1
|
Liaskos M, Fark N, Ferrario P, Engelbert AK, Merz B, Hartmann B, Watzl B. First review on the selenium status in Germany covering the last 50 years and on the selenium content of selected food items. Eur J Nutr 2023; 62:71-82. [PMID: 36083522 PMCID: PMC9899741 DOI: 10.1007/s00394-022-02990-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 08/24/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Selenium is important for human health. However, the selenium status and selenium intake of the German population has not been recorded in a representative study so far. MATERIAL AND METHODS Thus, literature from the last 50 years was screened in a systematic way and the results of various studies were pulled together to shed light on the selenium status of the German population. Moreover, the selenium content of selected food items that were either found on the German market or grown in Germany was researched and evaluated. RESULTS Of 3542 articles identified, 37 studies met the inclusion criteria. These 37 studies comprised a total of 8,010 healthy adults living in Germany with a weighted arithmetic mean of 82 μg/l selenium in plasma or serum. The results will form a basis for interpreting upcoming results from national food consumption surveys. Furthermore, 363 selenium values for 199 food items were identified out of 20 data sources-published or analysed between 2002 and 2019. An estimation of the selenium intake of the German population will be possible with this data in future nutrition surveys.
Collapse
Affiliation(s)
- Marina Liaskos
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany.
| | - Nicole Fark
- Department of Nutritional Behaviour, Max Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
| | - Paola Ferrario
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
| | - Ann Katrin Engelbert
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
| | - Benedikt Merz
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
| | - Bernd Hartmann
- Department of Nutritional Behaviour, Max Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
| |
Collapse
|
2
|
Effects of Acute Vitamin C plus Vitamin E Supplementation on Exercise-Induced Muscle Damage in Runners: A Double-Blind Randomized Controlled Trial. Nutrients 2022; 14:nu14214635. [PMID: 36364898 PMCID: PMC9659095 DOI: 10.3390/nu14214635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Considering the existing controversy over the possible role of acute antioxidant vitamins in reducing exercise-induced muscle damage (EIMD), this doubled-blind, randomized and controlled trial aimed to determine whether supplementation with vitamins C and E could mitigate the EIMD in endurance-trained runners (n = 18). The exercise protocol involved a warm-up followed by 6 to 8 bouts of 1 km running at 75% maximum heart rate (HRmax). Two hours before the exercise protocol, participants took the supplementation with vitamins or placebo, and immediately afterwards, blood lactate, rate of perceived exertion and performance were assessed. At 24 h post-exercise, CK, delayed onset muscle soreness and performance were determined (countermovement jump, squat jump and stiffness test). The elastic index and vertical stiffness were calculated using a stiffness test. Immediately after the exercise protocol, all participants showed improved maximum countermovement jump, which only persisted after 24 h in the vitamin group (p < 0.05). In both groups, squat jump height was significantly greater (p < 0.05) immediately after exercise and returned to baseline values after 24 h. The elastic index increased in the vitamin group (p < 0.05), but not in the placebo group. In both groups, lactate levels increased from pre- to immediately post-exercise (p < 0.05), and CK increased from pre- to 24 h post-exercise (p < 0.05). No significant differences between groups were observed in any of the variables (p > 0.05). Vitamin C and E supplementation does not seem to help with EIMD in endurance-trained individuals.
Collapse
|
3
|
Ovchinnikov AN, Paoli A, Seleznev VV, Deryugina AV. Royal jelly plus coenzyme Q10 supplementation improves high-intensity interval exercise performance via changes in plasmatic and salivary biomarkers of oxidative stress and muscle damage in swimmers: a randomized, double-blind, placebo-controlled pilot trial. J Int Soc Sports Nutr 2022; 19:239-257. [PMID: 35813842 PMCID: PMC9261740 DOI: 10.1080/15502783.2022.2086015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Background Excessive production of free radicals caused by many types of exercise results in oxidative stress, which leads to muscle damage, fatigue, and impaired performance. Supplementation with royal jelly (RJ) or coenzyme Q10 (CoQ10) has been shown to attenuate exercise-induced oxidant stress in damaged muscle and improve various aspects of exercise performance in many but not all studies. Nevertheless, the effects of treatments based on RJ plus CoQ10 supplementation, which may be potentially beneficial for reducing oxidative stress and enhancing athletic performance, remain unexplored. This study aimed to examine whether oral RJ and CoQ10 co-supplementation could improve high-intensity interval exercise (HIIE) performance in swimmers, inhibiting exercise-induced oxidative stress and muscle damage. Methods Twenty high-level swimmers were randomly allocated to receive either 400 mg of RJ and 60 mg of CoQ10 (RJQ) or matching placebo (PLA) once daily for 10 days. Exercise performance was evaluated at baseline, and then reassessed at day 10 of intervention, using a HIIE protocol. Diene conjugates (DC), Schiff bases (SB), and creatine kinase (CK) were also measured in blood plasma and saliva before and immediately after HIIE in both groups. Results HIIE performance expressed as number of points according to a single assessment system developed and approved by the International Swimming Federation (FINA points) significantly improved in RJQ group (p = 0.013) compared to PLA group. Exercise-induced increase in DC, SB, and CK levels in plasma and saliva significantly diminished only in RJQ group (p < 0.05). Regression analysis showed that oral RJQ administration for 10 days was significantly associated with reductions in HIIE-induced increases in plasmatic and salivary DC, SB, and CK levels compared to PLA. Principal component analysis revealed that swimmers treated with RJQ are grouped by both plasmatic and salivary principal components (PC) into a separate cluster compared to PLA. Strong negative correlation between the number of FINA points and plasmatic and salivary PC1 values was observed in both intervention groups. Conclusion The improvements in swimmers’ HIIE performance were due in significant part to RJQ-induced reducing in lipid peroxidation and muscle damage in response to exercise. These findings suggest that RJQ supplementation for 10 days is potentially effective for enhancing HIIE performance and alleviating oxidant stress. Abbreviations RJ, royal jelly; CoQ10, coenzyme Q10; HIIE, high-intensity interval exercise; DC, diene conjugates; SB, Schiff bases; CK, creatine kinase; RJQ, royal jelly plus coenzyme Q10; PLA, placebo; FINA points, points according to a single assessment system developed and approved by the International Swimming Federation; ROS, reactive oxygen species; 10H2DA, 10-hydroxy-2-decenoic acid; AMPK, 5′-AMP-activated protein kinase; FoxO3, forkhead box O3; MnSOD, manganese-superoxide dismutase; CAT, catalase; E, optical densities; PCA, principal component analysis; PC, principal component; MCFAs, medium-chain fatty acids; CaMKKβ, Ca2+/calmodulin-dependent protein kinase β; TBARS, thiobarbituric acid reactive substances; MDA, malondialdehyde.
Collapse
Affiliation(s)
- Aleksandr N. Ovchinnikov
- Department of Sports Medicine and Psychology, Lobachevsky University, Nizhny Novgorod, Russia
- Laboratory of Integral Human Health, Lobachevsky University, Nizhny Novgorod, Russia
| | - Antonio Paoli
- Laboratory of Integral Human Health, Lobachevsky University, Nizhny Novgorod, Russia
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Vladislav V. Seleznev
- Department of Theory and Methodology of Sport Training, Lobachevsky University, Nizhny Novgorod, Russia
| | - Anna V. Deryugina
- Laboratory of Integral Human Health, Lobachevsky University, Nizhny Novgorod, Russia
- Department of Physiology and Anatomy, Lobachevsky University, Nizhny Novgorod, Russia
| |
Collapse
|
4
|
Santos de Lima K, Schuch FB, Camponogara Righi N, Chagas P, Hemann Lamberti M, Puntel GO, Vargas da Silva AM, Ulisses Signori L. Effects of the combination of vitamins C and E supplementation on oxidative stress, inflammation, muscle soreness, and muscle strength following acute physical exercise: meta-analyses of randomized controlled trials. Crit Rev Food Sci Nutr 2022; 63:7584-7597. [PMID: 35261309 DOI: 10.1080/10408398.2022.2048290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Background:The combined supplementation of vitamins C and E potentially can mitigate oxidative stress (OS) and accelerate recovery following exercise. However, there is little evidence and a lack of consensus on the effects of these vitamins for this purpose. The objective of this systematic review was to summarize the evidence on the effects of the combined supplementation of vitamins C and E in OS, inflammatory markers, muscle damage, muscle soreness, and musculoskeletal functionality following acute exercise. Methods: The search was carried out from inception until March 2021, on MEDLINE, EMBASE, Cochrane CENTRAL, Web of Science, and SPORT Discus. We included placebo-controlled randomized clinical trials (RCTs) that evaluated the effects of combined supplementation of vitamins C and E in OS, inflammatory markers, muscle damage, muscle soreness, and muscle strength following a single bout of exercise. Random-effect meta-analyses were used to compare pre to post-exercise mean changes in subjects who received supplementation with vitamins C and E or placebo versus controls. Data are presented as standard mean difference (SMD) and 95% confidence interval (95% CI). Results: Eighteen RCTs, accounting for data from 322 individuals, were included. The use of vitamins attenuated lipid peroxidation (SMD= -0.703; 95% CI= -1.035 to -0.372; p < 0.001), IL-6 (SMD= -0.576; 95%CI= -1.036 to -0.117; p = 0.014), and cortisol levels (SMD= -0.918; 95%CI= -1.475 to -0.361; p = 0.001) immediately, and creatine kinase levels 48 h following exercise (SMD= -0.991; 95%CI= -1.611 to -0.372; p = 0.002). Supplementing the combination of vitamins had no effects on protein carbonyls, reduced/oxidized glutathione ratio, catalase, interleukin-1Ra, C-reactive protein, lactate dehydrogenase, muscle soreness, and muscle strength. Conclusion: Prior supplementation of the combination of vitamins C and E attenuates OS (lipid peroxidation), the inflammatory response (interleukin-6), cortisol levels, and muscle damage (creatine kinase) following a session of exercise.
Collapse
Affiliation(s)
| | - Felipe Barreto Schuch
- Departamento de Métodos e Técnicas Desportivas, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | | | - Patricia Chagas
- Departamento de Alimentos e Nutrição, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | | | | | | | - Luis Ulisses Signori
- Fisioterapia e Reabilitação, Universidade Federal de Santa Maria, Santa Maria, Brasil
| |
Collapse
|
5
|
Effects of Exercise Training on the Autonomic Nervous System with a Focus on Anti-Inflammatory and Antioxidants Effects. Antioxidants (Basel) 2022; 11:antiox11020350. [PMID: 35204231 PMCID: PMC8868289 DOI: 10.3390/antiox11020350] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
Studies show that the autonomic nervous system (ANS) has an important impact on health in general. In response to environmental demands, homeostatic processes are often compromised, therefore determining an increase in the sympathetic nervous system (SNS)’s functions and a decrease in the parasympathetic nervous system (PNS)’s functions. In modern societies, chronic stress associated with an unhealthy lifestyle contributes to ANS dysfunction. In this review, we provide a brief introduction to the ANS network, its connections to the HPA axis and its stress responses and give an overview of the critical implications of ANS in health and disease—focused specifically on the immune system, cardiovascular, oxidative stress and metabolic dysregulation. The hypothalamic–pituitary–adrenal axis (HPA), the SNS and more recently the PNS have been identified as regulating the immune system. The HPA axis and PNS have anti-inflammatory effects and the SNS has been shown to have both pro- and anti-inflammatory effects. The positive impact of physical exercise (PE) is well known and has been studied by many researchers, but its negative impact has been less studied. Depending on the type, duration and individual characteristics of the person doing the exercise (age, gender, disease status, etc.), PE can be considered a physiological stressor. The negative impact of PE seems to be connected with the oxidative stress induced by effort.
Collapse
|
6
|
Antioxidant Supplementation Protects Elite Athlete Muscle Integrity During Submaximal Training. Int J Sports Physiol Perform 2022; 17:549-555. [PMID: 35008040 DOI: 10.1123/ijspp.2021-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To determine (1) the effect of a 40-minute steady-state run on muscle membrane integrity of elite athletes as reflected by serum creatine kinase (CK), (2) whether antioxidant supplementation (AS) with vitamins E and C has a protective effect, and (3) if a minimal blood concentration of vitamin E or C is required for any such protection. METHODS Fifteen elite-level endurance athletes (V˙O2max=71.5±1.2 mL·kg-1 min-1) were randomly assigned to 6 weeks AS (1000 IU·d-1 natural vitamin E and 1000 mg·d-1 vitamin C) or placebo. Using a double-blind crossover design and 4-week washout period, each treatment was followed by a 40-minute steady-state run at 3 mM blood lactate. Blood samples before and 0 and 24 hours after the run were assayed for serum and red cell α-tocopherol (α-TOH), serum ascorbate, and CK. RESULTS The AS produced a 2.5-fold, well-correlated (r = .84) increase in serum and red cell α-TOH (P < .001) that attenuated the increase in postrun CK (P = .01). There was no change in serum ascorbate with AS and no relationship with CK (P > .1). Curvilinear regression revealed some evidence that a critical level of serum α-TOH in the vicinity of 12 mg·L-1 was required to attenuate CK efflux, a level only achieved with AS. CONCLUSION The muscle membrane integrity of elite-level athletes is compromised even during steady-state running of moderate intensity and duration. The AS provided a protective effect, with evidence that a serum α-TOH concentration of around 12 mg·L-1 is required.
Collapse
|
7
|
Lu Y, Wiltshire HD, Baker JS, Wang Q. Effects of High Intensity Exercise on Oxidative Stress and Antioxidant Status in Untrained Humans: A Systematic Review. BIOLOGY 2021; 10:biology10121272. [PMID: 34943187 PMCID: PMC8698973 DOI: 10.3390/biology10121272] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
Participation in exercise promotes health. High intensity exercise (HIE) has become increasingly popular among the general population, however, its effects on exercise-induced oxidative stress and antioxidant status in untrained humans is not clear. The aim of this systematic review was to investigate the influence of HIE on oxidative stress and antioxidant status in untrained humans. Web of Science, PubMed, MEDLINE, and Scopus were searched until March 2021. A methodological quality assessment valuation/estimation was additionally carried out in the final sample of studies. Following the PRISMA selection process, 21 studies were finally included. There was strong evidence that acute oxidative stress following the cessation of HIE exists when compared to resting states. The HIE-induced oxidative stress is transient and is most likely restored to normal levels within 24 h due to the stimulated endogenous antioxidant system whose response was lagging and lasting. Physically active humans had better antioxidant systems and suffered less oxidative stress after HIE. A physically active lifestyle was considered to enhance antioxidant capacity. For untrained humans, HIE with intensities above 70% VO2max are proposed for initial exercise levels based on the findings reported here.
Collapse
Affiliation(s)
- Yining Lu
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK; (Y.L.); (H.D.W.)
| | - Huw D. Wiltshire
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK; (Y.L.); (H.D.W.)
| | - Julien S. Baker
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong;
| | - Qiaojun Wang
- Faculty of Sport Science, Ningbo University, Ningbo 315000, China
- Correspondence: ; Tel.: +86-13805885586
| |
Collapse
|
8
|
An Overview of Physical Exercise and Antioxidant Supplementation Influences on Skeletal Muscle Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10101528. [PMID: 34679663 PMCID: PMC8532825 DOI: 10.3390/antiox10101528] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
One of the essential injuries caused by moderate to high-intensity and short-duration physical activities is the overproduction of reactive oxygen species (ROS), damaging various body tissues such as skeletal muscle (SM). However, ROS is easily controlled by antioxidant defense systems during low to moderate intensity and long-term exercises. In stressful situations, antioxidant supplements are recommended to prevent ROS damage. We examined the response of SM to ROS generation during exercise using an antioxidant supplement treatment strategy in this study. The findings of this review research are paradoxical due to variances in antioxidant supplements dose and duration, intensity, length, frequency, types of exercise activities, and, in general, the lack of a regular exercise and nutrition strategy. As such, further research in this area is still being felt.
Collapse
|
9
|
Liu XX, Wang XX, Cui LL. Association between Oral vitamin C supplementation and serum uric acid: A meta-analysis of randomized controlled trials. Complement Ther Med 2021; 60:102761. [PMID: 34280483 DOI: 10.1016/j.ctim.2021.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/01/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Results from recent trials assessing the effect of oral vitamin C supplementation on serum uric acid (SUA) have been inconsistent. OBJECTIVES The purpose of this study was to explore the association between oral vitamin C supplementation and serum uric acid. METHODS PUBMED, EMBASE, CNKI, Web of Science, and CENTRAL of Cochrane library databases were searched to identify relevant articles published up to February 2020. Heterogeneity was evaluated using I-square (I2) statistics. Random-effects model was used to pool weighted mean differences (WMD) and 95 % confidence interval (CI) as summary effect sizes. RESULTS The total sixteen eligible randomized controlled trials (RCTs) containing 1,013 participants were included in this meta-analysis. The pooled findings showed that vitamin C supplementation had a significant effect of lowering SUA. The subgroup analyses showed that the effect of vitamin C supplementation on SUA has positive association with mean age of participants <65 years old, the use of placebo or blank control, duration of trials <1 month and high-quality studies. In addition, sensitivity analysis showed that the results of this study were stable. Both Egger's test and Begg's test demonstrated that no evidence of significant publication bias. CONCLUSIONS The results of present meta-analysis have demonstrated that vitamin C supplementation could make a reduction of SUA. The use of placebo, duration of intervention, age of the subjects and study quality have an impact on the effect of oral vitamin C, but the baseline of SUA not.
Collapse
Affiliation(s)
- Xin-Xin Liu
- Department of Nutrition and Hygiene, College of Public Health, Zhengzhou University, Henan, 450001, China.
| | - Xiao-Xue Wang
- Department of Nutrition and Hygiene, College of Public Health, Zhengzhou University, Henan, 450001, China.
| | - Ling-Ling Cui
- Department of Nutrition and Hygiene, College of Public Health, Zhengzhou University, Henan, 450001, China.
| |
Collapse
|
10
|
Cooper-Mullin C, Carter WA, Amato RS, Podlesak D, McWilliams SR. Dietary vitamin E reaches the mitochondria in the flight muscle of zebra finches but only if they exercise. PLoS One 2021; 16:e0253264. [PMID: 34181660 PMCID: PMC8238215 DOI: 10.1371/journal.pone.0253264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 06/01/2021] [Indexed: 01/10/2023] Open
Abstract
Whether dietary antioxidants are effective for alleviating oxidative costs associated with energy-demanding life events first requires they are successfully absorbed in the digestive tract and transported to sites associated with reactive species production (e.g. the mitochondria). Flying birds are under high energy and oxidative demands, and although birds commonly ingest dietary antioxidants in the wild, the bioavailability of these consumed antioxidants is poorly understood. We show for the first time that an ingested lipophilic antioxidant, α-tocopherol, reached the mitochondria in the flight muscles of a songbird but only if they regularly exercise (60 min of perch-to-perch flights two times in a day or 8.5 km day-1). Deuterated α-tocopherol was found in the blood of exercise-trained zebra finches within 6.5 hrs and in isolated mitochondria from pectoral muscle within 22.5 hrs, but never reached the mitochondria in caged sedentary control birds. This rapid pace (within a day) and extent of metabolic routing of a dietary antioxidant to muscle mitochondria means that daily consumption of such dietary sources can help to pay the inevitable oxidative costs of flight muscle metabolism, but only when combined with regular exercise.
Collapse
Affiliation(s)
- Clara Cooper-Mullin
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Wales A. Carter
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Ronald S. Amato
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - David Podlesak
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Scott R. McWilliams
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, United States of America
| |
Collapse
|
11
|
Toriumi T, Kim A, Komine S, Miura I, Nagayama S, Ohmori H, Nagasaki Y. An Antioxidant Nanoparticle Enhances Exercise Performance in Rat High-intensity Running Models. Adv Healthc Mater 2021; 10:e2100067. [PMID: 33660940 DOI: 10.1002/adhm.202100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/02/2021] [Indexed: 11/10/2022]
Abstract
Although the adverse effects of excessively generated reactive oxygen species (ROS) on the body during aerobic exercise have been debated, there are few reports on the remarkable effects of the application of conventional antioxidants on exercise performance. The conventional antioxidants could not enhance exercise performance due to their rapid excretion from the body and serious adverse effects on the cellular respiratory system. In this study, impact of the original antioxidant self-assembling nanoparticle, redox-active nanoparticle (RNP), is investigated on the exercise performance of rats during running experiments. With an increase in the dose of the administered RNP, the all-out time of the rat running extends in a dose-dependent manner. In contrast, with an increase in the dose of the low-molecular-weight (LMW) antioxidant, the all-out running time of the rats decreases. The control group and LMW antioxidant treated group decrease in the number of red blood cells (RBCs) and increase oxidative stress after running. However, the RNP group maintains a similar RBC level and oxidative stress as that of the sedentary group. The results suggest that RNP, which shows long-blood circulation without disturbance of mitohormesis, effectively removes ROS from the bloodstream to suppresses RBC oxidative stress and damage, thus improving exercise performance.
Collapse
Affiliation(s)
- Takuto Toriumi
- Department of Materials Science Graduate School of Pure and Applied Science University of Tsukuba Tennodai 1‐1‐1 Tsukuba Ibaraki 305‐8573 Japan
| | - Ahram Kim
- Department of Materials Science Graduate School of Pure and Applied Science University of Tsukuba Tennodai 1‐1‐1 Tsukuba Ibaraki 305‐8573 Japan
| | - Shoichi Komine
- Faculty of Health and Sport Sciences University of Tsukuba Tennodai 1‐1‐1 Tsukuba Ibaraki 305‐8574 Japan
- Faculty of Medicine University of Tsukuba Tennodai 1‐1‐1 Tsukuba Ibaraki 305‐8573 Japan
- Department of Acupuncture and Moxibustion Faculty of Human Care Teikyo Heisei University Higashi Ikebukuro 2‐51‐4, Toshima‐ku Tokyo 170‐8445 Japan
| | - Ikuru Miura
- Doctoral Program in Sports Medicine Graduate School of Comprehensive Human Sciences University of Tsukuba Tennodai 1‐1‐1 Tsukuba Ibaraki 305‐8577 Japan
| | - Suminori Nagayama
- Master's Program in Sports Medicine Graduate School of Comprehensive Human Sciences University of Tsukuba Tennodai 1‐1‐1 Tsukuba Ibaraki 305‐8574 Japan
| | - Hajime Ohmori
- Faculty of Health and Sport Sciences University of Tsukuba Tennodai 1‐1‐1 Tsukuba Ibaraki 305‐8574 Japan
| | - Yukio Nagasaki
- Department of Materials Science Graduate School of Pure and Applied Science University of Tsukuba Tennodai 1‐1‐1 Tsukuba Ibaraki 305‐8573 Japan
- Master's Program in Medical Sciences University of Tsukuba Tennodai 1‐1‐1 Tsukuba Ibaraki 305‐8573 Japan
- Center for Research in Isotopes and Environmental Dynamics University of Tsukuba Tennodai 1‐1‐1 Tsukuba Ibaraki 305‐8577 Japan
| |
Collapse
|
12
|
Sharp M, Wilson J, Stefan M, Gheith R, Lowery R, Ottinger C, Reber D, Orhan C, Sahin N, Tuzcu M, Durkee S, Saiyed Z, Sahin K. Marine phytoplankton improves recovery and sustains immune function in humans and lowers proinflammatory immunoregulatory cytokines in a rat model. Phys Act Nutr 2021; 25:42-55. [PMID: 33887828 PMCID: PMC8076584 DOI: 10.20463/pan.2021.0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/30/2021] [Indexed: 11/22/2022] Open
Abstract
Purpose This study investigated the effects of marine phytoplankton supplementation (Oceanix®, Tetraselmis chuii) on 1) maximal isometric strength and immune function in healthy humans following a oneweek high-intensity resistance-training program and 2) the proinflammatory cytokine response to exercise in a rat model. Methods In the human trial, 22 healthy male and female participants were randomly divided into marine phytoplankton and placebo groups. Following baseline testing, participants underwent a 14-day supplement loading phase before completing five consecutive days of intense resistance training. In the rat model, rats were randomly divided into four groups (n=7 per condition): (i) control, (ii) exercise, (iii) exercise + marine phytoplankton (2.55 mg/kg/day), or (iv) exercise + marine phytoplankton (5.1 mg/kg/day). Rats in the exercising groups performed treadmill exercise 5 days per week for 6 weeks. Results In the human model, marine phytoplankton prevented significant declines in the isometric peak rate of force development compared to placebo. Additionally, salivary immunoglobulin A concentration was significantly lower following the resistance training protocol in the placebo group but not in the marine phytoplankton group. Marine phytoplankton in exercising rats decreased intramuscular levels and serum concentrations of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) and intramuscular concentrations of malondialdehyde. Conclusion Marine phytoplankton prevented decrements in indices of functional exercise recovery and immune function. Mechanistically, these outcomes could be prompted by modulating the oxidative stress and proinflammatory cytokine response to exercise.
Collapse
Affiliation(s)
- Matthew Sharp
- Research Division, Applied Science and Performance Institute, Florida, USA
| | - Jacob Wilson
- Research Division, Applied Science and Performance Institute, Florida, USA
| | - Matthew Stefan
- Research Division, Applied Science and Performance Institute, Florida, USA
| | - Raad Gheith
- Research Division, Applied Science and Performance Institute, Florida, USA
| | - Ryan Lowery
- Research Division, Applied Science and Performance Institute, Florida, USA
| | - Charlie Ottinger
- Research Division, Applied Science and Performance Institute, Florida, USA
| | - Dallen Reber
- Research Division, Applied Science and Performance Institute, Florida, USA
| | - Cemal Orhan
- Department of Animal Nutrition, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Firat University, Elazig, Turkey
| | - Shane Durkee
- Lonza Consumer Health Inc., Greenwood, South Carolina, USA
| | | | - Kazim Sahin
- Department of Animal Nutrition, Firat University, Elazig, Turkey
| |
Collapse
|
13
|
Pappas A, Tsiokanos A, Fatouros IG, Poulios A, Kouretas D, Goutzourelas N, Giakas G, Jamurtas AZ. The Effects of Spirulina Supplementation on Redox Status and Performance Following a Muscle Damaging Protocol. Int J Mol Sci 2021; 22:ijms22073559. [PMID: 33808079 PMCID: PMC8037525 DOI: 10.3390/ijms22073559] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
Spirulina plantensis is a popular supplement which has been shown to have antioxidant and performance enhancing properties. The purpose of this study was to evaluate the effects of spirulina supplementation on (a) redox status (b) muscle performance and (c) muscle damage following an eccentric bout of exercise that would induce muscle damage. Twenty-four healthy, recreationally trained males participated in the study and were randomly separated into two groups: a spirulina supplementation (6 g per day) and a placebo group. Both groups performed an eccentric bout of exercise consisting of 5 sets and 15 maximum reps per set. Blood was collected at 24, 48, 72 and 96 h after the bout and total antioxidant capacity (TAC) and protein carbonyls (PC) were assessed in plasma. Delayed onset muscle soreness (DOMS) was also assessed at the same aforementioned time points. Eccentric peak torque (EPT) was evaluated immediately after exercise, as well as at 24, 48, 72 and 96 h post exercise. Redox status indices (TAC and PC) did not change significantly at any time point post exercise. DOMS increased significantly 24 h post exercise and remained elevated until 72 h and 96 h post exercise for the placebo and spirulina group, respectively. EPT decreased significantly and immediately post exercise and remained significantly lower compared to baseline until 72 h post exercise. No significant differences between groups were found for DOMS and EPT. These results indicate that spirulina supplementation following a muscle damaging protocol does not confer beneficial effects on redox status, muscle performance or damage.
Collapse
Affiliation(s)
- Aggelos Pappas
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (A.P.); (A.T.); (I.G.F.); (A.P.); (G.G.)
| | - Athanasios Tsiokanos
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (A.P.); (A.T.); (I.G.F.); (A.P.); (G.G.)
| | - Ioannis G. Fatouros
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (A.P.); (A.T.); (I.G.F.); (A.P.); (G.G.)
| | - Athanasios Poulios
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (A.P.); (A.T.); (I.G.F.); (A.P.); (G.G.)
| | - Dimitris Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; (D.K.); (N.G.)
| | - Nikos Goutzourelas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; (D.K.); (N.G.)
| | - Giannis Giakas
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (A.P.); (A.T.); (I.G.F.); (A.P.); (G.G.)
| | - Athanasios Z. Jamurtas
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (A.P.); (A.T.); (I.G.F.); (A.P.); (G.G.)
- Correspondence:
| |
Collapse
|
14
|
Antioxidants in Sport Sarcopenia. Nutrients 2020; 12:nu12092869. [PMID: 32961753 PMCID: PMC7551250 DOI: 10.3390/nu12092869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
The decline of skeletal muscle mass and strength that leads to sarcopenia is a pathology that might represent an emergency healthcare issue in future years. Decreased muscle mass is also a condition that mainly affects master athletes involved in endurance physical activities. Skeletal muscles respond to exercise by reshaping the biochemical, morphological, and physiological state of myofibrils. Adaptive responses involve the activation of intracellular signaling pathways and genetic reprogramming, causing alterations in contractile properties, metabolic status, and muscle mass. One of the mechanisms leading to sarcopenia is an increase in reactive oxygen and nitrogen species levels and a reduction in enzymatic antioxidant protection. The present review shows the recent experimental models of sarcopenia that explore molecular mechanisms. Furthermore, the clinical aspect of sport sarcopenia will be highlighted, and new strategies based on nutritional supplements, which may contribute to reducing indices of oxidative stress by reinforcing natural endogenous protection, will be suggested.
Collapse
|
15
|
Do Antioxidant Vitamins Prevent Exercise-Induced Muscle Damage? A Systematic Review. Antioxidants (Basel) 2020; 9:antiox9050372. [PMID: 32365669 PMCID: PMC7278664 DOI: 10.3390/antiox9050372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Free radicals produced during exercise play a role in modulating cell signaling pathways. High doses of antioxidants may hamper adaptations to exercise training. However, their benefits are unclear. This review aims to examine whether vitamin C (VitC) and/or vitamin E (VitE) supplementation (SUP) prevents exercise-induced muscle damage. The PubMed, Web of Science, Medline, CINAHL, and SPORTDiscus databases were searched, and 21 articles were included. Four studies examined the effects of acute VitC SUP given pre-exercise: in one study, lower CK levels post-exercise was observed; in three, no difference was recorded. In one study, acute VitE SUP reduced CK activity 1 h post-exercise in conditions of hypoxia. In three studies, chronic VitE SUP did not reduce CK activity after an exercise session. Chronic VitE SUP did not reduce creatine kinase (CK) concentrations after three strength training sessions, but it was effective after 6 days of endurance training in another study. Chronic SUP with VitC + E reduced CK activity post-exercise in two studies, but there was no such effect in four studies. Finally, three studies described the effects of chronic VitC + E SUP and long-term exercise, reporting dissimilar results. To conclude, although there is some evidence of a protective effect of VitC and/or VitE against exercise-induced muscle damage, the available data are not conclusive.
Collapse
|
16
|
Antonioni A, Fantini C, Dimauro I, Caporossi D. Redox homeostasis in sport: do athletes really need antioxidant support? Res Sports Med 2018; 27:147-165. [PMID: 30596287 DOI: 10.1080/15438627.2018.1563899] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplementation with antioxidants received interest as suitable tool for preventing or reducing exercise-related oxidative stress possibly leading to improvement of sport performance in athletes. To date, it is difficult to reach a conclusion on the relevance of antioxidants supplementation in athletes and/or well-trained people. The general picture that emerges from the available data indicates that antioxidants requirement can be covered by dosage equal or close to the recommended dietary allowance (RDA) provided by consumption of a balanced, well-diversified diet. Nevertheless, it remains open the possibility that in specific context, such as in sports characterized by high intensity and/or exhaustive regimes, supplementation with antioxidants could be appropriated to avoid or reduce the damaging effect of these type of exercise. This review will discuss the findings of a number of key studies on the advantages and/or disadvantages for athletes of using antioxidants supplementation, either individually or in combination.
Collapse
Affiliation(s)
- Ambra Antonioni
- a Department of Movement, Human and Health Sciences , University of Rome "Foro Italico" , Rome , Italy
| | - Cristina Fantini
- a Department of Movement, Human and Health Sciences , University of Rome "Foro Italico" , Rome , Italy
| | - Ivan Dimauro
- a Department of Movement, Human and Health Sciences , University of Rome "Foro Italico" , Rome , Italy
| | - Daniela Caporossi
- a Department of Movement, Human and Health Sciences , University of Rome "Foro Italico" , Rome , Italy
| |
Collapse
|
17
|
Exercise-Induced Oxidative Stress and the Effects of Antioxidant Intake from a Physiological Viewpoint. Antioxidants (Basel) 2018; 7:antiox7090119. [PMID: 30189660 PMCID: PMC6162669 DOI: 10.3390/antiox7090119] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 11/24/2022] Open
Abstract
It is well established that the increase in reactive oxygen species (ROS) and free radicals production during exercise has both positive and negative physiological effects. Among them, the present review focuses on oxidative stress caused by acute exercise, mainly on evidence in healthy individuals. This review also summarizes findings on the determinants of exercise-induced oxidative stress and sources of free radical production. Moreover, we outline the effects of antioxidant supplementation on exercise-induced oxidative stress, which have been studied extensively. Finally, the following review briefly summarizes future tasks in the field of redox biology of exercise. In principle, this review covers findings for the whole body, and describes human trials and animal experiments separately.
Collapse
|
18
|
Deli CK, Poulios A, Georgakouli K, Papanikolaou K, Papoutsis A, Selemekou M, Karathanos VT, Draganidis D, Tsiokanos A, Koutedakis Y, Fatouros IG, Jamurtas AZ. The effect of pre-exercise ingestion of corinthian currant on endurance performance and blood redox status. J Sports Sci 2018; 36:2172-2180. [PMID: 29469654 DOI: 10.1080/02640414.2018.1442781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study investigated the effect of Corinthian currant pre-exercise supplementation on metabolism, performance and blood redox status during, and after prolonged exercise. Eleven healthy participants (21-45y) performed a 90-min constant-intensity (60-70% VO2max) submaximal-trial, plus a time-trial (TT) to exhaustion (95% VO2max) after consuming an isocaloric (1.5g CHO/kg BM) amount of randomly assigned Corinthian currant or glucose-drink, or water (control). Blood was drawn at baseline, pre-exercise, 30min, 60min, 90min of submaximal-trial, post-TT, and 1h post-TT. Post-ingestion blood glucose (GLU) under Corinthian currant was higher compared with water, and similar compared with glucose-drink throughout the study. Respiratory quotient under Corinthian currant was similar with glucose-drink and higher than water throughout the submaximal trial. Accordingly, higher CHO and lower fat oxidation were observed under Corinthian currant compared with water. The TT performance was similar between Corinthian currant, glucose-drink and water. Redox status were similar under all three conditions. Reduced glutathione (GSH) declined while total antioxidant capacity (TAC) and uric acid increased during exercise. GSH and TAC returned to baseline, while uric acid remained increased the following 1h. Corinthian currant, although did not alter exercise-mediated redox status changes and performance, was equally effective to a glucose-drink in maintaining GLU levels during prolonged cycling.
Collapse
Affiliation(s)
- Chariklia K Deli
- a Laboratory of Exercise Physiology, Athletic Biochemistry, and Sports Nutrition, School of Physical Education and Sport Science , University of Thessaly , Trikala , Greece
| | - Athanasios Poulios
- a Laboratory of Exercise Physiology, Athletic Biochemistry, and Sports Nutrition, School of Physical Education and Sport Science , University of Thessaly , Trikala , Greece
| | - Kalliopi Georgakouli
- a Laboratory of Exercise Physiology, Athletic Biochemistry, and Sports Nutrition, School of Physical Education and Sport Science , University of Thessaly , Trikala , Greece
| | - Konstantinos Papanikolaou
- a Laboratory of Exercise Physiology, Athletic Biochemistry, and Sports Nutrition, School of Physical Education and Sport Science , University of Thessaly , Trikala , Greece
| | - Alexandros Papoutsis
- b Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition , Harokopio University , Athens , Greece
| | - Maria Selemekou
- c Department of Biochemistry and Biotechnology , University of Thessaly , Larisa , Greece
| | - Vaios T Karathanos
- b Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition , Harokopio University , Athens , Greece.,d Agricultural Cooperatives' Union of Aeghion , Aeghion 25100 , Greece
| | - Dimitris Draganidis
- a Laboratory of Exercise Physiology, Athletic Biochemistry, and Sports Nutrition, School of Physical Education and Sport Science , University of Thessaly , Trikala , Greece
| | - Athanasios Tsiokanos
- a Laboratory of Exercise Physiology, Athletic Biochemistry, and Sports Nutrition, School of Physical Education and Sport Science , University of Thessaly , Trikala , Greece
| | - Yiannis Koutedakis
- a Laboratory of Exercise Physiology, Athletic Biochemistry, and Sports Nutrition, School of Physical Education and Sport Science , University of Thessaly , Trikala , Greece.,e School of Sports, Performing Arts and Leisure , University of Wolverhampton , Wolverhampton , UK
| | - Ioannis G Fatouros
- a Laboratory of Exercise Physiology, Athletic Biochemistry, and Sports Nutrition, School of Physical Education and Sport Science , University of Thessaly , Trikala , Greece
| | - Athanasios Z Jamurtas
- a Laboratory of Exercise Physiology, Athletic Biochemistry, and Sports Nutrition, School of Physical Education and Sport Science , University of Thessaly , Trikala , Greece
| |
Collapse
|
19
|
Chou CC, Sung YC, Davison G, Chen CY, Liao YH. Short-Term High-Dose Vitamin C and E Supplementation Attenuates Muscle Damage and Inflammatory Responses to Repeated Taekwondo Competitions: A Randomized Placebo-Controlled Trial. Int J Med Sci 2018; 15:1217-1226. [PMID: 30123060 PMCID: PMC6097262 DOI: 10.7150/ijms.26340] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/01/2018] [Indexed: 01/21/2023] Open
Abstract
Background: Exercise-induced muscle damage during intensive sport events is a very common issue in sport medicine. Therefore, the purpose is to investigate the effects of short-term high-dose vitamin C and E supplementation on muscle damage, hemolysis, and inflammatory responses to simulated competitive Olympic Taekwondo (TKD) matches in elite athletes. Methods: Using a randomized placebo-controlled and double-blind study design, eighteen elite male TKD athletes were weight-matched and randomly assigned into either a vitamin C and E group (Vit C+E; N = 9) or placebo group (PLA; N = 9). Vit C+E or PLA supplements were taken daily (Vit C+E: 2000 mg/d vitamin C; 1400 U/d vitamin E) for 4 days (3 days before and on competition day) before taking part in 4 consecutive TKD matches on a single day. Plasma samples were obtained before each match and 24-hours after the first match for determination of markers of muscle damage, hemolysis, and systemic inflammatory state. Results: Myoglobin was lower in the Vit C+E group, compared to PLA, during the match day (area under curve, AUC -47.0% vs. PLA, p = 0.021). Plasma creatine kinase was lower in the Vit C+E group (AUC -57.5% vs. PLA, p = 0.017) and hemolysis was lower in the Vit C+E group (AUC -40.5% vs. PLA, p = 0.034). Conclusions: We demonstrated that short-term (4-days) vitamin C and E supplementation effectively attenuated exercise-induced tissue damage and inflammatory response during and after successive TKD matches.
Collapse
Affiliation(s)
- Chun-Chung Chou
- Physical Education Office, National Taipei University of Technology, Taipei City, Taiwan
| | - Yu-Chi Sung
- Department of Chinese Martial Arts, Chinese Culture University, Taipei City, Taiwan
| | - Glen Davison
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Medway Campus, Chatham Maritime, UK
| | - Chung-Yu Chen
- Department of Exercise and Health Science, University of Taipei, Taipei City, Taiwan
| | - Yi-Hung Liao
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei City, Taiwan
| |
Collapse
|
20
|
Cooper-Mullin C, McWilliams SR. The role of the antioxidant system during intense endurance exercise: lessons from migrating birds. ACTA ACUST UNITED AC 2017; 219:3684-3695. [PMID: 27903627 DOI: 10.1242/jeb.123992] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During migration, birds substantially increase their metabolic rate and burn fats as fuel and yet somehow avoid succumbing to overwhelming oxidative damage. The physiological means by which vertebrates such as migrating birds can counteract an increased production of reactive species (RS) are rather limited: they can upregulate their endogenous antioxidant system and/or consume dietary antioxidants (prophylactically or therapeutically). Thus, birds can alter different components of their antioxidant system to respond to the demands of long-duration flights, but much remains to be discovered about the complexities of RS production and antioxidant protection throughout migration. Here, we use bird migration as an example to discuss how RS are produced during endurance exercise and how the complex antioxidant system can protect against cellular damage caused by RS. Understanding how a bird's antioxidant system responds during migration can lend insights into how antioxidants protect birds during other life-history stages when metabolic rate may be high, and how antioxidants protect other vertebrates from oxidative damage during endurance exercise.
Collapse
Affiliation(s)
- Clara Cooper-Mullin
- The Department of Natural Resources Science, The University of Rhode Island, 105 Coastal Institute, 1 Greenhouse Road, Kingston, RI 02881, USA
| | - Scott R McWilliams
- The Department of Natural Resources Science, The University of Rhode Island, 105 Coastal Institute, 1 Greenhouse Road, Kingston, RI 02881, USA
| |
Collapse
|
21
|
Petiz LL, Girardi CS, Bortolin RC, Kunzler A, Gasparotto J, Rabelo TK, Matté C, Moreira JCF, Gelain DP. Vitamin A Oral Supplementation Induces Oxidative Stress and Suppresses IL-10 and HSP70 in Skeletal Muscle of Trained Rats. Nutrients 2017; 9:E353. [PMID: 28368329 PMCID: PMC5409692 DOI: 10.3390/nu9040353] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/14/2022] Open
Abstract
Exercise training intensity is the major variant that influences the relationship between exercise, redox balance, and immune response. Supplement intake is a common practice for oxidative stress prevention; the effects of vitamin A (VA) on exercise training are not yet described, even though this molecule exhibits antioxidant properties. We investigated the role of VA supplementation on redox and immune responses of adult Wistar rats subjected to swimming training. Animals were divided into four groups: sedentary, sedentary + VA, exercise training, and exercise training + VA. Over eight weeks, animals were submitted to intense swimming 5 times/week and a VA daily intake of 450 retinol equivalents/day. VA impaired the total serum antioxidant capacity acquired by exercise, with no change in interleukin-1β and tumor necrosis factor-α levels. In skeletal muscle, VA caused lipid peroxidation and protein damage without differences in antioxidant enzyme activities; however, Western blot analysis showed that expression of superoxide dismutase-1 was downregulated, and upregulation of superoxide dismutase-2 induced by exercise was blunted by VA. Furthermore, VA supplementation decreased anti-inflammatory interleukin-10 and heat shock protein 70 expression, important factors for positive exercise adaptations and tissue damage prevention. Our data showed that VA supplementation did not confer any antioxidative and/or protective effects, attenuating exercise-acquired benefits in the skeletal muscle.
Collapse
Affiliation(s)
- Lyvia Lintzmaier Petiz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-000, Porto Alegre, Brazil.
| | - Carolina Saibro Girardi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-000, Porto Alegre, Brazil.
| | - Rafael Calixto Bortolin
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-000, Porto Alegre, Brazil.
| | - Alice Kunzler
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-000, Porto Alegre, Brazil.
| | - Juciano Gasparotto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-000, Porto Alegre, Brazil.
| | - Thallita Kelly Rabelo
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-000, Porto Alegre, Brazil.
| | - Cristiane Matté
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-000, Porto Alegre, Brazil.
| | - José Claudio Fonseca Moreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-000, Porto Alegre, Brazil.
| | - Daniel Pens Gelain
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-000, Porto Alegre, Brazil.
| |
Collapse
|
22
|
Abstract
Scenic view at high altitude is a pleasure to the eyes, but it has some shortcoming effects as well. High altitude can be divided into different categories, i.e., high altitude (3000-5000 ft), very high altitude (5000-8000 ft), and extreme altitude (above 8000 ft). Much of the population resides at high altitude, and others go there for tourism. Military personnel are also posted there to defend boundaries. As we ascent to high altitude, partial pressure of oxygen reduces, whereas concentration remains the same; this reduces the availability of oxygen to different body parts. This pathophysiological condition is known as hypobaric hypoxia (HH) which leads to oxidative stress and further causes cognitive dysfunction in some cases. Hypoxia causes neurodegeneration in different brain regions; however, the hippocampus is found to be more prone in comparison to other brain regions. As the hippocampus is affected most, therefore, spatial memory is impaired most during such condition. This chapter will give a brief review of the damaging effect of high altitude on cognition and also throw light on possible herbal interventions at high altitude, which can improve cognitive performance as well as provide protection against the deteriorating effect of hypobaric hypoxia at high altitude.
Collapse
Affiliation(s)
- Vishal Jain
- Vallabhbhai Patel Chest Institute, Delhi University, Delhi, 110007, India.
| |
Collapse
|
23
|
Michalczyk M, Czuba M, Zydek G, Zając A, Langfort J. Dietary Recommendations for Cyclists during Altitude Training. Nutrients 2016; 8:E377. [PMID: 27322318 PMCID: PMC4924218 DOI: 10.3390/nu8060377] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/30/2016] [Accepted: 06/12/2016] [Indexed: 01/08/2023] Open
Abstract
The concept of altitude or hypoxic training is a common practice in cycling. However, several strategies for training regimens have been proposed, like "live high, train high" (LH-TH), "live high, train low" (LH-TL) or "intermittent hypoxic training" (IHT). Each of them combines the effect of acclimatization and different training protocols that require specific nutrition. An appropriate nutrition strategy and adequate hydration can help athletes achieve their fitness and performance goals in this unfriendly environment. In this review, the physiological stress of altitude exposure and training will be discussed, with specific nutrition recommendations for athletes training under such conditions. However, there is little research about the nutrition demands of athletes who train at moderate altitude. Our review considers energetic demands and body mass or body composition changes due to altitude training, including respiratory and urinary water loss under these conditions. Carbohydrate intake recommendations and hydration status are discussed in detail, while iron storage and metabolism is also considered. Last, but not least the risk of increased oxidative stress under hypoxic conditions and antioxidant supplementation suggestions are presented.
Collapse
Affiliation(s)
- Małgorzata Michalczyk
- Department of Nutrition & Supplementation, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Mikołowska 72A, Katowice 40-065, Poland.
| | - Miłosz Czuba
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Mikołowska 72A, Katowice 40-065, Poland.
| | - Grzegorz Zydek
- Department of Nutrition & Supplementation, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Mikołowska 72A, Katowice 40-065, Poland.
| | - Adam Zając
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Mikołowska 72A, Katowice 40-065, Poland.
| | - Józef Langfort
- Department of Nutrition & Supplementation, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Mikołowska 72A, Katowice 40-065, Poland.
| |
Collapse
|
24
|
Update on the Mechanisms of Pulmonary Inflammation and Oxidative Imbalance Induced by Exercise. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4868536. [PMID: 26881028 PMCID: PMC4736402 DOI: 10.1155/2016/4868536] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/02/2015] [Accepted: 11/08/2015] [Indexed: 11/17/2022]
Abstract
The mechanisms involved in the generation of oxidative damage and lung inflammation induced by physical exercise are described. Changes in lung function induced by exercise involve cooling of the airways, fluid evaporation of the epithelial surface, increased contact with polluting substances, and activation of the local and systemic inflammatory response. The present work includes evidence obtained from the different types of exercise in terms of duration and intensity, the effect of both acute performance and chronic performance, and the influence of special conditions such as cold weather, high altitude, and polluted environments. Levels of prooxidants, antioxidants, oxidative damage to biomolecules, and cellularity, as well as levels of soluble mediators of the inflammatory response and its effects on tissues, are described in samples of lung origin. These samples include tissue homogenates, induced sputum, bronchoalveolar lavage fluid, biopsies, and exhaled breath condensate obtained in experimental protocols conducted on animal and human models. Finally, the need to simultaneously explore the oxidative/inflammatory parameters to establish the interrelation between them is highlighted.
Collapse
|
25
|
Buonocore D, Negro M, Arcelli E, Marzatico F. Anti-inflammatory Dietary Interventions and Supplements to Improve Performance during Athletic Training. J Am Coll Nutr 2015; 34 Suppl 1:62-7. [DOI: 10.1080/07315724.2015.1080548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Kabasakalis A, Tsalis G, Zafrana E, Loupos D, Mougios V. Effects of endurance and high-intensity swimming exercise on the redox status of adolescent male and female swimmers. J Sports Sci 2014; 32:747-56. [DOI: 10.1080/02640414.2013.850595] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Athanasios Kabasakalis
- Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Tsalis
- Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Demetrios Loupos
- Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilis Mougios
- Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
27
|
|
28
|
Garelnabi M, Veledar E, White-Welkley J, Santanam N, Abramson J, Weintraub W, Parthasarathy S. Vitamin E differentially affects short term exercise induced changes in oxidative stress, lipids, and inflammatory markers. Nutr Metab Cardiovasc Dis 2012; 22:907-913. [PMID: 21782401 PMCID: PMC3204319 DOI: 10.1016/j.numecd.2011.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 02/13/2011] [Accepted: 03/08/2011] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIM Physical activity or exercise is a proven deterrent of cardiovascular diseases. The purpose of this study was to examine whether vitamin E supplementation interfere with the potential benefits of exercise. METHODS AND RESULTS A total of 455 apparently healthy men and women were recruited, for a 2-month aerobic/cardiovascular exercise program. Subjects were randomly assigned for soft gel vitamin E or placebo (800 IU), and required to give blood at 0, 2, 4 and 8 weeks of exercise. Levels of lipid and markers of oxidative stress and inflammation were measured along with the VO2 and duration time spent on treadmill. Statistical analysis did not show significant changes in the levels of lipids and markers of oxidative stress and inflammation. Favorable trends among both of the randomization groups were observed in lipids, and some of the oxidative stress and inflammatory markers. This study also established several interesting correlations between VO2, and lipids on one hand and markers of oxidation and inflammation on the other hand. Reduction in LDL levels positively associated with increased levels of MCP-1 (P < 0.008) among placebo group, and also decreased hCRP levels strongly correlated with the increases in VO2 (P < 0.0004) among the placebo, and vitamin E subjects (P < 0.01). CONCLUSIONS Exercise training induces oxidative stress might be instrumental in favorable lipid reduction and markers of oxidative stress and inflammation. However interestingly, vitamin E didn't demonstrate favorable effects on the level of oxidative stress and inflammation associated with exercise.
Collapse
Affiliation(s)
- M Garelnabi
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, MA, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Cordycepin (3'-deoxyadenosine) attenuates age-related oxidative stress and ameliorates antioxidant capacity in rats. Exp Gerontol 2012; 47:979-87. [PMID: 23000874 DOI: 10.1016/j.exger.2012.09.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 08/07/2012] [Accepted: 09/11/2012] [Indexed: 12/22/2022]
Abstract
Free radical-induced oxidative damage is considered to be the most important consequence of the aging process. The activities and capacities of antioxidant systems of cells decline with increased age, leading to the gradual loss of pro-oxidant/antioxidant balance and resulting in increased oxidative stress. Our investigation was focused on the effects of cordycepin (3'-deoxyadenosine) on lipid peroxidation and antioxidation in aged rats. Age-associated decline in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), reduced glutathione (GSH), vitamin C and vitamin E, and elevated levels of malondialdehyde (MDA) were observed in the liver, kidneys, heart and lungs of aged rats, when compared to young rats. Furthermore, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, and creatinine were found to be significantly elevated in aged rats compared to young rats. Aged rats receiving cordycepin treatment show increased activity of SOD, CAT, GPx, GR and GST, and elevated levels of GSH, and vitamins C and E such that the values of most of these parameters did not differ significantly from those found in young rats. In addition, the levels of MDA, AST, ALT, urea and creatinine became reduced upon administration of cordycepin to aged rats. These results suggest that cordycepin is effective for restoring antioxidant status and decreasing lipid peroxidation in aged rats.
Collapse
|
30
|
Plasma glutathione peroxidase (GSH-Px) concentration is elevated in rheumatoid arthritis: a case–control study. Clin Rheumatol 2012; 31:1543-7. [DOI: 10.1007/s10067-012-2046-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 07/06/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
|
31
|
The antioxidant effects of a polyphenol-rich grape pomace extract in vitro do not correspond in vivo using exercise as an oxidant stimulus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:185867. [PMID: 22693650 PMCID: PMC3368594 DOI: 10.1155/2012/185867] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 03/26/2012] [Indexed: 12/20/2022]
Abstract
Fruits, such as grapes, are essential food of the Mediterranean diet. Grape extracts have potent antioxidant and chemopreventive properties in vitro. Numerous studies have examined the effects of plant extract administration on redox status at rest in animals and humans but their results are controversial. However, there are no studies comparing the in vitro and in vivo effects of plant extracts on oxidative stress using exercise as an oxidant stimulus. Thus, the aim of this study was to investigate whether a polyphenol-rich grape pomace extract of the Vitis vinifera species possesses in vitro antioxidant properties and to examine whether these properties apply in an in vivo model at rest and during exercise. Our findings indicate that the tested extract exhibits potent in vitro antioxidant properties because it scavenges the DPPH(•) and ABTS(•+) radicals and inhibits DNA damage induced by peroxyl and hydroxyl radicals. Administration of the extract in rats generally induced oxidative stress at rest and after exercise whereas exercise performance was not affected. Our findings suggest that the grape pomace extract does not behave with the same way in vitro and in vivo.
Collapse
|
32
|
Petrofsky JS. Resting blood flow in the skin: does it exist, and what is the influence of temperature, aging, and diabetes? J Diabetes Sci Technol 2012; 6:674-85. [PMID: 22768900 PMCID: PMC3440047 DOI: 10.1177/193229681200600324] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Measurement of resting blood flow to the skin and other organs is an important indicator of health and disease and a way to assess the reaction to various stimuli and pharmaceutical interventions. However, unlike plasma ions such as sodium or potassium, it is difficult to determine what the proper value for resting blood flow really is. Part of the problem is in the measurement of blood flow; various techniques yield very different measures of skin blood flow even in the same area. Even if there were common techniques, resting blood flow to tissue, such as the skin, is determined by the interaction of a plurality of factors, including the sympathetic nervous system, temperature, pressure, shear forces on blood vessels, tissue osmolality, and a variety of other stimuli. Compounding this variability, the blood flow response to any stressor is reduced by free radicals in the blood and diminished by aging and diabetes. Race also has an effect on resting blood flow to the skin. All these factors interact to make the exact resting blood flow difficult to determine in any one individual and at any one time. This review examines the main techniques to assess blood flow, the factors that alter blood flow in the skin, and how aging and diabetes affect blood flow. Recommendations for the measurement of resting blood flow are presented.
Collapse
Affiliation(s)
- Jerrold Scott Petrofsky
- Department of Physical Therapy, School of Allied Health Professions, Loma Linda University, Loma Linda, California 92350, USA.
| |
Collapse
|
33
|
Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 2012; 2012:CD007176. [PMID: 22419320 PMCID: PMC8407395 DOI: 10.1002/14651858.cd007176.pub2] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Our systematic review has demonstrated that antioxidant supplements may increase mortality. We have now updated this review. OBJECTIVES To assess the beneficial and harmful effects of antioxidant supplements for prevention of mortality in adults. SEARCH METHODS We searched The Cochrane Library, MEDLINE, EMBASE, LILACS, the Science Citation Index Expanded, and Conference Proceedings Citation Index-Science to February 2011. We scanned bibliographies of relevant publications and asked pharmaceutical companies for additional trials. SELECTION CRITERIA We included all primary and secondary prevention randomised clinical trials on antioxidant supplements (beta-carotene, vitamin A, vitamin C, vitamin E, and selenium) versus placebo or no intervention. DATA COLLECTION AND ANALYSIS Three authors extracted data. Random-effects and fixed-effect model meta-analyses were conducted. Risk of bias was considered in order to minimise the risk of systematic errors. Trial sequential analyses were conducted to minimise the risk of random errors. Random-effects model meta-regression analyses were performed to assess sources of intertrial heterogeneity. MAIN RESULTS Seventy-eight randomised trials with 296,707 participants were included. Fifty-six trials including 244,056 participants had low risk of bias. Twenty-six trials included 215,900 healthy participants. Fifty-two trials included 80,807 participants with various diseases in a stable phase. The mean age was 63 years (range 18 to 103 years). The mean proportion of women was 46%. Of the 78 trials, 46 used the parallel-group design, 30 the factorial design, and 2 the cross-over design. All antioxidants were administered orally, either alone or in combination with vitamins, minerals, or other interventions. The duration of supplementation varied from 28 days to 12 years (mean duration 3 years; median duration 2 years). Overall, the antioxidant supplements had no significant effect on mortality in a random-effects model meta-analysis (21,484 dead/183,749 (11.7%) versus 11,479 dead/112,958 (10.2%); 78 trials, relative risk (RR) 1.02, 95% confidence interval (CI) 0.98 to 1.05) but significantly increased mortality in a fixed-effect model (RR 1.03, 95% CI 1.01 to 1.05). Heterogeneity was low with an I(2)- of 12%. In meta-regression analysis, the risk of bias and type of antioxidant supplement were the only significant predictors of intertrial heterogeneity. Meta-regression analysis did not find a significant difference in the estimated intervention effect in the primary prevention and the secondary prevention trials. In the 56 trials with a low risk of bias, the antioxidant supplements significantly increased mortality (18,833 dead/146,320 (12.9%) versus 10,320 dead/97,736 (10.6%); RR 1.04, 95% CI 1.01 to 1.07). This effect was confirmed by trial sequential analysis. Excluding factorial trials with potential confounding showed that 38 trials with low risk of bias demonstrated a significant increase in mortality (2822 dead/26,903 (10.5%) versus 2473 dead/26,052 (9.5%); RR 1.10, 95% CI 1.05 to 1.15). In trials with low risk of bias, beta-carotene (13,202 dead/96,003 (13.8%) versus 8556 dead/77,003 (11.1%); 26 trials, RR 1.05, 95% CI 1.01 to 1.09) and vitamin E (11,689 dead/97,523 (12.0%) versus 7561 dead/73,721 (10.3%); 46 trials, RR 1.03, 95% CI 1.00 to 1.05) significantly increased mortality, whereas vitamin A (3444 dead/24,596 (14.0%) versus 2249 dead/16,548 (13.6%); 12 trials, RR 1.07, 95% CI 0.97 to 1.18), vitamin C (3637 dead/36,659 (9.9%) versus 2717 dead/29,283 (9.3%); 29 trials, RR 1.02, 95% CI 0.98 to 1.07), and selenium (2670 dead/39,779 (6.7%) versus 1468 dead/22,961 (6.4%); 17 trials, RR 0.97, 95% CI 0.91 to 1.03) did not significantly affect mortality. In univariate meta-regression analysis, the dose of vitamin A was significantly associated with increased mortality (RR 1.0006, 95% CI 1.0002 to 1.001, P = 0.002). AUTHORS' CONCLUSIONS We found no evidence to support antioxidant supplements for primary or secondary prevention. Beta-carotene and vitamin E seem to increase mortality, and so may higher doses of vitamin A. Antioxidant supplements need to be considered as medicinal products and should undergo sufficient evaluation before marketing.
Collapse
Affiliation(s)
- Goran Bjelakovic
- Department of InternalMedicine,Medical Faculty, University ofNis,Nis, Serbia.
| | | | | | | | | |
Collapse
|
34
|
Hernández A, Cheng A, Westerblad H. Antioxidants and Skeletal Muscle Performance: "Common Knowledge" vs. Experimental Evidence. Front Physiol 2012; 3:46. [PMID: 22416234 PMCID: PMC3298958 DOI: 10.3389/fphys.2012.00046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/20/2012] [Indexed: 12/20/2022] Open
Abstract
Antioxidants are assumed to provide numerous benefits, including better health, a reduced rate of aging, and improved exercise performance. Specifically, antioxidants are commonly "prescribed" by the media, supplement industry, and "fitness experts" for individuals prior to training and performance, with assumed benefits of improved fatigue resistance and recovery. This has provoked expansion of the supplement industry which responded by creation of a plethora of products aimed at facilitating the needs of the active individual. However, what does the experimental evidence say about the efficacy of antioxidants on skeletal muscle function? Are antioxidants actually as beneficial as the general populous believes? Or, could they in fact lead to deleterious effects on skeletal muscle function and performance? This Mini Review addresses these questions with an unbiased look at what we know about antioxidant effects on skeletal muscle, and what we still need to know before conclusions can be made.
Collapse
Affiliation(s)
- Andrés Hernández
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | | | | |
Collapse
|
35
|
Juraschek SP, Miller ER, Gelber AC. Effect of oral vitamin C supplementation on serum uric acid: a meta-analysis of randomized controlled trials. Arthritis Care Res (Hoboken) 2011; 63:1295-306. [PMID: 21671418 DOI: 10.1002/acr.20519] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To assess the effect of vitamin C supplementation on serum uric acid (SUA) by pooling the findings from published randomized controlled trials (RCTs). METHODS A total of 2,082 publications identified through systematic search were subjected to the following inclusion criteria: 1) RCTs conducted on human subjects, 2) reported end-trial SUA means and variance, 3) study design with oral vitamin C supplementation and concurrent control groups, and 4) trial duration of at least 1 week. Trials that enrolled children or patients receiving dialysis were excluded. Two investigators independently abstracted trial and participant characteristics. SUA effects were pooled by random-effects models and weighted by inverse variance. RESULTS Thirteen RCTs were identified in the Medline, EMBase, and Cochrane Central Register of Controlled Trials databases. The total number of participants was 556, the median dosage of vitamin C was 500 mg/day, trial size ranged from 8-184 participants, and the median study duration was 30 days. Pretreatment SUA values ranged from 2.9-7.0 mg/dl (Système International d'Unités [SI units]: 172.5-416.4 μmoles/liter). The combined effect of these trials was a significant reduction in SUA of -0.35 mg/dl (95% confidence interval -0.66, -0.03 [P = 0.032]; SI units: -20.8 μmoles/liter). Trial heterogeneity was significant (I(2) = 77%, P < 0.01). Subgroup analyses based on trial characteristics indicated larger reductions in uric acid in trials that were placebo controlled. CONCLUSIONS In aggregate, vitamin C supplementation significantly lowered SUA. Future trials are needed to determine whether vitamin C supplementation can reduce hyperuricemia or prevent incident and recurrent gout.
Collapse
Affiliation(s)
- Stephen P Juraschek
- Johns Hopkins University School of Medicine, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
36
|
Mutlu B, Aksoy N, Cakir H, Celik H, Erel O. The effects of the mode of delivery on oxidative-antioxidative balance. J Matern Fetal Neonatal Med 2011; 24:1367-70. [PMID: 21247235 DOI: 10.3109/14767058.2010.548883] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the effects of the mode of delivery on the oxidant and antioxidant systems in mothers and infants and to demonstrate which mode leads more oxidative stress. METHODS The participants were divided into two groups according to the mode of their labour and delivery: group 1 (n = 33) women with normal labour and delivery and group 2 (n = 33) with scheduled caesarean section (C/S) and delivery. The maternal, cord, and infant blood samples in both groups were collected. The serum total antioxidant capacity (TAC) and the total oxidant status (TOS) were evaluated by using an automated colorimetric measurement method. RESULTS The parameters indicating oxidative stress (TOS, oxidative stress index, and lipid hydroperoxide) in maternal, cord, and newborn blood samples were higher in patients delivering with C/S than those normal spontaneous vaginal deliveries (NSVD) patient group, while it was vice versa for TAC. CONCLUSIONS It may be concluded that both the mothers and neonates in C/S group are exposed to higher oxidative stress as compared with those in NSVD group and the antioxidant mechanisms are insufficient to cope with this stress during C/S. This result indicates that the normal delivery through the physiological route is healthier for the bodies of mothers and infants.
Collapse
Affiliation(s)
- Birgul Mutlu
- Medical Faculty, Cukurova University, Adana, Turkey.
| | | | | | | | | |
Collapse
|
37
|
Bailey DM, Williams C, Betts JA, Thompson D, Hurst TL. Oxidative stress, inflammation and recovery of muscle function after damaging exercise: effect of 6-week mixed antioxidant supplementation. Eur J Appl Physiol 2010; 111:925-36. [PMID: 21069377 DOI: 10.1007/s00421-010-1718-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2010] [Indexed: 12/23/2022]
Abstract
There is no consensus regarding the effects of mixed antioxidant vitamin C and/or vitamin E supplementation on oxidative stress responses to exercise and restoration of muscle function. Thirty-eight men were randomly assigned to receive either placebo group (n = 18) or mixed antioxidant (primarily vitamin C & E) supplements (n = 20) in a double-blind manner. After 6 weeks, participants performed 90 min of intermittent shuttle-running. Peak isometric torque of the knee flexors/extensors and range of motion at this joint were determined before and after exercise, with recovery of these variables tracked for up to 168 h post-exercise. Antioxidant supplementation elevated pre-exercise plasma vitamin C (93 ± 8 μmol l(-1)) and vitamin E (11 ± 3 μmol l(-1)) concentrations relative to baseline (P < 0.001) and the placebo group (P ≤ 0.02). Exercise reduced peak isometric torque (i.e. 9-19% relative to baseline; P ≤ 0.001), which persisted for the first 48 h of recovery with no difference between treatment groups. In contrast, changes in the urine concentration of F(2)-isoprostanes responded differently to each treatment (P = 0.04), with a tendency for higher concentrations after 48 h of recovery in the supplemented group (6.2 ± 6.1 vs. 3.7 ± 3.4 ng ml(-1)). Vitamin C & E supplementation also affected serum cortisol concentrations, with an attenuated increase from baseline to the peak values reached after 1 h of recovery compared with the placebo group (P = 0.02) and serum interleukin-6 concentrations were higher after 1 h of recovery in the antioxidant group (11.3 ± 3.4 pg ml(-1)) than the placebo group (6.2 ± 3.8 pg ml(-1); P = 0.05). Combined vitamin C & E supplementation neither reduced markers of oxidative stress or inflammation nor did it facilitate recovery of muscle function after exercise-induced muscle damage.
Collapse
Affiliation(s)
- David M Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | | | | | | | | |
Collapse
|
38
|
Ryan MJ, Dudash HJ, Docherty M, Geronilla KB, Baker BA, Haff GG, Cutlip RG, Alway SE. Vitamin E and C supplementation reduces oxidative stress, improves antioxidant enzymes and positive muscle work in chronically loaded muscles of aged rats. Exp Gerontol 2010; 45:882-95. [PMID: 20705127 DOI: 10.1016/j.exger.2010.08.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 07/07/2010] [Accepted: 08/03/2010] [Indexed: 12/31/2022]
Abstract
Aging is associated with increased oxidative stress. Muscle levels of oxidative stress are further elevated with exercise. The purpose of this study was to determine if dietary antioxidant supplementation would improve muscle function and cellular markers of oxidative stress in response to chronic repetitive loading in aging. The dorsiflexors of the left limb of aged and young adult Fischer 344 Brown×Norway rats were loaded 3 times weekly for 4.5 weeks using 80 maximal stretch-shortening contractions per session. The contra-lateral limb served as the intra-animal control. The rats were randomly assigned to a diet supplemented with Vitamin E and Vitamin C or normal non-supplemented rat chow. Biomarkers of oxidative stress were measured in the tibialis anterior muscle. Repetitive loading exercise increased maximal isometric force, negative work and positive work in the dorsiflexors of young adult rats. Only positive work increased in the aged animals that were supplemented with Vitamin E and C. Markers of oxidative stress (H(2)O(2), total GSH, GSH/GSSG ratio, malondialdehyde and 8-OHdG) increased in the tibialis anterior muscles from aged and young adult animals with repetitive loading, but Vitamin E and C supplements attenuated this increase. MnSOD activity increased with supplementation in the young adult animals. CuZnSOD and catalase activity increased with supplementation in young adult and aged animals and GPx activity increased with exercise in the non-supplemented young adult and aged animals. The increased levels of endogenous antioxidant enzymes after Vitamin E and C supplementation appear to be regulated by post-transcriptional modifications that are affected differently by age, exercise, and supplementation. These data suggest that antioxidant supplementation improves indices of oxidative stress associated with repetitive loading exercise and aging and improves the positive work output of muscles in aged rodents.
Collapse
Affiliation(s)
- Michael J Ryan
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Variegate porphyria induces plasma and neutrophil oxidative stress: effects of dietary supplementation with vitamins E and C. Br J Nutr 2009; 103:69-76. [DOI: 10.1017/s0007114509991413] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Our aim was to analyse the influence of variegate porphyria (VP) on the antioxidant defenses and markers of oxidative damage and inflammation in plasma and neutrophils and the effects of dietary supplementation with vitamins E and C on these parameters in plasma, neutrophils and erythrocytes. Twelve women affected by VP and twelve pair-matched healthy control women participated in a double-blind crossover study. Each participant took 50 mg/d of vitamin E and 150 mg/d of vitamin C, or a placebo, for 6 months, by consuming an almond-based beverage as the vehicle. Women affected by VP presented higher C-reactive protein and malondialdehyde (MDA) circulating levels. Plasma antioxidant defenses were not different between porphyric and control women. Neutrophils from VP women presented decreased catalase (CAT) and glutathione reductase (GR) activities together with increased protein carbonyl levels. Reactive oxygen species (ROS) production from stimulated neutrophils was also higher in porphyric women than their controls. Dietary supplementation was effective in increasing α-tocopherol levels in neutrophils and in reducing MDA levels in plasma. Erythrocyte CAT and GR activities were enhanced by the enriched beverage only in the control subjects. In conclusion, women affected by VP present a situation of inflammation, plasma oxidative damage and neutrophils more primed to the oxidative burst, with decreased antioxidant activities and increased ROS production capabilities and protein oxidative damage. Dietary supplementation with vitamin E (50 mg/d) and vitamin C (150 mg/d) for 6 months decreased plasma oxidative damage and enhanced the erythrocyte activities of CAT and GR.
Collapse
|
41
|
Howatson G, McHugh MP, Hill JA, Brouner J, Jewell AP, Van Someren KA, Shave RE, Howatson SA. Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports 2009; 20:843-52. [DOI: 10.1111/j.1600-0838.2009.01005.x] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Schulpis KH, Parthimos T, Papakonstantinou ED, Tsakiris T, Parthimos N, Mentis AFA, Tsakiris S. Evidence for the participation of the stimulated sympathetic nervous system in the regulation of carnitine blood levels of soccer players during a game. Metabolism 2009; 58:1080-6. [PMID: 19428035 DOI: 10.1016/j.metabol.2009.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/01/2009] [Accepted: 04/02/2009] [Indexed: 11/21/2022]
Abstract
Catecholamines and carnitine blood levels are closely implicated with training. The aim of the study was to investigate the effect of sympathetic nervous system stimulation on carnitine and its fraction levels during training. Blood was obtained from 14 soccer players pregame, at intermission, and postgame. Catecholamines were measured with high-performance liquid chromatography methods; muscle enzymes creatine kinase and lactate dehydrogenase as well as lactate, pyruvate, and total antioxidant status with commercial kits; and carnitine and fraction levels with tandem mass spectrometry. Total antioxidant status (2.97 +/- 0.13 vs 0.96 +/- 0.10 mmol/L, P < .01) as well as free carnitine levels (20.47 +/- 4.0 vs 12.30 +/- 2.8 micromol/L, P < .001) were remarkably decreased especially postgame. Total acylcarnitines (5.20 +/- 1.8 vs 9.42 +/- 3.0 micromol/L, P < .001) and especially total very long-chain acylcarnitines (0.80 +/- 0.01 vs 1.85 +/- 0.03 micromol/L, P < .001) as well as catecholamine levels (adrenaline: 230 +/- 31 vs 890 +/- 110 pmol/L, P < .01; noradrenaline: 1.53 +/- 0.41 vs 3.7 +/- 0.6 nmol/L, P < .01) were significantly increased in players postgame. A statistically significant inverse correlation was found between adrenaline and free carnitine (r = -0.51, P < .01); and a positive correlation was found between adrenaline, total acylcarnitines (r = 0.58, P < .01), and total long-chain acylcarnitine (r = 0.49, P < .01). The significant positive correlation of adrenaline levels with total acylcarnitine and total long-chain acylcarnitine blood levels in athletes as well as the inverse correlation with free carnitine levels may indicate participation of the stimulated sympathetic nervous system in the regulation of some carnitine fraction levels during exercise.
Collapse
Affiliation(s)
- Kleopatra H Schulpis
- Institute of Child Health, Research Center, "Aghia Sophia" Children's Hospital, GR-11527 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
43
|
Ducharme NG, Fortier LA, Kraus MS, Hobo S, Mohammed HO, McHugh MP, Hackett RP, Soderholm LV, Mitchell LM. Effect of a tart cherry juice blend on exercise-induced muscle damage in horses. Am J Vet Res 2009; 70:758-63. [PMID: 19496666 DOI: 10.2460/ajvr.70.6.758] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate whether administering a tart cherry juice blend (TCJB) prior to exercise would reduce skeletal and cardiac muscle damage by decreasing the inflammatory and oxidative stress response to exercise in horses. ANIMALS 6 horses. PROCEDURES Horses were randomly allocated into 2 groups in a crossover study with a 2-week washout period and orally administered either TCJB or a placebo solution (1.42 L, twice daily) in a double-masked protocol for 2 weeks prior to a stepwise incremental exercise protocol. Horses were tested for serum activities of creatine kinase and aspartate aminotransferase (AST) and concentrations of cardiac troponin I (cTnI), thiobarbituric acid reactive substances (TBARS; an indicator of oxidative stress), and serum amyloid A (SAA; an indicator of inflammation). To ensure that treatment would not result in positive results of an equine drug-screening protocol, serum samples obtained from each horse prior to and after 2 weeks of administration of TCJB or the placebo solution were tested. RESULTS All horses had negative results of drug screening at both sample times. The exercise protocol resulted in a significant increase in TBARS concentration, SAA concentration, and serum AST activity in all horses. Administration of TCJB or placebo solution was not associated with an effect on malondialdehyde or SAA concentrations. However, administration of TCJB was associated with less serum activity of AST, compared with administration of placebo solution. CONCLUSIONS AND CLINICAL RELEVANCE Administration of TCJB may diminish muscle damage induced by exercise.
Collapse
Affiliation(s)
- Normand G Ducharme
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history. DYNAMIC MEDICINE : DM 2009; 8:1. [PMID: 19144121 PMCID: PMC2642810 DOI: 10.1186/1476-5918-8-1] [Citation(s) in RCA: 403] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 01/13/2009] [Indexed: 12/14/2022]
Abstract
The topic of exercise-induced oxidative stress has received considerable attention in recent years, with close to 300 original investigations published since the early work of Dillard and colleagues in 1978. Single bouts of aerobic and anaerobic exercise can induce an acute state of oxidative stress. This is indicated by an increased presence of oxidized molecules in a variety of tissues. Exercise mode, intensity, and duration, as well as the subject population tested, all can impact the extent of oxidation. Moreover, the use of antioxidant supplements can impact the findings. Although a single bout of exercise often leads to an acute oxidative stress, in accordance with the principle of hormesis, such an increase appears necessary to allow for an up-regulation in endogenous antioxidant defenses. This review presents a comprehensive summary of original investigations focused on exercise-induced oxidative stress. This should provide the reader with a well-documented account of the research done within this area of science over the past 30 years.
Collapse
Affiliation(s)
- Kelsey Fisher-Wellman
- Cardiorespiratory/Metabolic Laboratory, Department of Health and Sport Sciences, The University of Memphis, 161F Elma Neal Roane Fieldhouse, Memphis, TN 38152, USA
| | - Richard J Bloomer
- Cardiorespiratory/Metabolic Laboratory, Department of Health and Sport Sciences, The University of Memphis, 161F Elma Neal Roane Fieldhouse, Memphis, TN 38152, USA
| |
Collapse
|
45
|
Sheikholeslami-Vatani D, Gaeini AA, Rahnama N. Effect of acute and prolonged sprint training and a detraining period on lipid peroxidation and antioxidant response in rats. SPORT SCIENCES FOR HEALTH 2008. [DOI: 10.1007/s11332-008-0072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Karandish M, Rahideh S, Moghaddam A. Effect of Vitamin C Supplementation on Oxidative Stress Markers Following Thirty Minutes Moderate Intensity Exercise in Healthy Young Women. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/jbs.2008.1333.1337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
González D, Marquina R, Rondón N, Rodriguez-Malaver AJ, Reyes R. Effects of aerobic exercise on uric acid, total antioxidant activity, oxidative stress, and nitric oxide in human saliva. Res Sports Med 2008; 16:128-37. [PMID: 18569946 DOI: 10.1080/15438620802103700] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study was to determine the effect of aerobic exercise on uric acid (UA), total antioxidant activity (TAA), lipid hydroperoxides, and nitric oxide (NO) metabolites in human saliva. Twenty-four healthy male and female subjects were studied during a 10,000-m race. Saliva samples were collected 1 h before and immediately after exercise. The NO concentration was determined by the Griess reaction, UA by enzymatic method, TAA by the ABTS method, and lipid hydroperoxide by the ferrous iron/xylenol orange (FOX) method. A repeated measures ANOVA was used to examine the effect of aerobic exercise on salivary UA, TAA, lipid hydroperoxides, and NO metabolites. Aerobic exercise caused an increase in both salivary UA and TAA, and a decrease in salivary lipid hydroperoxide. There was no, however, change in nitrite concentration. These results suggested that aerobic exercise-induced increment in both UA and TAA seems to inhibit lipid hydroperoxide generation, a marker of oxidative stress in human saliva.
Collapse
Affiliation(s)
- David González
- Facultad de Medicina, Laboratorio de Bioquimica Adaptativa, Departamento de Bioquímica, Mérida, Venezuela
| | | | | | | | | |
Collapse
|
48
|
Ashmaig M, Starkey B, Ziada A, Amro A, Sobki S, Ferns G. Changes in serum concentration of antioxidants following treadmill exercise testing in patients with suspected ischaemic heart disease. Int J Exp Pathol 2008. [DOI: 10.1111/j.1365-2613.2001.iep197.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
49
|
Vlachos DG, Schulpis KH, Parthimos T, Mesogitis S, Vlachos GD, Partsinevelos GA, Antsaklis A, Tsakiris S. The effect of the mode of delivery on the maternal-neonatal erythrocyte membrane acetylcholinesterase activity. Clin Biochem 2008; 41:818-23. [PMID: 18454940 DOI: 10.1016/j.clinbiochem.2008.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/24/2008] [Accepted: 04/06/2008] [Indexed: 10/22/2022]
Abstract
UNLABELLED Free radical production and high catecholamine levels are implicated with the modulation of acetylcholinesterase (AChE) activity. OBJECTIVE To investigate the effect of the mode of delivery on maternal-neonatal erythrocyte membrane AChE activity. SUBJECTS AND METHODS Some women with normal pregnancy (N = 30) were divided into two groups: group A (N = 16) with normal labour and vaginal delivery and group B (N = 14) with scheduled Cesarean section, twenty non-pregnant women were the controls. Blood was obtained from controls and from mothers pre- vs post-delivery as well as from the umbilical cord (CB). Total antioxidant status (TAS), membrane AChE activities and catecholamine blood levels were measured with a commercial kit, spectrophotometrically and HPLC methods, respectively. RESULTS TAS and catecholamine levels as well as membrane AChE activities were similar in the two groups of mothers pre-delivery and in controls. TAS levels were reduced whereas AChE activities and catecholamine levels were increased post-delivery in mothers of group A and unaltered in group B at the same times of study. AChE activity was similarly lower in the CB of neonates than those of their mothers pre-delivery. CONCLUSIONS During a normal delivery process, the low TAS, the increased levels of catecholamines and the increased AChE activity, post-delivery, may be due to the increased stress due to the participation of uterus and skeletal muscles as during endurance exercise. The low AChE activity in newborns may be related to perinatal immaturity.
Collapse
Affiliation(s)
- Dimitrios G Vlachos
- Department of Physiology, Medical School, Athens University, P.O. Box 65257, Athens 15401, Greece
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 2008:CD007176. [PMID: 18425980 DOI: 10.1002/14651858.cd007176] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Animal and physiological research as well as observational studies suggest that antioxidant supplements may improve survival. OBJECTIVES To assess the effect of antioxidant supplements on mortality in primary or secondary prevention randomised clinical trials. SEARCH STRATEGY We searched The Cochrane Library (Issue 3, 2005), MEDLINE (1966 to October 2005), EMBASE (1985 to October 2005), and the Science Citation Index Expanded (1945 to October 2005). We scanned bibliographies of relevant publications and wrote to pharmaceutical companies for additional trials. SELECTION CRITERIA We included all primary and secondary prevention randomised clinical trials on antioxidant supplements (beta-carotene, vitamin A, vitamin C, vitamin E, and selenium) versus placebo or no intervention. Included participants were either healthy (primary prevention trials) or had any disease (secondary prevention trials). DATA COLLECTION AND ANALYSIS Three authors extracted data. Trials with adequate randomisation, blinding, and follow-up were classified as having a low risk of bias. Random-effects and fixed-effect meta-analyses were performed. Random-effects meta-regression analyses were performed to assess sources of intertrial heterogeneity. MAIN RESULTS Sixty-seven randomised trials with 232,550 participants were included. Forty-seven trials including 180,938 participants had low risk of bias. Twenty-one trials included 164,439 healthy participants. Forty-six trials included 68111 participants with various diseases (gastrointestinal, cardiovascular, neurological, ocular, dermatological, rheumatoid, renal, endocrinological, or unspecified). Overall, the antioxidant supplements had no significant effect on mortality in a random-effects meta-analysis (relative risk [RR] 1.02, 95% confidence interval [CI] 0.99 to 1.06), but significantly increased mortality in a fixed-effect model (RR 1.04, 95% CI 1.02 to 1.06). In meta-regression analysis, the risk of bias and type of antioxidant supplement were the only significant predictors of intertrial heterogeneity. In the trials with a low risk of bias, the antioxidant supplements significantly increased mortality (RR 1.05, 95% CI 1.02 to 1.08). When the different antioxidants were assessed separately, analyses including trials with a low risk of bias and excluding selenium trials found significantly increased mortality by vitamin A (RR 1.16, 95% CI 1.10 to 1.24), beta-carotene (RR 1.07, 95% CI 1.02 to 1.11), and vitamin E (RR 1.04, 95% CI 1.01 to 1.07), but no significant detrimental effect of vitamin C (RR 1.06, 95% CI 0.94 to 1.20). Low-bias risk trials on selenium found no significant effect on mortality (RR 0.91, 95% CI 0.76 to 1.09). AUTHORS' CONCLUSIONS We found no evidence to support antioxidant supplements for primary or secondary prevention. Vitamin A, beta-carotene, and vitamin E may increase mortality. Future randomised trials could evaluate the potential effects of vitamin C and selenium for primary and secondary prevention. Such trials should be closely monitored for potential harmful effects. Antioxidant supplements need to be considered medicinal products and should undergo sufficient evaluation before marketing.
Collapse
Affiliation(s)
- G Bjelakovic
- Copenhagen University Hospital, Rigshospitalet, Department 3344,Copenhagen Trial Unit, Centre for Clinical Intervention Research, Blegdamsvej 9, Copenhagen, Denmark, DK-2100.
| | | | | | | | | |
Collapse
|