanism of Rg1 against chronic hepatic inflammatory injuries induced by lipopolysaccharide (LPS). MATERIALS AND METHODS The chronic liver damage model in mice was build up by injecting intraperitoneally with LPS (200 μg/kg) for 21 days. Serum liver function indicators and levels of IL-1β, IL-6 and TNF-α were examined by using corresponding Kits. Hematoxylin and Eosin (H&E), Periodic acid-Schiff (PAS), and Masson stains were utilized to visualize hepatic histopathological damage, glycogen deposition, and liver fibrosis. The nuclear import of p-Nrf2 and the generation of Col4 in the liver were detected by IF, while IHC was employed to detect the expressions of NLRP3 and AIM2 in the hepatic. The Western blot and q-PCR were used to survey the expressions of proteins and mRNAs of fibrosis and apoptosis, and the expressions of Keap1, p-Nrf2 and NLRP3, NLRP1, AIM2 inflammasome-related proteins in mouse liver. The cell viability of human hepatocellular carcinoma cells (HepG2) was detected by Cell Counting Kit-8 to select the action concentration of LPS, and intracellular ROS generation was detected using a kit. The expressions of Nuclear Nrf2, HO-1, NQO1 and NLRP3, NLRP1, and AIM2 inflammasome-related proteins in HepG2 cells were detected by Western blot. Finally, the feasibility of the molecular interlinking between Rg1 and Nrf2 was demonstrated by molecular docking. RESULTS Rg1 treatment for 21 days decreased the levels of ALT, AST, and inflammatory factors of serum IL-1β, IL-6 and TNF-α in mice induced by LPS. Pathological results indicated that Rg1 treatment obviously alleviated hepatocellular injury and apoptosis, inflammatory cell infiltration and liver fibrosis in LPS stimulated mice. Rg1 promoted Keap1 degradation and enhanced the expressions of p-Nrf2, HO-1 and decreased the levels of NLRP1, NLRP3, AIM2, cleaved caspase-1, IL-1β and IL-6 in livers caused by LPS. Furthermore, Rg1 effectively suppressed the rise of ROS in HepG2 cells induced by LPS, whereas inhibition of Nrf2 reversed the role of Rg1 in reducing the production of ROS and NLRP3, NLRP1, and AIM2 expressions in LPS-stimulated HepG2 cells. Finally, the molecular docking illustrated that Rg1 exhibits a strong affinity towards Nrf2. CONCLUSION The findings indicate that Rg1 significantly ameliorates chronic liver damage and fibrosis induced by LPS. The mechanism may be mediated through promoting the dissociation of Nrf2 from Keap1 and then activating Nrf2 signaling and further inhibiting NLRP3, NLRP1, and AIM2 inflammasomes in liver cells.
Collapse
Affiliation(s)
- Huimin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yan Liu
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yong Su
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Pengmin Ji
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Liangliang Kong
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Ran Sun
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Duoduo Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Hanyang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Weiping Li
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| | - Weizu Li
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
20
|
Jolly A, Hour Y, Lee YC. An outlook on the versatility of plant saponins: A review. Fitoterapia 2024; 174:105858. [PMID: 38365071 DOI: 10.1016/j.fitote.2024.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
The abundance of saponin-rich plants across different ecosystems indicates their great potential as a replacement for harmful synthetic surfactants in modern commercial products. These organic saponins have remarkable biological and surface-active properties and align with sustainable and eco-friendly practices. This article examines and discusses the structure and properties of plant saponins with high yield of saponin concentrations and their exploitable applications. This highlights the potential of saponins as ethical substitutes for traditional synthetic surfactants and pharmacological agents, with favorable effects on the economy and environment. For this purpose, studies on the relevant capabilities, structure, and yield of selected plants were thoroughly examined. Studies on the possible uses of the selected saponins have also been conducted. This in-depth analysis highlights the potential of saponins as workable and ethical replacements for traditional synthetic medications and surfactants, thus emphasizing their favorable effects on human health and the environment.
Collapse
Affiliation(s)
- Annu Jolly
- Department of BioNanotechnology, Gachon University, 1342 Seongnam-Daero, Sujeon-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea
| | - Youl Hour
- 125-6, Techno 2-ro, Yuseong-gu, Daejeon 34024, BTGin co., Ltd., Republic of Korea.
| | - Young-Chul Lee
- Department of BioNanotechnology, Gachon University, 1342 Seongnam-Daero, Sujeon-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
21
|
Namazi F, Razavi SM. Herbal-based compounds: A review on treatments of cryptosporidiosis. Int J Parasitol Drugs Drug Resist 2024; 24:100521. [PMID: 38246099 PMCID: PMC10831817 DOI: 10.1016/j.ijpddr.2024.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Cryptosporidium, a monoxenous apicomplexan coccidia, is a prevalent diarrhetic and an opportunistic agent, mainly in immunocompromised individuals. As there are few chemotherapeutic compounds that have limited efficacy, we need to identify new compounds or specific parasite targets for designing more potent drugs to treat cryptosporidiosis. Herbal products with low toxicity, environmental compatibility, wide therapeutic potential, and abundant resources can be considered alternatives for treatment. The current review tried to summarize the studies on plants or herbal bioactive constituents with anti-cryptosporidial activities. Based on constituents, plants act via different mechanisms, and further investigations are needed to clarify the exact mechanisms by which they act on the developmental stages of the parasite or host-parasite relationships.
Collapse
Affiliation(s)
- Fatemeh Namazi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Seyed Mostafa Razavi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
22
|
Men X, Han X, Lee SJ, Oh G, Im JH, Bae KS, Seong GS, La IJ, Lee DS, Choi SI, Lee OH. Ginsenosides Rh1, Rg2, and Rg3 ameliorate dexamethasone-induced muscle atrophy in C2C12 myotubes. Food Sci Biotechnol 2024; 33:1233-1243. [PMID: 38440685 PMCID: PMC10909033 DOI: 10.1007/s10068-023-01407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 03/06/2024] Open
Abstract
High doses or prolonged use of the exogenous synthetic glucocorticoid dexamethasone (Dex) can lead to muscle atrophy. In this study, the anti-atrophic effects of ginsenosides Rh1, Rg2, and Rg3 on Dex-induced C2C12 myotube atrophy were assessed by XTT, myotube diameter, fusion index, and western blot analysis. The XTT assay results showed that treatment with Rh1, Rg2, and Rg3 enhanced cell viability in Dex-injured C2C12 myotubes. Compared with the control group, the myotube diameter and fusion index were both reduced in Dex-treated cells, but treatment with Rh1, Rg2, and Rg3 increased these parameters. Furthermore, Rh1, Rg2, and Rg3 significantly downregulated the protein expression of FoxO3a, MuRF1, and Fbx32, while also upregulating mitochondrial biogenesis through the SIRT1/PGC-1α pathway. It also prevents myotube atrophy by regulating the IGF-1/Akt/ mTOR signaling pathway. These findings indicate that Rh1, Rg2, and Rg3 have great potential as useful agents for the prevention and treatment of muscle atrophy.
Collapse
Affiliation(s)
- Xiao Men
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Xionggao Han
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Se-Jeong Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Geon Oh
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Ji-Hyun Im
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | | | | | | | | | - Sun-Il Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
- Agricultural and Life Sciences Research Institute, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Ok-Hwan Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| |
Collapse
|
23
|
Chen X, Du H, Liu Y, Shi T, Li J, Liu J, Zhao L, Liu S. Fully connected-convolutional (FC-CNN) neural network based on hyperspectral images for rapid identification of P. ginseng growth years. Sci Rep 2024; 14:7209. [PMID: 38532030 PMCID: PMC10966043 DOI: 10.1038/s41598-024-57904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
P. ginseng is a precious traditional Chinese functional food, which is used for both medicinal and food purposes, and has various effects such as immunomodulation, anti-tumor and anti-oxidation. The growth year of P. ginseng has an important impact on its medicinal and economic values. Fast and nondestructive identification of the growth year of P. ginseng is crucial for its quality evaluation. In this paper, we propose a FC-CNN network that incorporates spectral and spatial features of hyperspectral images to characterize P. ginseng from different growth years. The importance ranking of the spectra was obtained using the random forest method for optimal band selection. Based on the hyperspectral reflectance data of P. ginseng after radiometric calibration and the images of the best five VNIR bands and five SWIR bands selected, the year-by-year identification of P. ginseng age and its identification experiments for food and medicinal purposes were conducted, and the FC-CNN network and its FCNN and CNN branch networks were tested and compared in terms of their effectiveness in the identification of P. ginseng growth years. It has been experimentally verified that the best year-by-year recognition was achieved by utilizing images from five visible and near-infrared important bands and all spectral curves, and the recognition accuracy of food and medicinal use reached 100%. The FC-CNN network is significantly better than its branching model in the effect of edible and medicinal identification. The results show that for P. ginseng growth year identification, VNIR images have much more useful information than SWIR images. Meanwhile, the FC-CNN network utilizing the spectral and spatial features of hyperspectral images is an effective method for the identification of P. ginseng growth year.
Collapse
Affiliation(s)
- Xingfeng Chen
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hejuan Du
- The School of Information Engineering, Xizang Minzu University, Xianyang, 712089, China
| | - Yun Liu
- The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang, 050000, China
| | - Tingting Shi
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jiaguo Li
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Jun Liu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Limin Zhao
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Shu Liu
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
24
|
Zhao F, Zhang K, Chen H, Zhang T, Zhao J, Lv Q, Yu Q, Ruan M, Cui R, Li B. Therapeutic potential and possible mechanisms of ginseng for depression associated with COVID-19. Inflammopharmacology 2024; 32:229-247. [PMID: 38012459 PMCID: PMC10907431 DOI: 10.1007/s10787-023-01380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Recently, a global outbreak of COVID-19 has rapidly spread to various national regions. As the number of COVID-19 patients has increased, some of those infected with SARS-CoV-2 have developed a variety of psychiatric symptoms, including depression, cognitive impairment, and fatigue. A distinct storm of inflammatory factors that contribute to the initial disease but also a persistent post-acute phase syndrome has been reported in patients with COVID-19. Neuropsychological symptoms including depression, cognitive impairment, and fatigue are closely related to circulating and local (brain) inflammatory factors. Natural products are currently being examined for their ability to treat numerous complications caused by COVID-19. Among them, ginseng has anti-inflammatory, immune system stimulating, neuroendocrine modulating, and other effects, which may help improve psychiatric symptoms. This review summarizes the basic mechanisms of COVID-19 pneumonia, psychiatric symptoms following coronavirus infections, effects of ginseng on depression, restlessness, and other psychiatric symptoms associated with post-COVID syn-dromes, as well as possible mechanisms underlying these effects.
Collapse
Affiliation(s)
- Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, People's Republic of China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun, People's Republic of China
| | - Kai Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, People's Republic of China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun, People's Republic of China
| | - Hongyu Chen
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, People's Republic of China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun, People's Republic of China
| | - Tianqi Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, People's Republic of China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun, People's Republic of China
| | - Jiayu Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, People's Republic of China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun, People's Republic of China
| | - Qianyu Lv
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, People's Republic of China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun, People's Republic of China
| | - Qin Yu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, People's Republic of China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun, People's Republic of China
| | - Mengyu Ruan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, People's Republic of China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun, People's Republic of China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, People's Republic of China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun, People's Republic of China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, People's Republic of China.
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, People's Republic of China.
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun, People's Republic of China.
| |
Collapse
|
25
|
Ito H, Ito M. Genetic diversity of Panax ginseng cultivated in Japan and its relation with some plant characteristics. J Nat Med 2024; 78:91-99. [PMID: 37707717 DOI: 10.1007/s11418-023-01747-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
In East Asia, Panax ginseng is one of the most important medicinal plants and has been used in traditional medicines from ancient times. Today, P. ginseng is cultivated in Korea, China, and Japan. Although the genetic diversity of P. ginseng in Korea and China has been reported previously, that of P. ginseng cultivated in Japan is largely unknown. In the present study, genetic diversity of P. ginseng cultivated in Japan was analyzed using eight simple sequence repeat markers that have been used in other studies, and the results were compared with previous results for Korea and China. The correlation between genetic diversity and plant characteristics, such as ginsenoside contents, were also examined. The genetic diversity of P. ginseng in Japan was substantially different from that in Korea and China, probably due to Japan's history of cultivation and the ginseng reproduction system of agamospermy. The genetic analysis indicated that P. ginseng cultivated in Japan could be classified into two clusters. The classification was related to the contents of ginsenosides Re and Ro in the main root but not to the cultivation region of the samples. These results may be useful for the cultivation and quality control of P. ginseng in Japan.
Collapse
Affiliation(s)
- Honoka Ito
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Michiho Ito
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki City, Kanagawa, 210-9501, Japan.
| |
Collapse
|
26
|
Ahmad SS, Chun HJ, Ahmad K, Choi I. Therapeutic applications of ginseng for skeletal muscle-related disorder management. J Ginseng Res 2024; 48:12-19. [PMID: 38223826 PMCID: PMC10785254 DOI: 10.1016/j.jgr.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 01/14/2024] Open
Abstract
Skeletal muscle (SM) is the largest organ of the body and is largely responsible for the metabolism required to maintain body functions. Furthermore, the maintenance of SM is dependent on the activation of muscle satellite (stem) cells (MSCs) and the subsequent proliferation and fusion of differentiating myoblasts into mature myofibers (myogenesis). Natural compounds are being used as therapeutic options to promote SM regeneration during aging, muscle atrophy, sarcopenia, cachexia, or obesity. In particular, ginseng-derived compounds have been utilized in these contexts, though ginsenoside Rg1 is mostly used for SM mass management. These compounds primarily function by activating the Akt/mTOR signaling pathway, upregulating myogenin and MyoD to induce muscle hypertrophy, downregulating atrophic factors (atrogin1, muscle ring-finger protein-1, myostatin, and mitochondrial reactive oxygen species production), and suppressing the expressions of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cachexia. Ginsenoside compounds are also used for obesity management, and their anti-obesity effects are attributed to peroxisome proliferator activated receptor gamma (PPARγ) inhibition, AMPK activation, glucose transporter type 4 (GLUT4) translocation, and increased phosphorylations of insulin resistance (IR), insulin receptor substrate-1 (IRS-1), and Akt. This review was undertaken to provide an overview of the use of ginseng-related compounds for the management of SM-related disorders.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
27
|
Chen H, Li X, Chi H, Li Z, Wang C, Wang Q, Feng H, Li P. A Qualitative Analysis of Cultured Adventitious Ginseng Root's Chemical Composition and Immunomodulatory Effects. Molecules 2023; 29:111. [PMID: 38202694 PMCID: PMC10780104 DOI: 10.3390/molecules29010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The cultivation of ginseng in fields is time-consuming and labor-intensive. Thus, culturing adventitious ginseng root in vitro constitutes an effective approach to accumulating ginsenosides. In this study, we employed UPLC-QTOF-MS to analyze the composition of the cultured adventitious root (cAR) of ginseng, identifying 60 chemical ingredients. We also investigated the immunomodulatory effect of cAR extract using various mouse models. The results demonstrated that the cAR extract showed significant activity in enhancing the immune response in mice. The mechanism underlying the immunomodulatory effect of cAR was analyzed through network pharmacology analysis, revealing potential 'key protein targets', namely TNF, AKT1, IL-6, VEGFA, and IL-1β, affected by potential 'key components', namely the ginsenosides PPT, F1, Rh2, CK, and 20(S)-Rg3. The signaling pathways PI3K-Akt, AGE-RAGE, and MAPK may play a vital role in this process.
Collapse
Affiliation(s)
- Hong Chen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
- Tonghua Herbal Biotechnology, Co., Ltd., Tonghua 134123, China; (X.L.); (H.C.)
| | - Xiangzhu Li
- Tonghua Herbal Biotechnology, Co., Ltd., Tonghua 134123, China; (X.L.); (H.C.)
| | - Hang Chi
- Tonghua Herbal Biotechnology, Co., Ltd., Tonghua 134123, China; (X.L.); (H.C.)
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| | - Qianyun Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| | - Hao Feng
- College of Basic Medicine Sciences, Jilin University, Changchun 130021, China;
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (Z.L.); (C.W.); (Q.W.)
| |
Collapse
|
28
|
Kang JS, Giang VNL, Park HS, Park YS, Cho W, Nguyen VB, Shim H, Waminal NE, Park JY, Kim HH, Yang TJ. Evolution of the Araliaceae family involved rapid diversification of the Asian Palmate group and Hydrocotyle specific mutational pressure. Sci Rep 2023; 13:22325. [PMID: 38102332 PMCID: PMC10724125 DOI: 10.1038/s41598-023-49830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
The Araliaceae contain many valuable species in medicinal and industrial aspects. We performed intensive phylogenomics using the plastid genome (plastome) and 45S nuclear ribosomal DNA sequences. A total of 66 plastome sequences were used, 13 of which were newly assembled in this study, 12 from new sequences, and one from existing data. While Araliaceae plastomes showed conserved genome structure, phylogenetic reconstructions based on four different plastome datasets revealed phylogenetic discordance within the Asian Palmate group. The divergence time estimation revealed that splits in two Araliaceae subfamilies and the clades exhibiting phylogenetic discordances in the Asian Palmate group occurred at two climatic optima, suggesting that global warming events triggered species divergence, particularly the rapid diversification of the Asian Palmate group during the Middle Miocene. Nucleotide substitution analyses indicated that the Hydrocotyloideae plastomes have undergone accelerated AT-biased mutations (C-to-T transitions) compared with the Aralioideae plastomes, and the acceleration may occur in their mitochondrial and nuclear genomes as well. This implies that members of the genus Hydrocotyle, the only aquatic plants in the Araliaceae, have experienced a distinct evolutionary history from the other species. We also discussed the intercontinental disjunction in the genus Panax and proposed a hypothesis to complement the previously proposed hypothesis. Our results provide the evolutionary trajectory of Araliaceae and advance our current understanding of the evolution of Araliaceae species.
Collapse
Affiliation(s)
- Jong-Soo Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Vo Ngoc Linh Giang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Hyun-Seung Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, South Korea
| | - Young Sang Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Woohyeon Cho
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Van Binh Nguyen
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Faculty of Biology, Dalat University, Dalat, 670000, Vietnam
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Nomar Espinosa Waminal
- Department of Life Science, Chromosome Research Institute, Sahmyook University, Seoul, 01795, South Korea
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Seeland, Gatersleben, Germany
| | - Jee Young Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hyun Hee Kim
- Department of Life Science, Chromosome Research Institute, Sahmyook University, Seoul, 01795, South Korea.
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
29
|
Kim JK, Choi MS, Park HS, Kee KH, Kim DH, Yoo HH. Pharmacokinetic Profiling of Ginsenosides, Rb1, Rd, and Rg3, in Mice with Antibiotic-Induced Gut Microbiota Alterations: Implications for Variability in the Therapeutic Efficacy of Red Ginseng Extracts. Foods 2023; 12:4342. [PMID: 38231867 DOI: 10.3390/foods12234342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Ginsenoside Rg3 is reported to contribute to the traditionally known diverse effects of red ginseng extracts. Significant individual variations in the therapeutic efficacy of red ginseng extracts have been reported. This study aimed to investigate the effect of amoxicillin on the pharmacokinetics of ginsenosides Rb1, Rd, and Rg3 in mice following the oral administration of red ginseng extracts. We examined the α-diversity and β-diversity of gut microbiota and conducted pharmacokinetic studies to measure systemic exposure to ginsenoside Rg3. We also analyzed the microbiome abundance and microbial metabolic activity involved in the biotransformation of ginsenoside Rb1. Amoxicillin treatment reduced both the α-diversity and β-diversity of the gut microbiota and decreased systemic exposure to ginsenoside Rg3 in mice. The area under the curve (AUC) values for Rg3 in control and amoxicillin-treated groups were 247.7 ± 96.6 ng·h/mL and 139.2 ± 32.9 ng·h/mL, respectively. The microbiome abundance and microbial metabolic activity involved in the biotransformation of ginsenoside Rb1 were also altered by amoxicillin treatment. The metabolizing activity was reduced from 0.13 to 0.05 pmol/min/mg on average. Our findings indicate that amoxicillin treatment potentially reduces the gut-microbiota-mediated metabolism of ginsenoside Rg3 in mice given red ginseng extracts, altering its pharmacokinetics. Gut microbiome variations may thus influence individual ginsenoside pharmacokinetics, impacting red ginseng extract's efficacy. Our results suggest that modulating the microbiome could enhance the efficacy of red ginseng.
Collapse
Affiliation(s)
- Jeon-Kyung Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
- School of Pharmacy, Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Min Sun Choi
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Hee-Seo Park
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Kyung Hwa Kee
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hye Hyun Yoo
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
30
|
Rod-in W, Surayot U, You S, Park WJ. Inhibitory effects of polysaccharides from Korean ginseng berries on LPS-induced RAW264.7 macrophages. PLoS One 2023; 18:e0294675. [PMID: 38015971 PMCID: PMC10684074 DOI: 10.1371/journal.pone.0294675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023] Open
Abstract
Polysaccharides isolated from Korean ginseng berries (GBPs) have shown beneficial effects such as immunomodulatory, anti-inflammatory, anti-cancer, and anti-diabetic properties. However, little is known about anti-inflammatory effects of GBPs. Thus, the purpose of this study was to investigate anti-inflammatory properties of four fractions of GBPs, namely GBP-C, GBP-F1, GBP-F2, and GBP-F3, in macrophages. Their toxicities and effects on NO production in RAW264.7 cells were assessed by culturing cells with various concentrations of GBPs and stimulating cells with LPS. Furthermore, expression levels of inflammatory mediators, cytokines, cell surface molecules, and immune signaling pathways were evaluated in LPS-stimulated macrophages using different fractions of GBPs at 450 μg/mL. These GBPs activated LPS-stimulated RAW264.7 cells to significantly reduce NO production. They suppressed the expression of mRNA and cell surface molecules via MAPK and NF-κB pathways. Collectively, results revealed that all four GBP fractions showed anti-inflammatory effects, with GBP-F1 having a more efficient anti-inflammatory effect than GBP-C, GBP-F2, and GBP-F3. The structure of GBP-F1 mainly consists of 1 → 3)- Araf, 1 → 4)- Glcp, and 1 → 6)-Galp glycosidic linkages. These results demonstrate that GBPs can be employed as alternative natural sources of anti-inflammatory agents.
Collapse
Affiliation(s)
- Weerawan Rod-in
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand
- Center of Excellence in Research for Agricultural Biotechnology, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| | - Utoomporn Surayot
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon, Thailand
| | - SangGuan You
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| | - Woo Jung Park
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| |
Collapse
|
31
|
Cho HS, Kwon TW, Kim JH, Lee R, Bae CS, Kim HC, Kim JH, Choi SH, Cho IH, Nah SY. Gintonin Alleviates HCl/Ethanol- and Indomethacin-Induced Gastric Ulcers in Mice. Int J Mol Sci 2023; 24:16721. [PMID: 38069044 PMCID: PMC10705886 DOI: 10.3390/ijms242316721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Gintonin, newly extracted from ginseng, is a glycoprotein that acts as an exogenous lysophosphatidic acid (LPA) receptor ligand. This study aimed to demonstrate the in vivo preventive effects of gintonin on gastric damage. ICR mice were randomly assigned to five groups: a normal group (received saline, 0.1 mL/10 g, p.o.); a control group (administered 0.3 M HCl/ethanol, 0.1 mL/10 g, p.o.) or indomethacin (30 mg/kg, p.o.); gintonin at two different doses (50 mg/kg or 100 mg/kg, p.o.) with either 0.3 M HCl/ethanol or indomethacin; and a positive control (Ranitidine, 40 mg/kg, p.o.). After gastric ulcer induction, the gastric tissue was examined to calculate the ulcer index. The expression of gastric damage markers, such as tumor necrosis factor (TNF)-α, cyclooxygenase 2 (COX-2), and LPA2 and LPA5 receptors, were measured by Western blotting. Interleukin-6 (IL-6) and prostaglandin E2 (PGE2) levels were measured by enzyme-linked immunosorbent assay. The platelet endothelial cell adhesion molecule (PECAM-1), Evans blue, and occludin levels in gastric tissues were measured using immunofluorescence analysis. Both HCl/ethanol- and indomethacin-induced gastric ulcers showed increased TNF-α, IL-6, Evans blue permeation, and PECAM-1, and decreased COX-2, PGE2, occludin, and LPA5 receptor expression levels. However, oral administration of gintonin alleviated the gastric ulcer index induced by HCl/ethanol and indomethacin in a dose-dependent manner. Gintonin suppressed TNF-α and IL-6 expression, but increased COX-2 expression and PGE2 levels in mouse gastric tissues. Gintonin intake also increased LPA5 receptor expression in mouse gastric tissues. These results indicate that gintonin can play a role in gastric protection against gastric damage induced by HCl/ethanol or indomethacin.
Collapse
Affiliation(s)
- Han-Sung Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (J.-H.K.)
| | - Tae Woo Kwon
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Ji-Hun Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (J.-H.K.)
| | - Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (J.-H.K.)
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-City 54596, Republic of Korea
| | - Sun-Hye Choi
- Department of Animal Health, College of Health and Medical Services, Osan University, Osan-si 18119, Republic of Korea
| | - Ik-Hyun Cho
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (J.-H.K.)
| |
Collapse
|
32
|
Islam MR, Dhar PS, Akash S, Syed SH, Gupta JK, Gandla K, Akter M, Rauf A, Hemeg HA, Anwar Y, Aljohny BO, Wilairatana P. Bioactive molecules from terrestrial and seafood resources in hypertension treatment: focus on molecular mechanisms and targeted therapies. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:45. [PMID: 37902881 PMCID: PMC10616036 DOI: 10.1007/s13659-023-00411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
Hypertension (HTN), a complex cardiovascular disease (CVD), significantly impacts global health, prompting a growing interest in complementary and alternative therapeutic approaches. This review article seeks to provide an up-to-date and thorough summary of modern therapeutic techniques for treating HTN, with an emphasis on the molecular mechanisms of action found in substances found in plants, herbs, and seafood. Bioactive molecules have been a significant source of novel therapeutics and are crucial in developing and testing new HTN remedies. Recent advances in science have made it possible to understand the complex molecular mechanisms underlying blood pressure (BP)-regulating effects of these natural substances better. Polyphenols, flavonoids, alkaloids, and peptides are examples of bioactive compounds that have demonstrated promise in influencing several pathways involved in regulating vascular tone, reducing oxidative stress (OS), reducing inflammation, and improving endothelial function. The article explains the vasodilatory, diuretic, and renin-angiotensin-aldosterone system (RAAS) modifying properties of vital plants such as garlic and olive leaf. Phytochemicals from plants are the primary in traditional drug development as models for novel antihypertensive drugs, providing diverse strategies to combat HTN due to their biological actions. The review also discusses the functions of calcium channel blockers originating from natural sources, angiotensin-converting enzyme (ACE) inhibitors, and nitric oxide (NO) donors. Including seafood components in this study demonstrates the increased interest in using bioactive chemicals originating from marine sources to treat HTN. Omega-3 fatty acids, peptides, and minerals obtained from seafood sources have anti-inflammatory, vasodilatory, and antioxidant properties that improve vascular health and control BP. Overall, we discussed the multiple functions of bioactive molecules and seafood components in the treatment of HTN.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Sabeena Hussain Syed
- School of Pharmacy, Vishwakarma University, Survey No 2, 3,4, Kondhwa Main Rd, Laxmi Nagar, Betal Nagar, Kondhwa, Pune, Maharashtra, 411048, India
| | | | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya (Deemed to Be University), Himayath Nagar, Hyderabad, Telangana, 500075, India
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan.
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21441, Kingdom of Saudi Arabia
| | - Bassam Oudh Aljohny
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21441, Kingdom of Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
33
|
Zhang J, Zhang L, Chen Y, Fang X, Li B, Mo C. The role of cGAS-STING signaling in pulmonary fibrosis and its therapeutic potential. Front Immunol 2023; 14:1273248. [PMID: 37965345 PMCID: PMC10642193 DOI: 10.3389/fimmu.2023.1273248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Pulmonary fibrosis is a progressive and ultimately fatal lung disease, exhibiting the excessive production of extracellular matrix and aberrant activation of fibroblast. While Pirfenidone and Nintedanib are FDA-approved drugs that can slow down the progression of pulmonary fibrosis, they are unable to reverse the disease. Therefore, there is an urgent demand to develop more efficient therapeutic approaches for pulmonary fibrosis. The intracellular DNA sensor called cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) plays a crucial role in detecting DNA and generating cGAMP, a second messenger. Subsequently, cGAMP triggers the activation of stimulator of interferon genes (STING), initiating a signaling cascade that leads to the stimulation of type I interferons and other signaling molecules involved in immune responses. Recent studies have highlighted the involvement of aberrant activation of cGAS-STING contributes to fibrotic lung diseases. This review aims to provide a comprehensive summary of the current knowledge regarding the role of cGAS-STING pathway in pulmonary fibrosis. Moreover, we discuss the potential therapeutic implications of targeting the cGAS-STING pathway, including the utilization of inhibitors of cGAS and STING.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- School of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Lanlan Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaobin Fang
- Fujian Provincial Key Laboratory of Critical Care Medicine, Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Bo Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Park J, Shin YK, Kim U, Seol GH. Ginsenoside Rb 1 Reduces Hyper-Vasoconstriction Induced by High Glucose and Endothelial Dysfunction in Rat Aorta. Pharmaceuticals (Basel) 2023; 16:1238. [PMID: 37765046 PMCID: PMC10536350 DOI: 10.3390/ph16091238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Acute hyperglycemia induces oxidative damage and inflammation, leading to vascular dysfunction. Ginsenoside Rb1 (Rb1) is a major component of red ginseng with anti-diabetic, anti-oxidant and anti-inflammatory properties. Here, we investigated the beneficial effects and the underlying mechanisms of Rb1 on hypercontraction induced by high glucose (HG) and endothelial dysfunction (ED). The isometric tension of aortic rings was measured by myography. The rings were treated with NG-nitro-L-arginine methyl ester (L-NAME) to induce chemical destruction of the endothelium, and Rb1 was added after HG induction. The agonist-induced vasoconstriction was significantly higher in the aortic rings treated with L-NAME + HG50 than in those treated with HG50 or L-NAME (p = 0.011) alone. Rb1 significantly reduced the hypercontraction in the aortic rings treated with L-NAME + HG50 (p = 0.004). The ATP-sensitive K+ channel (KATP) blocker glibenclamide tended to increase the Rb1-associated reduction in the agonist-induced vasoconstriction in the rings treated with L-NAME + HG50. The effect of Rb1 in the aortic rings treated with L-NAME + HG50 resulted from a decrease in extracellular Ca2+ influx through the receptor-operated Ca2+ channel (ROCC, 10-6-10-4 M CaCl2, p < 0.001; 10-3-2.5 × 10-3 M CaCl2, p = 0.001) and the voltage-gated Ca2+ channel (VGCC, 10-6 M CaCl2, p = 0.003; 10-5-10-2 M CaCl2, p < 0.001), whereas Rb1 did not interfere with Ca2+ release from the sarcoplasmic reticulum. In conclusion, we found that Rb1 reduced hyper-vasoconstriction induced by HG and ED by inhibiting the ROCC and the VGCC, and possibly by activating the KATP in rat aorta. This study provides further evidence that Rb1 could be developed as a therapeutic target for ED in diabetes.
Collapse
Affiliation(s)
- Jubin Park
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul 02841, Republic of Korea (U.K.)
- BK21 FOUR Program of Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - You Kyoung Shin
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul 02841, Republic of Korea (U.K.)
| | - Uihwan Kim
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul 02841, Republic of Korea (U.K.)
- BK21 FOUR Program of Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, College of Nursing, Korea University, Seoul 02841, Republic of Korea (U.K.)
- BK21 FOUR Program of Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
35
|
Kim JH, Kim JM, Lee HL, Go MJ, Kim TY, Joo SG, Lee HS, Heo HJ. Korean Red Ginseng Prevents the Deterioration of Lung and Brain Function in Chronic PM 2.5-Exposed Mice by Regulating Systemic Inflammation. Int J Mol Sci 2023; 24:13266. [PMID: 37686071 PMCID: PMC10488300 DOI: 10.3390/ijms241713266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
This study was conducted to confirm the effects of Korean red ginseng on lung and brain dysfunction in a BALB/c mice model exposed to particulate matter (PM)2.5 for 12 weeks. Learning and cognitive abilities were assessed with Y-maze, passive avoidance, and Morris water maze tests. To evaluate the ameliorating effect of red ginseng extract (RGE), the antioxidant system and mitochondrial function were investigated. The administration of RGE protected lung and brain impairment by regulating the antioxidant system and mitochondrial functions damaged by PM2.5-induced toxicity. Moreover, RGE prevented pulmonary fibrosis by regulating the transforming growth factor beta 1 (TGF-β1) pathway. RGE attenuated PM2.5-induced pulmonary and cognitive dysfunction by regulating systemic inflammation and apoptosis via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/c-Jun N-terminal kinases (JNK) pathway. In conclusion, RGE might be a potential material that can regulate chronic PM2.5-induced lung and brain cognitive dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.H.K.); (J.M.K.); (H.L.L.); (M.J.G.); (T.Y.K.); (S.G.J.); (H.S.L.)
| |
Collapse
|
36
|
Ratchamak R, Authaida S, Koedkanmark T, Boonkum W, Semaming Y, Chankitisakul V. Supplementation of Freezing Medium with Ginseng Improves Rooster Sperm Quality and Fertility Relative to Free Radicals and Antioxidant Enzymes. Animals (Basel) 2023; 13:2660. [PMID: 37627452 PMCID: PMC10451814 DOI: 10.3390/ani13162660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
To the best of our knowledge, this study is the first to determine the effect of ginseng as an antioxidant supplement in freezing extenders on the quality of cryopreserved rooster semen. Semen samples were collected from 40 Thai native roosters (Pradu Hang Dum) using the dorso-abdominal massage method and then pooled and divided into five groups according to the concentrations of ginseng supplementation (0, 0.25, 0.50, 0.75, and 1 mg/mL) in a freezing extender. The semen suspensions were loaded into a medium straw and cryopreserved using the liquid nitrogen vapor method. The post-thaw semen was evaluated for sperm quality (sperm motility and membrane integrity), seminal plasma characteristics (lipid peroxidation, superoxide dismutase [SOD], catalase [CAT], and glutathione peroxidase [GPx]), and fertility. The results showed that ginseng extract supplementation at 0.25 mg/mL yielded the highest total motility, progressive motility, and membrane integrity (59.47%, 30.82%, and 48.30%, respectively; p < 0.05) in cryopreserved rooster semen. Higher malondialdehyde concentrations were observed in the control group than in the other groups (p < 0.05). SOD, CAT, and GPx increased compared with those in the control group (p < 0.05). The results showed that the fertility rate with 0.25 mg/mL of ginseng was higher than that of the control group (62.80% vs. 46.28%: p < 0.05). In conclusion, supplementation with 0.25 mg/mL of ginseng is recommended as an alternative component to the freezing extender to improve rooster semen cryopreservation.
Collapse
Affiliation(s)
- Ruthaiporn Ratchamak
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40002, Thailand; (R.R.); (S.A.); (T.K.); (W.B.)
- The Research and Development Network Center of Animal Breeding and Omics, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supakorn Authaida
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40002, Thailand; (R.R.); (S.A.); (T.K.); (W.B.)
| | - Thirawat Koedkanmark
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40002, Thailand; (R.R.); (S.A.); (T.K.); (W.B.)
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40002, Thailand; (R.R.); (S.A.); (T.K.); (W.B.)
- The Research and Development Network Center of Animal Breeding and Omics, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yoswaris Semaming
- Program in Veterinary Technology, Faculty of Technology, Udon Thani Rajabhat University, Udon Thani 41000, Thailand;
| | - Vibuntita Chankitisakul
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40002, Thailand; (R.R.); (S.A.); (T.K.); (W.B.)
- The Research and Development Network Center of Animal Breeding and Omics, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
37
|
Yang J, Song J, Shilpha J, Jeong BR. Top and Side Lighting Induce Morphophysiological Improvements in Korean Ginseng Sprouts ( Panax ginseng C.A. Meyer) Grown from One-Year-Old Roots. PLANTS (BASEL, SWITZERLAND) 2023; 12:2849. [PMID: 37571002 PMCID: PMC10421474 DOI: 10.3390/plants12152849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Nowadays, not only the roots, but also leaves and flowers of ginseng are increasingly popular ingredients in supplements for healthcare products and traditional medicine. The cultivation of the shade-loving crop, ginseng, is very demanding in terms of the light environment. Along with the intensity and duration, light direction is another important factor in regulating plant morphophysiology. In the current study, three lighting directions-top (T), side (S), or top + side (TS)-with an intensity of 30 ± 5 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) were employed. Generally, compared with the single T lighting, the composite lighting direction, TS, was more effective in shaping the ginseng with improved characteristics, including shortened, thick shoots; enlarged, thick leaves; more leaf trichomes; earlier flower bud formation; and enhanced photosynthesis. The single S light resulted in the worst growth parameters and strongly inhibited the flower bud formation, leading to the latest flower bud observation. Additionally, the S lighting acted as a positive factor in increasing the leaf thickness and number of trichomes on the leaf adaxial surface. However, the participation of the T lighting weakened these traits. Overall, the TS lighting was the optimal direction for improving the growth and development traits in ginseng. This preliminary research may provide new ideas and orientations in ginseng cultivation lodging resistance and improving the supply of ginseng roots, leaves, and flowers to the market.
Collapse
Affiliation(s)
- Jingli Yang
- Shandong Facility Horticulture Bioengineering Research Center, Jia Sixie College of Agriculture, Weifang University of Science and Technology, Shouguang 262700, China; (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jinnan Song
- Shandong Facility Horticulture Bioengineering Research Center, Jia Sixie College of Agriculture, Weifang University of Science and Technology, Shouguang 262700, China; (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jayabalan Shilpha
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
38
|
Abdelgaied MY, Abd El-Aziz MK, Amin NS, El Tayebi HM. What's your cup of tea? The role of herbal compounds in the management of multiple sclerosis. Mult Scler Relat Disord 2023; 76:104799. [PMID: 37300922 DOI: 10.1016/j.msard.2023.104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Multiple Sclerosis (MS) is a chronic, inflammatory, neurodegenerative disease that is characterized by a complex etiology. Efforts towards the management of MS have long been directed towards symptomatic relief, as well as the use of immune-modulatory, disease modifying therapies; however, inconsistent treatment responses still prevail, increasing the risk for disease progression. While a great deal of research attempted to unravel the complexity of treatment responses in light of epigenetic variability, parallel efforts in the direction of alternative medicine may be as paramount. Herbal compounds have long been regarded as safe and versatile options for aiding in various disorders, including neurodegenerative conditions like MS. Numerous studies have taken interest in a myriad of herbal plants for their potential benefit in alleviating some of the most common MS symptoms such as spasticity and fatigue, delaying the progression of the disease, as well as influencing the overall quality of life for MS patients. This review aims to provide a comprehensive overview of recent clinical studies examining the effects of various herbal plants on different aspects of MS, in an attempt to shed light on an important tool for aiding in the management of this complex and multifactorial disease.
Collapse
Affiliation(s)
- Mohamed Y Abdelgaied
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, Clinical Pharmacology and Pharmacogenomics Research Group, Head of Clinical Pharmacology and Pharmacogenomics Research Group, German University in Cairo, Cairo 11835, Egypt
| | - Mostafa K Abd El-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, Clinical Pharmacology and Pharmacogenomics Research Group, Head of Clinical Pharmacology and Pharmacogenomics Research Group, German University in Cairo, Cairo 11835, Egypt
| | - Nada Sherif Amin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, Clinical Pharmacology and Pharmacogenomics Research Group, Head of Clinical Pharmacology and Pharmacogenomics Research Group, German University in Cairo, Cairo 11835, Egypt
| | - Hend M El Tayebi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, Clinical Pharmacology and Pharmacogenomics Research Group, Head of Clinical Pharmacology and Pharmacogenomics Research Group, German University in Cairo, Cairo 11835, Egypt.
| |
Collapse
|
39
|
Liu S, Jiang Y, Wang Y, Huo H, Cilkiz M, Chen P, Han Y, Li L, Wang K, Zhao M, Zhu L, Lei J, Wang Y, Zhang M. Genetic and molecular dissection of ginseng ( Panax ginseng Mey.) germplasm using high-density genic SNP markers, secondary metabolites, and gene expressions. FRONTIERS IN PLANT SCIENCE 2023; 14:1165349. [PMID: 37575919 PMCID: PMC10416250 DOI: 10.3389/fpls.2023.1165349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023]
Abstract
Genetic and molecular knowledge of a species is crucial to its gene discovery and enhanced breeding. Here, we report the genetic and molecular dissection of ginseng, an important herb for healthy food and medicine. A mini-core collection consisting of 344 cultivars and landraces was developed for ginseng that represents the genetic variation of ginseng existing in its origin and diversity center. We sequenced the transcriptomes of all 344 cultivars and landraces; identified over 1.5 million genic SNPs, thereby revealing the genic diversity of ginseng; and analyzed them with 26,600 high-quality genic SNPs or a selection of them. Ginseng had a wide molecular diversity and was clustered into three subpopulations. Analysis of 16 ginsenosides, the major bioactive components for healthy food and medicine, showed that ginseng had a wide variation in the contents of all 16 ginsenosides and an extensive correlation of their contents, suggesting that they are synthesized through a single or multiple correlated pathways. Furthermore, we pair-wisely examined the relationships between the cultivars and landraces, revealing their relationships in gene expression, gene variation, and ginsenoside biosynthesis. These results provide new knowledge and new genetic and genic resources for advanced research and breeding of ginseng and related species.
Collapse
Affiliation(s)
- Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yue Jiang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yanfang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Huimin Huo
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Mustafa Cilkiz
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Yilai Han
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Li Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Lei Zhu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Jun Lei
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
40
|
Yang J, Zhang L, Peng X, Zhang S, Sun S, Ding Q, Ding C, Liu W. Polymer-Based Wound Dressings Loaded with Ginsenoside Rg3. Molecules 2023; 28:5066. [PMID: 37446725 DOI: 10.3390/molecules28135066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The skin, the largest organ in the human body, mainly plays a protective role. Once damaged, it can lead to acute or chronic wounds. Wound healing involves a series of complex physiological processes that require ideal wound dressings to promote it. The current wound dressings have characteristics such as high porosity and moderate water vapor permeability, but they are limited in antibacterial properties and cannot protect wounds from microbial infections, which can delay wound healing. In addition, several dressings contain antibiotics, which may have bad impacts on patients. Natural active substances have good biocompatibility; for example, ginsenoside Rg3 has anti-inflammatory, antibacterial, antioxidant, and other biological activities, which can effectively promote wound healing. Some researchers have developed various polymer wound dressings loaded with ginsenoside Rg3 that have good biocompatibility and can effectively promote wound healing and reduce scar formation. This article will focus on the application and mechanism of ginsenoside Rg3-loaded dressings in wounds.
Collapse
Affiliation(s)
- Jiali Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Lifeng Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiaojuan Peng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China
| |
Collapse
|
41
|
Tan M, Liu F, Xie Y, Mo Q, Shi F. The construction of an Agrobacterium-mediated transformation system of Gynostemma pentaphyllum using the phosphomannose-isomerase/mannose selection system. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:167-174. [PMID: 38250295 PMCID: PMC10797527 DOI: 10.5511/plantbiotechnology.23.0418a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/18/2023] [Indexed: 01/23/2024]
Abstract
In this study, the transformed system mediated by Agrobacterium tumefaciens of Gynostemma pentaphyllum was constructed by using the phosphomannose-isomerase (PMI) gene as a marker. To investigate the cefotaxime sodium salt (Cef) concentration of bacteriostatic medium and the appropriate mannose concentration in the selectable medium, explants of the stems with buds were cultured in a basic medium supplemented with different Cef and mannose concentrations, respectively. After these were optimized, 288 explants were transformed according the protocol described above to verify their availability by using the polymerase chain reaction (PCR), reverse transcription-PCR and chlorophenol red. The results showed that the appropriate Cef concentration for bacteriostatic culture and mannose concentration for selectable culture were 150 mg l-1 and 3 g l-1 for stem with buds, respectively. According to the PCR results, the transformation frequency of stems with buds was 20.49% with a regeneration rate of 29.16%. In future, the CPR assay could be the auxiliary method of choice as it is moderately accurate, but it has good maneuverability and is cost effective for large-scale use.
Collapse
Affiliation(s)
- Muxiu Tan
- Guangxi Botanical Garden of Medicinal Plants, 189 Changgang Road, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - Fengming Liu
- Guangxi Botanical Garden of Medicinal Plants, 189 Changgang Road, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - Yueying Xie
- Guangxi Botanical Garden of Medicinal Plants, 189 Changgang Road, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - Qiaocheng Mo
- Guangxi Botanical Garden of Medicinal Plants, 189 Changgang Road, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - Fenghua Shi
- Guangxi Botanical Garden of Medicinal Plants, 189 Changgang Road, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
42
|
Wang Q, Peng W, Rong J, Zhang M, Jia W, Lei X, Wang Y. Molecular analysis of the 14-3-3 genes in Panax ginseng and their responses to heat stress. PeerJ 2023; 11:e15331. [PMID: 37187526 PMCID: PMC10178371 DOI: 10.7717/peerj.15331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Background Panax Ginseng is a perennial and semi-shady herb with tremendous medicinal value. Due to its unique botanical characteristics, ginseng is vulnerable to various abiotic factors during its growth and development, especially in high temperatures. Proteins encoded by 14-3-3 genes form a highly conserved protein family that widely exists in eukaryotes. The 14-3-3 family regulates the vital movement of cells and plays an essential role in the response of plants to abiotic stresses, including high temperatures. Currently, there is no relevant research on the 14-3-3 genes of ginseng. Methods The identification of the ginseng 14-3-3 gene family was mainly based on ginseng genomic data and Hidden Markov Models (HMM). We used bioinformatics-related databases and tools to analyze the gene structure, physicochemical properties, cis-acting elements, gene ontology (GO), phylogenetic tree, interacting proteins, and transcription factor regulatory networks. We analyzed the transcriptome data of different ginseng tissues to clarify the expression pattern of the 14-3-3 gene family in ginseng. The expression level and modes of 14-3-3 genes under heat stress were analyzed by quantitative real-time PCR (qRT-PCR) technology to determine the genes in the 14-3-3 gene family responding to high-temperature stress. Results In this study, 42 14-3-3 genes were identified from the ginseng genome and renamed PgGF14-1 to PgGF14-42. Gene structure and evolutionary relationship research divided PgGF14s into epsilon (ε) and non-epsilon (non-ε) groups, mainly located in four evolutionary branches. The gene structure and motif remained highly consistent within a subgroup. The physicochemical properties and structure of the predicted PgGF14 proteins conformed to the essential characteristics of 14-3-3 proteins. RNA-seq results indicated that the detected PgGF14s existed in different organs and tissues but differed in abundance; their expression was higher in roots, stems, leaves, and fruits but lower in seeds. The analysis of GO, cis-acting elements, interacting proteins, and regulatory networks of transcription factors indicated that PgGF14s might participate in physiological processes, such as response to stress, signal transduction, material synthesis-metabolism, and cell development. The qRT-PCR results indicated PgGF14s had multiple expression patterns under high-temperature stress with different change trends in several treatment times, and 38 of them had an apparent response to high-temperature stress. Furthermore, PgGF14-5 was significantly upregulated, and PgGF14-4 was significantly downregulated in all treatment times. This research lays a foundation for further study on the function of 14-3-3 genes and provides theoretical guidance for investigating abiotic stresses in ginseng.
Collapse
Affiliation(s)
- Qi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenyue Peng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Junbo Rong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Mengyang Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenhao Jia
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiujuan Lei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Yingping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
43
|
Al Mahmud A, Shafayet Ahmed Siddiqui, Karim MR, Al-Mamun MR, Akhter S, Sohel M, Hasan M, Bellah SF, Amin MN. Clinically proven natural products, vitamins and mineral in boosting up immunity: A comprehensive review. Heliyon 2023; 9:e15292. [PMID: 37089292 PMCID: PMC10079597 DOI: 10.1016/j.heliyon.2023.e15292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND and Purposes: The terminology "immune boost-up" was the talk of the topic in this Covid-19 pandemic. A significant number of the people took initiative to increase the body's defense capacity through boosting up immunity worldwide. Considering this, the study was designed to explain the natural products, vitamins and mineral that were proved by clinical trail as immunity enhancer. METHODS Information was retrieved from SciVerse Scopus ® (Elsevier Properties S. A, USA), Web of Science® (Thomson Reuters, USA), and PubMed based on immunity, nutrients, natural products in boosting up immunity, minerals and vitamins in boosting up immunity, and immune booster agents. RESULT A well-defined immune cells response provide a-well functioning defense system for the human physiological system. Cells of the immune system must require adequate stimulation so that these cells can prepare themselves competent enough to fight against any unintended onslaught. Several pharmacologically active medicinal plants and plants derived probiotics or micronutrients have played a pivotal role in enhancing the immune boost-up process. Their role has been well established from the previous study. Immune stimulating cells, especially cells of acquired immunity are closely associated with the immune-boosting up process because all the immunological reactions and mechanisms are mediated through these cells. CONCLUSION This article highlighted the mechanism of action of different natural products, vitamins and mineral in boosting up the immunity of the human body and strengthening the body's defense system. Therefore, it is recommended that until the specific immune-boosting drugs are available in pharma markets, anyone can consider the mentioned products as dietary supplements to boost up the immunity.
Collapse
Affiliation(s)
- Abdullah Al Mahmud
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | - Shafayet Ahmed Siddiqui
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | - Md Rezaul Karim
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | | | - Shammi Akhter
- Department of Pharmacy, Varendra University, Rajshahi, 6204, Bangladesh
| | - Md Sohel
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka, 1213, Bangladesh
| | - Mahedi Hasan
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | - Sm Faysal Bellah
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | - Mohammad Nurul Amin
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka, 1230, Bangladesh
| |
Collapse
|
44
|
Chandra Das R, Ratan ZA, Rahman MM, Runa NJ, Mondal S, Konstantinov K, Hosseinzadeh H, Cho JY. Antiviral activities of ginseng and its potential and putative benefits against monkeypox virus: A mini review. J Ginseng Res 2023; 47:S1226-8453(23)00028-3. [PMID: 37362081 PMCID: PMC10065872 DOI: 10.1016/j.jgr.2023.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Due to the Covid-19 pandemic more than 6 million people have died, and it has bought unprecedented challenges to our lives. The recent outbreak of monkeypox virus (MPXV) has brought out new tensions among the scientific community. Currently, there is no specific treatment protocol for MPXV. Several antivirals, vaccinia immune globulin (VIG) and smallpox vaccines have been used to treat MPXV. Ginseng, one of the more famous among traditional medicines, has been used for infectious disease for thousands of years. It has shown promising antiviral effects. Ginseng could be used as a potential adaptogenic agent to help prevent infection by MPXV along with other drugs and vaccines. In this mini review, we explore the possible use of ginseng in MPXV prevention based on its antiviral activity.
Collapse
Affiliation(s)
- Rajib Chandra Das
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW, Australia
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Zubair Ahmed Ratan
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh
- School of Health and Society, University of Wollongong, NSW, Australia
| | - Md Mustafizur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh
| | | | - Susmita Mondal
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW, Australia
| | | | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU, Suwon, Republic of Korea
| |
Collapse
|
45
|
Malík M, Tlustoš P. Nootropic Herbs, Shrubs, and Trees as Potential Cognitive Enhancers. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061364. [PMID: 36987052 PMCID: PMC10056569 DOI: 10.3390/plants12061364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 05/13/2023]
Abstract
Plant-based nootropics are a diverse group of natural drugs that can improve cognitive abilities through various physiological mechanisms, especially in cases where these functions are weakened or impaired. In many cases, the nootropics enhance erythrocyte plasticity and inhibit aggregation, which improves the blood's rheological properties and increases its flow to the brain. Many of these formulations possess antioxidant activity that protects brain tissue from neurotoxicity and improves the brain's oxygen supply. They can induce the synthesis of neuronal proteins, nucleic acids, and phospholipids for constructing and repairing neurohormonal membranes. These natural compounds can potentially be present in a great variety of herbs, shrubs, and even some trees and vines. The plant species reviewed here were selected based on the availability of verifiable experimental data and clinical trials investigating potential nootropic effects. Original research articles, relevant animal studies, meta-analyses, systematic reviews, and clinical trials were included in this review. Selected representatives of this heterogeneous group included Bacopa monnieri (L.) Wettst., Centella asiatica (L.) Urban, Eleutherococcus senticosus (Rupr. & Maxim.) Maxim., Ginkgo biloba L., Lepidium meyenii Walp., Panax ginseng C.A. Meyer, Paullinia cupana Kunth, Rhodiola rosea L., Schisandra chinensis (Turcz.) Baill., and Withania somnifera (L.) Dunal. The species are depicted and described, together with their active components and nootropic effects, and evidence of their efficacy is presented. The study provides brief descriptions of the representative species, their occurrence, history, and the chemical composition of the principle medicinal compounds, with uses, indications, experimental treatments, dosages, possible side effects, and contraindications. Most plant nootropics must be taken at optimal doses for extended periods before measurable improvement occurs, but they are generally very well tolerated. Their psychoactive properties are not produced by a single molecule but by a synergistic combination of several compounds. The available data suggest that including extracts from these plants in medicinal products to treat cognitive disorders can have substantial potential therapeutic benefits.
Collapse
|
46
|
Cho JH, Song MC, Lee Y, Noh ST, Kim DO, Rha CS. Newly identified maltol derivatives in Korean Red Ginseng and their biological influence as antioxidant and anti-inflammatory agents. J Ginseng Res 2023. [DOI: 10.1016/j.jgr.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
|
47
|
Jung DH, Nahar J, Mathiyalagan R, Rupa EJ, Ramadhania ZM, Han Y, Yang DC, Kang SC. A Focused Review on Molecular Signalling Mechanisms of Ginsenosides Anti-Lung Cancer and Anti-inflammatory Activities. Anticancer Agents Med Chem 2023; 23:3-14. [PMID: 35319393 DOI: 10.2174/1871520622666220321091022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/01/2021] [Accepted: 12/12/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Ginseng (Panax ginseng Meyer) is a cultivated medicinal herb that has been widely available in the Asian region since the last century. Ginseng root is used worldwide in Oriental medicine. Currently, the global mortality and infection rates for lung cancer and inflammation are significantly increasing. Therefore, various preventative methods related to the activity of ginsenosides have been used for lung cancer as well as inflammation. METHODS Web-based searches were performed on Web of Science, Springer, PubMed, and Scopus. A cancer statistical analysis was also conducted to show the current ratio of affected cases and death from lung cancer around the world. RESULTS Ginsenosides regulate the enzymes that participate in tumor growth and migration, such as nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal kinase (JNK), extracellular signalregulated kinases 1/2 (ERK1/2), the gelatinase network metalloproteinase-2 (MMP-2/9) and activator protein 1 (AP-1). In addition, ginsenosides also possess anti-inflammatory effects by inhibiting the formation of proinflammatory cytokines (tumor necrosis factor-α) (TNF-α) and interleukin-1β (IL-1β) and controlling the activities of inflammatory signalling pathways, such as NF-κB, Janus kinase2/signal transducer, and activator of transcription 3 (Jak2/Stat3). CONCLUSION In several in vitro and in vivo models, P. ginseng showed potential beneficial effects in lung cancer and inflammation treatment. In this review, we provide a detailed and up-to-date summary of research evidence for antilung cancer and anti-inflammatory protective effects of ginsenosides and their potential molecular mechanisms.
Collapse
Affiliation(s)
- Dae-Hyo Jung
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Jinnatun Nahar
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Esrat Jahan Rupa
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea
| | - Zelika Mega Ramadhania
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Yaxi Han
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.,Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea
| | - Se Chan Kang
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| |
Collapse
|
48
|
Rahimi S, van Leeuwen D, Roshanzamir F, Pandit S, Shi L, Sasanian N, Nielsen J, Esbjörner EK, Mijakovic I. Ginsenoside Rg3 Reduces the Toxicity of Graphene Oxide Used for pH-Responsive Delivery of Doxorubicin to Liver and Breast Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15020391. [PMID: 36839713 PMCID: PMC9965446 DOI: 10.3390/pharmaceutics15020391] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Doxorubicin (DOX) is extensively used in chemotherapy, but it has serious side effects and is inefficient against some cancers, e.g., hepatocarcinoma. To ameliorate the delivery of DOX and reduce its side effects, we designed a pH-responsive delivery system based on graphene oxide (GO) that is capable of a targeted drug release in the acidic tumor microenvironment. GO itself disrupted glutathione biosynthesis and induced reactive oxygen species (ROS) accumulation in human cells. It induced IL17-directed JAK-STAT signaling and VEGF gene expression, leading to increased cell proliferation as an unwanted effect. To counter this, GO was conjugated with the antioxidant, ginsenoside Rg3, prior to loading with DOX. The conjugation of Rg3 to GO significantly reduced the toxicity of the GO carrier by abolishing ROS production. Furthermore, treatment of cells with GO-Rg3 did not induce IL17-directed JAK-STAT signaling and VEGF gene expression-nor cell proliferation-suggesting GO-Rg3 as a promising drug carrier. The anticancer activity of GO-Rg3-DOX conjugates was investigated against Huh7 hepatocarcinoma and MDA-MB-231 breast cancer cells. GO-Rg3-DOX conjugates significantly reduced cancer cell viability, primarily via downregulation of transcription regulatory genes and upregulation of apoptosis genes. GO-Rg3 is an effective, biocompatible, and pH responsive DOX carrier with potential to improve chemotherapy-at least against liver and breast cancers.
Collapse
Affiliation(s)
- Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Daniel van Leeuwen
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Fariba Roshanzamir
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Lei Shi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Nima Sasanian
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Jens Nielsen
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
- BioInnovation Institute, DK-2200 Copenhagen, Denmark
| | - Elin K. Esbjörner
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Lyngby, Denmark
- Correspondence:
| |
Collapse
|
49
|
Cheng X, Li X, Liao B, Xu J, Hu L. Improved performance of proteomic characterization for Panax ginseng by strong cation exchange extraction and liquid chromatography-mass spectrometry analysis. J Chromatogr A 2023; 1688:463692. [PMID: 36549145 DOI: 10.1016/j.chroma.2022.463692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Panax ginseng is a precious and ancient medicinal plant. The completion of its genome sequencing has laid the foundation for the study of proteome and peptidome. However, the high abundance of secondary metabolites in ginseng reduces the identification efficiency of proteins and peptides in mass spectrometry. In this report, strong cation exchange pretreatment was carried out to eliminate the interference of impurities. Based on the charge separation of proteolytic peptides and metabolites, the sensitivity of mass spectrometry detection was greatly improved. After pretreatment, 2322 and 2685 proteins were identified from the root and stem leaf extract. Further, the ginseng peptidome was analyzed based on this optimized strategy, where 970 and 653 endogenous peptides were identified from root and stem leaf extract, respectively. Functional analysis of proteins and endogenous peptides provided valuable information on the biological activities, metabolic processes, and ginsenoside biosynthesis pathways of ginseng.
Collapse
Affiliation(s)
- Xianhui Cheng
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Xiaoying Li
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
50
|
Brockmueller A, Mahmoudi N, Movaeni AK, Mueller AL, Kajbafzadeh AM, Shakibaei M, Zolbin MM. Stem Cells and Natural Agents in the Management of Neurodegenerative Diseases: A New Approach. Neurochem Res 2023; 48:39-53. [PMID: 36112254 DOI: 10.1007/s11064-022-03746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 01/11/2023]
Abstract
Neurodegenerative diseases refer to a group of neurological disorders as a consequence of various destructive illnesses, that predominantly impact neurons in the central nervous system, resulting in impairments in certain brain functions. Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, and other neurodegenerative disorders represent a major risk to human health. In order to optimize structural and functional recovery, reconstructive methods integrate many approaches now, to address the complex and multivariate pathophysiology of neurodegenerative disorders. Stem cells, with their unique property of regeneration, offer new possibilities in regenerative and reconstructive medicine. Concurrently, there is an important role for natural products in controlling many health sufferings and they can delay or even prevent the onset of various diseases. In addition, due to their therapeutic properties, they have been used as neuroprotective agents to treat neurodegenerative disorders. After decades of intensive research, scientists made advances in treating these disorders so far, but current therapies are still not capable of preventing the illnesses from progressing. Therefore, in this review, we focused on a new perspective combining stem cells and natural products as an innovative therapy option in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 11, 80336, Munich, Germany
| | - Negin Mahmoudi
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kian Movaeni
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 11, 80336, Munich, Germany
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 11, 80336, Munich, Germany.
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|