1
|
Zhang WW, Cao H, Li Y, Fu XJ, Zhang YQ. Peripheral ablation of type Ⅲ adenylyl cyclase induces hyperalgesia and eliminates KOR-mediated analgesia in mice. JCI Insight 2021; 7:153191. [PMID: 34914639 PMCID: PMC8855833 DOI: 10.1172/jci.insight.153191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ca2+/calmodulin-stimulated group Ⅰ adenylyl cyclase (AC) isoforms AC1 and AC8 have been involved in nociceptive processing and morphine responses. However, whether AC3, another member of group I ACs, is involved in nociceptive transmission and regulates opioid receptor signaling remain elusive. Here we report that conditional knockout of AC3 (AC3CKO) in L3 and L4 DRGs robustly facilitates the mouse nociceptive responses, decreases voltage-gated potassium (Kv) channel currents and increases neuronal excitability. Also, AC3CKO eliminates the analgesic effect of κ opioid receptor (KOR) agonist and its inhibition on Kv channel by classical Gαi/o signaling or nonclassical direct interaction of KOR and AC3 proteins. Interestingly, significantly upregulated AC1 level and cAMP concentration are detected in AC3 deficient DRGs. Inhibition of AC1 completely reversed cAMP upregulation, neuronal excitability enhancement and nociceptive behavioral hypersensitivity in AC3CKO mice. Our findings suggest a crucial role of peripheral AC3 in nociceptive modulation and KOR opioid analgesia.
Collapse
Affiliation(s)
- Wen-Wen Zhang
- Department of Translational Neurosciences, Fudan University, Shanghai, China
| | - Hong Cao
- Department of Translational Neurosciences, Fudan University, Shanghai, China
| | - Yang Li
- College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xian-Jun Fu
- Qingdao Academy of Chinese Medical Science, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Yu-Qiu Zhang
- Department of Translational Neurosciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Mett A, Karbat I, Tsoory M, Fine S, Iwanir S, Reuveny E. Reduced activity of GIRK1-containing heterotetramers is sufficient to affect neuronal functions, including synaptic plasticity and spatial learning and memory. J Physiol 2020; 599:521-545. [PMID: 33124684 DOI: 10.1113/jp280434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS G-protein inwardly rectifying K+ (GIRK) channels consist of four homologous subunits (GIRK1-4) and are essential regulators of electrical excitability in the nervous system. GIRK2-null mice have been widely investigated for their distinct behaviour and altered depotentiation following long-term potentiation (LTP), whereas GIRK1 mice are less well characterized. Here we utilize a novel knockin mouse strain in which the GIRK1 subunit is fluorescently tagged with yellow fluorescent protein (YFP-GIRK1) and the GIRK1-null mouse line to investigate the role of GIRK1 in neuronal processes such as spatial learning and memory, locomotion and depotentiation following LTP. Neurons dissected from YFP-GIRK1 mice had significantly reduced potassium currents and this mouse line phenotypically resembled GIRK1-null mice, making it a 'functional knockdown' model of GIRK1-containing channels. YFP-GIRK1 and GIRK1-null mice had increased locomotion, reduced spatial learning and memory and blunted depotentiation following LTP. ABSTRACT GIRK channels are essential for the slow inhibition of electrical activity in the nervous system and heart rate regulation via the parasympathetic system. The implications of individual GIRK isoforms in specific physiological activities are based primarily on studies conducted with GIRK-null mouse lines. Here we utilize a novel knockin mouse line in which YFP was fused in-frame to the N-terminus of GIRK1 (YFP-GIRK1) to correlate GIRK1 spatial distribution with physiological activities. These mice, however, displayed spontaneous seizure-like activity and thus were investigated for the origin of such activity. We show that GIRK tetramers containing YFP-GIRK1 are correctly assembled and trafficked to the plasma membrane, but are functionally impaired. A battery of behavioural assays conducted on YFP-GIRK1 and GIRK1-null (GIRK1-/- ) mice revealed similar phenotypes, including impaired nociception, reduced anxiety and hyperactivity in an unfamiliar environment. However, YFP-GIRK1 mice exhibited increased home-cage locomotion while GIRK1-/- mice did not. In addition, we show that the GIRK1 subunit is essential for intact spatial learning and memory and synaptic plasticity in hippocampal brain slices. This study expands our knowledge regarding the role of GIRK1 in neuronal processes and underlines the importance of GIRK1-containing heterotetramers.
Collapse
Affiliation(s)
- Alice Mett
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Shachar Fine
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shachar Iwanir
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
3
|
Glaaser IW, Slesinger PA. Structural Insights into GIRK Channel Function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:117-60. [PMID: 26422984 DOI: 10.1016/bs.irn.2015.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
G protein-gated inwardly rectifying potassium (GIRK; Kir3) channels, which are members of the large family of inwardly rectifying potassium channels (Kir1-Kir7), regulate excitability in the heart and brain. GIRK channels are activated following stimulation of G protein-coupled receptors that couple to the G(i/o) (pertussis toxin-sensitive) G proteins. GIRK channels, like all other Kir channels, possess an extrinsic mechanism of inward rectification involving intracellular Mg(2+) and polyamines that occlude the conduction pathway at membrane potentials positive to E(K). In the past 17 years, more than 20 high-resolution atomic structures containing GIRK channel cytoplasmic domains and transmembrane domains have been solved. These structures have provided valuable insights into the structural determinants of many of the properties common to all inward rectifiers, such as permeation and rectification, as well as revealing the structural bases for GIRK channel gating. In this chapter, we describe advances in our understanding of GIRK channel function based on recent high-resolution atomic structures of inwardly rectifying K(+) channels discussed in the context of classical structure-function experiments.
Collapse
Affiliation(s)
- Ian W Glaaser
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paul A Slesinger
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
4
|
Sugaya N, Kobayashi T, Ikeda K. Role of GIRK Channels in Addictive Substance Effects. ACTA ACUST UNITED AC 2013. [DOI: 10.4303/jdar/235823] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Takamatsu Y, Yamamoto H, Hagino Y, Markou A, Ikeda K. The Selective Serotonin Reuptake Inhibitor Paroxetine, but not Fluvoxamine, Decreases Methamphetamine Conditioned Place Preference in Mice. Curr Neuropharmacol 2011; 9:68-72. [PMID: 21886565 PMCID: PMC3137204 DOI: 10.2174/157015911795017236] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/17/2010] [Accepted: 05/26/2010] [Indexed: 11/30/2022] Open
Abstract
Monoamine transporters are the main targets of methamphetamine (METH). Recently, we showed that fluoxetine, a selective serotonin reuptake inhibitor (SSRI), decreased METH conditioned place preference (CPP), suggesting that serotonin transporter (SERT) inhibition reduces the rewarding effects of METH. To further test this hypothesis, in the present study we investigated the effects of additional SSRIs, paroxetine and fluvoxamine, on METH CPP in C57BL/6J mice. In the CPP test, pretreatment with 20 mg/kg paroxetine abolished the CPP for METH, whereas pretreatment with 100 mg/kg fluvoxamine prior to administration of METH failed to inhibit METH CPP. These results suggest that paroxetine, a medication widely used to treat depression, may be a useful tool for treating METH dependence. Further, these data suggest that molecules other than the SERT [such as G protein-activated inwardly rectifying K+ (GIRK) channels] whose activities are modulated by paroxetine and fluoxetine, but not by fluvoxamine, are involved in reducing METH CPP by paroxetine and fluoxetine.
Collapse
Affiliation(s)
- Y Takamatsu
- Division of Psychobiology, Tokyo Institute of Psychiatry, 2-1-8 Kamikitazawa, Setagaya-ku, Tokyo 156-8585, Japan
| | | | | | | | | |
Collapse
|
6
|
Hesperidin induces antinociceptive effect in mice and its aglicone, hesperetin, binds to μ-opioid receptor and inhibits GIRK1/2 currents. Pharmacol Biochem Behav 2011; 99:333-41. [DOI: 10.1016/j.pbb.2011.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 04/07/2011] [Accepted: 05/13/2011] [Indexed: 11/21/2022]
|
7
|
Yow TT, Pera E, Absalom N, Heblinski M, Johnston GAR, Hanrahan JR, Chebib M. Naringin directly activates inwardly rectifying potassium channels at an overlapping binding site to tertiapin-Q. Br J Pharmacol 2011; 163:1017-33. [PMID: 21391982 PMCID: PMC3130948 DOI: 10.1111/j.1476-5381.2011.01315.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 01/19/2011] [Accepted: 01/24/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND G protein-coupled inwardly rectifying potassium (K(IR) 3) channels are important proteins that regulate numerous physiological processes including excitatory responses in the CNS and the control of heart rate. Flavonoids have been shown to have significant health benefits and are a diverse source of compounds for identifying agents with novel mechanisms of action. EXPERIMENTAL APPROACH The flavonoid glycoside, naringin, was evaluated on recombinant human K(IR) 3.1-3.4 and K(IR) 3.1-3.2 expressed in Xenopus oocytes using two-electrode voltage clamp methods. In addition, we evaluated the activity of naringin alone and in the presence of the K(IR) 3 channel blocker tertiapin-Q (0.5 nM, 1 nM and 3 nM) at recombinant K(IR) 3.1-3.4 channels. Site-directed mutagenesis was used to identify amino acids within the M1-M2 loop of the K(IR) 3.1(F137S) mutant channel important for naringin's activity. KEY RESULTS Naringin (100 µM) had minimal effect on uninjected oocytes but activated K(IR) 3.1-3.4 and K(IR) 3.1-3.2 channels. The activation by naringin of K(IR) 3.1-3.4 channels was inhibited by tertiapin-Q in a competitive manner. An alanine-scan performed on the K(IR) 3.1(F137S) mutant channel, replacing one by one aromatic amino acids within the M1-M2 loop, identified tyrosines 148 and 150 to be significantly contributing to the affinity of naringin as these mutations reduced the activity of naringin by 20- and 40-fold respectively. CONCLUSIONS AND IMPLICATIONS These results show that naringin is a direct activator of K(IR) 3 channels and that tertiapin-Q shares an overlapping binding site on the K(IR) 3.1-3.4. This is the first example of a ligand that activates K(IR) 3 channels by binding to the extracellular M1-M2 linker of the channel.
Collapse
Affiliation(s)
- Tin T Yow
- Faculty of Pharmacy, The University of SydneySydney, NSW, Australia
| | - Elena Pera
- Faculty of Pharmacy, The University of SydneySydney, NSW, Australia
| | - Nathan Absalom
- Faculty of Pharmacy, The University of SydneySydney, NSW, Australia
| | - Marika Heblinski
- Northern Clinical School, The University of SydneySydney, NSW, Australia
| | - Graham AR Johnston
- Department of Pharmacology, The University of SydneySydney, NSW, Australia
| | - Jane R Hanrahan
- Faculty of Pharmacy, The University of SydneySydney, NSW, Australia
| | - Mary Chebib
- Faculty of Pharmacy, The University of SydneySydney, NSW, Australia
| |
Collapse
|
8
|
YAMAMOTO G, SOEDA F, SHIRASAKI T, TAKAHAMA K. Is the GIRK Channel a Possible Target in the Development of a Novel Therapeutic Drug of Urinary Disturbance? YAKUGAKU ZASSHI 2011; 131:523-32. [DOI: 10.1248/yakushi.131.523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Gen YAMAMOTO
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Fumio SOEDA
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Tetsuya SHIRASAKI
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Kazuo TAKAHAMA
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
9
|
Kawaura K, Miki R, Shima E, Honda S, Soeda F, Shirasaki T, Takahama K. Antidepressant-like effect of centrally acting non-narcotic antitussive caramiphen in a forced swimming test. Neurosci Lett 2010; 481:188-90. [DOI: 10.1016/j.neulet.2010.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 06/30/2010] [Accepted: 07/02/2010] [Indexed: 11/27/2022]
|
10
|
KAWAURA K, HONDA S, SOEDA F, SHIRASAKI T, TAKAHAMA K. A Novel Antidepressant-like Action of Drugs Possessing GIRK Channel Blocking Action in Rats. YAKUGAKU ZASSHI 2010; 130:699-705. [DOI: 10.1248/yakushi.130.699] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kazuaki KAWAURA
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Sokichi HONDA
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Fumio SOEDA
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Tetsuya SHIRASAKI
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Kazuo TAKAHAMA
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
11
|
Hyland S, Muller D, Hayton S, Stoecklin E, Barella L. Cortical Gene Expression in the Vitamin E-Deficient Rat: Possible Mechanisms for the Electrophysiological Abnormalities of Visual and Neural Function. ANNALS OF NUTRITION AND METABOLISM 2006; 50:433-41. [PMID: 16847396 DOI: 10.1159/000094635] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 04/05/2006] [Indexed: 11/19/2022]
Abstract
In mammals, severe and chronic deficiency of vitamin E (alpha-tocopherol) is associated with a characteristic neurological syndrome. Previously, we have shown that this syndrome is accompanied by electrophysiological abnormalities of neural and visual function. To investigate the molecular basis of the observed abnormalities, we used microarrays to monitor the expression of approximately 14,000 genes in the cerebral cortex from rats which had received diets containing 0, 1.25 and 5.0 mg/kg diet of all-rac-alpha-tocopheryl acetate for 14 months. Compared to the groups receiving 1.25 and 5.0 mg/kg alpha-tocopheryl acetate, a total of 11 genes were statistically significantly upregulated (> or =1.3-fold) and 34 downregulated (< or =1.3-fold) in the vitamin E-deficient group. Increased expression was observed for the genes encoding the antioxidant enzyme catalase and the axon guidance molecule tenascin-R, while decreased expression was detected for genes encoding protein components of myelin and determinants of neuronal signal propagation. Thus our observations suggest that vitamin E deficiency results in transcriptional alterations in the cerebral cortex of the rat which are consistent with the observed neurological and electrophysiological alterations.
Collapse
Affiliation(s)
- Stephen Hyland
- DSM Nutritional Products, Research and Development, Kaiseraugst, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Kobayashi T, Washiyama K, Ikeda K. Inhibition of G protein-activated inwardly rectifying K+ channels by ifenprodil. Neuropsychopharmacology 2006; 31:516-24. [PMID: 16123769 DOI: 10.1038/sj.npp.1300844] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
G protein-activated inwardly rectifying K+ channels (GIRK, also known as Kir3) are regulated by various G-protein-coupled receptors. Activation of GIRK channels plays an important role in reducing neuronal excitability in most brain regions and the heart rate. Ifenprodil, which is a clinically used cerebral vasodilator, interacts with several receptors, such as alpha1 adrenergic, N-methyl-D-aspartate, serotonin and sigma receptors. However, the molecular mechanisms underlying the various clinically related effects of ifenprodil remain to be clarified. Here, we examined the effects of ifenprodil on GIRK channels by using Xenopus oocyte expression assays. In oocytes injected with mRNAs for GIRK1/GIRK2, GIRK2 or GIRK1/GIRK4 subunits, ifenprodil reversibly reduced inward currents through the basal GIRK activity. The inhibition was concentration-dependent, but voltage- and time-independent, suggesting that ifenprodil may not act as an open channel blocker of the channels. In contrast, Kir1.1 and Kir2.1 channels in other Kir channel subfamilies were insensitive to ifenprodil. Furthermore, GIRK current responses activated by the cloned kappa-opioid receptor were similarly inhibited by ifenprodil. The inhibitory effects of ifenprodil were not observed when ifenprodil was applied intracellularly, and were not affected by extracellular pH, which changed the proportion of the uncharged to protonated ifenprodil, suggesting its action from the extracellular side. The GIRK currents induced by ethanol were also attenuated in the presence of ifenprodil. Our results suggest that direct inhibition of GIRK channels by ifenprodil, at submicromolar concentrations or more, may contribute to some of its therapeutic effects and adverse side effects.
Collapse
Affiliation(s)
- Toru Kobayashi
- Department of Molecular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan.
| | | | | |
Collapse
|
13
|
Kobayashi T, Washiyama K, Ikeda K. Inhibition of G Protein-Activated Inwardly Rectifying K+ Channels by the Antidepressant Paroxetine. J Pharmacol Sci 2006; 102:278-87. [PMID: 17072103 DOI: 10.1254/jphs.fp0060708] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Paroxetine is commonly used as a selective serotonin reuptake inhibitor for the treatment of depression and other psychiatric disorders. However, the molecular mechanisms of the paroxetine effects have not yet been sufficiently clarified. Using Xenopus oocyte expression assays, we investigated the effects of paroxetine on G protein-activated inwardly rectifying K+ (GIRK) channels, which play an important role in reducing neuronal excitability in most brain regions and the heart rate. In oocytes injected with mRNAs for GIRK1/GIRK2, GIRK2, or GIRK1/GIRK4 subunits, paroxetine reversibly reduced inward currents through the expressed GIRK channels. The inhibition was concentration-dependent, but voltage-independent and time-independent during each voltage pulse. However, two structurally different antidepressants: milnacipran and trazodone, caused only a small inhibition of basal GIRK currents. Additionally, Kir1.1 and Kir2.1 channels were insensitive to all of the antidepressants. Furthermore, the GIRK currents induced by activation of A1 adenosine receptors or by ethanol were inhibited by extracellularly applied paroxetine in a concentration-dependent manner, but not affected by intracellularly applied paroxetine. Our results suggest that inhibition of GIRK channels by paroxetine may contribute partly to some of its therapeutic effects and adverse side effects.
Collapse
Affiliation(s)
- Toru Kobayashi
- Department of Molecular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan.
| | | | | |
Collapse
|
14
|
Ide S, Han W, Kasai S, Hata H, Sora I, Ikeda K. Characterization of the 3' untranslated region of the human mu-opioid receptor (MOR-1) mRNA. Gene 2005; 364:139-45. [PMID: 16122888 DOI: 10.1016/j.gene.2005.05.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 04/07/2005] [Accepted: 05/30/2005] [Indexed: 11/30/2022]
Abstract
The mu-opioid receptor (MOR) plays a mandatory role in the action of most opioid drugs, such as morphine, fentanyl, and heroin. It has been revealed that a deficiency in the MOR gene (Oprm1) or a difference in the 3' noncoding region of the gene markedly affects the sensitivity of mice to opioids. As the 3' noncoding region of the human OPRM1 gene had not yet been characterized, in the present study we conducted 3'-rapid amplification of cDNA ends (3'RACE)-PCR and identified the 3' end of the human MOR-1 mRNA, the most abundant transcript among OPRM1 gene transcripts. The poly(A) signal was located at 13612-13617 nucleotides downstream from the stop codon in the OPRM1 gene. Reverse transcription PCR analyses showed that the region from the stop codon to the poly(A) signal was transcribed. In the 3'UTR, we identified 33 AU-rich regions and more than 300 putative transcription factor-binding sites. Furthermore, we compared the 3' noncoding regions of the human and mouse OPRM1/Oprm1 genes and found apparent homology. In Northern blotting with mouse brain mRNAs, a same-size band was detected by a probe for the MOR-1 coding region and by a probe for a mouse genome region corresponding to the human MOR-1 3'UTR. Since 3'UTRs affect gene expression, the present characterization of the 3' noncoding region in the human OPRM1 gene should lead to a better understanding of the mechanisms underlying OPRM1 gene regulation and individual differences in sensitivity to opioids.
Collapse
Affiliation(s)
- Soichiro Ide
- Division of Psychobiology, Tokyo Institute of Psychiatry, 2-1-8 Kamikitazawa, Setagaya-ku, Tokyo 156-8585, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Kobayashi T, Washiyama K, Ikeda K. Effects of interferon-α on cloned opioid receptors expressed in Xenopus oocytes. Life Sci 2004; 76:407-15. [PMID: 15530503 DOI: 10.1016/j.lfs.2004.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 07/17/2004] [Indexed: 11/30/2022]
Abstract
Interferon-alpha (IFNalpha) affects the opioid system. However, the direct action of IFNalpha on cloned opioid receptors remains unknown. Taking advantage of the functional coupling of cloned opioid receptors to G protein-activated inwardly rectifying K+ (GIRK) channels in a Xenopus oocyte expression system, we investigated the effects of recombinant IFNalpha on cloned mu-, delta- and kappa-opioid receptors. In oocytes co-injected with mRNAs for either the delta- or kappa-opioid receptor and for GIRK channel subunits, IFNalpha at high concentrations induced small GIRK currents that were abolished by naloxone, an opioid-receptor antagonist, compared with the control responses to each selective opioid agonist. Additionally, IFNalpha induced no significant current response in oocytes injected with mRNA(s) for either opioid receptor alone or GIRK channels. In oocytes expressing the mu-opioid receptor and GIRK channels, IFNalpha had little or no effect. Moreover, in oocytes expressing each opioid receptor and GIRK channels, GIRK current responses to each selective opioid agonist were not affected by the presence of IFNalpha, indicating no significant antagonism of IFNalpha toward the opioid receptors. Furthermore, IFNalpha had little or no effect on the mu/delta-, delta/kappa- or mu/kappa-opioid receptors expressed together with GIRK channels in oocytes. Our results suggest that IFNalpha weakly activates the delta and kappa-opioid receptors. The direct activation of the delta- and kappa-opioid receptors by IFNalpha may partly contribute to some of the IFNalpha effects under its high-dose medication.
Collapse
MESH Headings
- Animals
- Cloning, Molecular
- Dose-Response Relationship, Drug
- Female
- G Protein-Coupled Inwardly-Rectifying Potassium Channels
- Interferon-alpha/pharmacology
- Oocytes/drug effects
- Oocytes/metabolism
- Patch-Clamp Techniques
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- RNA, Messenger/metabolism
- Receptors, Opioid/drug effects
- Receptors, Opioid/genetics
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Recombinant Proteins
- Xenopus laevis
Collapse
Affiliation(s)
- Toru Kobayashi
- Department of Molecular Neuropathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Niigata, Niigata 951-8585, Japan.
| | | | | |
Collapse
|
16
|
Kobayashi T, Washiyama K, Ikeda K. Inhibition of G protein-activated inwardly rectifying K+ channels by various antidepressant drugs. Neuropsychopharmacology 2004; 29:1841-51. [PMID: 15150531 DOI: 10.1038/sj.npp.1300484] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
G protein-activated inwardly rectifying K+ channels (GIRK, also known as Kir3) are activated by various G protein-coupled receptors. GIRK channels play an important role in the inhibitory regulation of neuronal excitability in most brain regions and the heart rate. Modulation of GIRK channel activity may affect many brain functions. Here, we report the inhibitory effects of various antidepressants: imipramine, desipramine, amitriptyline, nortriptyline, clomipramine, maprotiline, and citalopram, on GIRK channels. In Xenopus oocytes injected with mRNAs for GIRK1/GIRK2, GIRK2 or GIRK1/GIRK4 subunits, the various antidepressants tested, except fluvoxamine, zimelidine, and bupropion, reversibly reduced inward currents through the basal GIRK activity at micromolar concentrations. The inhibitions were concentration-dependent with various degrees of potency and effectiveness, but voltage- and time-independent. In contrast, Kir1.1 and Kir2.1 channels in other Kir channel subfamilies were insensitive to all of the drugs. Furthermore, GIRK current responses activated by the cloned A1 adenosine receptor were similarly inhibited by the tricyclic antidepressant desipramine. The inhibitory effects of desipramine were not observed when desipramine was applied intracellularly, and were not affected by extracellular pH, which changed the proportion of the uncharged to protonated desipramine, suggesting its action from the extracellular side. The GIRK currents induced by ethanol were also attenuated in the presence of desipramine. Our results suggest that inhibition of GIRK channels by the tricyclic antidepressants and maprotiline may contribute to some of the therapeutic effects and adverse side effects, especially seizures and atrial arrhythmias in overdose, observed in clinical practice.
Collapse
Affiliation(s)
- Toru Kobayashi
- Department of Molecular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan.
| | | | | |
Collapse
|
17
|
Morgan AD, Carroll ME, Loth AK, Stoffel M, Wickman K. Decreased cocaine self-administration in Kir3 potassium channel subunit knockout mice. Neuropsychopharmacology 2003; 28:932-8. [PMID: 12637950 DOI: 10.1038/sj.npp.1300100] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiple G protein-linked neurotransmitter systems have been implicated in the behavioral effects of cocaine. While actions of certain neurotransmitter receptor subtypes and transporters have been identified, the role of individual G protein-regulated enzymes and ion channels in the effects of cocaine remains unclear. Here, we assessed the contribution of G protein-gated, inwardly rectifying potassium (Kir3/GIRK) channels to the locomotor-stimulatory and reinforcing effects of cocaine using knockout mice lacking one or both of the key neuronal channel subunits, Kir3.2 and Kir3.3. Cocaine-stimulated increases in horizontal locomotor activity in wild-type, Kir3.2 knockout, Kir3.3 knockout, and Kir3.2/3.3 double knockout mice, with only minor differences observed between the mouse lines. In contrast, Kir3.2 and Kir3.3 knockout mice exhibited dramatically reduced intravenous self-administration of cocaine relative to wild-type mice over a range of cocaine doses. Paradoxically, Kir3.2/3.3 double knockout mice self-administered cocaine at levels significantly higher than either single knockout alone. These findings suggest that Kir3 channels play significant and complex roles in the reinforcing effect of cocaine.
Collapse
Affiliation(s)
- Andrew D Morgan
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
18
|
Kobayashi T, Washiyama K, Ikeda K. Inhibition of G protein-activated inwardly rectifying K+ channels by fluoxetine (Prozac). Br J Pharmacol 2003; 138:1119-28. [PMID: 12684268 PMCID: PMC1573762 DOI: 10.1038/sj.bjp.0705172] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
1. The effects of fluoxetine, a commonly used antidepressant drug, on G protein-activated inwardly rectifying K(+) channels (GIRK, Kir3) were investigated using Xenopus oocyte expression assays. 2. In oocytes injected with mRNAs for GIRK1/GIRK2, GIRK2 or GIRK1/GIRK4 subunits, fluoxetine reversibly reduced inward currents through the basal GIRK activity. The inhibition by fluoxetine showed a concentration-dependence, a weak voltage-dependence and a slight time-dependence with a predominant effect on the instantaneous current elicited by voltage pulses and followed by slight further inhibition. Furthermore, in oocytes expressing GIRK1/2 channels and the cloned Xenopus A(1) adenosine receptor, GIRK current responses activated by the receptor were inhibited by fluoxetine. In contrast, ROMK1 and IRK1 channels in other Kir channel subfamilies were insensitive to fluoxetine. 3. The inhibitory effect on GIRK channels was not obtained by intracellularly applied fluoxetine, and not affected by extracellular pH, which changed the proportion of the uncharged to protonated fluoxetine, suggesting that fluoxetine inhibits GIRK channels from the extracellular side. 4. The GIRK currents induced by ethanol were also attenuated in the presence of fluoxetine. 5. We demonstrate that fluoxetine, at low micromolar concentrations, inhibits GIRK channels that play an important role in the inhibitory regulation of neuronal excitability in most brain regions and the heart rate through activation of various G-protein-coupled receptors. The present results suggest that inhibition of GIRK channels by fluoxetine may contribute to some of its therapeutic effects and adverse side effects, particularly seizures in overdose, observed in clinical practice.
Collapse
Affiliation(s)
- Toru Kobayashi
- Department of Molecular Neuropathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Niigata, Niigata 951-8585, Japan.
| | | | | |
Collapse
|
19
|
Ikeda K, Kobayashi T, Kumanishi T, Yano R, Sora I, Niki H. Molecular mechanisms of analgesia induced by opioids and ethanol: is the GIRK channel one of the keys? Neurosci Res 2002; 44:121-131. [PMID: 12354627 DOI: 10.1016/s0168-0102(02)00094-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Opioids and ethanol have been used since ancient times for pain relief. Opioid signaling is mediated by various effectors, including G protein-activated inwardly rectifying potassium (GIRK) channels, adenylyl cyclases, voltage-dependent calcium channels, phospholipase Cbeta(PLCbeta), and mitogen-activated protein kinases, although it has been unclear which effector mediates the analgesic effects of opioids. Ethanol induces a variety of physiological phenomena via various proteins, including GIRK channels rather than via membrane lipids. GIRK channel activation by either G proteins or ethanol is impaired in weaver mutant mice. The mutant mice may therefore serve as a useful animal model for studying the role of GIRK channels in vivo. Reduced analgesia by using either opioids or ethanol in weaver mutant mice suggests that GIRK channels are important effectors in both opioid- and ethanol-induced analgesia. This hypothesis is supported by similar findings in GIRK2 knockout mice. Among the various effectors coupled with opioid receptors and various targets of ethanol, GIRK channels are the only molecules whose involvement in opioid- and ethanol-induced analgesia has been demonstrated in vivo. The GIRK channel is potentially one of the key molecules in furthering the understanding of the pain control system and in developing advanced analgesics with fewer adverse effects.
Collapse
Affiliation(s)
- Kazutaka Ikeda
- Department of Molecular Psychiatry, Tokyo Institute of Psychiatry, 2-1-8 Kamikitazawa, Setagaya-ku, Tokyo 156-8585, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Kobayashi T, Ikeda K, Kumanishi T. Functional characterization of an endogenous Xenopus oocyte adenosine receptor. Br J Pharmacol 2002; 135:313-22. [PMID: 11815366 PMCID: PMC1573140 DOI: 10.1038/sj.bjp.0704475] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To investigate the effects of adenosine on endogenous Xenopus oocyte receptors, we analysed defolliculated oocytes injected with mRNAs for the G protein-activated inwardly rectifying K(+) (GIRK) channels. In oocytes injected with mRNAs for either GIRK1/GIRK2 or GIRK1/GIRK4 subunits, application of adenosine or ATP reversibly induced inward K(+) currents, although ATP was less potent than adenosine. The responses were attenuated by caffeine, a non-selective adenosine receptor antagonist. Furthermore, in uninjected oocytes from the same donor, adenosine produced no significant current. The endogenous receptor was activated by two selective A(1) adenosine receptor agonists, N(6)-cyclopentyladenosine (CPA) and N(6)-cyclohexyladenosine (CHA), and antagonized by a selective A(1) adenosine receptor antagonist, 1,3-dipropyl-8-cyclopenylxanthine (DPCPX) at moderate nanomolar concentrations, but insensitive to micromolar concentrations of selective A(2A) and A(3) adenosine receptor agonists, 2-[p-(2-carbonyl-ethyl)-phenylethylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680) and N(6)-(3-iodobenzyl)-5'-(N-methylcarbamoyl)adenosine (IB-MECA), respectively. However, the pharmacological characteristics of the receptor were different from those of the cloned Xenopus A(1) adenosine receptor and previously proposed adenosine receptors. The adenosine-induced GIRK currents were abolished by injection of pertussis toxin and CPA inhibited forskolin-stimulated cyclic AMP accumulation. We conclude that an adenosine receptor on the Xenopus oocyte membrane can activate GIRK channels and inhibit adenylyl cyclase via G(i/o) proteins. Moreover, our results suggest the existence of an endogenous adenosine receptor with the unique pharmacological characteristics. As the receptor was activated by nanomolar concentrations of adenosine, which is a normal constituent of extracellular fluid, the receptor may be involved in some effects through the G(i/o) protein signalling pathways in ovarian physiology.
Collapse
Affiliation(s)
- Toru Kobayashi
- Department of Molecular Neuropathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Niigata, Niigata 951-8585, Japan.
| | | | | |
Collapse
|
21
|
The untranslated region of (mu)-opioid receptor mRNA contributes to reduced opioid sensitivity in CXBK mice. J Neurosci 2001. [PMID: 11160404 DOI: 10.1523/jneurosci.21-04-01334.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is well known that there are individual differences in a sensitivity to analgesics. Several lines of evidence have suggested that the level of opioid-induced analgesia is dependent on the level of expression of the mu-opioid receptor (mu-OR). However, the molecular mechanisms underlying the diversity of the level of the opioid receptor and the opioid sensitivity among individuals remain to be elucidated. In the present study, we analyzed the opioid-receptor genes of CXBK recombinant-inbred mice, which show reduced sensitivity to opioids. Northern blotting, nucleotide sequencing, and in situ hybridization histochemical analyses demonstrated that CXBK mice possessed mu-OR mRNA with a normal coding region but an abnormally long untranslated region (UTR). In addition, the mu-OR mRNA level in CXBK mice was less than in the control mice. Next, we produced littermate mice that had inherited two copies of the wild-type mu-OR gene, had inherited two copies of the CXBK mu-OR gene, and had inherited both copies of the mu-OR genes. In these mice, inheritance of the CXBK mu-OR gene was well correlated with less mu-OR mRNA and reduced opioid effects on nociception and locomotor activity. We conclude that the CXBK mu-OR gene is responsible for the CXBK phenotypes. Because UTR differences are known to affect the level of the corresponding mRNA and protein and because UTRs are more divergent among individuals than coding regions, the present findings suggest that opioid sensitivity may vary, depending on different mu-OR levels attributable to divergent UTR of mu-OR mRNA.
Collapse
|
22
|
Ikeda K, Kobayashi T, Kumanishi T, Niki H, Yano R. Involvement of G-protein-activated inwardly rectifying K (GIRK) channels in opioid-induced analgesia. Neurosci Res 2000; 38:113-6. [PMID: 10997585 DOI: 10.1016/s0168-0102(00)00144-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To investigate the role of G-protein-activated inwardly rectifying K+ (GIRK) channels in opioid-induced analgesia, we compared the effects of opioids in wild-type and weaver mutant mice having mutant GIRK channels. In the tail-flick and hot-plate tests, weaver mutant mice displayed significantly lower analgesia after either morphine or (-)-U-50488 administration. These findings suggest that GIRK channel activation is important in the induction of analgesia by opioids.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesia
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Dose-Response Relationship, Drug
- G Protein-Coupled Inwardly-Rectifying Potassium Channels
- Mice
- Mice, Inbred C3H
- Mice, Neurologic Mutants
- Morphine/pharmacology
- Pain Measurement/drug effects
- Potassium Channels/deficiency
- Potassium Channels/genetics
- Potassium Channels/metabolism
- Potassium Channels, Inwardly Rectifying
- Reaction Time/drug effects
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- K Ikeda
- Laboratory for Neurobiology of Emotion, RIKEN, Brain Science Institute, Wako, Saitama, Japan.
| | | | | | | | | |
Collapse
|
23
|
Kobayashi T, Ikeda K, Kumanishi T. Inhibition by various antipsychotic drugs of the G-protein-activated inwardly rectifying K(+) (GIRK) channels expressed in xenopus oocytes. Br J Pharmacol 2000; 129:1716-22. [PMID: 10780978 PMCID: PMC1571994 DOI: 10.1038/sj.bjp.0703224] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To investigate the effects of various chemical classes of antipsychotic drugs: haloperidol, thioridazine, pimozide and clozapine, on the G-protein-activated inwardly rectifying K(+) (GIRK) channels, we carried out Xenopus oocyte functional assays with GIRK1 and GIRK2 mRNAs or GIRK1 and GIRK4 mRNAs. In oocytes co-injected with GIRK1 and GIRK2 mRNAs, application of each of the various antipsychotic drugs immediately caused a reduction of inward currents through the basally active GIRK channels. These responses were not observed in the presence of 3 mM Ba(2+), which blocks the GIRK channels. In addition, in uninjected oocytes, none of the drugs tested produced any significant current response. These results indicate that all the antipsychotic drugs tested inhibited the brain-type GIRK1/2 heteromultimeric channels. Furthermore, similar results were obtained in oocytes co-injected with GIRK1 and GIRK4 mRNAs, indicating that the antipsychotic drugs also inhibited the cardiac-type GIRK1/4 heteromultimeric channels. All the drugs tested inhibited, in a concentration-dependent manner, both types of GIRK channels with varying degrees of potency and effectiveness at micromolar concentrations. Only pimozide caused slight inhibition of these channels at nanomolar concentrations. We conclude that the various antipsychotic drugs acted as inhibitors at the brain-type and cardiac-type GIRK channels. Our results suggest that inhibition of both types of GIRK channels by these drugs underlies some of the side effects, in particular seizures and sinus tachycardia, observed in clinical practice.
Collapse
Affiliation(s)
- T Kobayashi
- Department of Molecular Neuropathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Niigata, Niigata 951-8585, Japan.
| | | | | |
Collapse
|
24
|
Kobayashi T, Ikeda K, Kojima H, Niki H, Yano R, Yoshioka T, Kumanishi T. Ethanol opens G-protein-activated inwardly rectifying K+ channels. Nat Neurosci 1999; 2:1091-7. [PMID: 10570486 DOI: 10.1038/16019] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ethanol affects many functions of the brain and peripheral organs. Here we show that ethanol opens G-protein-activated, inwardly rectifying K + (GIRK) channels, which has important implications for inhibitory regulation of neuronal excitability and heart rate. At pharmacologically relevant concentrations, ethanol activated both brain-type GIRK1/2 and cardiac-type GIRK1/4 channels without interaction with G proteins or second messengers. Moreover, weaver mutant mice, which have a missense mutation in the GIRK2 channel, showed a loss of ethanol-induced analgesia. These results suggest that the GIRK channels in the brain and heart are important target sites for ethanol.
Collapse
MESH Headings
- Alcohols/chemistry
- Alcohols/pharmacology
- Animals
- Brain
- Ethanol/pharmacology
- G Protein-Coupled Inwardly-Rectifying Potassium Channels
- Heterotrimeric GTP-Binding Proteins/antagonists & inhibitors
- Heterotrimeric GTP-Binding Proteins/metabolism
- Ion Channel Gating/drug effects
- Mice
- Mice, Inbred C3H
- Mice, Mutant Strains
- Motor Activity/drug effects
- Mutation, Missense/genetics
- Myocardium
- Oocytes/metabolism
- Pain Measurement/drug effects
- Patch-Clamp Techniques
- Potassium/metabolism
- Potassium/pharmacology
- Potassium Channels/genetics
- Potassium Channels/metabolism
- Potassium Channels, Inwardly Rectifying
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Second Messenger Systems/drug effects
- Xenopus laevis
Collapse
Affiliation(s)
- T Kobayashi
- Department of Molecular Neuropathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Niigata, Niigata 951-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Ikeda K, Ichikawa T, Kobayashi T, Kumanishi T, Oike S, Yano R. Unique behavioural phenotypes of recombinant-inbred CXBK mice: partial deficiency of sensitivity to mu- and kappa-agonists. Neurosci Res 1999; 34:149-55. [PMID: 10515257 DOI: 10.1016/s0168-0102(99)00047-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recombinant-inbred CXBK mice have been used for various studies as putative mu-opioid-receptor deficient mice. However, CXBK mice have never been compared with gene-targeting mice lacking the mu-opioid receptor (muKO) and the K-opioid receptor (kappaKO). Here we report that CXBK mice show distinct behavioural phenotype in opioid-induced analgesia and sedation. Intraperitoneal (i.p.) administration of morphine (3 and 10 mg kg(-1)) induced significantly lower levels of analgesia in CXBK mice than in the control C57BL/6 mice, while higher doses of morphine (30 and 100 mg kg(-1)) induced marked analgesia in CXBK mice. CXBK mice also showed lower analgesia and sedation levels than did C57 mice after i.p. administration of U-50488 (10 and 30 mg kg(-1)). The partial deficiency of sensitivity to morphine and U-50488 of CXBK mice is in sharp contrast to the complete lack of sensitivity to morphine and U-50488 in muKO and kappaKO mice, respectively. Furthermore, CXBK mice showed a lower threshold for nociceptive stimuli when they were not given an opioid, suggesting that CXBK mice could have alterations in the genes related to the nociceptive threshold. These unique behavioural phenotypes of CXBK mice suggest unique genetic alterations in CXBK mice.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal/drug effects
- Dose-Response Relationship, Drug
- Female
- Hot Temperature/adverse effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Morphine/pharmacology
- Pain/etiology
- Pain Threshold
- Phenotype
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/genetics
- Recombination, Genetic
- Sensitivity and Specificity
- Species Specificity
Collapse
Affiliation(s)
- K Ikeda
- Laboratory for Cellular Information Processing, Brain Science Institute, RIKEN, Wako, Saitama, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Ikeda K, Watanabe M, Ichikawa T, Kobayashi T, Yano R, Kumanishi T. Distribution of prepro-nociceptin/orphanin FQ mRNA and its receptor mRNA in developing and adult mouse central nervous systems. J Comp Neurol 1998; 399:139-51. [PMID: 9725707 DOI: 10.1002/(sici)1096-9861(19980914)399:1<139::aid-cne11>3.0.co;2-c] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nociceptin/orphanin FQ (N/OFQ) and its receptor share similarities to opioids and their receptors in terms of the molecular structure and signaling pathway, but the two systems exhibit different actions in vivo. To understand the mechanism of N/OFQ-system actions, we examined, by in situ hybridization analysis, the distribution of preproN/OFQ and N/OFQ receptor mRNAs in the developing and adult mouse central nervous systems (CNS). In most neural regions, preproN/OFQ mRNA was mainly expressed in a small population of middle-sized neurons. These neurons were scattered between large projection-type neurons or within the neuropil, suggestive of interneurons. In some other nuclei (lateral septum, bed nucleus of the stria terminalis, reticular thalamic nucleus, inferior colliculus, and rostral periolivery nucleus), preproN/OFQ mRNA was expressed in a number of large projection-type neurons. By contrast, N/OFQ receptor mRNA was evenly expressed in most neurons of the adult CNS. Considering the inhibitory actions of N/OFQ, the distinct cellular expression pattern of the N/OFQ system suggests that the release of N/OFQ from interneurons may lower neuronal and synaptic activities of neighboring neurons, leading to integration or modulation of local circuits. Furthermore, the cellular expression pattern, distinct from that of the opioid system, may provide a possible molecular/cellular basis for the different in vivo actions of N/OFQ and opioids. In embryonic stages, both preproN/OFQ and N/OFQ receptor mRNAs were highly and widely expressed in the mantle zone, suggesting the possible importance of N/OFQ signaling in CNS development.
Collapse
Affiliation(s)
- K Ikeda
- Laboratory for Cellular Information Processing, Brain Science Institute, RIKEN, Wako, Saitama, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Hyperalgesia and morphine induced antinociception were measured in mice lacking the gene for the Shaker-like voltage-gated potassium channel Kv1.1 alpha subunit. The effects of varying gene dosage were studied by comparing homozygous null (-/-) versus heterozygous (+/-) and wildtype (+/+) littermates. Hyperalgesia was measured using the paw flick assay, hot plate assay and formalin induced hind paw licking. It was observed that null mutant animals had significantly shorter latencies to response in the paw flick (36%) and hot plate (27%) assays while their licking times after hind paw injection of formalin was increased in both the first (74%) and second (65%) phases of the response compared to wildtype controls. Morphine induced antinociception in Kv1.1 null mutant animals was blunted. These studies indicate that Kv1.1 plays an important role in nociceptive and antinociceptive signaling pathways.
Collapse
Affiliation(s)
- J D Clark
- Department of Anesthesiology and Otolaryngology, The Virginia Merrill Bloedel Hearing Research Center, Seattle, WA 98195-7923, USA
| | | |
Collapse
|
28
|
Kobayashi T, Ikeda K, Kumanishi T. Effects of clozapine on the delta- and kappa-opioid receptors and the G-protein-activated K+ (GIRK) channel expressed in Xenopus oocytes. Br J Pharmacol 1998; 123:421-6. [PMID: 9504382 PMCID: PMC1565182 DOI: 10.1038/sj.bjp.0701621] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. To investigate the effects of clozapine, an atypical antipsychotic, on the cloned mu-, delta- and kappa-opioid receptors and G-protein-activated inwardly rectifying K+ (GIRK) channel, we performed the Xenopus oocyte functional assay with each of the three opioid receptor mRNAs and/or the GIRK1 mRNA. 2. In the oocytes co-injected with either the delta- or kappa-opioid receptor mRNA and the GIRK1 mRNA, application of clozapine induced inward currents which were attenuated by naloxone, an opioid-receptor antagonist, and blocked by Ba2+, which blocks the GIRK channel. Since the opioid receptors functionally couple to the GIRK channel, these results indicate that clozapine activates the delta- and kappa-opioid receptors and that the inward-current responses are mediated by the GIRK channel. The action of clozapine at the delta-opioid receptor was more potent and efficacious than that at the kappa-opioid receptor. In the oocytes co-injected with the mu-opioid receptor and GIRK1 mRNAs, application of clozapine (100 microM) did not induce an inward current, suggesting that clozapine could not activate the mu-opioid receptor. 3. Application of clozapine caused a reduction of the basal inward current in the oocytes injected with the GIRK1 mRNA alone, but caused no current response in the uninjected oocytes. These results indicate that clozapine blocks the GIRK channel. 4. To test the antagonism of clozapine for the mu- and kappa-opioid receptors, we applied clozapine together with each selective opioid agonist to the oocytes co-injected with either the mu- or kappa-opioid receptor mRNA and the GIRK1 mRNA. Each of the peak currents induced by each selective opioid agonist together with clozapine was almost equal to the responses to a selective opioid agonist alone. These results indicate that clozapine has no significant antagonist effect on the mu- and kappa-opioid receptors. 5. We conclude that clozapine acts as a delta- and kappa-agonist and as a GIRK channel blocker. Our results suggest that the efficacy and side effects of clozapine under clinical conditions may be partly due to activation of the delta-opioid receptor and blockade of the GIRK channel.
Collapse
Affiliation(s)
- T Kobayashi
- Department of Molecular Neuropathology, Brain Research Institute, Niigata University, Asahimachi, Japan
| | | | | |
Collapse
|
29
|
Ikeda K, Kobayashi K, Kobayashi T, Ichikawa T, Kumanishi T, Kishida H, Yano R, Manabe T. Functional coupling of the nociceptin/orphanin FQ receptor with the G-protein-activated K+ (GIRK) channel. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 45:117-26. [PMID: 9105677 DOI: 10.1016/s0169-328x(96)00252-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nociceptin/orphanin FQ is a heptadecapeptide which was recently isolated from brains. It induces hyperalgesia, in contrast to the analgesic effects of opioid ligands, although it and its receptor structurally resemble opioid peptides and opioid receptors, respectively. To investigate the molecular mechanism underlying nociceptin/orphanin FQ actions, we performed Xenopus oocyte expression assays, in situ hybridization histochemistry and electrophysiological analyses of neurons. We found that the nociceptin/orphanin FQ receptor is functionally coupled with the G-protein-activated K+ (GIRK) channel in Xenopus oocytes, and that the receptor mRNA and GIRK1 mRNA co-exist in various neurons, including hippocampal pyramidal cells. Furthermore, we found that nociceptin/orphanin FQ induces hyperpolarizing currents via inward-rectifier K+ channels in hippocampal pyramidal cells, suggesting that the nociceptin/orphanin FQ receptor couples with the GIRK channel in this region. We conclude that the nociceptin/orphanin FQ receptor couples with the GIRK channel in various neurons, including hippocampal pyramidal cells, thereby modulating neuronal excitability.
Collapse
Affiliation(s)
- K Ikeda
- Laboratory for Cellular Information Processing, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kobayashi T, Ikeda K, Ichikawa T, Togashi S, Kumanishi T. Effects of sigma ligands on the cloned mu-, delta- and kappa-opioid receptors co-expressed with G-protein-activated K+ (GIRK) channel in Xenopus oocytes. Br J Pharmacol 1996; 119:73-80. [PMID: 8872359 PMCID: PMC1915734 DOI: 10.1111/j.1476-5381.1996.tb15679.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Taking advantage of the functional coupling of the opioid receptors with the G-protein-activated K+ (GIRK) channel, we investigated the effects of sigma (sigma) ligands of various structural and pharmacological classes, (+)-N-allylnormetazocine ((+)-SKF10047) and (+)-cyclazocine, (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine ((+)-3PPP), 1,3-di-(2-tolyl)guanidine (DTG), carbetapentane and haloperidol, on the inward K+ current responses in Xenopus oocytes co-injected with each of the cloned mu-, delta- and kappa-opioid receptor mRNAs and the GIRK1 mRNA. 2. (+)-SKF10047 acted as a delta- and kappa-agonist (EC50 values (microM) = 0.618 and 0.652, respectively) and mu-antagonist (IC50 value (microM) = 8.51). (+)-Cyclazocine acted as a kappa-agonist and mu-antagonist (IC50 = 33.2). (+)-3PPP acted as a kappa-agonist (EC50 = 18.08 and a mu-antagonist. DTG acted as a mu- and kappa-agonist (EC50 = more than 30 and 14.88, respectively). Carbetapentane acted as a kappa-agonist and mu-antagonist (IC50 = 11.2). Haloperidol acted as a mu- and delta-agonist (EC50 = 5.683 and 7.389, respectively). 3. All currents induced by sigma ligands were reduced by 1 microM naloxone, an opioid receptor antagonist, and blocked by 300 microM Ba2+, a GIRK channel blocker. It was also indicated that the antagonism by naloxone at the delta-- and kappa-opioid receptors was weaker than that of naloxone at the mu-opioid receptor. The sigma ligands tested had no effect on the current responses in the oocytes injected with each of the opioid receptor mRNAs alone or with the GIRK1 mRNA alone. 4. We conclude that various sigma ligands directly interact with the cloned mu-, delta- and kappa-opioid receptors in Xenopus oocytes. Our results suggest that the effects of the sigma ligands may be partly mediated by the opioid receptors.
Collapse
MESH Headings
- Animals
- Brain Chemistry
- Cyclazocine/pharmacology
- Cyclopentanes/pharmacology
- Dose-Response Relationship, Drug
- GTP-Binding Proteins/metabolism
- Ligands
- Oocytes/drug effects
- Oocytes/metabolism
- Phenazocine/analogs & derivatives
- Phenazocine/pharmacology
- Potassium Channels/metabolism
- RNA, Messenger/biosynthesis
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Receptors, sigma/agonists
- Receptors, sigma/genetics
- Receptors, sigma/metabolism
- Xenopus laevis
Collapse
Affiliation(s)
- T Kobayashi
- Department of Molecular Neuropathology, Niigata University, Japan
| | | | | | | | | |
Collapse
|