1
|
Mandal PK, Guha Roy R, Samkaria A, Maroon JC, Arora Y. In Vivo 13C Magnetic Resonance Spectroscopy for Assessing Brain Biochemistry in Health and Disease. Neurochem Res 2022; 47:1183-1201. [PMID: 35089504 DOI: 10.1007/s11064-022-03538-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/27/2022]
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive technique that contributes to the elucidation of brain biochemistry. 13C MRS enables the detection of specific neurochemicals and their neuroenergetic correlation with neuronal function. The synergistic outcome of 13C MRS and the infusion of 13C-labeled substrates provide an understanding of neurometabolism and the role of glutamate/gamma-aminobutyric acid (GABA) neurotransmission in diseases, such as Alzheimer's disease, schizophrenia, and bipolar disorder. Moreover, 13C MRS provides a window into the altered flux rate of different pathways, including the tricarboxylic acid cycle (TCA) and the glutamate/glutamine/GABA cycle, in health and in various diseases. Notably, the metabolic flux rate of the TCA cycle often decreases in neurodegenerative diseases. Additionally, 13C MRS can be used to investigate several psychiatric and neurological disorders as it directly reflects the real-time production and alterations of key brain metabolites. This review aims to highlight the chronology, the technological advancements, and the applications of 13C MRS in various brain diseases.
Collapse
Affiliation(s)
- Pravat K Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre (NBRC), Gurgaon, India.
- Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne, Australia.
| | - Rimil Guha Roy
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre (NBRC), Gurgaon, India
| | - Avantika Samkaria
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre (NBRC), Gurgaon, India
| | - Joseph C Maroon
- Department of Neurosurgery, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Yashika Arora
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre (NBRC), Gurgaon, India
| |
Collapse
|
2
|
Rothman DL, de Graaf RA, Hyder F, Mason GF, Behar KL, De Feyter HM. In vivo 13 C and 1 H-[ 13 C] MRS studies of neuroenergetics and neurotransmitter cycling, applications to neurological and psychiatric disease and brain cancer. NMR IN BIOMEDICINE 2019; 32:e4172. [PMID: 31478594 DOI: 10.1002/nbm.4172] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 06/10/2023]
Abstract
In the last 25 years 13 C MRS has been established as the only noninvasive method for measuring glutamate neurotransmission and cell specific neuroenergetics. Although technically and experimentally challenging 13 C MRS has already provided important new information on the relationship between neuroenergetics and neuronal function, the high energy cost of brain function in the resting state and the role of altered neuroenergetics and neurotransmitter cycling in disease. In this paper we review the metabolic and neurotransmitter pathways that can be measured by 13 C MRS and key findings on the linkage between neuroenergetics, neurotransmitter cycling, and brain function. Applications of 13 C MRS to neurological and psychiatric disease as well as brain cancer are reviewed. Recent technological developments that may help to overcome spatial resolution and brain coverage limitations of 13 C MRS are discussed.
Collapse
Affiliation(s)
- Douglas L Rothman
- Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Departments of Radiology and Biomedical Imaging, and Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, 300 Cedar Street, P.O. Box 208043, New Haven, CT, USA
| | - Robin A de Graaf
- Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Fahmeed Hyder
- Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Graeme F Mason
- Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kevin L Behar
- Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Henk M De Feyter
- Departments of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Zhu XH, Chen W. In vivo X-Nuclear MRS Imaging Methods for Quantitative Assessment of Neuroenergetic Biomarkers in Studying Brain Function and Aging. Front Aging Neurosci 2018; 10:394. [PMID: 30538629 PMCID: PMC6277487 DOI: 10.3389/fnagi.2018.00394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/13/2018] [Indexed: 12/19/2022] Open
Abstract
Brain relies on glucose and oxygen metabolisms to generate biochemical energy in the form of adenosine triphosphate (ATP) for supporting electrophysiological activities and neural signaling under resting or working state. Aging is associated with declined mitochondrial functionality and decreased cerebral energy metabolism, and thus, is a major risk factor in developing neurodegenerative diseases including Alzheimer’s disease (AD). However, there is an unmet need in the development of novel neuroimaging tools and sensitive biomarkers for detecting abnormal energy metabolism and impaired mitochondrial function, especially in an early stage of the neurodegenerative diseases. Recent advancements in developing multimodal high-field in vivo X-nuclear (e.g., 2H, 17O and 31P) MRS imaging techniques have shown promise for quantitative and noninvasive measurement of fundamental cerebral metabolic rates of glucose and oxygen consumption, ATP production as well as nicotinamide adenine dinucleotide (NAD) redox state in preclinical animal and human brains. These metabolic neuroimaging measurements could provide new insights and quantitative bioenergetic markers associated with aging processing and neurodegeneration and can therefore be employed to monitor disease progression and/or determine effectiveness of therapeutic intervention.
Collapse
Affiliation(s)
- Xiao-Hong Zhu
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Wei Chen
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
4
|
Park KW, Kim EJ, Han HJ, Shim YS, Kwon JC, Ku BD, Park KH, Yi HA, Kim KK, Yang DW, Lee HW, Kang H, Kwon OD, Kim S, Lee JH, Chung EJ, Park SW, Park MY, Yoon B, Kim BC, Seo SW, Choi SH. Efficacy and tolerability of rivastigmine patch therapy in patients with mild-to-moderate Alzheimer's dementia associated with minimal and moderate ischemic white matter hyperintensities: A multicenter prospective open-label clinical trial. PLoS One 2017; 12:e0182123. [PMID: 28786987 PMCID: PMC5546604 DOI: 10.1371/journal.pone.0182123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/12/2017] [Indexed: 12/04/2022] Open
Abstract
Background and objective Studies investigating the impact of white matter hyperintensities (WMHs) on the response of acetylcholinesterase inhibitors in patients with Alzheimer’s disease (AD) have presented inconsistent results. We aimed to compare the effects of the rivastigmine patch between patients with AD with minimal WMHs and those with moderate WMHs. Methods Three hundred patients with mild to moderate AD were enrolled in this multicenter prospective open-label study and divided into two groups. Group 1 comprised patients with AD with minimal WMHs and group 2 comprised those with moderate WMHs. The patients were treated with a rivastigmine patch for 24 weeks. Efficacy measures were obtained at baseline and after 24 weeks. The primary endpoint was the change in the AD Assessment Scale-Cognitive subscale (ADAS-Cog) from the baseline to the end of the study. Results Of the 300 patients, there were 206 patients in group 1 and 94 patients in group 2. The intention-to-treat group comprised 198 patients (group 1, n = 136; group 2, n = 46) during the 24-week study period. Demographic factors did not differ between group 1 and group 2. There were no significant differences in change in ADAS-cog between group 1 (-0.62±5.70) and group 2 (-0.23±5.98) after the 24-week rivastigmine patch therapy (p = 0.378). The patients in group 1 had a 0.63-point improvement from baseline on the Frontal Assessment Battery, while group 2 had a 0.16-point decline compared to baseline at the end of the study (p = 0.037). The rates of adverse events (AEs) (42.6 vs. 40.3%) and discontinuation due to AEs (10.3% vs. 4.3%) did not differ between the groups. Conclusions Although the efficacy and tolerability of rivastigmine patch therapy were not associated with WMH severity in patients with AD, some improvement in frontal function was observed in those with minimal WMHs. Trial registration ClinicalTrials.gov NCT01380288
Collapse
Affiliation(s)
- Kyung Won Park
- Department of Neurology, Cognitive Disorders and Dementia Center, Dong-A University College of Medicine and Institute of Convergence Bio-Health, Busan, South Korea
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital and Biomedical Research Institute, Pusan National University School of Medicine, Busan, South Korea
| | - Hyun Jeong Han
- Department of Neurology, Seonam University College of Medicine, Myongji Hospital, Goyang, South Korea
| | - Yong S. Shim
- Department of Neurology, Holy Family Hospital, The Catholic University of Korea, School of Medicine, Bucheon, South Korea
| | - Jae C. Kwon
- Department of Neurology, Changwon Fatima Hospital, Changwon, South Korea
| | - Bon D. Ku
- Department of Neurology, Catholic Kwandong University College of Medicine, Gangneung, South Korea
| | - Kee Hyung Park
- Department of Neurology, Gachon University Gil Hospital, Incheon, South Korea
| | - Hyon-Ah Yi
- Department of Neurology, Keimyung University College of Medicine, Daegu, South Korea
| | - Kwang K. Kim
- Department of Neurology, Dongguk University College of Medicine, Seoul, South Korea
| | - Dong Won Yang
- Department of Neurology, The Catholic University of Korea, School of Medicine, Seoul, South Korea
| | - Ho-Won Lee
- Department of Neurology, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Heeyoung Kang
- Department of Neurology, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Oh Dae Kwon
- Department of Neurology, Catholic University of Daegu School of Medicine, Daegu, South Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jae-Hyeok Lee
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Eun Joo Chung
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Sang-Won Park
- Department of Neurology, Daegu Fatima Hospital, Daegu, South Korea
| | - Mee Young Park
- Department of Neurology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Bora Yoon
- Department of Neurology, Konyang University College of Medicine, Daejeon, South Korea
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University School of Medicine, Gwangju, South Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, South Korea
- * E-mail:
| |
Collapse
|
5
|
Janik R, Thomason LAM, Chaudhary S, Dorr A, Scouten A, Schwindt G, Masellis M, Stanisz GJ, Black SE, Stefanovic B. Attenuation of functional hyperemia to visual stimulation in mild Alzheimer's disease and its sensitivity to cholinesterase inhibition. Biochim Biophys Acta Mol Basis Dis 2015; 1862:957-65. [PMID: 26521151 DOI: 10.1016/j.bbadis.2015.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 01/09/2023]
Abstract
Despite the growing recognition of the significance of cerebrovascular impairment in the etiology and progression of Alzheimer's disease (AD), the early stage brain vascular dysfunction and its sensitivity to pharmacological interventions is still not fully characterized. Due to the early and aggressive treatment of probable AD with cholinesterase inhibitors (ChEI), which in and of themselves have direct effects on brain vasculature, the vast majority of hemodynamic measurements in early AD subjects reported hitherto have consequently been made only after the start of treatment, complicating the disentanglement of disease- vs. treatment-related effects on the cerebral vasculature. To address this gap, we used pseudo continuous arterial spin labeling MRI to measure resting perfusion and visual stimulation elicited changes in cerebral blood flow (CBF) and blood oxygenation dependent (BOLD) fMRI signal in a cohort of mild AD patients immediately prior to, 6months post, and 12months post commencement of open label cholinesterase inhibitor treatment. Although patients exhibited no gray matter atrophy prior to treatment and their resting perfusion was not distinguishable from that in age, education and gender-matched controls, the patients' visual stimulation-elicited changes in BOLD fMRI and blood flow were decreased by 10±4% (BOLD) and 23±2% (CBF), relative to those in controls. Induction of cholinesterase inhibition treatment was associated with a further, 7±2% reduction in patients' CBF response to visual stimulation, but it stabilized, at this new lower level, over the follow-up period. Likewise, MMSE scores remained stable during the treatment; furthermore, higher MMSE scores were associated with higher perfusion responses to visual stimulation. This study represents the initial step in disentangling the effects of AD pathology from those of the first line treatment with cholinesterase inhibitors on cerebral hemodynamics and supports the use of arterial spin labeling MRI for quantitative evaluation of the brain vascular function in mild Alzheimer's disease. The findings provide evidence of a pronounced deficit in the visual cortex hyperemia despite the relative sparing of visual function in early stage AD, its reduction with ChEI treatment induction, and its stabilization in the first year of cholinesterase inhibition treatment. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- Rafal Janik
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada.
| | - Lynsie A M Thomason
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Simone Chaudhary
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Adrienne Dorr
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Amy Scouten
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Graeme Schwindt
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Mario Masellis
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Greg J Stanisz
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada; Department of Nerurosurgery and Pediatrics Neurosurgery, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland
| | - Sandra E Black
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Medicine (Neurology), Sunnybrook Health Sciences Centre University of Toronto, Canada; Canadian Partnership for Stroke Recovery Sunnybrook Site, Canada
| | - Bojana Stefanovic
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9, Canada; Canadian Partnership for Stroke Recovery Sunnybrook Site, Canada
| |
Collapse
|
6
|
Perez SE, Raghanti MA, Hof PR, Kramer L, Ikonomovic MD, Lacor PN, Erwin JM, Sherwood CC, Mufson EJ. Alzheimer's disease pathology in the neocortex and hippocampus of the western lowland gorilla (Gorilla gorilla gorilla). J Comp Neurol 2013; 521:4318-38. [PMID: 23881733 PMCID: PMC6317365 DOI: 10.1002/cne.23428] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/28/2013] [Accepted: 07/10/2013] [Indexed: 12/11/2022]
Abstract
The two major histopathologic hallmarks of Alzheimer's disease (AD) are amyloid beta protein (Aβ) plaques and neurofibrillary tangles (NFT). Aβ pathology is a common feature in the aged nonhuman primate brain, whereas NFT are found almost exclusively in humans. Few studies have examined AD-related pathology in great apes, which are the closest phylogenetic relatives of humans. In the present study, we examined Aβ and tau-like lesions in the neocortex and hippocampus of aged male and female western lowland gorillas using immunohistochemistry and histochemistry. Analysis revealed an age-related increase in Aβ-immunoreactive plaques and vasculature in the gorilla brain. Aβ plaques were more abundant in the neocortex and hippocampus of females, whereas Aβ-positive blood vessels were more widespread in male gorillas. Plaques were also Aβ40-, Aβ42-, and Aβ oligomer-immunoreactive, but only weakly thioflavine S- or 6-CN-PiB-positive in both sexes, indicative of the less fibrillar (diffuse) nature of Aβ plaques in gorillas. Although phosphorylated neurofilament immunostaining revealed a few dystrophic neurites and neurons, choline acetyltransferase-immunoreactive fibers were not dystrophic. Neurons stained for the tau marker Alz50 were found in the neocortex and hippocampus of gorillas at all ages. Occasional Alz50-, MC1-, and AT8-immunoreactive astrocyte and oligodendrocyte coiled bodies and neuritic clusters were seen in the neocortex and hippocampus of the oldest gorillas. This study demonstrates the spontaneous presence of both Aβ plaques and tau-like lesions in the neocortex and hippocampus in old male and female western lowland gorillas, placing this species at relevance in the context of AD research.
Collapse
Affiliation(s)
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio 44242
- Cleveland Metroparks Zoo, Cleveland, Ohio 44109
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | | | - Milos D. Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pennsylvania 15213
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pennsylvania 15213
| | - Pascale N. Lacor
- Neurobiology Department and Cognitive Neurology and Alzheimer’s Disease Center, Northwestern University, Evanston, Illinois 60208
| | - Joseph M. Erwin
- Department of Anthropology, The George Washington University, Washington, DC 20052
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC 20052
| | | |
Collapse
|
7
|
Meakin P, Harper A, Hamilton D, Gallagher J, McNeilly A, Burgess L, Vaanholt L, Bannon K, Latcham J, Hussain I, Speakman J, Howlett D, Ashford M. Reduction in BACE1 decreases body weight, protects against diet-induced obesity and enhances insulin sensitivity in mice. Biochem J 2012; 441:285-96. [PMID: 21880018 PMCID: PMC3242510 DOI: 10.1042/bj20110512] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 08/18/2011] [Accepted: 08/31/2011] [Indexed: 01/10/2023]
Abstract
Insulin resistance and impaired glucose homoeostasis are important indicators of Type 2 diabetes and are early risk factors of AD (Alzheimer's disease). An essential feature of AD pathology is the presence of BACE1 (β-site amyloid precursor protein-cleaving enzyme 1), which regulates production of toxic amyloid peptides. However, whether BACE1 also plays a role in glucose homoeostasis is presently unknown. We have used transgenic mice to analyse the effects of loss of BACE1 on body weight, and lipid and glucose homoeostasis. BACE1-/- mice are lean, with decreased adiposity, higher energy expenditure, and improved glucose disposal and peripheral insulin sensitivity than wild-type littermates. BACE1-/- mice are also protected from diet-induced obesity. BACE1-deficient skeletal muscle and liver exhibit improved insulin sensitivity. In a skeletal muscle cell line, BACE1 inhibition increased glucose uptake and enhanced insulin sensitivity. The loss of BACE1 is associated with increased levels of UCP1 (uncoupling protein 1) in BAT (brown adipose tissue) and UCP2 and UCP3 mRNA in skeletal muscle, indicative of increased uncoupled respiration and metabolic inefficiency. Thus BACE1 levels may play a critical role in glucose and lipid homoeostasis in conditions of chronic nutrient excess. Therefore strategies that ameliorate BACE1 activity may be important novel approaches for the treatment of diabetes.
Collapse
Key Words
- β-site amyloid precursor protein-cleaving enzyme 1 (bace1)
- glucose uptake
- insulin sensitivity
- liver
- skeletal muscle
- uncoupling protein (ucp)
- aβ, β-amyloid peptide
- ad, alzheimer's disease
- addl, aβ-derived diffusible ligands
- ampk, amp-activated protein kinase
- app, amyloid precursor protein
- bace1, β-site amyloid precursor protein-cleaving enzyme 1
- bat, brown adipose tissue
- dmem, dulbecco's modified eagle's medium
- fbs, fetal bovine serum
- ffa, free fatty acid
- hbs, hepes-buffered saline
- hfd, high-fat diet
- igtt, intraperitoneal glucose tolerance test
- itt, insulin tolerance test
- irs, insulin receptor substrate
- ogtt, oral glucose tolerance test
- pdk, phosphoinositide-dependent kinase
- pkb, protein kinase b
- qmr, quantitative magnetic resonance
- qrt-pcr, quantitative real-time pcr
- rmr, resting metabolic rate
- rq, respiratory quotient
- t4, thyroxine
- tg, triacylglycerol
- ucp, uncoupling protein
- wat, white adipose tissue
- wt, wild-type
Collapse
Affiliation(s)
- Paul J. Meakin
- *Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, U.K
| | - Alex J. Harper
- †Neuroscience Centre of Excellence for Drug Discovery, GlaxoSmithKline R&D, New Frontiers Science Park, Harlow CM19 5AW, U.K
| | - D. Lee Hamilton
- *Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, U.K
| | - Jennifer Gallagher
- *Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, U.K
| | - Alison D. McNeilly
- ‡Division of Neuroscience, University of Dundee, Medical Research Institute, Dundee DD1 9SY, Scotland, U.K
| | - Laura A. Burgess
- *Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, U.K
| | - Lobke M. Vaanholt
- §Aberdeen Centre for Energy Regulation and Obesity, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, U.K
| | - Kirsten A. Bannon
- *Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, U.K
| | - Judy Latcham
- †Neuroscience Centre of Excellence for Drug Discovery, GlaxoSmithKline R&D, New Frontiers Science Park, Harlow CM19 5AW, U.K
| | - Ishrut Hussain
- †Neuroscience Centre of Excellence for Drug Discovery, GlaxoSmithKline R&D, New Frontiers Science Park, Harlow CM19 5AW, U.K
| | - John R. Speakman
- §Aberdeen Centre for Energy Regulation and Obesity, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, U.K
| | - David R. Howlett
- †Neuroscience Centre of Excellence for Drug Discovery, GlaxoSmithKline R&D, New Frontiers Science Park, Harlow CM19 5AW, U.K
| | - Michael L.J. Ashford
- *Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, U.K
| |
Collapse
|
8
|
Rothman DL, De Feyter HM, de Graaf RA, Mason GF, Behar KL. 13C MRS studies of neuroenergetics and neurotransmitter cycling in humans. NMR IN BIOMEDICINE 2011; 24:943-57. [PMID: 21882281 PMCID: PMC3651027 DOI: 10.1002/nbm.1772] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 05/05/2023]
Abstract
In the last 25 years, (13)C MRS has been established as the only noninvasive method for the measurement of glutamate neurotransmission and cell-specific neuroenergetics. Although technically and experimentally challenging, (13)C MRS has already provided important new information on the relationship between neuroenergetics and neuronal function, the energy cost of brain function, the high neuronal activity in the resting brain state and how neuroenergetics and neurotransmitter cycling are altered in neurological and psychiatric disease. In this article, the current state of (13)C MRS as it is applied to the study of neuroenergetics and neurotransmitter cycling in humans is reviewed. The focus is predominantly on recent findings in humans regarding metabolic pathways, applications to clinical research and the technical status of the method. Results from in vivo (13)C MRS studies in animals are discussed from the standpoint of the validation of MRS measurements of neuroenergetics and neurotransmitter cycling, and where they have helped to identify key questions to address in human research. Controversies concerning the relationship between neuroenergetics and neurotransmitter cycling and factors having an impact on the accurate determination of fluxes through mathematical modeling are addressed. We further touch upon different (13)C-labeled substrates used to study brain metabolism, before reviewing a number of human brain diseases investigated using (13)C MRS. Future technological developments are discussed that will help to overcome the limitations of (13)C MRS, with special attention given to recent developments in hyperpolarized (13)C MRS.
Collapse
Affiliation(s)
- Douglas L Rothman
- Department of Diagnostic Radiology, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT 06520-8043, USA.
| | | | | | | | | |
Collapse
|
9
|
Reed TT. Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med 2011; 51:1302-19. [PMID: 21782935 DOI: 10.1016/j.freeradbiomed.2011.06.027] [Citation(s) in RCA: 442] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/17/2011] [Accepted: 06/22/2011] [Indexed: 11/27/2022]
Abstract
Lipid peroxidation is a complex process involving the interaction of oxygen-derived free radicals with polyunsaturated fatty acids, resulting in a variety of highly reactive electrophilic aldehydes. Since 1975, lipid peroxidation has been extensively studied in a variety of organisms. As neurodegenerative diseases became better understood, research establishing a link between this form of oxidative damage, neurodegeneration, and disease has provided a wealth of knowledge to the scientific community. With the advent of proteomics in 1995, the identification of biomarkers for neurodegenerative disorders became of paramount importance to better understand disease pathogenesis and develop potential therapeutic strategies. This review focuses on the relationship between lipid peroxidation and neurodegenerative diseases. It also demonstrates how findings in current research support the common themes of altered energy metabolism and mitochondrial dysfunction in neurodegenerative disorders.
Collapse
Affiliation(s)
- Tanea T Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, KY 40475, USA.
| |
Collapse
|
10
|
Miettinen PS, Pihlajamäki M, Jauhiainen AM, Niskanen E, Hänninen T, Vanninen R, Soininen H. Structure and function of medial temporal and posteromedial cortices in early Alzheimer’s disease. Eur J Neurosci 2011; 34:320-30. [DOI: 10.1111/j.1460-9568.2011.07745.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Buettner LL, Fitzsimmons S, Atav S, Sink K. Cognitive stimulation for apathy in probable early-stage Alzheimer's. J Aging Res 2011; 2011:480890. [PMID: 21584241 PMCID: PMC3092580 DOI: 10.4061/2011/480890] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/02/2011] [Indexed: 11/20/2022] Open
Abstract
We studied changes in apathy among 77 community-dwelling older persons with mild memory loss in a randomized clinical trial comparing two nonpharmacological interventions over four weeks. The study used a pre-post design with randomization by site to avoid contamination and diffusion of effect. Interventions were offered twice weekly after baseline evaluations were completed. The treatment group received classroom style mentally stimulating activities (MSAs) while the control group received a structured early-stage social support (SS) group. The results showed that the MSA group had significantly lower levels of apathy (P < .001) and significantly lower symptoms of depression (P < .001). While both groups improved on quality of life, the MSA group was significantly better (P = .02) than the SS group. Executive function was not significantly different for the two groups at four weeks, but general cognition improved for the MSA group and declined slightly for the SS group which produced a significant posttest difference (P < .001). Recruitment and retention of SS group members was difficult in this project, especially in senior center locations, while this was not the case for the MSA group. The examination of the data at this four-week time point shows promising results that the MSA intervention may provide a much needed method of reducing apathy and depressive symptoms, while motivating participation and increasing quality of life.
Collapse
Affiliation(s)
- Linda L. Buettner
- The University of North Carolina at Greensboro, HHP 420A, Walker Street, Greensboro, NC 27402, USA
| | - Suzanne Fitzsimmons
- The University of North Carolina at Greensboro, HHP 420A, Walker Street, Greensboro, NC 27402, USA
| | - Serdar Atav
- Decker School of Nursing, Binghamton University, Binghamton, NY 13906, USA
| | - Kaycee Sink
- Sticht Center on Aging, Wake Forest University Baptist Medical Center, Winston-Salem, NC 27157, USA
| |
Collapse
|
12
|
Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability. J Neurosci 2010; 30:3326-38. [PMID: 20203192 DOI: 10.1523/jneurosci.5098-09.2010] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Amyloid-beta (Abeta) peptides play a key role in the pathogenesis of Alzheimer's disease and exert various toxic effects on neurons; however, relatively little is known about their influence on glial cells. Astrocytes play a pivotal role in brain homeostasis, contributing to the regulation of local energy metabolism and oxidative stress defense, two aspects of importance for neuronal viability and function. In the present study, we explored the effects of Abeta peptides on glucose metabolism in cultured astrocytes. Following Abeta(25-35) exposure, we observed an increase in glucose uptake and its various metabolic fates, i.e., glycolysis (coupled to lactate release), tricarboxylic acid cycle, pentose phosphate pathway, and incorporation into glycogen. Abeta increased hydrogen peroxide production as well as glutathione release into the extracellular space without affecting intracellular glutathione content. A causal link between the effects of Abeta on glucose metabolism and its aggregation and internalization into astrocytes through binding to members of the class A scavenger receptor family could be demonstrated. Using astrocyte-neuron cocultures, we observed that the overall modifications of astrocyte metabolism induced by Abeta impair neuronal viability. The effects of the Abeta(25-35) fragment were reproduced by Abeta(1-42) but not by Abeta(1-40). Finally, the phosphoinositide 3-kinase (PI3-kinase) pathway appears to be crucial in these events since both the changes in glucose utilization and the decrease in neuronal viability are prevented by LY294002, a PI3-kinase inhibitor. This set of observations indicates that Abeta aggregation and internalization into astrocytes profoundly alter their metabolic phenotype with deleterious consequences for neuronal viability.
Collapse
|
13
|
Boumezbeur F, Mason GF, de Graaf RA, Behar KL, Cline GW, Shulman GI, Rothman DL, Petersen KF. Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy. J Cereb Blood Flow Metab 2010; 30:211-21. [PMID: 19794401 PMCID: PMC2949111 DOI: 10.1038/jcbfm.2009.197] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A decline in brain function is a characteristic feature of healthy aging; however, little is known about the biologic basis of this phenomenon. To determine whether there are alterations in brain mitochondrial metabolism associated with healthy aging, we combined (13)C/(1)H magnetic resonance spectroscopy with infusions of [1-(13)C]glucose and [2-(13)C]acetate to quantitatively characterize rates of neuronal and astroglial tricarboxylic acid cycles, as well as neuroglial glutamate-glutamine cycling, in healthy elderly and young volunteers. Compared with young subjects, neuronal mitochondrial metabolism and glutamate-glutamine cycle flux was approximately 30% lower in elderly subjects. The reduction in individual subjects correlated strongly with reductions in N-acetylaspartate and glutamate concentrations consistent with chronic reductions in brain mitochondrial function. In elderly subjects infused with [2-(13)C]acetate labeling of glutamine, C4 and C3 differed from that of the young subjects, indicating age-related changes in glial mitochondrial metabolism. Taken together, these studies show that healthy aging is associated with reduced neuronal mitochondrial metabolism and altered glial mitochondrial metabolism, which may in part be responsible for declines in brain function.
Collapse
Affiliation(s)
- Fawzi Boumezbeur
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, Connecticut 06520-8020, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Alzheimer's disease and endothelial dysfunction. Neurol Sci 2009; 31:1-8. [PMID: 19838624 DOI: 10.1007/s10072-009-0151-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
Abstract
Recent studies suggest strong interactions between cerebrovascular and Alzheimer's disease (AD) pathology. These conditions share common risk factors and individuals having both frequently show greater cognitive impairment than those affected by only one disease. Many studies point to early vascular dysregulations in AD. The exchange between vascular and neural cells occurs through mechanisms not completely understood, involving interactions among endothelial, glial, neuronal and smooth muscle cells within the neurovascular unit. Studies suggest that the dysregulation of the unit is likely associated with hypertension and other systemic diseases. Associations between hypertension and cognitive decline are not established, but other variables associated with hypertension could create a causal link. Many studies have lacked a consistent, quantitative neuropsychological approach for assessing cognitive functions. This approach is reductive, as the need for a formal neuropsychological assessment has gained broad recognition, and the definition of dementia has gone through revision processes, which are in progress.
Collapse
|
15
|
Strazielle C, Jazi R, Verdier Y, Qian S, Lalonde R. Regional brain metabolism with cytochrome c oxidase histochemistry in a PS1/A246E mouse model of autosomal dominant Alzheimer's disease: correlations with behavior and oxidative stress. Neurochem Int 2009; 55:806-14. [PMID: 19682525 DOI: 10.1016/j.neuint.2009.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 08/01/2009] [Accepted: 08/05/2009] [Indexed: 01/08/2023]
Abstract
Mitochondrial dysfunction and brain metabolic alteration are early neurofunctional aspects in Alzheimer's disease (AD). Regional brain metabolism was analyzed by cytochrome c oxidase (COX) histochemistry in PS1-A246E mouse mutants, a model of autosomal dominant AD overexpressing beta-amyloid (Abeta) peptide without amyloidosis or cell degeneration. Immunohistochemical samples were analyzed on adjacent sections for regional Abeta1-42 levels, as well as DNA oxidative damage with 8-hydroxy-2-deoxyguanosine (8-OHdG). COX activity increased in the basal forebrain nuclear complex, specific parts of the amygdala and hippocampus, as well as in striatum and connected regions. On the contrary, a hypometabolism was observed in midline thalamic, interpeduncular, and pedonculopontine nuclei. The integration of these regions in circuitries subserving emotions, arousal, and cognitive functions may explain why neurochemical alterations in specific brain regions were linearly correlated with psychomotor slowing and disinhibition previously reported in the mutant. As the PS1-A246E model appears to mimick prodromal AD, the results support the existence of mitochondrial abnormalities prior to AD-related cognitive deficits. However, since affected PS1-A246E brain regions were not primarily those altered in AD-associated histopathological features and did not systematically display either Abeta overexpression or higher 8-OHdG immunolabelling, the hypermetabolism observed seems to comprise a compensatory reaction to early mitochondrial abnormalities; furthermore, neuronal synaptic function should be considered as particularly relevant in COX activity changes.
Collapse
|
16
|
O'Connor T, Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL, Eimer WA, Hitt B, Bembinster LA, Lammich S, Lichtenthaler SF, Hébert SS, De Strooper B, Haass C, Bennett DA, Vassar R. Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Neuron 2009; 60:988-1009. [PMID: 19109907 DOI: 10.1016/j.neuron.2008.10.047] [Citation(s) in RCA: 327] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 09/16/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
Abstract
beta-site APP cleaving enzyme-1 (BACE1), the rate-limiting enzyme for beta-amyloid (Abeta) production, is elevated in Alzheimer's disease (AD). Here, we show that energy deprivation induces phosphorylation of the translation initiation factor eIF2alpha (eIF2alpha-P), which increases the translation of BACE1. Salubrinal, an inhibitor of eIF2alpha-P phosphatase PP1c, directly increases BACE1 and elevates Abeta production in primary neurons. Preventing eIF2alpha phosphorylation by transfection with constitutively active PP1c regulatory subunit, dominant-negative eIF2alpha kinase PERK, or PERK inhibitor P58(IPK) blocks the energy-deprivation-induced BACE1 increase. Furthermore, chronic treatment of aged Tg2576 mice with energy inhibitors increases levels of eIF2alpha-P, BACE1, Abeta, and amyloid plaques. Importantly, eIF2alpha-P and BACE1 are elevated in aggressive plaque-forming 5XFAD transgenic mice, and BACE1, eIF2alpha-P, and amyloid load are correlated in humans with AD. These results strongly suggest that eIF2alpha phosphorylation increases BACE1 levels and causes Abeta overproduction, which could be an early, initiating molecular mechanism in sporadic AD.
Collapse
Affiliation(s)
- Tracy O'Connor
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Concept of functional imaging of memory decline in Alzheimer's disease. Methods 2008; 44:304-14. [PMID: 18374274 DOI: 10.1016/j.ymeth.2007.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 02/13/2007] [Indexed: 11/19/2022] Open
Abstract
Functional imaging methods such as Positron Emission Tomography (PET) and functional Magnetic Resonance Imaging (fMRI) have contributed inestimably to the understanding of physiological cognitive processes in the brain in the recent decades. These techniques for the first time allowed the in vivo assessment of different features of brain function in the living human subject. It was therefore obvious to apply these methods to evaluate pathomechanisms of cognitive dysfunction in disorders such as Alzheimer's disease (AD) as well. One of the most dominant symptoms of AD is the impairment of memory. In this context, the term "memory" represents a simplification and summarizes a set of complex cognitive functions associated with encoding and retrieval of different types of information. A number of imaging studies assessed the functional changes of neuronal activity in the brain at rest and also during performance of cognitive work, with regard to specific characteristics of memory decline in AD. In the current article, basic principles of common functional imaging procedures will be explained and it will be discussed how they can be reasonably applied for the assessment of memory decline in AD. Furthermore, it will be illustrated how these imaging procedures have been employed to improve early and specific diagnosis of the disease, to understand specific pathomechanisms of memory dysfunction and associated compensatory mechanisms, and to draw reverse conclusions on physiological function of memory.
Collapse
|
18
|
Cole SL, Vassar R. The Alzheimer's disease beta-secretase enzyme, BACE1. Mol Neurodegener 2007; 2:22. [PMID: 18005427 PMCID: PMC2211305 DOI: 10.1186/1750-1326-2-22] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 11/15/2007] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of Alzheimer's disease is highly complex. While several pathologies characterize this disease, amyloid plaques, composed of the β-amyloid peptide are hallmark neuropathological lesions in Alzheimer's disease brain. Indeed, a wealth of evidence suggests that β-amyloid is central to the pathophysiology of AD and is likely to play an early role in this intractable neurodegenerative disorder. The BACE1 enzyme is essential for the generation of β-amyloid. BACE1 knockout mice do not produce β-amyloid and are free from Alzheimer's associated pathologies including neuronal loss and certain memory deficits. The fact that BACE1 initiates the formation of β-amyloid, and the observation that BACE1 levels are elevated in this disease provide direct and compelling reasons to develop therapies directed at BACE1 inhibition thus reducing β-amyloid and its associated toxicities. However, new data indicates that complete abolishment of BACE1 may be associated with specific behavioral and physiological alterations. Recently a number of non-APP BACE1 substrates have been identified. It is plausible that failure to process certain BACE1 substrates may underlie some of the reported abnormalities in the BACE1-deficient mice. Here we review BACE1 biology, covering aspects ranging from the initial identification and characterization of this enzyme to recent data detailing the apparent dysregulation of BACE1 in Alzheimer's disease. We pay special attention to the putative function of BACE1 during healthy conditions and discuss in detail the relationship that exists between key risk factors for AD, such as vascular disease (and downstream cellular consequences), and the pathogenic alterations in BACE1 that are observed in the diseased state.
Collapse
Affiliation(s)
- Sarah L Cole
- Department of Cell and Molecular Biology, The Feinberg School of Medicine, Northwestern University, Chicago Avenue, Chicago, IL, USA.
| | | |
Collapse
|
19
|
Schmitt HP. Neuro-modulation, aminergic neuro-disinhibition and neuro-degeneration. Draft of a comprehensive theory for Alzheimer disease. Med Hypotheses 2005; 65:1106-19. [PMID: 16125326 DOI: 10.1016/j.mehy.2005.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 06/22/2005] [Accepted: 06/23/2005] [Indexed: 12/18/2022]
Abstract
A comprehensive theory for Alzheimer disease (AD) which can provide a clue to the neuronal selective vulnerability (pathoklisis) is still missing. Based upon evidence from the current literature, the present work is aimed at proposing such a theory, namely the 'aminergic disinhibition theory' of AD. It includes data-based hypotheses as to the pathoklisis, mechanisms of neuro-degeneration and dementia as well as the aetiology of the disease. Alzheimer disease is regarded as a disorder of neural input modulation caused by the degeneration of four modulatory amine transmitter (MAT) systems, namely the serotoninergic, the noradrenergic, the histaminergic, and the cholinergic systems with ascending projections. MATs modulate cognitive processing including arousal, attention, and synaptic plasticity in learning and memory, not only through direct, mostly inhibitory impact on principal neurones but also partially through interaction with local networks of GABA-ergic inter-neurones. The distribution and magnitude of the pathology in AD roughly correlate with the distribution and magnitude of MAT modulation: Regions more densely innervated by ascending MAT projections are, as a rule, more severely affected than areas receiving less MAT innervation. Because the global effect of MATs in the forebrain is inhibition, the degeneration of four MAT systems, some related peptidergic systems and a secondary alleviation of the GABA-ergic transmission means a fundamental loss of inhibitory impact in the neuronal circuitry resulting in neuronal (aminergic) disinhibition. Clearly, the basic mechanism promoting neuronal death in AD is thought to be a chronic disturbance of the inhibition-excitation balance to the advantage of excitation. Chronic over-excitation is conceived to result in Ca2+ dependent cellular excito-toxicity leading to neuro-degeneration including amyloid-beta production and NFT formation. Disinhibited neurons will degenerate while less excited (relatively over-inhibited) neurones will survive. Because the decline of aminergic transmission in AD is likely to start at the receptor level, it is hypothesized that early impairment by a molecular 'hit' to an MAT receptor (or a group of receptors) initiates a pathogenetic cascade that develops in an avalanche-like manner. Based on experimental evidence from the literature, the 'hit' might be the attachment of a targeted pathogen like a small roaming amino acid sequence to the receptor(s), e.g., the serotoninergic 5-HT2A-R. Referential sequence analysis could be a means to identify such a small pathogen hidden in a large receptor molecule.
Collapse
Affiliation(s)
- H Peter Schmitt
- Institute of Pathology, Department for Neuropathology, University of Heidelberg, Im Neuernheimer Feld 220-221, 69120 Heidelberg, Germany.
| |
Collapse
|
20
|
Liu R, Pei JJ, Wang XC, Zhou XW, Tian Q, Winblad B, Wang JZ. Acute anoxia induces tau dephosphorylation in rat brain slices and its possible underlying mechanisms. J Neurochem 2005; 94:1225-34. [PMID: 15992372 DOI: 10.1111/j.1471-4159.2005.03270.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abnormal phosphorylation of microtubule-associated protein tau plays a critical role in Alzheimer's disease (AD), together with a distinct decrease of energy metabolism in the affected brain regions. To explore the effect of acute energy crisis on tau phosphorylation and the underlying mechanisms, we incubated rat brain slices in artificial cerebrospinal fluid (aCSF) at 37 degrees C with or without an oxygen supply, or in aCSF with low glucose concentrations. Then, the levels of total, phosphorylated and unphosphorylated tau, as well as the activities and levels of protein phosphatase (PP)-1, PP-2A, glycogen synthase kinase 3 (GSK-3), extracellular signal-regulated protein kinase (ERK) and C-jun amino terminal kinase (JNK), were measured. It was found, unexpectedly, that tau was significantly dephosphorylated at Ser396/Ser404 (PHF-1), Ser422 (R145), Ser199/Ser202 (Tau-1), Thr181 (AT270), Ser202/Thr205 (AT8) and Thr231 (AT180) by acute anoxia for 30 min or 120 min. The activity of PP-2A and the level of dephosphorylated PP-2A catalytic subunit at tyrosine 307 (Tyr307) were simultaneously increased. The active forms of ERK1/2 and JNK1/2 were decreased under anoxic incubation. The PP-2A inhibitor, okadaic acid (OA, 0.75 microm), completely prevented tau from acute anoxia-induced dephosphorylation and restored the active forms of ERK1/2 and JNK1/2 to the control level. The activities and protein levels of GSK-3 and PP-1 showed no change during acute anoxia. These data suggest that acute anoxia induces tau dephosphorylation, and that PP-2A may play a key role in tau dephosphorylation induced by acute anoxia.
Collapse
Affiliation(s)
- Rong Liu
- Department of Pathophysiology, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Schmitt HP. On the paradox of ion channel blockade and its benefits in the treatment of Alzheimer disease. Med Hypotheses 2005; 65:259-65. [PMID: 15922097 DOI: 10.1016/j.mehy.2005.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 03/07/2005] [Indexed: 12/12/2022]
Abstract
The surprisingly beneficial effects in Alzheimer disease (AD) of ion channel blockers (ICB) like memantine that act on NMDA- and other aminergic transmitter receptors are yet poorly understood. NMDA receptor levels and binding were shown to be significantly decreased in AD, in which highly NMDA receptor and Ca(2+) dependent synaptic plasticity and re-modelling are severely compromised. Thus, how could one expect to improve AD by further suppressing NMDA channels with antagonists. Nevertheless, clinical trials with NMDA blockers revealed in moderate to advanced AD surprisingly positive effects. The present paper tries to provides a hypothetical explanation of that paradoxical success of ICBs. Based on evidence from current data, emphasis is put on a profound impairment in the AD brain of the inhibition-excitation balance in the neuronal circuitry to the advantage of excitation. This imbalance is conceived to result from a degeneration of four modulatory aminiergic transmitter systems (serotonin, noradrenalin, acetylcholine, histamine) and related peptidergic systems, the decline of which causes a profound loss of inhibitory impact in the forebrain neuronal circuitry leading to disinhibition of principal neurones ("aminergic disinhibition"). Subsequent Ca(2+) excito-toxicity and its sequelae are suggested to be the basic promotors of the neuro-degeneration and the related mental decline in AD. Re-adjustment of the inhibition-excitation imbalance by decreasing excitation is conceived to be the mechanism that renders ion channel blockade therapeutically successful. Putatively, attempts to increase inhibition, e.g., by application of GABA mimetics that stimulate the production GABA from preserved but "lazy" GABA neurones lacking aminergic facilitation, might be an even better way to achieve the re-balance.
Collapse
Affiliation(s)
- H Peter Schmitt
- Institute of Pathology, Department for Neuropathology, University of Heidelberg, Im Neuenheimer Feld 220-221, 69120 Heildelberg, Germany.
| |
Collapse
|
22
|
Strazielle C, Dumont M, Fukuchi K, Lalonde R. Transgenic mice expressing the human C99 terminal fragment of betaAPP: effects on cytochrome oxidase activity in skeletal muscle and brain. J Chem Neuroanat 2004; 27:237-46. [PMID: 15261330 DOI: 10.1016/j.jchemneu.2004.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2003] [Revised: 09/09/2003] [Accepted: 03/28/2004] [Indexed: 11/15/2022]
Abstract
In order to furnish a combined model of relevance to human inclusion-body myopathy and Alzheimer's disease, transgenic mice expressing human betaAPP-C99 in skeletal muscle and brain under the control of the cytomegalovirus/beta-actin promoter were produced (Tg13592). These transgenic mice develop Abeta deposits in muscles but not in brain. Cell metabolic activity was analyzed in brain regions and muscle by cytochrome oxidase (CO) histochemistry, the terminal enzyme of the electron transport chain. By comparison to age-matched controls of the C57BL/6 strain, CO activity was selectively increased in dark skeletal muscle fibers of Tg13592 mice. In addition, only increases in CO activity were obtained in those brain regions where a significant difference appeared. The CO activity of Tg13592 mice was elevated in several thalamic nuclei, including laterodorsal, ventromedial, and midline as well as submedial, intralaminar, and reticular. In contrast, the groups did not differ in most cortical regions, except for prefrontal, secondary motor, and auditory cortices, and in most brainstem regions, except for cerebellar (fastigial and interpositus) nuclei and related areas (red and lateral vestibular nuclei). No variation in cell density and surface area appeared in conjunction with these enzymatic alterations. The overproduction of betaAPP-C99 fragments in brain without (amyloidosis did not appear to affect the metabolic activity of structures particularly vulnerable in Alzheimer's disease.
Collapse
Affiliation(s)
- C Strazielle
- Laboratoire de Pathologie Moléculaire et Cellulaire en Nutrition (EMI-INSERM 0014) and Service de Microscopie Electronique, Faculté de Médecine, Université Henri Poincaré, Nancy I, France.
| | | | | | | |
Collapse
|
23
|
Li R, Strohmeyer R, Liang Z, Lue LF, Rogers J. CCAAT/enhancer binding protein delta (C/EBPdelta) expression and elevation in Alzheimer's disease. Neurobiol Aging 2004; 25:991-9. [PMID: 15212823 DOI: 10.1016/j.neurobiolaging.2003.10.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2002] [Revised: 09/26/2003] [Accepted: 10/28/2003] [Indexed: 12/23/2022]
Abstract
The CCAAT-enhancer binding protein (C/EBP) family of transcription factors, particularly C/EBPdelta, is well known to regulate or co-regulate a wide range of inflammatory mediators and mechanisms in the periphery, including interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha). These cytokines, in turn, can induce C/EBPdelta expression and translocation to the nucleus as an active transcription factor. Because IL-1, IL-6, and TNF-alpha are increased in pathologically vulnerable regions of the Alzheimer's disease (AD) brain, we sought to determine if C/EBPdelta might be expressed in AD cortex. Immunohistochemistry of AD tissue sections revealed profuse C/EBPdelta staining of astrocytes, particularly reactive astrocytes surrounding amyloid beta peptide deposits. Substantially less immunoreactivity was observed in comparable sections from nondemented elderly control (ND) patients. These qualitative findings were consistent with quantitative Western blot densitometry results showing significant increases in C/EBPdelta in AD compared to ND cortex samples. Additional in vitro studies were pursued in order to characterize functional activity of C/EBPdelta in human elderly astrocytes. Consistent with a functionally active transcription factor, C/EBPdelta immunoreactivity predominated in the nucleus of cultured AD and ND astrocytes, and exhibited increases and nuclear localization, as determined by Western blots and electrophoretic mobility shifts after exposure to C/EBPdelta-inducing cytokines.
Collapse
Affiliation(s)
- Rena Li
- Roberts Center for Alzheimer's Research, Sun Health Research Institute, P.O. Box 1278, Sun City, AZ 85372, USA
| | | | | | | | | |
Collapse
|
24
|
Strazielle C, Sturchler-Pierrat C, Staufenbiel M, Lalonde R. Regional brain cytochrome oxidase activity in beta-amyloid precursor protein transgenic mice with the Swedish mutation. Neuroscience 2003; 118:1151-63. [PMID: 12732258 DOI: 10.1016/s0306-4522(03)00037-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytochrome oxidase activity was examined in a transgenic mouse model of Alzheimer's disease with overexpression of the 751 amino acid isoform of beta-amyloid precursor protein with the Swedish mutation under control of the murine thy-1 promoter. The neuritic plaques, abundantly localized in the hippocampus and anterior neocortical areas, showed a core devoid of enzymatic activity surrounded by higher cytochrome oxidase activity at the sites of the dystrophic neurites and activated glial cells. Quantitative measures, taken only in the healthy-appearing regional areas without neuritic plaques, were higher in numerous limbic and non-limbic regions of transgenic mice in comparison with controls. Enzymatic activity was higher in the dentate gyrus and CA2-CA3 region of the hippocampus, the anterior cingulate and primary visual cortex, two olfactory structures, the ventral part of the neostriatum, the parafascicularis nucleus of the thalamus, and the subthalamic nucleus. Brainstem regions anatomically related with altered forebrain regions were more heavily labeled as well, including the substantia nigra, the periaqueductal gray, the superior colliculus, the medial raphe, the locus coeruleus and the adjacent parabrachial nucleus, as well as the pontine nuclei, red nucleus, and trigeminal motor nucleus. Functional brain organization is discussed in the context of Alzheimer's disease. Although hypometabolism is generally observed in this pathology, the increased cytochrome oxidase activity obtained in these transgenic mice can be the result of a functional compensation on the surviving neurons, or of an early mitochondrial alteration related to increased oxidative damage.
Collapse
Affiliation(s)
- C Strazielle
- Laboratoire de Pathologie Moléculaire et Cellulaire en Nutrition and the Service de Microscopie Electronique, Faculté de Médecine, Université Henri Poincaré, 7 Allée de la Forêt de Haye, 54500 Vandoeuvre-les-Nancy, France.
| | | | | | | |
Collapse
|
25
|
|
26
|
Ba F, Pang PKT, Benishin CG. The establishment of a reliable cytotoxic system with SK-N-SH neuroblastoma cell culture. J Neurosci Methods 2003; 123:11-22. [PMID: 12581845 DOI: 10.1016/s0165-0270(02)00324-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A reliable in vitro cytotoxic system is essential in neurocytotoxic and neuroprotective research. The present study examined four cytotoxic insults with the SK-N-SH human neuroblastoma cell line. These were beta-amyloid protein (Abeta), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), high density culture, and serum deprivation induced neuronal death. These insults induced significant reduction in cell numbers after 96 h culture, in a concentration dependent manner. Among all the insults, MPTP, serum deprivation, and high density culture induced apoptosis after 96 h, while Abeta presumably induced necrotic neuronal death since apoptosis was not detectable. The p38 MAP kinase inhibitor, SB203580 (1 microM), and the PKC inhibitor, chelerythrine (5 microM) successfully inhibited the loss in viability caused by Abeta and the high density culture, respectively. Other kinase inhibitors, including the non-specific protein kinase inhibitor, H7, the PKA inhibitor 14-22 Amide, the PKG inhibitor, KT5823, and the protein tyrosine kinase inhibitor, AG18 had no effect on any of the four cytotoxic models. This system allows the study of neuroprotection under conditions where the different pathways and mechanisms of the neurons can be considered within one cellular system, removing variations which may be due to different cell type studied. The present studies describe an effective model system for screening potential neuroprotective agents.
Collapse
Affiliation(s)
- Fang Ba
- Department of Physiology, Faculty of Medicine, University of Alberta, Edmonton, Alta, Canada T6G 2H7
| | | | | |
Collapse
|
27
|
Petrella JR, Coleman RE, Doraiswamy PM. Neuroimaging and early diagnosis of Alzheimer disease: a look to the future. Radiology 2003; 226:315-36. [PMID: 12563122 DOI: 10.1148/radiol.2262011600] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer disease (AD), a progressive neurodegenerative disorder, is the most common cause of dementia in the elderly. Current consensus statements have emphasized the need for early recognition and the fact that a diagnosis of AD can be made with high accuracy by using clinical, neuropsychologic, and imaging assessments. Magnetic resonance (MR) or computed tomographic (CT) imaging is recommended for the routine evaluation of AD. Coronal MR images can be useful to document or quantify atrophy of the hippocampus and entorhinal cortex, both of which occur early in the disease process. Both volumetric and subtraction MR techniques can be used to quantify and monitor dementia progression and rates of regional atrophy. MR measures are also increasingly being used to monitor treatment effects in clinical trials of cognitive enhancers and antidementia agents. Positron emission tomography (PET) and single photon emission CT offer value in the differential diagnosis of AD from other cortical and subcortical dementias and may also offer prognostic value. In addition, PET studies have demonstrated that subtle abnormalities may be apparent in the prodromal stages of AD and in subjects who carry susceptibility genes. PET ligands are in late-stage development for demonstration of amyloid plaques, and human studies have already begun. Functional MR-based memory challenge tests are in development as well.
Collapse
Affiliation(s)
- Jeffrey R Petrella
- Department of Radiology, Duke University Medical Center, Duke Hospital North, Rm 1513, Erwin Rd, Durham, NC 27710, USA.
| | | | | |
Collapse
|
28
|
Dhenain M, Lehéricy S, Duyckaerts C. Le diagnostic : de la neuropathologie à l’imagerie cérébrale. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/20021867697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
29
|
Venneri A, Shanks MF, Staff RT, Pestell SJ, Forbes KE, Gemmell HG, Murray AD. Cerebral blood flow and cognitive responses to rivastigmine treatment in Alzheimer's disease. Neuroreport 2002; 13:83-7. [PMID: 11924899 DOI: 10.1097/00001756-200201210-00020] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Twenty seven patients with mild AD were enrolled in a prospective open label controlled study of rivastigmine. Assessments included a range of neuropsychiatric and behavioural measures and rCBF using HMPAO SPECTat baseline, three and six months. Significant enhancement of frontal, parietal and temporal brain blood flow with related psychometric improvement was observed in twelve of the treated patients. A pattern of reduced rCBF and cognitive performance was observed in four unresponsive and eleven untreated patients. The results suggest that alterations in the clinical and cognitive status of patients receiving a cholinesterase inhibitor are paralleled by changes in rCBF. Longitudinal assessment with repeated imaging offers a method of better understanding the effects of cholinesterase inhibition on the AD brain.
Collapse
|
30
|
Almkvist O. Functional brain imaging as a looking-glass into the degraded brain: reviewing evidence from Alzheimer disease in relation to normal aging. Acta Psychol (Amst) 2000; 105:255-77. [PMID: 11194415 DOI: 10.1016/s0001-6918(00)00064-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Research on the real-time relationship between brain activity and mental performance is intense. However, relatively few studies have been devoted to patients with different diseases or lesions. Such studies may cast light on certain aspects of brain activity, such as plasticity. This review summarizes studies on Alzheimer's disease (AD) patients where the techniques to map brain activity in relation to mental performance have been utilized. Research findings suggest, that there is a spectrum of changes in AD patients that is distinct from that seen in healthy aging. These changes include: (i) loss of activated regions, (ii) reduced activation possibly due to brain degeneration typical of AD, (iii) the emergence of newly activated regions in order to compensate for minor brain deterioration (e.g., an enlargement of activated regions sometimes manifested as an increased bilaterality or a hemispheric shift of activation, and dedifferentiation), (iv) decreased level of activation, and (v) no change at all, which may occur in easy tasks or tasks that do not involve regions exposed to brain atrophy. In conclusion, the pattern of activation in AD depends on interactions between the clinical stage of patients, and the pattern of brain degeneration, as well as the task difficulty and specific networks necessary for solving the task.
Collapse
Affiliation(s)
- O Almkvist
- NEUROTEC, Geriatric Medicine, Huddinge University Hospital, and Queen Sophia University College of Nursing, 14186 Huddinge, Stockholm, Sweden.
| |
Collapse
|