1
|
Yang Y, Wu MQ, Zhu PY, Ma CM, Wang B, Bian X, Liu XF, Zhang G, Zhang N. Interaction of rice glutelin with soybean 7S globulin formed co-assemblies with improved functional properties. Food Chem 2025; 475:143270. [PMID: 39946913 DOI: 10.1016/j.foodchem.2025.143270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
Rice protein (RP) molecules tend to aggregate, limiting their functional properties and posing a significant challenge to the intensive processing of rice products. This study explored the interaction between soybean 7S globulin (7S) and rice glutelin (RG) to improve the structure and properties of RP. The results show that the tertiary structure of the RG-7S co-assemblies undergoes a certain degree of extension, increases the α-helix content, and reduces the β-sheet content in the secondary structure. Molecular dynamics provide further verification that hydrogen bonding and hydrophobic interactions are the main drivers of these conformational changes. When the RG-7S ratio was 1:1.500 (g/g), the solubility increased 20-fold, and the emulsifying activity index and foaming capacity increased by 3.33 and 1.89 times, respectively. This study confirms that 7S co-assembly with RG enhances the functional properties of RG, demonstrating the potential of this strategy for application in the food industry.
Collapse
Affiliation(s)
- Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Ming-Qian Wu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Peng-Yu Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Chun-Min Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xiao-Fei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
2
|
Das S, Barman P, Chakraborty R, Upadhyay A, Sagdeo A, Kula P, Das MK, Roy SS. Optical Biosensor for Bacteremia detection from human blood samples at a label-free Liquid Crystal-Aqueous Interface: A Rapid and Point-of-Care approach. J Colloid Interface Sci 2025; 683:79-89. [PMID: 39671902 DOI: 10.1016/j.jcis.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/12/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Detection of bacteremia requires recognizing bloodstream bacteria. Early identification of bacteremia is imperative for treatment and prevents the escalation to systemic infections like septicaemia. This paper introduces a novel, label-free biosensor based on liquid crystals (LCs), designed to offer rapid and reliable optical detection of blood pathogens without using traditional PCR methods. The biosensor utilizes 16S rRNA, a key structural component of the bacterial genome, as a molecular recognition probe. For accurate detection of target DNA, a nematic LC is positioned within a transmission electron microscopy (TEM) grid cell on a DMOAP-coated glass surface and treated with a cationic surfactant, cetyl trimethyl ammonium bromide (CTAB), to facilitate probe adhesion at the LC-aqueous interface. Initially, the CTAB-coated LC displays a homeotropic orientation, but it shifts to a planar/tilted orientation when the primer is added. Upon exposure to the target DNA, the LC returns to its homeotropic configuration, which can be observed using a polarizing optical microscope (POM) fitted with crossed polarizers. An optimal primer adsorption density of 100 nM allows detection of target DNA at concentrations as low as 0.02 nM. The biosensor has been verified for real-time, point-of-care utility by successfully detecting the genomic DNA of the bacterium E. coli cultured in human blood. The operational mechanism of this biosensor has also been confirmed using Circular Dichroism and Synchrotron X-ray Solution Scattering Measurements. Due to its high sensitivity and label-free nature, this biosensor provides a faster, more practical and user-friendly alternative to traditional pathogen detection methods from blood samples of bacteremia patients.
Collapse
Affiliation(s)
- Sayani Das
- Nanocarbon and Sensor Laboratory, Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Greater Noida, India
| | - Partha Barman
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri 734013, West Bengal, India
| | - Ranadhir Chakraborty
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri 734013, West Bengal, India
| | - Anuj Upadhyay
- Accelerator Physics and Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
| | - Archna Sagdeo
- Accelerator Physics and Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Przemysław Kula
- Institute of Chemistry, Military University of Technology, Warsaw, Poland
| | - Malay Kumar Das
- Department of Physics, University of North Bengal, Siliguri 734013, West Bengal, India.
| | - Susanta Sinha Roy
- Nanocarbon and Sensor Laboratory, Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Greater Noida, India.
| |
Collapse
|
3
|
Tu Y, Cai Y, Lei J, Yu J. Exploring the interaction mechanism between the programmed death-ligand 1 protein and scutellarin via multi-spectroscopy and computer simulation. Int J Biol Macromol 2025; 294:139492. [PMID: 39756756 DOI: 10.1016/j.ijbiomac.2025.139492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The programmed death-ligand 1 (PD-L1) protein plays a key role in immune responses. Scutellarin (SCU), as a flavonoid, has a variety of bioactivities. In this study, the human PD-L1 was obtained by expression and purification, and the interaction mechanisms between PD-L1 and SCU were revealed through multi-spectroscopy and computer simulation. Fluorescence data indicated that the quenching of PD-L1 by SCU was mainly static quenching, and primarily driven by hydrogen bonding and van der Waals forces. The binding constant (Ka) was decreased from 2.05 ± 0.55 × 104 L·mol-1 to 0.28 ± 0.08 × 104 L·mol-1 with increasing temperature. Meanwhile, the changes in the microenvironment of PD-L1 were revealed by the synchronous and the 3D fluorescence data. In addition, the melting temperature of PD-L1 increased by 1.67 °C after binding with SCU. Moreover, the circular dichroism data showed that SCU changed the secondary structure of PD-L1 by increasing α-helix content and decreasing β-sheet content. Furthermore, the binding modes between SCU and PD-L1 and the key residues involved in the interaction were revealed by molecular docking and molecular dynamics. These findings supported SCU as an alternative ICB therapeutic strategy and provided evidence for computer-based drug design strategies.
Collapse
Affiliation(s)
- Yijun Tu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yijie Cai
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Jiachuan Lei
- Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Jianqing Yu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| |
Collapse
|
4
|
Pan Y, Sun H, Ji L, He X, Dong W, Chen H. Modulation anisotropy of nanomaterials toward monolithic integrated polarization-sensitive photodetectors. NANOSCALE 2025. [PMID: 40012331 DOI: 10.1039/d4nr05034g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
By virtue of the unique ability of providing additional information beyond light intensity and spectra, polarization-sensitive photodetectors could precisely identify targets in several concealed, camouflaged, and non-cooperative backgrounds, making them highly suitable for potential applications in remote sensing, astronomical detection, medical diagnosis, etc. Therefore, to provide a comprehensive design guideline for a wide range of interdisciplinary researchers, this review provides a general overview of state-of-the-art linear, circular, and full-Stokes polarization-sensitive photodetectors. In particular, from the perspectives of technological progress and the development of nanoscience, the detailed discussion focuses on strategies to simplify high-performance polarization-sensitive photodetectors, reducing their size and achieving a smaller volume. In addition, to lay a solid foundation for modulating the properties of future nanostructure-based polarization-sensitive photodetectors, insights into light-matter interactions in low-symmetry materials and asymmetric structures are provided here. Meanwhile, the corresponding opportunities and challenges in this research field are identified.
Collapse
Affiliation(s)
- Yuan Pan
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| | - Huiru Sun
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| | - Lingxuan Ji
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| | - Xuanxuan He
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| | - Wenzhe Dong
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| | - Hongyu Chen
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| |
Collapse
|
5
|
Yuan H, Jiang M, Fang H, Tian H. Recent advances in poly(amino acids), polypeptides, and their derivatives in drug delivery. NANOSCALE 2025; 17:3549-3584. [PMID: 39745097 DOI: 10.1039/d4nr04481a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Poly(amino acids), polypeptides, and their derivatives have demonstrated significant potential as biodegradable biomaterials in the field of drug delivery. As degradable drug carriers, they can effectively load or conjugate drug molecules including small molecule drugs, nucleic acids, peptides, and protein-based drugs, enhancing the stability and targeting of the drugs in vivo. This strategy ultimately facilitates precise drug delivery and controlled release, thereby improving therapeutic efficacy and reducing side effects within the body. This review systematically describes the structural characteristics and preparation methods of poly(amino acids) and polypeptides, summarizes the advantages of poly(amino acids), polypeptides, and their derivatives in drug delivery, and detailedly introduces the latest advancements in this area. The review also discusses current challenges and opportunities associated with poly(amino acids), peptides, and their derivatives, and offers insights into the future directions for these biodegradable materials. This review aims to provide valuable references for scientific research and clinical translation of biodegradable biomaterials based on poly(amino acids) and peptides.
Collapse
Affiliation(s)
- Huilin Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| | - Mingxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
6
|
Asefa SA, Seong M, Lee D. Design of Bilayer Crescent Chiral Metasurfaces for Enhanced Chiroptical Response. SENSORS (BASEL, SWITZERLAND) 2025; 25:915. [PMID: 39943554 PMCID: PMC11820566 DOI: 10.3390/s25030915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025]
Abstract
Chiral metasurfaces exploit structural asymmetry to control circular polarized light, presenting new possibilities for the design of optical devices, specifically in the dynamic control of light and enhanced optical sensing fields. This study employed theoretical and computational methods to examine the chiroptical properties of a bilayer crescent chiral metasurface, demonstrating the effect of the angle of rotation on the chiroptical response. We particularly investigated the changes in transmittance, electric field distribution, and circular dichroism (CD) across various rotation angles. The crescent chiral metasurface demonstrated the maximum CD and showed significant control over the CD and electric field distribution across different rotation angles in the near-infrared region. The highest CD value was observed at a 23° rotation angle, where the chiroptical response reached its maximum. In addition, the left circular polarized light showed a stronger intensity of the electric field along the crescent metasurface edge relative to the right circular polarized light, underscoring the significant difference in the intensity and field localization. It was also shown that the configuration with a 2 by 2-unit cell, compared with a single-unit cell, exhibited significantly enhanced CD, thus underlining the importance of the unit cell arrangement in optimizing the chiroptical properties of metasurfaces for advanced photonic applications. These results prove that the 2 by 2 bilayer crescent chiral metasurface can be tailored to a fine degree for specific applications such as improved biosensing, enhanced optical communications, and precise polarization control by optimizing the configuration. The insight presented by this theoretical and computational study will contribute to the broad understanding of chiroptical phenomena as well as pave the way for potential applications in developing advanced optical devices with tuned chiroptical interactions.
Collapse
Affiliation(s)
- Semere A. Asefa
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea;
| | - Myeongsu Seong
- Department of Mechatronics and Robotics, School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Dasol Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea;
| |
Collapse
|
7
|
Liu N, Zhang T, Zhao W, Zhao X, Xue Y, Deng Q. Current trends in blood biomarkers detection and neuroimaging for Parkinson's disease. Ageing Res Rev 2025; 104:102658. [PMID: 39793764 DOI: 10.1016/j.arr.2025.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/01/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by both motor and cognitive impairments. A significant challenge in managing PD is the variability of symptoms and disease progression rates. This variability is primarily attributed to unclear biomarkers associated with the disease and the lack of early diagnostic technologies and effective imaging methods. PD-specific biomarkers are essential for developing practical tools that facilitate accurate diagnosis, patient stratification, and monitoring of disease progression. Hence, creating valuable tools for detecting and diagnosing PD based on specific biomarkers is imperative. Blood testing, less invasive than obtaining cerebrospinal fluid through a lumbar puncture, is an ideal source for these biomarkers. Although such biomarkers were previously lacking, recent advancements in various detection techniques related to PD biomarkers and new imaging methods have emerged. However, basic research requires more detailed guidelines on effectively implementing these biomarkers in diagnostic procedures to enhance the diagnostic accuracy of PD blood testing in clinical practice. This review discusses the developmental trends of PD-related blood biomarker detection technologies, including optical analysis platforms. Despite the progress in developing various biomarkers for PD, their specificity and sensitivity remain suboptimal. Therefore, the integration of multimodal biomarkers along with optical and imaging technologies is likely to significantly improve diagnostic accuracy and facilitate the implementation of personalized medicine. This review forms valid research hypotheses for PD research and guides future empirical studies.
Collapse
Affiliation(s)
- Ni Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Tianjiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Wei Zhao
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Xuechao Zhao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| | - Yuan Xue
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Qihong Deng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Dzyhovskyi V, Remelli M, Stokowa-Sołtys K. Exploring divalent metal ion coordination. Unraveling binding modes in Staphylococcus aureus MntH fragments. J Inorg Biochem 2025; 263:112769. [PMID: 39549335 DOI: 10.1016/j.jinorgbio.2024.112769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024]
Abstract
Metal ion coordination is crucial in bacterial metabolism, while divalent metal ions serve as essential cofactors for various enzymes involved in cellular processes. Therefore, bacteria have developed sophisticated regulatory mechanisms to maintain metal homeostasis. These involve protein interactions for metal ion uptake, efflux, intracellular transport, and storage. Staphylococcus aureus, a member of the commensal flora, colonizes the anterior nares and skin harmlessly but can cause severe illness. MntH transporter is responsible for acquiring divalent metal ions necessary for metabolic functions and virulence. It is a 450-amino-acid protein analogous to Nramp1 (Natural Resistance-Associated Macrophage Protein 1) in mammals. Herein, the coordination modes of copper(II), iron(II), and zinc(II) ions with select fragments of the MntH were established employing potentiometry, mass spectrometry, and spectroscopic methods. Four model peptides, MNNKRHSTNE-NH2, Ac-KFDHRSS-NH2, Ac-IMPHNLYLHSSI-NH2, and Ac-YSRHNNEE-NH2, were chosen for their metal-binding capabilities and examined to determine their coordination properties and preferences. Our findings suggest that under physiological pH conditions, the N-terminal fragment of MntH demonstrates the highest thermodynamic stability with copper(II) and iron(II) ions. Furthermore, a comparison with other peptides from the S. aureus FeoB transporter indicates different binding affinities.
Collapse
Affiliation(s)
- Valentyn Dzyhovskyi
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Maurizio Remelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, United States.
| |
Collapse
|
9
|
Balamurugan RS, Asad Y, Gao T, Nawarathna D, Tida UR, Sun D. Automating the amino acid identification in elliptical dichroism spectrometer with Machine Learning. PLoS One 2025; 20:e0317130. [PMID: 39823430 PMCID: PMC11741379 DOI: 10.1371/journal.pone.0317130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/21/2024] [Indexed: 01/19/2025] Open
Abstract
Amino acid identification is crucial across various scientific disciplines, including biochemistry, pharmaceutical research, and medical diagnostics. However, traditional methods such as mass spectrometry require extensive sample preparation and are time-consuming, complex and costly. Therefore, this study presents a pioneering Machine Learning (ML) approach for automatic amino acid identification by utilizing the unique absorption profiles from an Elliptical Dichroism (ED) spectrometer. Advanced data preprocessing techniques and ML algorithms to learn patterns from the absorption profiles that distinguish different amino acids were investigated to prove the feasibility of this approach. The results show that ML can potentially revolutionize the amino acid analysis and detection paradigm.
Collapse
Affiliation(s)
- Ridhanya Sree Balamurugan
- Electrical and Computer Engineering, North Dakota State University, Fargo, North Dakota, United States of America
| | - Yusuf Asad
- Electrical and Computer Engineering, North Dakota State University, Fargo, North Dakota, United States of America
| | - Tommy Gao
- Electrical and Computer Engineering, University of Denver, Denver, Colorado, United States of America
| | - Dharmakeerthi Nawarathna
- Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, United States of America
| | - Umamaheswara Rao Tida
- Electrical and Computer Engineering, North Dakota State University, Fargo, North Dakota, United States of America
| | - Dali Sun
- Electrical and Computer Engineering, University of Denver, Denver, Colorado, United States of America
| |
Collapse
|
10
|
Lin JX, Chen BJ, Hung SM, Liao WH, Hehn M, Sun SJ, Chang YY, Hauet T, Hohlfeld J, Mangin S, Hsu HS. Electrically Modulated Multilevel Optical Chirality in GdFeCo Thin Films. ACS APPLIED ELECTRONIC MATERIALS 2025; 7:177-184. [PMID: 39830213 PMCID: PMC11736793 DOI: 10.1021/acsaelm.4c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025]
Abstract
This study introduces a simple approach to dynamically control multilevel optical ellipticity in ferrimagnetic GdFeCo alloys by switching the spin orientation through Joule heating induced by electrical current, with the assistance of a low magnetic field of 3.5 mT. It is demonstrated that selecting specific compositions of Gd x (FeCo)100-x alloys, with magnetic compensation temperatures near or above room temperature, allows for significant manipulation of the circular dichroism (CD) effect. This control enables the transformation of transmitted light from linearly polarized to elliptically polarized or the reversal of the rotation direction of elliptically polarized light across the photon energy range from visible (vis) to ultraviolet (UV). The efficacy of this method is rooted in the dominant contributions of FeCo to the CD effect in the vis-to-UV energy range. Because the magnetization of FeCo remains relatively independent of the temperature, substantial optical ellipticity is maintained for optical device applications, regardless of whether the compensation temperature is approached or crossed. Our results highlight the potential of GdFeCo thin films in chiral optics and demonstrate the selective contributions of rare-earth transition-metal elements to the CD effects, facilitating the design of advanced optical devices leveraging energy-resolved CD phenomena.
Collapse
Affiliation(s)
- Jun-Xiao Lin
- Department
of Applied Physics, National Pingtung University, No. 4−18, Minsheng Road, 90044 Pingtung, Taiwan
- Institut
Jean Lamour, Université de Lorraine,
CNRS, F-54000 Nancy, France
| | - Bo-Jun Chen
- Department
of Applied Physics, National Pingtung University, No. 4−18, Minsheng Road, 90044 Pingtung, Taiwan
| | - Shih-Min Hung
- Department
of Applied Physics, National Pingtung University, No. 4−18, Minsheng Road, 90044 Pingtung, Taiwan
| | - Wei-Hsiang Liao
- Department
of Applied Physics, National Pingtung University, No. 4−18, Minsheng Road, 90044 Pingtung, Taiwan
| | - Michel Hehn
- Institut
Jean Lamour, Université de Lorraine,
CNRS, F-54000 Nancy, France
| | - Shih-Jye Sun
- Department
of Applied Physics, National University
of Kaohsiung, 700 Kaohsiung University Road, Nanzih District, 811 Kaohsiung, Taiwan
| | - Yu-Ying Chang
- Department
of Applied Physics, National Pingtung University, No. 4−18, Minsheng Road, 90044 Pingtung, Taiwan
| | - Thomas Hauet
- Institut
Jean Lamour, Université de Lorraine,
CNRS, F-54000 Nancy, France
| | - Julius Hohlfeld
- Institut
Jean Lamour, Université de Lorraine,
CNRS, F-54000 Nancy, France
| | - Stéphane Mangin
- Institut
Jean Lamour, Université de Lorraine,
CNRS, F-54000 Nancy, France
| | - Hua-Shu Hsu
- Department
of Applied Physics, National Pingtung University, No. 4−18, Minsheng Road, 90044 Pingtung, Taiwan
| |
Collapse
|
11
|
Talab MJ, Valizadeh A, Tahershamsi Z, Housaindokht MR, Ranjbar B. Personalized biocorona as disease biomarker: The challenges and opportunities. Biochim Biophys Acta Gen Subj 2024; 1868:130724. [PMID: 39426758 DOI: 10.1016/j.bbagen.2024.130724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/22/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
It is well known that when nanoparticles interact with biological fluids, a layer of proteins and biological components forms on them. This layer may alter the biological fate and efficiency of the nanomaterial. Recent studies have shown that illness states have a major impact on the structure of the biocorona, sometimes referred to as the "personalized protein corona." Physiological factors like illness, which impact the proteome and metabolome pattern and result in conformational changes in proteins, give rise to this structure of discrimination in biocorona decoration. Improving the efficiency of precise platforms for developing new molecular biomarkers for accurate illness diagnosis is vitally necessary. The biocorona pattern's discrimination may be a diagnostic tool for designing biosensors. As a result, in this review, we summarize the most current studies on the relationship between physiological conditions and the variety of biocorona patterns that influence the biological responses of nanosystems. The biocorona pattern's flexibility may provide new research directions and be utilized to create nanoparticle-based therapeutic and diagnostic products suited to certain physiological situations.
Collapse
Affiliation(s)
- Mahtab Jahanshah Talab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Valizadeh
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Housaindokht
- Biophysical Chemistry Laboratory, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Bijan Ranjbar
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
12
|
Sakimoto N, Imanaka H, Tomita-Sudo E, Akita T, Kawakami J. L-Histidine Modulates the Catalytic Activity and Conformational Changes of the HD3 Deoxyribozyme. Genes (Basel) 2024; 15:1481. [PMID: 39596681 PMCID: PMC11594175 DOI: 10.3390/genes15111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Riboswitches are functional nucleic acids that regulate biological processes by interacting with small molecules, such as metabolites, influencing gene expression. Artificial functional nucleic acids, including deoxyribozymes, have been developed through in vitro selection for various catalytic functions. In a previous study, an l-histidine-dependent deoxyribozyme was identified, exhibiting RNA cleavage activity in the presence of l-histidine resembling ribonuclease catalytic mechanisms. This study aims to clarify the role of l-histidine in the activity and structural formation of the l-histidine-dependent deoxyribozyme (HD), focusing on the binding properties and conformational changes of its derivative HD3. Methods: Conformational changes in HD3 were analyzed using circular dichroism (CD) under varying concentrations of l-histidine. Direct binding analysis was conducted using carbon-14 (14C)-labeled l-histidine and a liquid scintillation counter. The catalytic activity of HD3 in the presence of different l-histidine concentrations was measured. Results: The binding constant for l-histidine-induced conformational changes (Ka(CD)) was found to be 2.0 × 103 (M-1), whereas for catalytic activity (Ka(Rxn)) and scintillation counting (Ka(RI)), it was approximately 1.0 × 103 (M-1). Conclusions: l-Histidine plays an essential role in both the catalytic activity and structural formation of the HD3 deoxyribozyme. The consistent binding constants across different experimental methods highlight the significant contribution of l-histidine to the active folding of deoxyribozymes.
Collapse
Affiliation(s)
- Nae Sakimoto
- Konan Laboratory for Oligonucleotide Therapeutics (KOLOT), 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| | - Hirofumi Imanaka
- Faculty of Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| | - Elisa Tomita-Sudo
- Konan Laboratory for Oligonucleotide Therapeutics (KOLOT), 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| | - Tomoka Akita
- Faculty of Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| | - Junji Kawakami
- Konan Laboratory for Oligonucleotide Therapeutics (KOLOT), 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
- Faculty of Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| |
Collapse
|
13
|
Sağlam B, Akkuş O, Akçaöz-Alasar A, Ceylan Ç, Güler G, Akgül B. An Investigation of RNA Methylations with Biophysical Approaches in a Cervical Cancer Cell Model. Cells 2024; 13:1832. [PMID: 39594581 PMCID: PMC11592517 DOI: 10.3390/cells13221832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
RNA methylation adds a second layer of genetic information that dictates the post-transcriptional fate of RNAs. Although various methods exist that enable the analysis of RNA methylation in a site-specific or transcriptome-wide manner, whether biophysical approaches can be employed to such analyses is unexplored. In this study, Fourier-transform infrared (FT-IR) and circular dichroism (CD) spectroscopy are employed to examine the methylation status of both synthetic and cellular RNAs. The results show that FT-IR spectroscopy is perfectly capable of quantitatively distinguishing synthetic m6A-methylated RNAs from un-methylated ones. Subsequently, FT-IR spectroscopy is successfully employed to assess the changes in the extent of total RNA methylation upon the knockdown of the m6A writer, METTL3, in HeLa cells. In addition, the same approach is shown to accurately detect reduction in total RNA methylation upon the treatment of HeLa cells with tumor necrosis factor alpha (TNF-α). It is also demonstrated that m1A and m6A methylation induce quite a distinct secondary structure on RNAs, as evident from CD spectra. These results strongly suggest that both FT-IR and CD spectroscopy methods can be exploited to uncover biophysical properties impinged on RNAs by methyl moieties, providing a fast, convenient and cheap alternative to the existing methods.
Collapse
Affiliation(s)
- Buket Sağlam
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, İzmir Institute of Technology, 35430 Izmir, Türkiye; (B.S.); (A.A.-A.)
| | - Onur Akkuş
- Biophysics Laboratory, Department of Physics, İzmir Institute of Technology, 35430 Izmir, Türkiye;
| | - Azime Akçaöz-Alasar
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, İzmir Institute of Technology, 35430 Izmir, Türkiye; (B.S.); (A.A.-A.)
| | - Çağatay Ceylan
- Department of Food Engineering, İzmir Institute of Technology, 35430 Izmir, Türkiye;
| | - Günnur Güler
- Biophysics Laboratory, Department of Physics, İzmir Institute of Technology, 35430 Izmir, Türkiye;
| | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, İzmir Institute of Technology, 35430 Izmir, Türkiye; (B.S.); (A.A.-A.)
| |
Collapse
|
14
|
Kuril AK, Saravanan K, Subbappa PK. Analytical considerations for characterization of generic peptide product: A regulatory insight. Anal Biochem 2024; 694:115633. [PMID: 39089363 DOI: 10.1016/j.ab.2024.115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
The Peptide therapeutics market was evaluated to be around USD 45.67 BN in 2023 and is projected to witness massive growth at a CAGR of around 5.63 % from 2024 to 2032 (USD 80.4 BN). Generic peptides are expected to reach USD 27.1 billion by 2032 after the patent monopoly of the pioneer peptides expires, and generic peptides become accessible. The generic manufacturers are venturing into peptide-based therapeutics for the aforementioned reasons. There is an abundance of material accessible regarding the characterization of peptides, which can be quite confusing for researchers. The FDA believes that an ANDA applicant may now demonstrate that the active component in a proposed generic synthetic peptide drug product is the "same" as the active ingredient in a peptide of rDNA origin that has previously been approved. To ensure the efficacy, safety, and quality of peptide therapies during development, regulatory bodies demand comprehensive characterization utilizing several orthogonal methodologies. This article elaborates the peptide characterization by segmenting into different segments as per the critical quality attribute from identification of the peptide to the physicochemical property of the peptide therapeutics which will be required to demonstrate the sameness with reference product based on the size of the peptide chain and molecular weight of the peptides. Article insights briefly on each individual technique and the orthogonal techniques for each test were explained. The impurities requirements in the generic peptides as per the regulatory requirement were also discussed.
Collapse
Affiliation(s)
| | - K Saravanan
- Bhagwant University, Sikar Road, Ajmer, Rajasthan, India
| | | |
Collapse
|
15
|
Xu Z, Han S, Guan S, Zhang R, Chen H, Zhang L, Han L, Tan Z, Du M, Li T. Preparation, design, identification and application of self-assembly peptides from seafood: A review. Food Chem X 2024; 23:101557. [PMID: 39007120 PMCID: PMC11239460 DOI: 10.1016/j.fochx.2024.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
Hydrogels formed by self-assembling peptides with low toxicity and high biocompatibility have been widely used in food and biomedical fields. Seafood contains rich protein resources and is also one of the important sources of natural bioactive peptides. The self-assembled peptides in seafood have good functional activity and are very beneficial to human health. In this review, the sequence of seafood self-assembly peptide was introduced, and the preparation, screening, identification and characterization. The rule of self-assembled peptides was elucidated from amino acid sequence composition, amino acid properties (hydrophilic, hydrophobic and electric), secondary structure, interaction and peptide properties (hydrophilic and hydrophobic). It was introduced that the application of hydrogels formed by self-assembled peptides, which lays a theoretical foundation for the development of seafood self-assembled peptides in functional foods and the application of biological materials.
Collapse
Affiliation(s)
- Zhe Xu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Shiying Han
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Shuang Guan
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Rui Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hongrui Chen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu, Sichuan 611130, China
| | - Lijuan Zhang
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Lingyu Han
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Zhijian Tan
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Tingting Li
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| |
Collapse
|
16
|
Bandyopadhyay A, Bhattacharya A. Understanding selective sensing of human serum albumin using a D-π-A probe: a photophysical and computational approach. J Mater Chem B 2024; 12:10719-10735. [PMID: 39320109 DOI: 10.1039/d4tb01229a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The human serum albumin (HSA) level is a valuable indicator of an individual's health status. Therefore, its detection/estimation can be used to diagnose several diseases. In this work, we have developed a series of donor-π-acceptor probes, which were found to selectively detect HSA over BSA (bovine serum albumin). Among these probes, A4, which bears the trifluoroacetyl group, showed the highest selectivity for HSA, with limits of detection and quantification being 1.36 nM and 2.59 nM, respectively. CD spectroscopy of the HSA-A4 ensemble indicated an increase in the α-helicity of the protein, while the displacement assays revealed the localization of the probe in the hemin site of HSA. The probe works on the principle of excited state intramolecular charge transfer (ICT). Its selectivity was also validated computationally. Docking experiments confirmed the preference of the probe for the hemin binding IB site of HSA, as observed from the fluorescence displacement assay results, and a comparison of docking scores demonstrated the greater preference of A4 for HSA compared to BSA. Computational experiments also showed a change in preference for HSA amino acid residues exhibited by the excited state of probe A4 (Tyr161, Met123, Pro118, and Leu115) when compared to its ground state (Arg186 and His146). Hydrophobic interactions dominated the excited state protein-probe ensemble, whereas there was significant involvement of the water bridges along with the hydrophobic interactions in the ground state ensemble. Probe A4 was also assessed for its practical utility and found to successfully sense HSA in urine at extremely low concentrations. Moreover, the A4-HSA ensemble was employed for hemin sensing with a detection limit of 0.23 μM.
Collapse
Affiliation(s)
- Anamika Bandyopadhyay
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad-500078, India.
| | - Anupam Bhattacharya
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad-500078, India.
| |
Collapse
|
17
|
Fusè M, Mazzeo G, Ghidinelli S, Evidente A, Abbate S, Longhi G. Experimental and theoretical aspects of magnetic circular dichroism and magnetic circularly polarized luminescence in the UV, visible and IR ranges: A review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124583. [PMID: 38850611 DOI: 10.1016/j.saa.2024.124583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
A historical sketch of the MCD (magnetic circular dichroism) spectroscopy is reported in its experimental and theoretical aspects. MCPL (magnetic circularly polarized luminescence) is also considered. The main studies are presented encompassing porphyrinoid systems, aggregates and materials, as well as simple organic molecules useful for the advancement of the interpretation. The MCD of chiral systems is discussed with special attention to new studies of natural products with potential pharmaceutical valence, including Amaryllidaceae alkaloids and related isocarbostyrils. Finally, the vibrational form of MCD, called MVCD, which is recorded in the IR part of the spectrum is also discussed. A final brief note on perspectives is given.
Collapse
Affiliation(s)
- Marco Fusè
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Simone Ghidinelli
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Antonio Evidente
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70185 Bari, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy; Istituto Nazionale di Ottica, INO-CNR, Research Unit of Brescia, c/o CSMT, Via Branze 35, 25123 Brescia, Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy; Istituto Nazionale di Ottica, INO-CNR, Research Unit of Brescia, c/o CSMT, Via Branze 35, 25123 Brescia, Italy
| |
Collapse
|
18
|
Li H, Tuttle MD, Zilm KW, Batista VS. Rapid Quantification of Protein Secondary Structure Composition from a Single Unassigned 1D 13C Nuclear Magnetic Resonance Spectrum. J Am Chem Soc 2024; 146:27542-27554. [PMID: 39322561 DOI: 10.1021/jacs.4c08300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The function of a protein is predicated upon its three-dimensional fold. Representing its complex structure as a series of repeating secondary structural elements is one of the most useful ways by which we study, characterize, and visualize a protein. Consequently, experimental methods that quantify the secondary structure content allow us to connect a protein's structure to its function. Here, we introduce an automated gradient descent-based method we refer to as secondary-structure distribution by NMR that allows for rapid quantification of the protein secondary structure composition of a protein from a single, 1D 13C NMR spectrum without chemical shift assignments. The analysis of nearly 900 proteins with known structure and chemical shifts demonstrates the capabilities of our approach. We show that these results rival alternative techniques such as FT-IR and circular dichroism that are commonly used to estimate secondary structure compositions. The resulting method requires only the primary sequence of the protein and its referenced 13C NMR spectrum. Each residue is modeled in an ensemble of secondary structures with percentage contributions from random coil, α-helix, and β-sheet secondary structures obtained by minimizing the difference between a simulated and experimental 1D 13C NMR spectrum. The capabilities of the method are demonstrated as applied to samples at natural abundance or enriched in 13C, acquired by either solution or solid-state NMR, and even on low magnetic field benchtop NMR spectrometers. This approach allows for rapid characterization of protein secondary structure across traditionally challenging to characterize states including liquid-liquid phase-separated, membrane-bound, or aggregated states.
Collapse
Affiliation(s)
- Haote Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Marcus D Tuttle
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Kurt W Zilm
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
19
|
Wang AL, Mishkit O, Mao H, Arivazhagan L, Dong T, Lee F, Bhattacharya A, Renfrew PD, Schmidt AM, Wadghiri YZ, Fisher EA, Montclare JK. Collagen-targeted protein nanomicelles for the imaging of non-alcoholic steatohepatitis. Acta Biomater 2024; 187:291-303. [PMID: 39236796 DOI: 10.1016/j.actbio.2024.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
In vivo molecular imaging tools hold immense potential to drive transformative breakthroughs by enabling researchers to visualize cellular and molecular interactions in real-time and/or at high resolution. These advancements will facilitate a deeper understanding of fundamental biological processes and their dysregulation in disease states. Here, we develop and characterize a self-assembling protein nanomicelle called collagen type I binding - thermoresponsive assembled protein (Col1-TRAP) that binds tightly to type I collagen in vitro with nanomolar affinity. For ex vivo visualization, Col1-TRAP is labeled with a near-infrared fluorescent dye (NIR-Col1-TRAP). Both Col1-TRAP and NIR-Col1-TRAP display approximately a 3.8-fold greater binding to type I collagen compared to TRAP when measured by surface plasmon resonance (SPR). We present a proof-of-concept study using NIR-Col1-TRAP to detect fibrotic type I collagen deposition ex vivo in the livers of mice with non-alcoholic steatohepatitis (NASH). We show that NIR-Col1-TRAP demonstrates significantly decreased plasma recirculation time as well as increased liver accumulation in the NASH mice compared to mice without disease over 4 hours. As a result, NIR-Col1-TRAP shows potential as an imaging probe for NASH with in vivo targeting performance after injection in mice. STATEMENT OF SIGNIFICANCE: Direct molecular imaging of fibrosis in NASH patients enables the diagnosis and monitoring of disease progression with greater specificity and resolution than do elastography-based methods or blood tests. In addition, protein-based imaging probes are more advantageous than alternatives due to their biodegradability and scalable biosynthesis. With the aid of computational modeling, we have designed a self-assembled protein micelle that binds to fibrillar and monomeric collagen in vitro. After the protein was labeled with near-infrared fluorescent dye, we injected the compound into mice fed on a NASH diet. NIR-Col1-TRAP clears from the serum faster in these mice compared to control mice, and accumulates significantly more in fibrotic livers.This work advances the development of targeted protein probes for in vivo fibrosis imaging.
Collapse
Affiliation(s)
- Andrew L Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Biomedical Engineering, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Orin Mishkit
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, NY 10016, USA; Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Heather Mao
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Lakshmi Arivazhagan
- Diabetes Research Group, Department of Medicine, New York University Grossman School of Medicine, USA
| | - Tony Dong
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Frances Lee
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Aparajita Bhattacharya
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - P Douglas Renfrew
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Ann Marie Schmidt
- Diabetes Research Group, Department of Medicine, New York University Grossman School of Medicine, USA
| | - Youssef Z Wadghiri
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, NY 10016, USA; Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Edward A Fisher
- Leon H. Charney Division of Cardiology and Cardiovascular Research Center, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Chemistry, New York University, New York, NY 10012, USA; Department of Biomaterials, New York University College of Dentistry, New York, NY 10010, USA.
| |
Collapse
|
20
|
Rogóż W, Owczarzy A, Kulig K, Maciążek-Jurczyk M. Ligand-human serum albumin analysis: the near-UV CD and UV-Vis spectroscopic studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03471-3. [PMID: 39347800 DOI: 10.1007/s00210-024-03471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Spectroscopic methods offer many new opportunities to study protein-ligand interactions. The aim of this study was to evaluate the possibility of using near-UV CD as well as UV-Vis spectroscopic techniques to study the interaction between human serum albumin (HSA) and markers of Sudlow's site I (warfarin, phenylbutazone) and II (ketoprofen, ibuprofen), as well as prednisolone and indapamide. In order to perform the planned measurements, near-UV CD spectropolarimetry and UV-Vis spectrophotometry have been used. It has been demonstrated that both techniques allow for rapid evaluation of non-covalent interactions between HSA and ligand, as well as identification of the HSA aromatic amino acid residues involved in this process. The near-UV CD spectroscopic data were more valuable than the analysis based on the second derivative of differential UV-Vis absorption spectra, especially for ligands with a non-specified binding site and low affinity towards HSA, such as prednisolone. The combination of both techniques makes it possible for comprehensive analysis of the interaction between HSA and ligands.
Collapse
Affiliation(s)
- Wojciech Rogóż
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055, Katowice, Poland
| | - Aleksandra Owczarzy
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055, Katowice, Poland
| | - Karolina Kulig
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055, Katowice, Poland
| | - Małgorzata Maciążek-Jurczyk
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055, Katowice, Poland.
| |
Collapse
|
21
|
Lozada SL, Gómez JA, Menéndez K, Gómez T, Montes de Oca D, Durán JL, Fernández OL, Perera Y, Rivas G, Boggiano-Ayo T, Ledon N, Carmenate T. Oxidative refolding by Copper-catalyzed air oxidation consistently increases the homogeneity and activity of a Novel Interleukin-2 mutein. J Biotechnol 2024; 393:81-90. [PMID: 39032699 DOI: 10.1016/j.jbiotec.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Interleukin-2 (IL-2) has been used in cancer treatment for over 30 years. However, due to its high toxicity, new mutant variants have been developed. These variants retain some of the biological properties of the original molecule but offer other therapeutic advantages. At the Center of Molecular Immunology, the IL-2 no-alpha mutein, an IL-2 agonist with lower toxicity than wtIL-2, has been designed, produced, and is currently being evaluated in a Phase I/II clinical trial. The mutein is produced in E. coli as an insoluble material that must be refolded in vitro to yield a fully active protein. Controlled oxidation steps are essential in the purification process of recombinant proteins produced in E. coli to ensure the proper formation of the disulfide bonds in the molecules. In this case, the new purification process includes a copper-catalyzed air oxidation step to induce disulfide bond establishment. The optimal conditions of pH, copper, protein and detergent concentration for this step were determined through screening. The produced protein demonstrated a conserved 3D structure, higher purity, and greater biological activity than the obtained by established process without the oxidation step. Four batches were produced and evaluated, demonstrating the consistency of the new process.
Collapse
Affiliation(s)
- Sum Lai Lozada
- Bioprocess R&D Direction, Center of Molecular Immunology, Havana, Cuba.
| | - Jose Alberto Gómez
- Department of Quality Control. Center of Molecular Immunology, Havana, Cuba.
| | | | - Tania Gómez
- Department of Quality Control. Center of Molecular Immunology, Havana, Cuba.
| | | | - Jose L Durán
- Bioprocess R&D Direction, Center of Molecular Immunology, Havana, Cuba.
| | | | - Yoel Perera
- Centro Nacional de Biopreparados, Mayabeque, Cuba.
| | - Gabriela Rivas
- Department of Quality Control. Center of Molecular Immunology, Havana, Cuba.
| | | | - Nuris Ledon
- Research Direction, Center of Molecular Immunology, Havana, Cuba; School of Pharmacy, University of Havana, Havana, Cuba.
| | - Tania Carmenate
- Immune-regulation Department, Immunology and Immunotherapy Direction. Center of Molecular Immunology, PO Box 16040, Havana, Cuba.
| |
Collapse
|
22
|
Magrì A, Tomasello B, Naletova I, Tabbì G, Cairns WRL, Greco V, Sciuto S, La Mendola D, Rizzarelli E. New BDNF and NT-3 Cyclic Mimetics Concur with Copper to Activate Trophic Signaling Pathways as Potential Molecular Entities to Protect Old Brains from Neurodegeneration. Biomolecules 2024; 14:1104. [PMID: 39334869 PMCID: PMC11430436 DOI: 10.3390/biom14091104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
A low level of Neurotrophins (NTs), their Tyrosine Kinase Receptors (Trks), Vascular Endothelial Growth Factors (VEGFs) and their receptors, mainly VEGFR1 and VEGFR2, characterizes AD brains. The use of NTs and VEGFs as drugs presents different issues due to their low permeability of the blood-brain barrier, the poor pharmacokinetic profile, and the relevant side effects. To overcome these issues, different functional and structural NT mimics have been employed. Being aware that the N-terminus domain as the key domain of NTs for the binding selectivity and activation of Trks and the need to avoid or delay proteolysis, we herein report on the mimicking ability of two cyclic peptide encompassing the N-terminus of Brain Derived Growth Factor (BDNF), (c-[HSDPARRGELSV-]), cBDNF(1-12) and of Neurotrophin3 (NT3), (c-[YAEHKSHRGEYSV-]), cNT3(1-13). The two cyclic peptide features were characterized by a combined thermodynamic and spectroscopic approach (potentiometry, NMR, UV-vis and CD) that was extended to their copper(II) ion complexes. SH-SY5Y cell assays show that the Cu2+ present at the sub-micromolar level in the complete culture media affects the treatments with the two peptides. cBDNF(1-12) and cNT3(1-13) act as ionophores, induce neuronal differentiation and promote Trks and CREB phosphorylation in a copper dependent manner. Consistently, both peptide and Cu2+ stimulate BDNF and VEGF expression as well as VEGF release; cBDNF(1-12) and cNT3(1-13) induce the expression of Trks and VEGFRs.
Collapse
Affiliation(s)
- Antonio Magrì
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Irina Naletova
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Giovanni Tabbì
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Warren R. L. Cairns
- CNR-Institute of Polar Sciences (CNR-ISP), 155 Via Torino, 30172 Venice, Italy;
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy;
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| |
Collapse
|
23
|
Zheng Y, Zhang Y, Li X, Liu L. Proof of ssDNA degraded from dsDNA for ET recombination. Biochem Biophys Rep 2024; 39:101750. [PMID: 39035021 PMCID: PMC11257833 DOI: 10.1016/j.bbrep.2024.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/04/2024] [Indexed: 07/23/2024] Open
Abstract
The widely used ET recombination requires an ssDNA product degraded by Rac phage protein E588 from dsDNA for strand invasion. However, proof of the ssDNA product is still elusive. The study provided three levels of proof sequentially. The probable ssDNAs degraded by E588 from the fluorescent plus-, minus-, or double-stranded dsDNA pET28a-xylanase exhibited a half fluorescence intensity of the corresponding dsDNAs, equivalent to the E588 degradation nucleotides half that of the total nucleotides degraded from the corresponding dsDNA. The ssDNA product degraded by E588 from the fluorescent minus-stranded dsDNA was confirmed by gradient gel-electrophoresis and two nuclease degradation reactions. Degraded by E588 from the dsDNA pET28a-xylanase that had a phosphorothioated plus-stranded 5'-terminus, the plus-stranded ssDNA product was separated via gel electrophoresis and recovered via a DNAclean kit. The recovered ssDNA product was proven to have intact 5'- and 3'-ends by DNA sequencing analysis. This study provides a solid foundation for the mechanism of ssDNA invasion.
Collapse
Affiliation(s)
- Yuanxia Zheng
- Life Science College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yi Zhang
- Life Science College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuegang Li
- Life Science College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Liangwei Liu
- Life Science College, Henan Agricultural University, Zhengzhou, 450046, China
- The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, 450046, 218 Pingan Road, China
| |
Collapse
|
24
|
Ma Y, Li TY, Meng H, Wang GX, Ma J, Xiao Y, Xie WM. The effect of salinity on trimethoprim adsorption by activated sludge extracellular polymeric substances at trace concentration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122090. [PMID: 39126848 DOI: 10.1016/j.jenvman.2024.122090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
The saline wastewater produced in industrial activities and seawater use would flow into wastewater treatment plants and affect the characteristic of extracellular polymeric substance (EPS) of activated sludge, which could potentially impact the removal of antibiotics via adsorption. Nonetheless, the effect of salinity on trimethoprim adsorption by activated sludge extracellular polymeric substances at trace concentration and the underlying mechanism remain largely unknown. In this study, the effect of salinity on the adsorption removal of a typical antibiotic, i.e., trimethoprim (TMP) at trace concentration (25.0 μg/L) was evaluated. The results showed the content of EPS was decreased significantly from 56.36 to 21.70 mg/g VSS when the salinity was increased from 0 to 10 g/L. Protein fractions occupied the predominant component of EPS, whose concentration was decreased from 38.17 to 12.83 mg/g VSS. The equilibrium adsorption capacity of activated sludge for TMP was decreased by 49.70% (from 4.97 to 2.50 μg/g VSS). The fluorescence quenching results indicated the fluorescence intensity of tryptophan-like substances was decreased by 30% and the adsorption sites of EPS were decreased from 0.51 to 0.21 when the salinity was increased. The infrared spectrum and XPS results showed that the nitrogen-containing groups from protein were decreased significantly. The circular dichroic analysis showed α helix structure of protein in EPS was decreased with the increase of salinity, which was responsible for the decrease of adsorption capacity for TMP.
Collapse
Affiliation(s)
- You Ma
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Tian-Yu Li
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Han Meng
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Guo-Xiang Wang
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Jie Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Yan Xiao
- Hangzhou Environmental Protection Research Institute of China Coal Technology & Engineering Group, Hangzhou, 311201, China
| | - Wen-Ming Xie
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
25
|
Abbas A, Ahmad MS, Cheng YH, AlFaify S, Choi S, Irfan RM, Numan A, Khalid M. A comprehensive review on the enantiomeric separation of chiral drugs using metal-organic frameworks. CHEMOSPHERE 2024; 364:143083. [PMID: 39154761 DOI: 10.1016/j.chemosphere.2024.143083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Chiral drugs play an important role in modern medicine, but obtaining pure enantiomers from racemic mixtures can pose challenges. When a drug is chiral, only one enantiomer (eutomer) typically exhibits the desired pharmacological activity, while the other (distomer) may be biologically inactive or even toxic. Racemic drug formulations introduce additional health risks, as the body must still process the inactive or detrimental enantiomer. Some distomers have also been linked to teratogenic effects and unwanted side effects. Therefore, developing efficient and scalable methods for separating chiral drugs into their pure enantiomers is critically important for improving patient safety and outcomes. Metal-organic frameworks (MOFs) show promise as novel materials for chiral separation due to their highly tunable structures and interactions. This review summarizes recent advancements in using MOFs for chromatographic and spectroscopic resolution of drug enantiomers. Both the opportunities and limitations of MOF-based separation techniques are discussed. A thorough understanding of these methods could aid the continued development of pure enantiomer formulations and help reduce health risks posed by racemic drug mixtures.
Collapse
Affiliation(s)
- Anees Abbas
- Department of Chemistry, University of Mianwali, Mianwali, Punjab, 42200, Pakistan; Graphite Technology, No. 9 Sinosteel Avenue 313100 Changxing, Zhejiang, China
| | - Muhammad Sheraz Ahmad
- Department of Chemistry, University of Mianwali, Mianwali, Punjab, 42200, Pakistan; Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| | - Yu-Hsiang Cheng
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, 24301, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| | - S AlFaify
- Advanced Functional Materials and Optoelectronics Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia
| | - Soohoon Choi
- Department of Environmental Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | | | - Arshid Numan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Department of Applied Physics, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India
| | - Mohammad Khalid
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow, G128QQ, UK; University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
26
|
Tinajero-Díaz E, Judge N, Li B, Leigh T, Murphy RD, Topham PD, Derry MJ, Heise A. Poly(l-proline)-Stabilized Polypeptide Nanostructures via Ring-Opening Polymerization-Induced Self-Assembly (ROPISA). ACS Macro Lett 2024; 13:1031-1036. [PMID: 39074359 PMCID: PMC11340022 DOI: 10.1021/acsmacrolett.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Poly(proline) II helical motifs located at the protein-water interface stabilize the three-dimensional structures of natural proteins. Reported here is the first example of synthetic biomimetic poly(proline)-stabilized polypeptide nanostructures obtained by a straightforward ring-opening polymerization-induced self-assembly (ROPISA) process through consecutive N-carboxyanhydride (NCA) polymerization. It was found that the use of multifunctional 8-arm initiators is critical for the formation of nanoparticles. Worm-like micelles as well as spherical morphologies were obtained as confirmed by dynamic light scattering (DLS), transmission electron microscopy (TEM), and small angle X-ray scattering (SAXS). The loading of the nanostructures with dyes is demonstrated. This fast and open-vessel procedure gives access to amino acids-based nanomaterials with potential for applications in nanomedicine.
Collapse
Affiliation(s)
- Ernesto Tinajero-Díaz
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
| | - Nicola Judge
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
| | - Bo Li
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
| | - Thomas Leigh
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
| | - Robert D. Murphy
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
| | - Paul D. Topham
- Aston
Institute
for Membrane Excellence, Aston University, B4 7ET Birmingham, U.K.
| | - Matthew J. Derry
- Aston
Institute
for Membrane Excellence, Aston University, B4 7ET Birmingham, U.K.
| | - Andreas Heise
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
- Science
Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), D02 YN77 Dublin, Ireland
- AMBER, The
SFI Advanced Materials and Bioengineering Research Centre, D02 YN77 Dublin, Ireland
| |
Collapse
|
27
|
Whittam MR, Zerulla B, Krstić M, Vavilin M, Holzer C, Nyman M, Rebholz L, Fernandez-Corbaton I, Rockstuhl C. Circular dichroism of relativistically-moving chiral molecules. Sci Rep 2024; 14:16812. [PMID: 39039079 PMCID: PMC11632085 DOI: 10.1038/s41598-024-66443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024] Open
Abstract
Understanding the impact of the relativistic motion of a chiral molecule on its optical response is a prime challenge for fundamental science, but it also has a direct practical relevance in our search for extraterrestrial life. To contribute to these significant developments, we describe a multi-scale computational framework that combines quantum chemistry calculations and full-wave optical simulations to predict the chiral optical response from molecules moving at relativistic speeds. Specifically, the effect of a relativistic motion on the transmission circular dichroism (TCD) of three life-essential biomolecules, namely, B-DNA, chlorophyll a, and chlorophyll b, is investigated. Inspired by previous experiments to detect interstellar chiral molecules, we assume that the molecules move between a stationary observer and a light source, and we study the rotationally averaged TCD as a function of the speed of the molecule.We find that the TCD spectrum that contains the signatures of the molecules shifts with increasing speed to shorter wavelengths, with the effects already being visible for moderate velocities.
Collapse
Affiliation(s)
- Mitchell R Whittam
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany.
| | - Benedikt Zerulla
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Marjan Krstić
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Maxim Vavilin
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Markus Nyman
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Lukas Rebholz
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Ivan Fernandez-Corbaton
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Carsten Rockstuhl
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany.
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany.
| |
Collapse
|
28
|
Bicho GFH, Nunes LOC, Fiametti LO, Argentin MN, Candido VT, Camargo ILBC, Cilli EM, Santos-Filho NA. Synthesis, Characterization, and Study of the Antimicrobial Potential of Dimeric Peptides Derived from the C-Terminal Region of Lys 49 Phospholipase A 2 Homologs. Toxins (Basel) 2024; 16:308. [PMID: 39057948 PMCID: PMC11281518 DOI: 10.3390/toxins16070308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, the search for new alternatives to conventional antibiotics to combat bacterial resistance is an urgent task, as many microorganisms threaten human health due to increasing bacterial resistance to traditional medicines. Thus, new molecules such as antimicrobial peptides have emerged as promising alternatives because of their low induction of resistance and broad spectrum of action. In this context, in the past few years, our research group has synthesized and characterized a peptide derived from the C-terminal region of the Lys49 PLA2-like BthTX-I, named p-BthTX-I. After several studies, the peptide (p-BthTX-I)2K was proposed as the molecule with the most considerable biotechnological potential. As such, the present work aimed to evaluate whether the modifications made on the peptide (p-BthTX-I)2K can be applied to other molecules originating from the C-terminal region of PLA2-like Lys49 from snake venoms. The peptides were obtained through the solid-phase peptide synthesis technique, and biochemical and functional characterization was carried out using dichroism techniques, mass spectrometry, antimicrobial activity against ESKAPE strains, hemolytic activity, and permeabilization of lipid vesicles. The antimicrobial activity of the peptides was promising, especially for the peptides (p-AppK)2K and (p-ACL)2K, which demonstrated activity against all strains that were tested, surpassing the model molecule (p-BthTX-I)2K in most cases and maintaining low hemolytic activity. The modifications initially proposed for the (p-BthTX-I)2K peptide were shown to apply to other peptides derived from Lys49 PLA2-like from snake venoms, showing promising results for antimicrobial activity. Future assays comparing the activity of the dimers obtained through this strategy with the monomers of these peptides should be carried out.
Collapse
Affiliation(s)
- Gabriel F. H. Bicho
- Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil; (G.F.H.B.); (L.O.C.N.); (L.O.F.); (E.M.C.)
| | - Letícia O. C. Nunes
- Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil; (G.F.H.B.); (L.O.C.N.); (L.O.F.); (E.M.C.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara Jaú, Km 01-s/n-Campos Ville, Araraquara 14800-903, SP, Brazil
| | - Louise Oliveira Fiametti
- Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil; (G.F.H.B.); (L.O.C.N.); (L.O.F.); (E.M.C.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara Jaú, Km 01-s/n-Campos Ville, Araraquara 14800-903, SP, Brazil
| | - Marcela N. Argentin
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), Av. João Dagnone, 1100-Jardim Santa Angelina, São Carlos 13563-120, SP, Brazil; (M.N.A.); (V.T.C.); (I.L.B.C.C.)
| | - Vitória T. Candido
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), Av. João Dagnone, 1100-Jardim Santa Angelina, São Carlos 13563-120, SP, Brazil; (M.N.A.); (V.T.C.); (I.L.B.C.C.)
| | - Ilana L. B. C. Camargo
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), Av. João Dagnone, 1100-Jardim Santa Angelina, São Carlos 13563-120, SP, Brazil; (M.N.A.); (V.T.C.); (I.L.B.C.C.)
| | - Eduardo M. Cilli
- Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil; (G.F.H.B.); (L.O.C.N.); (L.O.F.); (E.M.C.)
| | - Norival A. Santos-Filho
- Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil; (G.F.H.B.); (L.O.C.N.); (L.O.F.); (E.M.C.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara Jaú, Km 01-s/n-Campos Ville, Araraquara 14800-903, SP, Brazil
| |
Collapse
|
29
|
Nasiri F, Ebrahimi P, Shahsavani MB, Barati A, Zarei I, Hong J, Hoshino M, Moosavi-Movahedi AA, Yousefi R. Unraveling the impact of the p.R107L mutation on the structure and function of human αB-Crystallin: Implications for cataract formation. Biochimie 2024; 222:151-168. [PMID: 38494110 DOI: 10.1016/j.biochi.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
To date, several pathogenic mutations have been identified in the primary structure of human α-Crystallin, frequently involving the substitution of arginine with a different amino acid. These mutations can lead to the incidence of cataracts and myopathy. Recently, an important cataract-associated mutation has been reported in the functional α-Crystallin domain (ACD) of human αB-Crystallin protein, where arginine 107 (R107) is replaced by a leucine. In this study, we investigated the structure, chaperone function, stability, oligomerization, and amyloidogenic properties of the p.R107L human αB-Crystallin using a number of different techniques. Our results suggest that the p.R107L mutation can cause significant changes in the secondary, tertiary, and quaternary structures of αB-Crystallin. This cataractogenic mutation led to the formation of protein oligomers with larger sizes than the wild-type protein and reduced the chemical and thermal stability of the mutant chaperone. Both fluorescence and microscopic assessments indicated that this mutation significantly altered the amyloidogenic properties of human αB-Crystallin. Furthermore, the mutant protein indicated an attenuated in vitro chaperone activity. The molecular dynamics (MD) simulation confirmed the experimental results and indicated that p.R107L mutation could alter the proper conformation of human αB-Crystallin dimers. In summary, our results indicated that the p.R107L mutation could promote the formation of larger oligomers, diminish the stability and chaperone activity of human αB-Crystallin, and these changes, in turn, can play a crucial role in the development of cataract disorder.
Collapse
Affiliation(s)
- Farid Nasiri
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Parisa Ebrahimi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Anis Barati
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Issa Zarei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416634793, Iran
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifeng, 475000, People's Republic of China
| | - Masaru Hoshino
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | | | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
30
|
Alexandre D, Fernandes AR, Baptista PV, Cruz C. Evaluation of miR-155 silencing using a molecular beacon in human lung adenocarcinoma cell line. Talanta 2024; 274:126052. [PMID: 38608633 DOI: 10.1016/j.talanta.2024.126052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Lung cancer (LC) is a leading cause of global cancer-related deaths, highlighting the development of innovative methods for biomarker detection improving the early diagnostics. microRNAs (miRs) alterations are known to be involved in the initiation and progression of human cancers and can act as biomarkers for diagnostics and treatment. Herein, we develop the application of molecular beacon (MB) technology to monitor miR-155-3p expression in human lung adenocarcinoma A549 cells without complementary DNA synthesis, amplification, or expensive reagents. Furthermore, we produced gold nanoparticles (AuNPs) for delivering antisense oligonucleotides into A549 cells to reduce miR-155-3p expression, which was subsequently detectable using the MB. The MB was designed and structural characterized by Förster Resonance Energy Transfer (FRET)-melting, Circular Dichroism (CD), Nuclear magnetic resonance (NMR), and fluorometric experiments, and then the hybridization conditions were optimized for an in vitro approach involving the detection of miR-155-3p in total RNA extracted from A549 cell line. The expression profile of miR-155-3p was obtained by RT-qPCR. The results demonstrated that MB was properly designed and showed efficacy in targeting miR-155-3p. Furthermore, a limit of detection down to nanomolar concentration was achieved and the specificity of the biosensor was proved. Moreover, the self-assembly of ASOs with AuNPs exhibited exceptional target specificity, effectively silencing miR-155-3p. Notably, compared to lipid-based transfection agent, AuNPs displayed superior silencing efficiency. We highlighted the ability of MB to detect changes in the target gene expression after gene silencing. Overall, this innovative approach represents a promising tool for detecting various biomarkers at the same time, with potential applications in clinical settings.
Collapse
Affiliation(s)
- Daniela Alexandre
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; i4HB, Associate Laboratory - Institute for Health and Bioeconomy, FCT-NOVA, Portugal
| | - Pedro V Baptista
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; i4HB, Associate Laboratory - Institute for Health and Bioeconomy, FCT-NOVA, Portugal.
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; Departamento de Química, Faculdade de Ciências da Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
| |
Collapse
|
31
|
Zhu PY, Ma CM, Yang Y, Bian X, Ren LK, Wang B, Liu XF, Chen FL, Zhang G, Zhang N. Elucidating the interaction mechanism of rice glutelin and soybean 11S globulin using multi-spectroscopy and molecular dynamics simulation methods. Food Chem 2024; 442:138615. [PMID: 38309242 DOI: 10.1016/j.foodchem.2024.138615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Rice gluten, as the hydrophobic protein, exhibits restricted application value in hydrophilic food, which may be enhanced through interaction with soybean 11S globulin, characterized by favorable functional properties. This study aims at revealing their interaction mechanism via multi-spectroscopy and molecular dynamics simulation. The formation and structural change of rice glutelin-soybean 11S globulin complexes were detected using fluorescence, ultra-violet and circular dichroism spectra. The addition of 11S globulin increased the contents of α-helix, β-turn and random coil, but decreased β-sheet content, and the change in secondary structure was correlated with particle size. Moreover, exposure of hydrophobic groups and formation of disulfide bonds occurred in the complexes. Molecular dynamics simulation verified these experimental results through analyses of root mean square deviation and fluctuation, hydrogen bond, secondary structure, and binding free energy analysis. This study contributes to expounding the interaction mechanism of protein and protein from the molecular level.
Collapse
Affiliation(s)
- Peng-Yu Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Chun-Min Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Li-Kun Ren
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xiao-Fei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Feng-Lian Chen
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
32
|
Pavlović Saftić D, Krošl Knežević I, de Lera Garrido F, Tolosa J, Majhen D, Piantanida I, García Martínez JC. Trimeric and Tetrameric Cationic Styryl Dyes as Novel Fluorescence and CD Probes for ds-DNA and ds-RNA. Int J Mol Sci 2024; 25:5724. [PMID: 38891911 PMCID: PMC11171523 DOI: 10.3390/ijms25115724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The wide use of mono- or bis-styryl fluorophores in biomedical applications prompted the presented design and study of a series of trimeric and tetrameric homo-analogues, styryl moieties arranged around a central aromatic core. The interactions with the most common biorelevant targets, ds-DNA and ds-RNA, were studied by a set of spectrophotometric methods (UV-VIS, fluorescence, circular dichroism, thermal denaturation). All studied dyes showed strong light absorption in the 350-420 nm range and strongly Stokes-shifted (+100-160 nm) emission with quantum yields (Φf) up to 0.57, whereby the mentioned properties were finely tuned by the type of the terminal cationic substituent and number of styryl components (tetramers being red-shifted in respect to trimers). All studied dyes strongly interacted with ds-DNA and ds-RNA with 1-10 nM-1 affinity, with dye emission being strongly quenched. The tetrameric analogues did not show any particular selectivity between ds-DNA or ds-RNA due to large size and consequent partial, non-selective insertion into DNA/RNA grooves. However, smaller trimeric styryl series showed size-dependent selective stabilization of ds-DNA vs. ds-RNA against thermal denaturation and highly selective or even specific recognition of several particular ds-DNA or ds-RNA structures by induced circular dichroism (ICD) bands. The chiral (ICD) selectivity was controlled by the size of a terminal cationic substituent. All dyes entered efficiently live human cells with negligible cytotoxic activity. Further prospects in the transfer of ICD-based selectivity into fluorescence-chiral methods (FDCD and CPL) is proposed, along with the development of new analogues with red-shifted absorbance properties.
Collapse
Affiliation(s)
- Dijana Pavlović Saftić
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.P.S.); (I.K.K.)
| | - Ivona Krošl Knežević
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.P.S.); (I.K.K.)
| | - Fernando de Lera Garrido
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Pharmacy, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; (F.d.L.G.); (J.T.)
- Regional Center for Biomedical Research (CRIB), Universidad de Castilla-La Mancha, C/Almansa 13, 02008 Albacete, Spain
| | - Juan Tolosa
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Pharmacy, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; (F.d.L.G.); (J.T.)
- Regional Center for Biomedical Research (CRIB), Universidad de Castilla-La Mancha, C/Almansa 13, 02008 Albacete, Spain
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Ivo Piantanida
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.P.S.); (I.K.K.)
| | - Joaquín Calixto García Martínez
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Pharmacy, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; (F.d.L.G.); (J.T.)
- Regional Center for Biomedical Research (CRIB), Universidad de Castilla-La Mancha, C/Almansa 13, 02008 Albacete, Spain
| |
Collapse
|
33
|
Rok M, Miniewicz A, Zdończyk M, Zarychta B, Mikurenda JW, Bartkiewicz S, Wiśniewska-Bełej M, Cybińska J, Piecha-Bisiorek A. Nonlinear Optical Activity of a Chiral Organic-Inorganic ([(NH 3CH 2CH 2) 3NH]) 2[MnBr 5]Br 5 Photoluminescent and Piezoelectric Crystal. J Phys Chem Lett 2024; 15:5276-5287. [PMID: 38722175 PMCID: PMC11103696 DOI: 10.1021/acs.jpclett.4c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
The family of Mn-based organic-inorganic hybrids has greatly expanded due to their advantages in applications. They also show superior bright and size-tunable photoluminescence and can be considered a perfect alternative to toxic lead-based compounds. In this work, we present the detailed structural, optical, and electrical characterization of ([(NH3CH2CH2)3NH])2[MnBr5]Br5. The title compound exhibits a unique type of inorganic arrangement created by the trigonal bipyramids. It crystallizes in noncentrosymmetric space group R32, indicating its optical activity, piezoelectricity, and second-order optical nonlinearity proven by the second harmonic of light measurements. The studied crystals exhibit intense photoluminescence originating from the Mn(II) ion 4T1(G) → 6A1 transition. The measured lifetime of the photoluminescence emission is ≤1.5 ms, while the measured quantum yield for both powder and crystal samples reaches ∼70%.
Collapse
Affiliation(s)
- Magdalena Rok
- Faculty
of Chemistry, University of Wroclaw, 14 F. Joliot - Curie, 50-383 Wroclaw, Poland
| | - Andrzej Miniewicz
- Institute
of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wroclaw, Poland
| | - Maria Zdończyk
- Faculty
of Chemistry, University of Wroclaw, 14 F. Joliot - Curie, 50-383 Wroclaw, Poland
- Łukasiewicz
Research Network - PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland
| | - Bartosz Zarychta
- Faculty
of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Julia W. Mikurenda
- Faculty
of Chemistry, University of Wroclaw, 14 F. Joliot - Curie, 50-383 Wroclaw, Poland
| | - Stanisław Bartkiewicz
- Institute
of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wroclaw, Poland
| | - Monika Wiśniewska-Bełej
- Institute
of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wroclaw, Poland
| | - Joanna Cybińska
- Faculty
of Chemistry, University of Wroclaw, 14 F. Joliot - Curie, 50-383 Wroclaw, Poland
- Łukasiewicz
Research Network - PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland
| | - Anna Piecha-Bisiorek
- Faculty
of Chemistry, University of Wroclaw, 14 F. Joliot - Curie, 50-383 Wroclaw, Poland
| |
Collapse
|
34
|
Krochtová K, Janovec L, Bogárová V, Halečková A, Kožurková M. Interaction of 3,9-disubstituted acridine with single stranded poly(rA), double stranded poly(rAU) and triple stranded poly(rUAU): molecular docking - A spectroscopic tandem study. Chem Biol Interact 2024; 394:110965. [PMID: 38552767 DOI: 10.1016/j.cbi.2024.110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 04/10/2024]
Abstract
RNA plays an important role in many biological processes which are crucial for cell survival, and it has been suggested that it may be possible to inhibit individual processes involved in many diseases by targeting specific sequences of RNA. The aim of this work is to determine the affinity of novel 3,9-disubstited acridine derivative 1 with three different RNA molecules, namely single stranded poly(rA), double stranded homopolymer poly(rAU) and triple stranded poly(rUAU). The results of the absorption titration assays show that the binding constant of the novel derivative to the RNA molecules was in the range of 1.7-6.2 × 104 mol dm-3. The fluorescence and circular dichroism titration assays revealed considerable changes. The most significant results in terms of interpreting the nature of the interactions were the melting temperatures of the RNA samples in complexes with the 1. In the case of poly(rA), denaturation resulted in a self-structure formation; increased stabilization was observed for poly(rAU), while the melting points of the ligand-poly(rUAU) complex showed significant destabilization as a result of the interaction. The principles of molecular mechanics were applied to propose the non-bonded interactions within the binding complex, pentariboadenylic acid and acridine ligand as the study model. Initial molecular docking provided the input structure for advanced simulation techniques. Molecular dynamics simulation and cluster analysis reveal π - π stacking and the hydrogen bonds formation as the main forces that can stabilize the binding complex. Subsequent MM-GBSA calculations showed negative binding enthalpy accompanied the complex formation and proposed the most preferred conformation of the interaction complex.
Collapse
Affiliation(s)
- Kristína Krochtová
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Ladislav Janovec
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Viktória Bogárová
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Annamária Halečková
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Mária Kožurková
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic.
| |
Collapse
|
35
|
Ouyang J, Zhang Z, Li J, Wu C. Integrating Enzymes with Supramolecular Polymers for Recyclable Photobiocatalytic Catalysis. Angew Chem Int Ed Engl 2024; 63:e202400105. [PMID: 38386281 DOI: 10.1002/anie.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
Chemical modifications of enzymes excel in the realm of enzyme engineering due to its directness, robustness, and efficiency; however, challenges persist in devising versatile and effective strategies. In this study, we introduce a supramolecular modification methodology that amalgamates a supramolecular polymer with Candida antarctica lipase B (CalB) to create supramolecular enzymes (SupEnzyme). This approach features the straightforward preparation of a supramolecular amphiphilic polymer (β-CD@SMA), which was subsequently conjugated to the enzyme, resulting in a SupEnzyme capable of self-assembly into supramolecular nanoparticles. The resulting SupEnzyme nanoparticles can form micron-scale supramolecular aggregates through supramolecular and electrostatic interactions with guest entities, thus enhancing catalyst recycling. Remarkably, these aggregates maintain 80 % activity after seven cycles, outperforming Novozym 435. Additionally, they can effectively initiate photobiocatalytic cascade reactions using guest photocatalysts. As a consequence, our SupEnzyme methodology exhibits noteworthy adaptability in enzyme modification, presenting a versatile platform for various polymer, enzyme, and biocompatible catalyst pairings, with potential applications in the fields of chemistry and biology.
Collapse
Affiliation(s)
- Jingping Ouyang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Zhenfang Zhang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|
36
|
Kudo K, Hori K, Asamitsu S, Maeda K, Aida Y, Hokimoto M, Matsuo K, Yabuki Y, Shioda N. Structural polymorphism of the nucleic acids in pentanucleotide repeats associated with the neurological disorder CANVAS. J Biol Chem 2024; 300:107138. [PMID: 38447794 PMCID: PMC10999818 DOI: 10.1016/j.jbc.2024.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
Short tandem repeats are inherently unstable during DNA replication depending on repeat length, and the expansion of the repeat length in the human genome is responsible for repeat expansion disorders. Pentanucleotide AAGGG and ACAGG repeat expansions in intron 2 of the gene encoding replication factor C subunit 1 (RFC1) cause cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) and other phenotypes of late-onset cerebellar ataxia. Herein, we reveal the structural polymorphism of the RFC1 repeats associated with CANVAS in vitro. Single-stranded AAGGG repeat DNA formed a hybrid-type G-quadruplex, whereas its RNA formed a parallel-type G-quadruplex with three layers. The RNA of the ACAGG repeat formed hairpin structure comprising C-G and G-C base pairs with A:A and GA:AG mismatched repeats. Furthermore, both pathogenic repeat RNAs formed more rigid structures than those of the nonpathogenic repeat RNAs. These findings provide novel insights into the structural polymorphism of the RFC1 repeats, which may be closely related to the disease mechanism of CANVAS.
Collapse
Affiliation(s)
- Kenta Kudo
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Karin Hori
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Sefan Asamitsu
- Laboratory for Functional Non-coding Genomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Kohei Maeda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukari Aida
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mei Hokimoto
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuya Matsuo
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
37
|
Zhuang Y, Quirk S, Stover ER, Bureau HR, Allen CR, Hernandez R. Tertiary Plasticity Drives the Efficiency of Enterocin 7B Interactions with Lipid Membranes. J Phys Chem B 2024; 128:2100-2113. [PMID: 38412510 PMCID: PMC10926100 DOI: 10.1021/acs.jpcb.3c08199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
The ability of antimicrobial peptides to efficiently kill their bacterial targets depends on the efficiency of their binding to the microbial membrane. In the case of enterocins, there is a three-part interaction: initial binding, unpacking of helices on the membrane surface, and permeation of the lipid bilayer. Helical unpacking is driven by disruption of the peptide hydrophobic core when in contact with membranes. Enterocin 7B is a leaderless enterocin antimicrobial peptide produced from Enterococcus faecalis that functions alone, or with its cognate partner enterocin 7A, to efficiently kill a wide variety of Gram-stain positive bacteria. To better characterize the role that tertiary structural plasticity plays in the ability of enterocin 7B to interact with the membranes, a series of arginine single-site mutants were constructed that destabilize the hydrophobic core to varying degrees. A series of experimental measures of structure, stability, and function, including CD spectra, far UV CD melting profiles, minimal inhibitory concentrations analysis, and release kinetics of calcein, show that decreased stabilization of the hydrophobic core is correlated with increased efficiency of a peptide to permeate membranes and in killing bacteria. Finally, using the computational technique of adaptive steered molecular dynamics, we found that the atomistic/energetic landscape of peptide mechanical unfolding leads to free energy differences between the wild type and its mutants, whose trends correlate well with our experiment.
Collapse
Affiliation(s)
- Yi Zhuang
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Stephen Quirk
- Kimberly-Clark
Corporation, Atlanta, Georgia 30076-2199, United States
| | - Erica R. Stover
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hailey R. Bureau
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Caley R. Allen
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rigoberto Hernandez
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Materials Science & Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
38
|
Bandyopadhyay A, Hazra R, Roy D, Bhattacharya A. HSA over BSA: Selective detection of Human Serum Albumin via a naphtho [2,1-b] furan-based system. Chem Asian J 2024; 19:e202301055. [PMID: 38192093 DOI: 10.1002/asia.202301055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Human serum albumin (HSA) is an important biomarker that can be used for the early diagnosis of many diseases. In this work, a TICT probe bearing fused naphtho-furan scaffold (NPNF) was developed and employed in the selective turn-on sensing of HSA. The probe's selectivity towards HSA was observed using steady-state fluorescence experiments, with limit of quantitation in micromolar levels. NPNF's capability to exclusively detect HSA over BSA was further studied/rationalized using anisotropy and time-resolved studies. Molecular docking was used to shed light on the location of NPNF in the subdomain IB of HSA. The practical application of the probe was also demonstrated by the detection of HSA in urine and the HSA-assisted detection of cerium.
Collapse
Affiliation(s)
- Anamika Bandyopadhyay
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Rituparna Hazra
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Anupam Bhattacharya
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| |
Collapse
|
39
|
Kim RM, Han JH, Lee SM, Kim H, Lim YC, Lee HE, Ahn HY, Lee YH, Ha IH, Nam KT. Chiral plasmonic sensing: From the perspective of light-matter interaction. J Chem Phys 2024; 160:061001. [PMID: 38341778 DOI: 10.1063/5.0178485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/07/2024] [Indexed: 02/13/2024] Open
Abstract
Molecular chirality is represented as broken mirror symmetry in the structural orientation of constituent atoms and plays a pivotal role at every scale of nature. Since the discovery of the chiroptic property of chiral molecules, the characterization of molecular chirality is important in the fields of biology, physics, and chemistry. Over the centuries, the field of optical chiral sensing was based on chiral light-matter interactions between chiral molecules and polarized light. Starting from simple optics-based sensing, the utilization of plasmonic materials that could control local chiral light-matter interactions by squeezing light into molecules successfully facilitated chiral sensing into noninvasive, ultrasensitive, and accurate detection. In this Review, the importance of plasmonic materials and their engineering in chiral sensing are discussed based on the principle of chiral light-matter interactions and the theory of optical chirality and chiral perturbation; thus, this Review can serve as a milestone for the proper design and utilization of plasmonic nanostructures for improved chiral sensing.
Collapse
Affiliation(s)
- Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Hyun Han
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Min Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeohn Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yae-Chan Lim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo-Yong Ahn
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon Ho Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - In Han Ha
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
40
|
Zawadzki S, Martín-Serrano Á, Okła E, Kędzierska M, Garcia-Gallego S, López PO, de la Mata FJ, Michlewska S, Makowski T, Ionov M, Pędziwiatr-Werbicka E, Bryszewska M, Miłowska K. Synthesis and biophysical evaluation of carbosilane dendrimers as therapeutic siRNA carriers. Sci Rep 2024; 14:1615. [PMID: 38238354 PMCID: PMC10796380 DOI: 10.1038/s41598-024-51238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
Gene therapy presents an innovative approach to the treatment of previously incurable diseases. The advancement of research in the field of nanotechnology has the potential to overcome the current limitations and challenges of conventional therapy methods, and therefore to unlocking the full potential of dendrimers for use in the gene therapy of neurodegenerative disorders. The blood-brain barrier (BBB) poses a significant challenge when delivering therapeutic agents to the central nervous system. In this study, we investigated the biophysical properties of dendrimers and their complexes with siRNA directed against the apolipoprotein E (APOE) gene to identify an appropriate nanocarrier capable of safely delivering the cargo across the BBB. Our study yielded valuable insights into the complexation process, stability over time, the mechanisms of interaction, the influence of dendrimers on the oligonucleotide's spatial structure, and the potential cytotoxic effects on human cerebral microvascular endothelium cells. Based on our findings, we identified that the dendrimer G3Si PEG6000 was an optimal candidate for further research, potentially serving as a nanocarrier capable of safely delivering therapeutic agents across the BBB for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Serafin Zawadzki
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland.
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 21/23 Matejki St., 90-237, Lodz, Poland.
| | - Ángela Martín-Serrano
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805, Madrid, Spain
| | - Elżbieta Okła
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Marta Kędzierska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Sandra Garcia-Gallego
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28034, Madrid, Spain
| | - Paula O López
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28034, Madrid, Spain
| | - Francisco J de la Mata
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28034, Madrid, Spain
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 2 Dabrowskiego Sq, 09-402, Plock, Poland
| | - Elżbieta Pędziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| |
Collapse
|
41
|
Tworek P, Rakowski K, Szota M, Lekka M, Jachimska B. Changes in Secondary Structure and Properties of Bovine Serum Albumin as a Result of Interactions with Gold Surface. Chemphyschem 2024; 25:e202300505. [PMID: 38009440 DOI: 10.1002/cphc.202300505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Proteins can alter their shape when interacting with a surface. This study explores how bovine serum albumin (BSA) modifies structurally when it adheres to a gold surface, depending on the protein concentration and pH. We verified that the gold surface induces significant structural modifications to the BSA molecule using circular dichroism, infrared spectroscopy, and atomic force microscopy. Specifically, adsorbed molecules displayed increased levels of disordered structures and β-turns, with fewer α-helices than the native structure. MP-SPR spectroscopy demonstrated that the protein molecules preferred a planar orientation during adsorption. Molecular dynamics simulations revealed that the interaction between cysteines exposed to the outside of the molecule and the gold surface was vital, especially at pH=3.5. The macroscopic properties of the protein film observed by AFM and contact angles confirm the flexible nature of the protein itself. Notably, structural transformation is joined with the degree of hydration of protein layers.
Collapse
Affiliation(s)
- Paulina Tworek
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Krakow, Poland
| | - Kamil Rakowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Krakow, Poland
| | - Magdalena Szota
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Krakow, Poland
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 31-342, Krakow, Poland
| | - Barbara Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Krakow, Poland
| |
Collapse
|
42
|
Kiran KS, Kameshwar VH, Mudnakudu Nagaraju KK, Nagalambika P, Varadaraju KR, Karthik NA, Dugganaboyana GK, Nanjunda Swamy S, Krishna KL, Kumar JR. Diosmin: A Daboia russelii venom PLA 2s inhibitor- purified, and characterized from Oxalis corniculata L medicinal plant. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116977. [PMID: 37544341 DOI: 10.1016/j.jep.2023.116977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oxalis corniculata L is a medicinal plant that belongs to the Oxalidaceae family. It is a little, slow-growing plant with a frail appearance typically found in mild temperate and tropical areas like Pakistan and India. This plant also includes many other bioactive substances, including alkaloids, flavonoids, terpenoids, cardiac glycosides, saponins, phlobatannins, and steroids. AIM OF THE STUDY To investigate the anti-inflammatory effects of Compound diosmin, which is derived from Oxalis corniculata L, on VRV-PL-5 and VRV-PL-8a isolated from Vipera russelli. MATERIALS AND METHODS Extraction, purification, and characterization of bioactive by TLC, HPTLC, FT-IR analysis, UV-Vis spectrophotometer, LC-MS/MS Analysis, NMR, XRD Analysis, In vitro evaluation, Circular dichroism spectroscopy, in vivo, and in silico studies. RESULTS In this study, the extract of Oxalis corniculata was evaluated for its in vitro and in vivo anti-inflammatory effect against PLA2. The methanolic extract decreased hemolytic activity by about 60% at 1:75 w/w and neutralized the hemolytic activity completely at 1:100 w/w concentration. Diosmin inhibited VRV-PL-5 and VRV-PL-8a in a dose-dependent manner, with the extent of inhibition being about 56% for VRV-PL-5120 μM and VRV-PL-8a by 62% at the same concentration with IC50 concentrations of 87.08 μM for VRV-PL-5 and 82.08 μM for VRV-PL-8a, while at 75 μM. Diosmin inhibited the hemolytic activity of VRV-PL-5 by about 85%, and at the same concentration, VRV-PL-8a inhibited by about 75%. UV-CD spectra at the IC50 concentration of diosmin disrupted the secondary structure of VRV-PL-5 &VRV-PL-8a. In vivo, studies showed decreased myotoxicity and cardiotoxicity of the VRV-PL-5 &VRV-PL-8a, which was seen in the decrease in cytoplasmic markers LDH and CPK levels in the serum when incubated with diosmin. Furthermore, Histopathological studies of Muscles and lungs revealed that diosmin considerably protects against cellular abnormality caused by VRV-PL-5 & VRV-PL-8a. Molecular docking, MM/GBSA, and molecular dynamics simulation studies show that the diosmin is a potent inhibitor for VRV-PL-5 and VRV-PL-8a. CONCLUSION This study shows that diosmin is a potentially effective VRV-PL-5 and VRV-PL-8a.
Collapse
Affiliation(s)
- K S Kiran
- Division of Biochemistry, School of Life Science, JSS Academy of Higher Education and Research, Mysore-15, India
| | - Vivek Hamse Kameshwar
- Department of Biochemistry, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, B. G. Nagara- 571448, Nagamangala (T), Mandya (D), Karnataka, India; Department of Biotechnology, Adichunchanagiri School of Natural Sciences, ACU-CRI, Adichunchanagiri University, B. G. Nagara- 571448, Nagamangala (T), Mandya (D), Karnataka, India
| | | | - Prasad Nagalambika
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore-15, India
| | - Kavitha Raj Varadaraju
- Division of Biochemistry, School of Life Science, JSS Academy of Higher Education and Research, Mysore-15, India
| | - N Awathade Karthik
- Division of Biochemistry, School of Life Science, JSS Academy of Higher Education and Research, Mysore-15, India
| | - Guru Kumar Dugganaboyana
- Division of Biochemistry, School of Life Science, JSS Academy of Higher Education and Research, Mysore-15, India
| | - S Nanjunda Swamy
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Science and Technological University, Mysore, India
| | - K L Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysore-15, India
| | - J R Kumar
- Division of Biochemistry, School of Life Science, JSS Academy of Higher Education and Research, Mysore-15, India.
| |
Collapse
|
43
|
Tan L, Fu W, Gao Q, Wang PP. Chiral Plasmonic Hybrid Nanostructures: A Gateway to Advanced Chiroptical Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309033. [PMID: 37944554 DOI: 10.1002/adma.202309033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push the boundaries of the system's capabilities. Recent advancements have illuminated the remarkable chiral light-matter interactions within chiral plasmonic hybrid nanomaterials, allowing for the harnessing of their tunable optical activity and hybrid components. These advancements have led to applications in areas such as chiral sensing, catalysis, and spin optics. Despite these promising developments, there remains a need for a comprehensive synthesis of the current state-of-the-art knowledge, as well as a thorough understanding of the construction techniques and practical applications in this field. This review begins with an exploration of the origins of plasmonic chirality and an overview of the latest advancements in the synthesis of chiral plasmonic hybrid nanostructures. Furthermore, representative emerging categories of hybrid nanomaterials are classified and summarized, elucidating their versatile applications. Finally, the review engages with the fundamental challenges associated with chiral plasmonic hybrid nanostructures and offer insights into the future prospects of this advanced field.
Collapse
Affiliation(s)
- Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qi Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
44
|
Azeem K, Ahmed M, Uddin A, Singh S, Patel R, Abid M. Comparative investigation on interaction between potent antimalarials and human serum albumin using multispectroscopic and computational approaches. LUMINESCENCE 2023; 38:2018-2033. [PMID: 37654050 DOI: 10.1002/bio.4590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
This study performed a comparative investigation to explore the interaction mechanisms between two potential antimalarial compounds, JMI 346 and JMI 105, and human serum albumin (HSA), a vital carrier protein responsible for maintaining important biological functions. Our aim was to assess the pharmacological efficiency of these compounds while comprehensively analyzing their impact on the dynamic behavior and overall stability of the protein. A comprehensive array of multispectroscopic techniques, including UV-Vis. spectroscopy, steady-state fluorescence analysis, synchronous fluorescence spectroscopy, three-dimensional fluorescence and circular dichroism spectroscopy, docking studies, and molecular dynamics simulations, were performed to probe the intricate details of the interaction between the compounds and HSA. Our results revealed that both JMI 346 and JMI 105 exhibited promising pharmacological effectiveness within the context of malaria therapy. However, JMI 346 was found to exhibit a significantly higher affinity and only minor altered impact on HSA, suggesting a more favorable interaction with the protein on the dynamic behavior and overall stability of the protein in comparison to JMI 105. Further studies can build on these results to optimize the drug-protein interaction and enable the development of more potent and targeted antimalarial treatments.
Collapse
Affiliation(s)
- Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mofieed Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rajan Patel
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
45
|
Hermann DR, Ramer G, Riedlsperger L, Lendl B. Chiral Monitoring Across Both Enantiomeric Excess and Concentration Space: Leveraging Quantum Cascade Lasers for Sensitive Vibrational Circular Dichroism Spectroscopy. APPLIED SPECTROSCOPY 2023; 77:1362-1370. [PMID: 37847076 DOI: 10.1177/00037028231206186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Recently, high-throughput quantum cascade laser-based vibrational circular dichroism (QCL-VCD) technology has reduced the measurement time for high-quality vibrational circular dichroism spectra from hours to a few minutes. This study evaluates QCL-VCD for chiral monitoring using flow-through measurement of a changing sample in a circulating loop. A balanced detection QCL-VCD system was applied to the enantiomeric pair R/S-1,1'-bi-2-naphthol in solution. Different mixtures of the two components were used to simulate a racemization process, collecting spectral data at a time resolution of 6 min, and over three concentration levels. The goal of this experimental setup was to evaluate QCL-VCD in terms of both molar and enantiomeric excess (EE) sensitivity at a time resolution relevant to chiral monitoring in chemical processes. Subsequent chemometric evaluation by partial least squares regression revealed a cross-validated prediction accuracy of 2.8% EE with a robust prediction also for the test data set (error = 3.5% EE). In addition, the data set was also treated with the least absolute shrinkage and selection operator (LASSO), which also achieved a robust prediction. Due to the operating principle of LASSO, the obtained coefficients constituted a few discrete spectral frequencies, which represent the most variance. This information can be used in the future for dedicated QCL-based instrument design, gaining a higher time resolution without sacrificing predictive capabilities.
Collapse
Affiliation(s)
- Daniel-Ralph Hermann
- Research Division of Environmental Analytics, Process Analytics and Sensors, Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Georg Ramer
- Research Division of Environmental Analytics, Process Analytics and Sensors, Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Lisa Riedlsperger
- Research Division of Environmental Analytics, Process Analytics and Sensors, Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Bernhard Lendl
- Research Division of Environmental Analytics, Process Analytics and Sensors, Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| |
Collapse
|
46
|
Knizhnik E, Chumakov S, Svetlova J, Pavlova I, Khodarovich Y, Brylev V, Severov V, Alieva R, Kozlovskaya L, Andreev D, Aralov A, Varizhuk A. Unwinding the SARS-CoV-2 Ribosomal Frameshifting Pseudoknot with LNA and G-Clamp-Modified Phosphorothioate Oligonucleotides Inhibits Viral Replication. Biomolecules 2023; 13:1660. [PMID: 38002341 PMCID: PMC10668963 DOI: 10.3390/biom13111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Ribosomal frameshifting (RFS) at the slippery site of SARS-CoV-2 RNA is essential for the biosynthesis of the viral replication machinery. It requires the formation of a pseudoknot (PK) structure near the slippery site and can be inhibited by PK-disrupting oligonucleotide-based antivirals. We obtained and compared three types of such antiviral candidates, namely locked nucleic acids (LNA), LNA-DNA gapmers, and G-clamp-containing phosphorothioates (CPSs) complementary to PK stems. Using optical and electrophoretic methods, we showed that stem 2-targeting oligonucleotide analogs induced PK unfolding at nanomolar concentrations, and this effect was particularly pronounced in the case of LNA. For the leading PK-unfolding LNA and CPS oligonucleotide analogs, we also demonstrated dose-dependent RSF inhibition in dual luciferase assays (DLAs). Finally, we showed that the leading oligonucleotide analogs reduced SARS-CoV-2 replication at subtoxic concentrations in the nanomolar range in two human cell lines. Our findings highlight the promise of PK targeting, illustrate the advantages and limitations of various types of DNA modifications and may promote the future development of oligonucleotide-based antivirals.
Collapse
Affiliation(s)
- Ekaterina Knizhnik
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.K.); (J.S.); (I.P.); (V.S.)
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Stepan Chumakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.C.); (Y.K.); (V.B.); (D.A.)
| | - Julia Svetlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.K.); (J.S.); (I.P.); (V.S.)
| | - Iulia Pavlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.K.); (J.S.); (I.P.); (V.S.)
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Yuri Khodarovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.C.); (Y.K.); (V.B.); (D.A.)
- Research and Educational Resource Center for Cellular Technologies of The Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Vladimir Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.C.); (Y.K.); (V.B.); (D.A.)
| | - Vjacheslav Severov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.K.); (J.S.); (I.P.); (V.S.)
| | - Rugiya Alieva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Raman Spectroscopy Laboratory, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Liubov Kozlovskaya
- Chumakov Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia;
| | - Dmitry Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.C.); (Y.K.); (V.B.); (D.A.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Andrey Aralov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.K.); (J.S.); (I.P.); (V.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.C.); (Y.K.); (V.B.); (D.A.)
| | - Anna Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.K.); (J.S.); (I.P.); (V.S.)
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
47
|
Kim DS, Kim M, Seo S, Kim JH. Nature-Inspired Chiral Structures: Fabrication Methods and Multifaceted Applications. Biomimetics (Basel) 2023; 8:527. [PMID: 37999168 PMCID: PMC10669407 DOI: 10.3390/biomimetics8070527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Diverse chiral structures observed in nature find applications across various domains, including engineering, chemistry, and medicine. Particularly notable is the optical activity inherent in chiral structures, which has emerged prominently in the field of optics. This phenomenon has led to a wide range of applications, encompassing optical components, catalysts, sensors, and therapeutic interventions. This review summarizes the imitations and applications of naturally occurring chiral structures. Methods for replicating chiral architectures found in nature have evolved with specific research goals. This review primarily focuses on a top-down approach and provides a summary of recent research advancements. In the latter part of this review, we will engage in discussions regarding the diverse array of applications resulting from imitating chiral structures, from the optical activity in photonic crystals to applications spanning light-emitting devices. Furthermore, we will delve into the applications of biorecognition and therapeutic methodologies, comprehensively examining and deliberating upon the multifaceted utility of chiral structures.
Collapse
Affiliation(s)
- Da-Seul Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea (M.K.)
- Department of Chemical Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Myounggun Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea (M.K.)
- Department of Chemical Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Soonmin Seo
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Ju-Hyung Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea (M.K.)
- Department of Chemical Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
48
|
Zhang L, Zhang L, Wang Y, Jiang K, Gao C, Zhang P, Xie Y, Wang B, Zhao Y, Xiao H, Song J. Regulating the surface topography of CpG nanoadjuvants via coordination-driven self-assembly for enhanced tumor immunotherapy. NANOSCALE ADVANCES 2023; 5:4758-4769. [PMID: 37705793 PMCID: PMC10496906 DOI: 10.1039/d3na00322a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/09/2023] [Indexed: 09/15/2023]
Abstract
Immunoadjuvants play a key role in enhancing the efficacy of therapeutic tumor vaccines for treating malignant and recurrent cancers. However, due to the bottleneck in the rational design and mechanistic understanding of novel adjuvants, currently available immunoadjuvants in clinical practice are very limited. To boost adjuvant design and development, herein we propose a surface topography regulatory strategy for constructing novel adjuvants with improved adjuvant properties. One of the licensed adjuvants with a well-defined molecular mechanism of immune activation, cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs), was used as the material framework. We constructed immunostimulatory CpG nanoparticles (CpG NPs) with different surface topographies by coordination-driven self-assembly between CpG ODNs and ferrous ions. These self-assembled CpG NPs combine the biological and physical activation abilities of innate immunity and can be used as adjuvants of tumor antigens for malignant tumor immunotherapy. The experimental results showed that these CpG NPs could rapidly enter innate immune cells and remold the tumor microenvironment (TME) to enhance anti-tumor immunotherapy via (i) inducing proinflammatory cytokine production; (ii) promoting the transformation of macrophages from immunosuppressed M2 types into immunoactivated M1 types; (iii) amplifying the antigen presentation of mature dendritic cells (DCs), and (iv) activating T cells in tumor sites. Among the prepared nanostructures, pompon-shaped nanoparticles (NPpo) showed the strongest adjuvant properties and anti-tumor immunotherapeutic effect as the adjuvant of ovalbumin in melanoma-bearing mice. Overall, this work provides an effective strategy for designing novel adjuvants for activating the immunosuppressed TME to enable better cancer immunotherapy.
Collapse
Affiliation(s)
- Li Zhang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou Zhejiang 310024 China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
- School of Pharmacy, Changzhou University Changzhou Jiangsu 213164 China
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Yuqi Wang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Kai Jiang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Chao Gao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Pengfei Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| | - Yujie Xie
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Bin Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Yun Zhao
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou Zhejiang 310024 China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Jie Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
49
|
Mirzaei S, Ranjbar B, Tackallou SH. Molecular profile of non-coding RNA-mediated glycolysis control in human cancers. Pathol Res Pract 2023; 248:154708. [PMID: 37536019 DOI: 10.1016/j.prp.2023.154708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
The glycolysis is a common characteristic of cancer and it is responsible for providing enough energy to ensure growth. The glycolysis suppression is beneficial in tumor growth reduction. The stimulation/inhibition of glycolysis in cancer is tightly regulated by ncRNAs. The regulation of glycolysis by ncRNAs can influence proliferation and therapy response of tumor. The miRNAs are capable of inactivating enzymes responsible for glycolysis and suppressing signaling networks resulting in glycolysis induction. By regulation of glycolysis, miRNAs can affect therapy response. The lncRNAs and circRNAs follow a same pathway and by targeting glycolysis, they affect progression and therapy response of tumor. Noteworthy, lncRNAs and circRNAs sponge miRNAs in glycolysis mechanism control in tumor cells. Furthermore, ncRNA-mediated regulation of glycolysis mechanism can influence metastasis to organs of body. The ncRNAs regulating glycolysis are reliable biomarkers in cancer patients and more importantly, exosomal ncRNAs due to their presence in body fluids, are minimally-invasive biomarkers.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Bijan Ranjbar
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | | |
Collapse
|
50
|
Mirzaei S, Ranjbar B, Tackallou SH, Aref AR. Hypoxia inducible factor-1α (HIF-1α) in breast cancer: The crosstalk with oncogenic and onco-suppressor factors in regulation of cancer hallmarks. Pathol Res Pract 2023; 248:154676. [PMID: 37454494 DOI: 10.1016/j.prp.2023.154676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Low oxygen level at tumor microenvironment leads to a condition, known as hypoxia that is implicated in cancer progression. Upon hypoxia, HIF-1α undergoes activation and due to its oncogenic function and interaction with other molecular pathways, promotes tumor progression. The HIF-1α role in regulating breast cancer progression is described, Overall, HIF-1α has upregulation in breast tumor and due to its tumor-promoting function, its upregulation is in favor of breast tumor progression. HIF-1α overexpression prevents apoptosis in breast tumor and it promotes cell cycle progression. Silencing HIF-1α triggers cycle arrest and decreases growth. Migration of breast tumor enhances by HIF-1α signaling and it mainly induces EMT in providing metastasis. HIF-1α upregulation stimulates drug resistance and radio-resistance in breast tumor. Furthermore, HIF-1α signaling induces immune evasion of breast cancer. Berberine and pharmacological intervention suppress HIF-1α signaling in breast tumor and regulation of HIF-1α by non-coding RNAs occurs. Furthermore, HIF-1α is a biomarker in clinic.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Bijan Ranjbar
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | | | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|