1
|
Edlund M, Blikstad I, Obrink B. Calmodulin binds to specific sequences in the cytoplasmic domain of C-CAM and down-regulates C-CAM self-association. J Biol Chem 1996; 271:1393-9. [PMID: 8576129 DOI: 10.1074/jbc.271.3.1393] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
C-CAM is a cell adhesion molecule belonging to the immunoglobulin supergene family and is known to mediate calcium-independent homophilic cell-cell binding. Two major isoforms, C-CAM1 and C-CAM2, which differ in their cytoplasmic domains, have been identified. Previous investigations have demonstrated that both cytoplasmic domains can bind calmodulin in a calcium-dependent reaction. In this investigation, peptides corresponding to the cytoplasmic domains of C-CAM were synthesized on cellulose membranes and used to map the binding sites for 125I-labeled calmodulin. Both C-CAM1 and C-CAM2 had one strong calmodulin-binding site in the membrane-proximal region. Those binding regions were conserved in C-CAM from rat, mouse, and man. In addition, C-CAM1 from rat and mouse contained a weaker binding site in the distal region of the cytoplasmic domain. Biosensor experiments were performed to determine rate and equilibrium constants of the C-CAM/calmodulin interaction. An association rate constants of 3.3 x 10(5) M-1 s-1 and two dissociation rate constants of 2.2 x 10(-2) and 3.1 x 10(-5) s-1 were determined. These correspond to equilibrium dissociation constants of 6.7 x 10(-8) and 9.4 x 10(-11) M, respectively. In dot-blot binding experiments, it was found that binding of calmodulin causes a down-regulation of the homophilic self-association of C-CAM. This suggests that calmodulin can regulate the functional activity of C-CAM.
Collapse
Affiliation(s)
- M Edlund
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
2
|
Abstract
C-CAM (cell-CAM 105) is a transmembrane cell adhesion molecule, belonging to the immunoglobulin superfamily. It is expressed in epithelia, vessel endothelia and leukocytes, and mediates intercellular adhesion in rat hepatocytes by homophilic binding. Two major isoforms (C-CAM1 and C-CAM2) that differ in their cytoplasmic domains occur. A previous study demonstrated that C-CAM can bind calmodulin in a Ca(2+)-dependent manner. In this study we have expressed the cytoplasmic domains of C-CAM1 and C-CAM2 in fusion proteins and measured calmodulin binding by a gel overlay assay, using 125I-labelled calmodulin. Our results indicate that the cytoplasmic domains of both C-CAM1 and C-CAM2 can bind calmodulin.
Collapse
Affiliation(s)
- M Edlund
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
3
|
Abstract
C-CAM (Cell-CAM 105) is a transmembrane cell adhesion molecule belonging to the immunoglobulin superfamily. It mediates intercellular adhesion of rat hepatocytes and occurs in various isoforms in several epithelia, vessel endothelia and leukocytes. We now report that purified liver C-CAM interacts specifically with calmodulin. Binding was observed both when 125I-labeled C-CAM was used in a dot-blot assay and when 125I-labeled calmodulin was used in a gel overlay assay. Experiments with protease-generated peptides indicated that calmodulin bound to the cytoplasmic domain of C-CAM. Analyses of whole liver membranes demonstrated that C-CAM is one of five major proteins that bind calmodulin in a calcium-dependent manner.
Collapse
Affiliation(s)
- I Blikstad
- Department of Medical and Physiological Chemistry, University of Uppsala
| | | | | | | |
Collapse
|
4
|
Garcia A, Coudrier E, Carboni J, Anderson J, Vandekerkhove J, Mooseker M, Louvard D, Arpin M. Partial deduced sequence of the 110-kD-calmodulin complex of the avian intestinal microvillus shows that this mechanoenzyme is a member of the myosin I family. J Cell Biol 1989; 109:2895-903. [PMID: 2687288 PMCID: PMC2115973 DOI: 10.1083/jcb.109.6.2895] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The actin bundle within each microvillus of the intestinal brush border is laterally tethered to the membrane by bridges composed of the protein complex, 110-kD-calmodulin. Previous studies have shown that avian 110-kD-calmodulin shares many properties with myosins including mechanochemical activity. In the present study, a cDNA molecule encoding 1,000 amino acids of the 110-kD protein has been sequenced, providing direct evidence that this protein is a vertebrate homologue of the tail-less, single-headed myosin I first described in amoeboid cells. The primary structure of the 110-kD protein (or brush border myosin I heavy chain) consists of two domains, an amino-terminal "head" domain and a 35-kD carboxy-terminal "tail" domain. The head domain is homologous to the S1 domain of other known myosins, with highest homology observed between that of Acanthamoeba myosin IB and the S1 domain of the protein encoded by bovine myosin I heavy chain gene (MIHC; Hoshimaru, M., and S. Nakanishi. 1987. J. Biol. Chem. 262:14625-14632). The carboxy-terminal domain shows no significant homology with any other known myosins except that of the bovine MIHC. This demonstrates that the bovine MIHC gene most probably encodes the heavy chain of bovine brush border myosin I (BBMI). A bacterially expressed fusion protein encoded by the brush border 110-kD cDNA binds calmodulin. Proteolytic removal of the carboxy-terminal domain of the fusion protein results in loss of calmodulin binding activity, a result consistent with previous studies on the domain structure of the 110-kD protein. No hydrophobic sequence is present in the molecule indicating that chicken BBMI heavy chain is probably not an integral membrane protein. Northern blot analysis of various chicken tissue indicates that BBMI heavy chain is preferentially expressed in the intestine.
Collapse
Affiliation(s)
- A Garcia
- Institut Pasteur, Département de Biologie Moléculaire, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Asselin J, Phaneuf S, Watterson DM, Haiech J. Metabolically 35S-labeled recombinant calmodulin as a ligand for the detection of calmodulin-binding proteins. Anal Biochem 1989; 178:141-7. [PMID: 2658683 DOI: 10.1016/0003-2697(89)90370-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have developed a simplified procedure for the production of metabolically labeled calmodulin. We used bacterial clones (Escherichia coli) that were found to express VU-1 calmodulin, a calmodulin that is fully active with a variety of calmodulin-regulated enzymes. VU-1 calmodulin was labeled with sulfur-35 in bacteria maintained in a sulfur-free medium. Calmodulin was then purified by chromatography on phenyl-Sepharose. Under these conditions, the specific activity of the proteins was 150 to 400 cpm/fmol of calmodulin. To demonstrate the utility of this labeled VU-1 calmodulin, we examined the calmodulin-binding proteins in aortic myocyte preparation from Day 0 and Day 15 cultures by using both the gel and the nitrocellulose overlay protocols. The results showed that calmodulin-binding proteins are easily detected by the two procedures and that the profile of these target proteins changed in myocyte with time in culture. While most of these calmodulin-binding proteins have not been identified, the relative mobility on SDS-PAGE gels suggests that myosin light chain kinase (Mr approximately 137,000) was detected by these methods. We demonstrated here that the nitrocellulose overlay was faster than the gel overlay and that this technique can be useful for the study of calmodulin-binding proteins.
Collapse
Affiliation(s)
- J Asselin
- Laboratoire de Chimie Bactérienne, CNRS, LP 7221, Marseille, France
| | | | | | | |
Collapse
|
7
|
Carboni JM, Conzelman KA, Adams RA, Kaiser DA, Pollard TD, Mooseker MS. Structural and immunological characterization of the myosin-like 110-kD subunit of the intestinal microvillar 110K-calmodulin complex: evidence for discrete myosin head and calmodulin-binding domains. J Biophys Biochem Cytol 1988; 107:1749-57. [PMID: 2460467 PMCID: PMC2115315 DOI: 10.1083/jcb.107.5.1749] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The actin bundle within each microvillus of the intestinal brush border is tethered laterally to the membrane by spirally arranged bridges. These bridges are thought to be composed of a protein complex consisting of a 110-kD subunit and multiple molecules of bound calmodulin (CM). Recent studies indicate that this complex, termed 110K-CM, is myosin-like with respect to its actin binding and ATPase properties. In this study, possible structural similarity between the 110-kD subunit and myosin was examined using two sets of mAbs; one was generated against Acanthamoeba myosin II and the other against the 110-kD subunit of avian 110K-CM. The myosin II mAbs had been shown previously to be cross-reactive with skeletal muscle myosin, with the epitope(s) localized to the 50-kD tryptic fragment of the subfragment-1 (S1) domain. The 110K mAbs (CX 1-5) reacted with the 110-kD subunit as well as with the heavy chain of skeletal but not with that of smooth or brush border myosin. All five of these 110K mAbs reacted with the 25-kD, NH2-terminal tryptic fragment of chicken skeletal S1, which contains the ATP-binding site of myosin. Similar tryptic digestion of 110K-CM revealed that these five mAbs all reacted with a 36-kD fragment of 110K (as well as larger 90- and 54-kD fragments) which by photoaffinity labeling was shown to contain the ATP-binding site(s) of the 110K subunit. CM binding to these same tryptic digests of 110K-CM revealed that only the 90-kD fragment retained both ATP- and CM-binding domains. CM binding was observed to several tryptic fragments of 60, 40, 29, and 18 kD, none of which contain the myosin head epitopes. These results suggest structural similarity between the 110K and myosin S1, including those domains involved in ATP- and actin binding, and provide additional evidence that 110K-CM is a myosin. These studies also support the results of Coluccio and Bretscher (1988. J. Cell Biol. 106:367-373) that the calmodulin-binding site(s) and the myosin head region of the 110-kD subunit lie in discrete functional domains of the molecule.
Collapse
Affiliation(s)
- J M Carboni
- Department of Biology, Yale University, New Haven, Connecticut 06511
| | | | | | | | | | | |
Collapse
|
8
|
Bartelt DC, Moroney S, Wolff DJ. Purification, characterization and substrate specificity of calmodulin-dependent myosin light-chain kinase from bovine brain. Biochem J 1987; 247:747-56. [PMID: 3426560 PMCID: PMC1148475 DOI: 10.1042/bj2470747] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A substrate-specific calmodulin-dependent myosin light-chain kinase (MLCK) was purified 45,000-fold to near homogeneity from bovine brain in 12% yield. Bovine brain MLCK phosphorylates a serine residue in the isolated turkey gizzard myosin light chain (MLC), with a specific activity of 1.8 mumol/min per mg of enzyme. The regulatory MLC present in intact gizzard myosin is also phosphorylated by the enzyme. The Mr-19,000 rabbit skeletal-muscle MLC is a substrate; however, the rate of its phosphorylation is at best 30% of that obtained with turkey gizzard MLC. Phosphorylation of all other protein substrates tested is less than 1% of that observed with gizzard MLC as substrate. SDS/polyacrylamide-gel electrophoresis of purified MLCK reveals the presence of a major protein band with an apparent Mr of 152000, which is capable of binding 125I-calmodulin in a Ca2+-dependent manner. Phosphorylation of MLCK by the catalytic subunit of cyclic-AMP-dependent protein kinase results in the incorporation of phosphate into the Mr-152,000 protein band and a marked decrease in the affinity of MLCK for calmodulin. The presence of Ca2+ and calmodulin inhibits the phosphorylation of the enzyme. Bovine brain MLCK appears similar to MLCKs isolated from platelets and various forms of muscle.
Collapse
Affiliation(s)
- D C Bartelt
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854
| | | | | |
Collapse
|
9
|
Bartelt DC, Wolff DJ, Scheele GA. Calmodulin-binding proteins and calmodulin-regulated enzymes in dog pancreas. Biochem J 1986; 240:753-63. [PMID: 3827865 PMCID: PMC1147483 DOI: 10.1042/bj2400753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Calmodulin was isolated and purified to homogeneity from dog pancreas. Highly purified subcellular fractions were prepared from dog pancreas by zonal sucrose-density ultracentrifugation and assayed for their ability to bind 125I-calmodulin in vitro. Proteins contained in these fractions were also examined for binding of 125I-calmodulin after their separation by polyacrylamide-gel electrophoresis in SDS. Calmodulin-binding proteins were detected in all subcellular fractions except the zymogen granule and zymogen-granule membrane fractions. One calmodulin-binding protein (Mr 240,000), observed in a washed smooth-microsomal fraction, has properties similar to those of alpha-fodrin. The postribosomal-supernatant fraction contained three prominent calmodulin-binding proteins, with apparent Mr values of 62,000, 50,000 and 40,000. Calmodulin-binding proteins, prepared from a postmicrosomal-supernatant fraction by Ca2+-dependent affinity chromatography on immobilized calmodulin, exhibited calmodulin-dependent phosphodiesterase, protein phosphatase and protein kinase activities. In the presence of Ca2+ and calmodulin, phosphorylation of smooth-muscle myosin light chain and brain synapsin and autophosphorylation of a Mr-50,000 protein were observed. Analysis of the protein composition of the preparation by SDS/polyacrylamide-gel electrophoresis revealed a major protein of Mr 50,000 which bound 125I-calmodulin. This protein shares characteristics with the calmodulin-dependent multifunctional protein kinase (kinase II) recently observed to have a widespread distribution. The possible role of calmodulin-binding proteins and calmodulin-regulated enzymes in the regulation of exocrine pancreatic protein synthesis and secretion is discussed.
Collapse
|
10
|
Venuti JM, Edds KT. Calmodulin and caimodulin-binding proteins in the morphological transformation of sea urchin coelomocytes. ACTA ACUST UNITED AC 1986. [DOI: 10.1002/cm.970060609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Otto JJ. Gel overlay methods for detecting specific protein-protein interactions. Methods Enzymol 1986; 134:555-60. [PMID: 3102902 DOI: 10.1016/0076-6879(86)34120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Mechanism of cytoskeletal regulation (I): functional differences correlate with antigenic dissimilarity in human brain and erythrocyte spectrin. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 830:147-58. [PMID: 2410030 DOI: 10.1016/0167-4838(85)90022-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human erythrocyte and brain spectrin (fodrin, calspectin) have been compared quantitatively with respect to the extent and sites of antigenic and functional similarity. Brain spectrin cross-reacts strongly with approx. 1% of the epitopes in erythrocyte spectrin, but weakly with at least 50%. The distribution of shared determinants is not uniform. Brain spectrin is most deficient in epitopes characteristic of the 80 kDa and 52 kDa domains of the alpha-subunit (alpha-I and alpha-III) and of terminal portions of the 28 kDa and 74 kDa domains of the beta-subunit (beta-I and beta-IV). The functions associated with these domains also differ between the two proteins. Brain spectrin does not undergo extensive polymerization and binds calmodulin at a different site. The unique ability of erythrocyte spectrin to oligomerize beyond the tetramer reflects its role in the membrane skeleton. Non-erythroid spectrins probably function as specific linkers between membrane receptors and the filamentous cytoskeleton. In this sense, they may act as regulated transducers of information flow between the membrane and the cytoplasmic matrix.
Collapse
|
13
|
Manalan AS, Newton DL, Klee CB. Purification and peptide mapping of calmodulin and its chemically modified derivatives by reversed-phase high-performance liquid chromatography. J Chromatogr A 1985; 326:387-97. [PMID: 3897255 DOI: 10.1016/s0021-9673(01)87464-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Methods were developed for the isolation and peptide mapping of calmodulin and its chemically modified derivatives by reversed-phase high-performance liquid chromatography (HPLC). Calmodulin and its guanidinated, iodinated, and performic acid-oxidized derivatives can be isolated on alkylphenyl columns by using gradients of acetonitrile in 10 mM potassium phosphate, pH 6.0, 2 mM EGTA. Peptide mapping by HPLC, following complete digestion of the proteins with clostripain, allows identification of the modified amino acids residues. Clostripain peptides are eluted in the order 87-90, 75-86, 91-106, 107-126, 127-148, 107-148, 1-37, and 38-74. Performic acid oxidation of methionines decreases the retention times of the modified peptides, whereas iodination of tyrosines or guanidination of lysines increases retention times of modified peptides. These HPLC methods are applicable to the identification of specific modifications of calmodulin, allowing the assessment of the role of individual amino acid residues in determining the unique physical, chemical, and spectroscopic properties of this ubiquitous intracellular calcium-binding protein.
Collapse
|
14
|
Abstract
Evidence for changes in Escherichia coli envelope structure caused by the bacteriophage T5 gene A2 protein was obtained by the use of mutant bacteriophages, envelope fractionation procedures, electrophoretic analysis, and in vitro binding studies with purified gene A2 protein. The results suggested that the T5 gene A2 protein perturbs the host envelope as it functions to promote DNA transfer.
Collapse
|
15
|
Flanagan SD, Yost B. Calmodulin-binding proteins: visualization by 125I-calmodulin overlay on blots quenched with Tween 20 or bovine serum albumin and poly(ethylene oxide). Anal Biochem 1984; 140:510-9. [PMID: 6091497 DOI: 10.1016/0003-2697(84)90202-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To streamline detection of calmodulin-binding proteins, blotting techniques for the electrophoretic transfer of proteins onto nitrocellulose filters, followed by overlay with 125I-calmodulin, have been adapted. Autoradiography of the 125I-calmodulin-labeled blots allows the identification and quantitation of proteins that possess affinity for calmodulin. Five protocols for suppressing nonspecific binding and for enhancing specific interactions of 125I-calmodulin with electrophoretically separated proteins were investigated. Tween 20 and bovine serum albumin alone, as well as combinations of bovine serum albumin and poly(ethylene oxide) or hemoglobin and gelatin, were evaluated as quenching and enhancing agents. Tween 20 proved highly effective for quenching nonspecific binding and for enhancing specific 125I-calmodulin binding of a 61,000-Mr rat brain protein, which was only faintly observed on blots quenched with proteins alone. However, Tween 20 dissociated 50% of 68,000-Mr proteins and 80% of 21,000-Mr 125I-labeled protein standards from the nitrocellulose filter. An alternative, the combination of bovine serum albumin followed by incubation with 15,000- to 20,000-Mr poly(ethylene oxide), proved satisfactory for the recovery of 61,000-Mr calmodulin-binding activity and for the detection of calmodulin-binding peptides (50,000 to 14,000 Mr) produced by limited proteolysis of rat brain 51,000-Mr calmodulin-binding protein. These blotting procedures for detection of calmodulin-binding proteins are compatible with a variety of one-dimensional and two-dimensional electrophoresis systems, including a two-dimensional electrophoresis system utilizing urea and sodium dodecyl sulfate in the first dimension and nonurea sodium dodecyl sulfate electrophoresis in the second, a system which proved useful for resolving calmodulin-binding proteins displaying anomalous electrophoretic migration in the presence of urea.
Collapse
|
16
|
Siman R, Baudry M, Lynch G. Brain fodrin: substrate for calpain I, an endogenous calcium-activated protease. Proc Natl Acad Sci U S A 1984; 81:3572-6. [PMID: 6328521 PMCID: PMC345551 DOI: 10.1073/pnas.81.11.3572] [Citation(s) in RCA: 210] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The calcium-activated thiol-protease calpain I, which is present in cytosolic and membrane preparations from rat brain, was tested for its capacity to degrade the neuronal spectrin-like protein fodrin. In the presence of micromolar calcium concentrations purified calpain I degraded both purified fodrin and the fodrin present in hippocampal and cerebellar membranes. Fodrin was identified as a high molecular weight protein present in brain membranes by the following criteria: (i) comigration on NaDodSO4/polyacrylamide gels with purified fodrin, (ii) reactivity with antibodies to purified fodrin, and (iii) a proteolytic map following calpain activation comparable to that found after calpain-mediated degradation of purified fodrin. The fodrin breakdown was selective in that calpain I did not affect at least 15 other membrane-associated polypeptides. Fodrin degradation by the protease was rapid and was accompanied by the appearance of a lower molecular weight breakdown product. Calpain I had a high affinity for fodrin, with a Km for degradation of about 50 nM. Purified calpain I also degraded purified spectrin and the spectrin present in erythrocyte membranes. Calpain I-mediated degradation of spectrin-like proteins could provide a mechanism by which brief increases in intracellular free calcium levels modify the structure of the submembraneous cytoskeleton and the distribution of cell surface receptors and alter cell shape.
Collapse
|
17
|
Bartelt DC, Carlin RK, Scheele GA, Cohen WD. Similarities between the Mr 245,000 calmodulin-binding protein of the dogfish erythrocyte cytoskeleton and alpha-fodrin. Arch Biochem Biophys 1984; 230:13-20. [PMID: 6324680 DOI: 10.1016/0003-9861(84)90081-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Mr 245,000 calmodulin-binding protein of the dogfish erythrocyte cytoskeleton (D245) has been compared with human erythrocyte spectrin and mammalian brain fodrin [J. Levine and M. Willard (1981) J. Cell Biol. 90, 631-643]. Mammalian erythrocyte alpha-spectrin, brain alpha-fodrin, and D245 are all localized in the cell surface-associated cytoskeleton, and have similar molecular weights. Like mammalian erythrocyte spectrin, D245 was extracted from erythrocyte ghosts under low-ionic-strength conditions. However, D245 failed to bind an antibody which reacted strongly with both subunits of human erythrocyte spectrin. Unlike mammalian erythrocyte alpha- and beta-spectrin, D245 bound calmodulin in the absence of urea both in a "gel-binding" assay and in situ using azidocalmodulin [D.C. Bartelt, R.K. Carlin, G.A. Scheele, and W.D. Cohen (1982) J. Cell Biol. 95, 278-284]. Striking similarities were noted between D245 and alpha-fodrin in that both exhibited (a) comparable calcium-dependent calmodulin binding properties, (b) strong reactivity with two different anti-fodrin antibody preparations, (c) similar reactivity with antibody to brain CBP-I, now believed to be fodrin, (d) proteolytic degradation yielding an Mr 150,000 calmodulin-binding fragment, and (e) lack of reactivity with an anti-spectrin antibody. A protein with calmodulin-binding and anti-fodrin-binding properties similar to D245 was detected in cytoskeletal preparations of chicken erythrocytes. Moderate and consistent cross-reactivity of anti-fodrin with human erythrocyte alpha-spectrin was also observed. The data indicate that D245 is functionally and immunologically more closely related to alpha-fodrin than to alpha-spectrin of the mammalian erythrocyte.
Collapse
|
18
|
Creutz CE, Dowling LG, Sando JJ, Villar-Palasi C, Whipple JH, Zaks WJ. Characterization of the chromobindins. Soluble proteins that bind to the chromaffin granule membrane in the presence of Ca2+. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)43914-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Kakiuchi R, Inui M, Morimoto K, Kanda K, Sobue K, Kakiuchi S. Caldesmon, a calmodulin-binding, F actin-interacting protein, is present in aorta, uterus and platelets. FEBS Lett 1983; 154:351-6. [PMID: 6403386 DOI: 10.1016/0014-5793(83)80181-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Caldesmon, a protein originally found in chicken gizzard, was concluded also to be present in bovine aorta, uterus, and human platelets by demonstration of a protein with the following properties: (a) Ca2+-dependent calmodulin-binding; (b) binding to F actin in such way that the binding was broken on Ca2+-dependent binding of calmodulin; (c) cross-reactivity in immune blotting procedures with affinity-purified antibody against gizzard caldesmon; (d) similar subunit Mr-values on SDS-gel to those of gizzard caldesmon. Like gizzard caldesmon, platelet caldesmon was composed of two polypeptide bands of Mr 150 000 and 147 000, but caldesmon in aorta and uterus gave a single band of Mr 150 000. A polypeptide of Mr 165 000 that was immunologically distinct from caldesmon but, like caldesmon, bound to calmodulin and F actin in a flip-flop fashion, was also demonstrated in aorta and uterus.
Collapse
|
20
|
Carlin RK, Bartelt DC, Siekevitz P. Identification of fodrin as a major calmodulin-binding protein in postsynaptic density preparations. J Biophys Biochem Cytol 1983; 96:443-8. [PMID: 6833363 PMCID: PMC2112298 DOI: 10.1083/jcb.96.2.443] [Citation(s) in RCA: 183] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A major protein of postsynaptic densities (PSDs), a doublet of 230,000 and 235,000 Mr that becomes enriched in PSDs after treatment of synaptic membranes with 0.5% Triton X-100, has been found to be identical to fodrin (Levine, J., and M. Willard, 1981, J. Cell Biol. 90:631) by the following criteria. The upper bands of the PSD doublet and purified fodrin (alpha-fodrin) were found to be identical since both bands (a) co-migrated on SDS gels, (b) reacted with antifodrin, (c) bound calmodulin, and (d) had identical peptide maps after Staphylococcus aureus protease digestion. The lower bands of the PSD doublet and of purified fodrin (beta-fodrin) were found to be identical since both bands co-migrated on SDS gels and both had identical peptide maps after S. aureus protease digestion. The binding of calmodulin to alpha-fodrin was confirmed by cross-linking azido-125I-calmodulin to fodrin before running the protein on SDS gels. No binding of calmodulin to beta-fodrin was observed with either the gel overlay or azido-calmodulin techniques. A second calmodulin binding protein in the PSD has been found to be the proteolytic product of alpha-fodrin. This band (140,000 Mr), which can be created by treating fodrin with chymotrypsin, both binds calmodulin and reacts with antifodrin.
Collapse
|
21
|
Bartelt DC, Carlin RK, Scheele GA, Cohen WD. The cytoskeletal system of nucleated erythrocytes. II. presence of a high molecular weight calmodulin-binding protein. J Cell Biol 1982; 95:278-84. [PMID: 6890556 PMCID: PMC2112376 DOI: 10.1083/jcb.95.1.278] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Calmodulin was detected in dogfish erythrocyte lysates by means of phosphodiesterase activation. Anucleate dogfish erythrocyte cytoskeletons bound calmodulin. Binding of calmodulin was calcium-dependent, concentration-dependent, and saturable. Cytoskeletons consisted of a marginal band of microtubules containing primarily tubulin, and trans-marginal band material containing actin and spectrinlike proteins. Dogfish erythrocyte ghosts and cytoskeletons were found to contain a calcium-dependent calmodulin-binding protein, CBP, by two independent techniques: (a) 125I-calmodulin binding to cytoskeletal proteins separated by SDS PAGE, and (b) in situ azidocalmodulin binding in whole anucleate ghosts and cytoskeletons. CBP, with an apparent molecular weight of 245,000, co-migrated with the upper band of human and dogfish erythrocyte spectrin. CBP was present in anucleate ghosts devoid of marginal bands and absent from isolated marginal bands. CBP therefore appears to be localized in the trans-marginal band material and not in the marginal band. Similarities between CBP and high molecular weight calmodulin-binding proteins from mammalian species are discussed.
Collapse
|
22
|
Welsh MJ, Aster JC, Ireland M, Alcala J, Maisel H. Calmodulin binds to chick lens gap junction protein in a calcium-independent manner. Science 1982; 216:642-4. [PMID: 6280283 DOI: 10.1126/science.6280283] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A biochemically active conjugate of calmodulin and tetramethylrhodamine isothiocyanate (CaM-RITC) was synthesized. When incubated with sections of chick lens, this conjugate bound to the surface membranes of lens fiber cells in the presence of absence of calcium. Incubation of lens sections with antibodies to gap junction protein of lens completely blocked the binding of the conjugate to cell membranes, whereas serum from nonimmunized animals or antibodies to others lens proteins reduced the binding only slightly. By means of a gel overlay procedure, 125I-labeled calmodulin was found to bind to the gap junction protein of lens, also in a calcium-independent manner. These results support the concept that calmodulin may interact with and regulate gap junctions in living cells.
Collapse
|
23
|
Howe CL, Keller TC, Mooseker MS, Wasserman RH. Analysis of cytoskeletal proteins and Ca2+-dependent regulation of structure in intestinal brush borders from rachitic chicks. Proc Natl Acad Sci U S A 1982; 79:1134-8. [PMID: 6951164 PMCID: PMC345915 DOI: 10.1073/pnas.79.4.1134] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We have investigated several structural aspects of the intestinal epithelial brush border from rachitic chicks. At both the light and electron microscope levels, rachitic brush borders are indistinguishable from controls. Although several of the prominent periodic acid-Schiff-positive proteins of the brush border membrane have slightly slower mobilities on sodium dodecyl sulfate/polyacrylamide gels than do corresponding proteins from control brush borders, the major components of the microvillus core, including subunits of 105, 95, and 68 kilodaltons, actin, and calmodulin, are not detectably different. As assayed by a (125)I-labeled calmodulin gel overlay technique, the same calmodulin-binding proteins are present in rachitic and control brush borders. Two proteins, the 105-kilodalton subunit of the microvillus core and an approximately 30-kilodalton membrane protein, bind calmodulin in a calcium-independent manner. Four cytoskeletal proteins (250, 190, 180, and 150 kilodaltons) and one membrane protein (35 kilodaltons) bind calmodulin only in the presence of calcium. Calcium-dependent solation of microvillus core proteins and calcium-dependent phosphorylation of the 20-kilodalton light chain of brush border myosin both occur as in controls. Our results show that rachintic chicks have brush borders that are quite similar to controls with respect to their ultrastructural organization, constituent contractile proteins, and calcium-dependent regulation of contractility and microvillus core structure. Therefore, the decreased absorption of calcium by intestinal epithelial cells in rachitic chicks is probably not due to gross structural or chemical differences in the brush border cytoskeleton.
Collapse
|
24
|
|
25
|
Cohen RS, Carlin RK, Grab DJ, Siekevitz P. Phosphoproteins in postsynaptic densities. PROGRESS IN BRAIN RESEARCH 1982; 56:49-76. [PMID: 7163507 DOI: 10.1016/s0079-6123(08)63768-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
Grab DJ, Carlin RK, Siekevitz P. Function of a calmodulin in postsynaptic densities. II. Presence of a calmodulin-activatable protein kinase activity. J Cell Biol 1981; 89:440-8. [PMID: 7251661 PMCID: PMC2111785 DOI: 10.1083/jcb.89.3.440] [Citation(s) in RCA: 115] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Because the calmodulin in postsynaptic densities (PSDs) activates a cyclic nucleotide phosphodiesterase, we decided to explore the possibility that the PSD also contains a calmodulin-activatable protein kinase activity. As seen by autoradiographic analysis of coomassie blue-stained SDS polyacrylamide gels, many proteins in a native PSD preparation were phosphorylated in the presence of [gamma-(32)P]ATP and Mg(2+) alone. Addition of Ca(2+) alone to the native PSD preparation had little or no effect on phosphorylation. However, upon addition of exogenous calmodulin there was a general increase in background phosphorylation with a statistically significant increase in the phosphorylation of two protein regions: 51,000 and 62,000 M(r). Similar results were also obtained in sonicated or freeze thawed native PSD preparations by addition of Ca(2+) alone without exogenous calmodulin, indicating that the calmodulin in the PSD can activate the kinase present under certain conditions. The calmodulin dependency of the reaction was further strengthened by the observed inhibition of the calmodulin-activatable phosphorylation, but not of the Mg(2+)-dependent activity, by the Ca(2+) chelator, EGTA, which also removes the calmodulin from the structure (26), and by the binding to calmodulin of the antipsychotic drug chlorpromazine in the presence of Ca(2+). In addition, when a calmodulin-deficient PSD preparation was prepared (26), sonicated, and incubated with [gamma-(32)P]ATP, Mg(2+) and Ca(2+), one could not induce a Ca(2+)-stimulation of protein kinase activity unless exogenous calmodulin was added back to the system, indicating a reconstitution of calmodulin into the PSD. We have also attempted to identify the two major phosphorylated proteins. Based on SDS polyacrylamide gel electrophoresis, it appears that the major 51,000 M(r) PSD protein is the one that is phosphorylated and not the 51,000 M(r) component of brain intermediate filaments, which is a known PSD contaminant. In addition, papain digestion of the 51,000 M(r) protein revealed multiple phosphorylation sites different from those phosphorylated by the Mg(2+)-dependent kinase(s). Finally, although the calmodulin-activatable protein kinase may phosphorylate proteins I(a) and I(b), the cyclic AMP-dependent protein kinase, which definitely does phosphorylate protein I(a) and I(b) and is present in the PSD, does not phosphorylate the 51,000 and 62,000 M(r) proteins, because specific inhibition of this kinase has no effect on the levels of the phosphorylation of these latter two proteins.
Collapse
|
27
|
Carlin RK, Grab DJ, Siekevitz P. Function of a calmodulin in postsynaptic densities. III. Calmodulin-binding proteins of the postsynaptic density. J Cell Biol 1981; 89:449-55. [PMID: 6265467 PMCID: PMC2111790 DOI: 10.1083/jcb.89.3.449] [Citation(s) in RCA: 165] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A method has been developed for binding calmodulin, radioiodinated by the lactoperoxidase method, to denaturing gels and has been used to attempt to identify the calmodulin-binding proteins of cerebral cortex postsynaptic densities (PSDs). Calmodulin primarily bound to the major 51,000 Mr protein in a saturatable manner; secondarily bound to the 60,000 Mr region, 140,000 Mr region, and 230,000 Mr protein; and bound in lesser amounts to a number of other proteins. The major 51,000 Mr calmodulin-binding protein is one of unknown identity. Binding of iodinated calmodulin to these proteins was blocked by EDTA, EGTA, chlorpromazine, and preincubation with unlabeled calmodulin. Calmodulin iodinated by the chloramine-T method, which inactivates calmodulin did not bind to the PSD but bound nonspecifically to histone. Calmodulin did not bind to proteins from a variety of sources for which calmodulin interactions have not been found. Except for three proteins, all of the proteins of synaptic membranes that bind calmodulin could be accounted for by proteins of the PSD which are a part of the synaptic membrane fraction. The major 51,000 M, protein and the corresponding iodinated calmodulin binding were greatly reduced in cerebellar PSDs and this difference between cerebral cortex and cerebellar PSDs is discussed in light of the possible function of calmodulin in synaptic excitatory responses.
Collapse
|