1
|
Knox D, Parikh V. Basal forebrain cholinergic systems as circuits through which traumatic stress disrupts emotional memory regulation. Neurosci Biobehav Rev 2024; 159:105569. [PMID: 38309497 PMCID: PMC10948307 DOI: 10.1016/j.neubiorev.2024.105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Contextual and spatial systems facilitate changes in emotional memory regulation brought on by traumatic stress. Cholinergic basal forebrain (chBF) neurons provide input to contextual/spatial systems and although chBF neurons are important for emotional memory, it is unknown how they contribute to the traumatic stress effects on emotional memory. Clusters of chBF neurons that project to the prefrontal cortex (PFC) modulate fear conditioned suppression and passive avoidance, while clusters of chBF neurons that project to the hippocampus (Hipp) and PFC (i.e. cholinergic medial septum and diagonal bands of Broca (chMS/DBB neurons) are critical for fear extinction. Interestingly, neither Hipp nor PFC projecting chMS/DBB neurons are critical for fear extinction. The retrosplenial cortex (RSC) is a contextual/spatial memory system that receives input from chMS/DBB neurons, but whether this chMS/DBB-RSC circuit facilitates traumatic stress effects on emotional memory remain unexplored. Traumatic stress leads to neuroinflammation and the buildup of reactive oxygen species. These two molecular processes may converge to disrupt chBF circuits enhancing the impact of traumatic stress on emotional memory.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, Behavioral Neuroscience Program, University of Delaware, Newark, DE, USA.
| | - Vinay Parikh
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Ren M, Lotfipour S, Leslie F. Unique effects of nicotine across the lifespan. Pharmacol Biochem Behav 2022; 214:173343. [PMID: 35122768 PMCID: PMC8904294 DOI: 10.1016/j.pbb.2022.173343] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/23/2022]
Abstract
Smoking remains the leading cause of preventable death in the United States. Although combustible cigarettes are largely being replaced by tobacco-free products, nicotine use continues to increase in vulnerable populations, including youth, adolescents, and pregnant women. Nicotine exerts unique effects on specific brain regions during distinct developmental periods due to the dynamic expression of nicotinic acetylcholine receptors (nAChRs) throughout the lifespan. Nicotine exposure is a health concern not only for adults but also has neurotoxic effects on the fetus, newborn, child, and adolescent. In this review, we aim to highlight the dynamic roles of nAChRs throughout gestation, adolescence, and adulthood. We also provide clinical and preclinical evidence of the neurodevelopmental, cognitive, and behavioral consequences of nicotine exposure at different developmental periods. This comprehensive review highlights unique effects of nicotine throughout the lifespan to help elucidate interventions and public health measures to protect sensitive populations from nicotine exposure.
Collapse
Affiliation(s)
- Michelle Ren
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA; Department of Emergency Medicine, School of Medicine, University of California, Irvine, Irvine, CA, USA; Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Frances Leslie
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
3
|
Association between Postoperative Opioid Requirements and the Duration of Smoking Cessation in Male Smokers after Laparoscopic Distal Gastrectomy with Gastroduodenostomy. Pain Res Manag 2021; 2021:1541748. [PMID: 33574973 PMCID: PMC7861925 DOI: 10.1155/2021/1541748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/23/2020] [Accepted: 01/15/2021] [Indexed: 11/18/2022]
Abstract
Smoking is clinically associated with high postoperative pain scores and increased perioperative analgesic requirements. However, the association between the duration of smoking cessation and postoperative opioid requirements remains unclear. Therefore, this study aimed to evaluate the association between the duration of smoking cessation and postoperative opioid requirements. We retrospectively analyzed the data of 144 male patients who received intravenous patient-controlled analgesia (IV PCA) after laparoscopic distal gastrectomy with gastroduodenostomy. All patients were divided into three groups: G0, nonsmoker; G1, smoker who quit smoking within 1 month preoperatively; G2, smoker who quit smoking over 1 month preoperatively. Analgesic use, pain intensity, and IV PCA side effects were assessed up to postoperative day 2. As the duration of smoking cessation increased, the amount of postoperative opioid consumption decreased (β = -0.08; 95% confidence interval (CI), -0.11 to -0.04; P < 0.001). The total postoperative opioid requirements in G1 were significantly higher than those in G0 and G2 (G0, 75.5 ± 15.9 mg; G1, 94.6 ± 20.5 mg; and G2, 79.9 ± 19.4 mg (P < 0.001)). A multivariate regression analysis revealed that G1 was independently associated with increased postoperative opioid requirements (β = 12.80; 95% CI, 5.81-19.80; P < 0.001). Consequently, male patients who had ceased smoking within 1 month of undergoing a laparoscopic distal gastrectomy with gastroduodenostomy had higher postoperative opioid use than patients who had ceased smoking for more than 1 month and nonsmokers.
Collapse
|
4
|
Patel D, Vishwakarma PK, Patel R, Jain NS. Central histaminergic transmission modulates the expression of chronic nicotine withdrawal induced anxiety-like and somatic behavior in mice. Behav Brain Res 2020; 399:112997. [PMID: 33166570 DOI: 10.1016/j.bbr.2020.112997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/09/2020] [Accepted: 10/30/2020] [Indexed: 12/01/2022]
Abstract
The present study investigated the plausible modulatory role of central histaminergic transmission on the expression of nicotine withdrawal induced anxiety and somatic behavior in mice. Abrupt cessation of chronic nicotine (2 mg/kg, i.p. × 3/day) treatment for 12 days to mice, expressed increased anxiety in light & dark test and total abstinence (somatic) score at 24 h post nicotine withdrawal time. The somatic signs includes a composite score of all behaviors such as grooming, rearing, jumping, body shakes, forelimb tremors, head shakes, abdominal constrictions, scratching, empty mouth chewing or teeth chattering, genital licking, tail licking. Mice exhibited higher expression to nicotine withdrawal induced anxiety in light & dark test at 24 h post-nicotine withdrawal time on pre-treatment centrally (i.c.v) with histaminergic agents like histamine (0.1, 50 μg/mouse), histamine H3 receptor inverse agonist, thioperamide (2, 10 μg/mouse), histamine H1 receptor agonist, FMPH (2, 6.5 μg/mouse) or H2 receptor agonist amthamine (0.1, 0.5 μg/mouse) or intraperitoneally (i.p.) with histamine precursor, l-histidine (250, 500 mg/kg) as compared to control nicotine withdrawn animals. Furthermore, mice pre-treated with all these histaminergic agents except histamine H1 receptor agonist, FMPH shows exacerbated expression to post-nicotine withdrawal induced total abstinence (somatic) score in mice. On the other hand, central injection of selective histamine H1 receptor antagonist, cetirizine (0.1 μg/mouse, i.c.v.) or H2 receptor antagonist, ranitidine (50 μg/mouse, i.c.v) to mice 10 min before 24 h post-nicotine withdrawal time completely alleviated the expression of nicotine withdrawal induced anxiety and somatic behavior. Thus, it can be contemplated that the blockade of central histamine H1 or H2 receptor during the nicotine withdrawal phase could be a novel approach to mitigate the nicotine withdrawal associated anxiety-like manifestations. Contribution of endogenous histamine via H1 or H2 receptor stimulation in the nicotine withdrawal induced anxiety and somatic behavior is proposed.
Collapse
Affiliation(s)
- Deepak Patel
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas University (A Central University), Koni, Bilaspur, Chhattisgarh, 495009, India
| | - Prabhat Kumar Vishwakarma
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas University (A Central University), Koni, Bilaspur, Chhattisgarh, 495009, India
| | - Richa Patel
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas University (A Central University), Koni, Bilaspur, Chhattisgarh, 495009, India
| | - Nishant Sudhir Jain
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas University (A Central University), Koni, Bilaspur, Chhattisgarh, 495009, India.
| |
Collapse
|
5
|
Alzu'bi A, Middleham W, Shoaib M, Clowry GJ. Selective Expression of Nicotinic Receptor Sub-unit mRNA in Early Human Fetal Forebrain. Front Mol Neurosci 2020; 13:72. [PMID: 32670017 PMCID: PMC7326072 DOI: 10.3389/fnmol.2020.00072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence from animal and human studies indicate that exposure to nicotine during development, separated from the effects of smoking tobacco, can contribute to dysregulation of brain development including behavioral deficits. An RNAseq study of human fetal cerebral cortex demonstrated that 9 out of 16 genes for human nicotinic acetylcholine (ACh) receptor subunits are selectively expressed between 7.5 and 12 post-conceptional weeks (PCW). The most highly expressed subunit genes were CHNRA4 and CHNRB2, whose protein products combine to form the most ubiquitous functional receptor isoform expressed in the adult brain. They exhibited correlated expression in both RNAseq samples, and in tissue sections by in situ hybridization. Co-localization studies with other cortical markers suggest they are pre-dominantly expressed by post-mitotic glutamatergic neuron pre-cursors in both cortical plate and pre-subplate, rather than cortical progenitor cells or GABAergic interneuron pre-cursors. However, GABAergic interneuron progenitor cells in the ganglionic eminences do express these sub-units. CHNRA5 also showed moderate levels of expression and again favored post-mitotic neurons. Other subunits, e.g., CHRNA7, exhibited low but detectable levels of expression. CHRN genes found not to be expressed included genes for subunits usually considered muscle specific, e.g., CHNRA1, although some muscle specific gene expression was detected, for instance CHNRB1. Although there is little or no synthesis of acetylcholine by intrinsic cortical neurons, cholinergic fibers from basal forebrain innervate the cerebral cortex from 12 PCW at the latest. Acetylcholine may have a paracrine effect on radially migrating cortical neurons and GABAergic interneuron progenitors.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
| | - William Middleham
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mohammed Shoaib
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gavin J Clowry
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Ren M, Lotfipour S. Nicotine Gateway Effects on Adolescent Substance Use. West J Emerg Med 2019; 20:696-709. [PMID: 31539325 PMCID: PMC6754186 DOI: 10.5811/westjem.2019.7.41661] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 04/15/2019] [Accepted: 07/01/2019] [Indexed: 11/11/2022] Open
Abstract
Given the rise in teenage use of electronic nicotine delivery systems ("vaping") in congruence with the increasing numbers of drug-related emergencies, it is critical to expand the knowledge of the physical and behavioral risks associated with developmental nicotine exposure. A further understanding of the molecular and neurochemical underpinnings of nicotine's gateway effects allows emergency clinicians to advise patients and families and adjust treatment accordingly, which may minimize the use of tobacco, nicotine, and future substances. Currently, the growing use of tobacco products and electronic cigarettes among teenagers represents a major public health concern. Adolescent exposure to tobacco or nicotine can lead to subsequent abuse of nicotine and other substances, which is known as the gateway hypothesis. Adolescence is a developmentally sensitive time period when risk-taking behaviors, such as sensation seeking and drug experimentation, often begin. These hallmark behaviors of adolescence are largely due to maturational changes in the brain. The developing brain is particularly vulnerable to the harmful effects of drugs of abuse, including tobacco and nicotine products, which activate nicotinic acetylcholine receptors (nAChRs). Disruption of nAChR development with early nicotine use may influence the function and pharmacology of the receptor subunits and alter the release of reward-related neurotransmitters, including acetylcholine, dopamine, GABA, serotonin, and glutamate. In this review, we emphasize that the effects of nicotine are highly dependent on timing of exposure, with a dynamic interaction of nAChRs with dopaminergic, endocannabinoid, and opioidergic systems to enhance general drug reward and reinforcement. We analyzed available literature regarding adolescent substance use and nicotine's impact on the developing brain and behavior using the electronic databases of PubMed and Google Scholar for articles published in English between January 1968 and November 2018. We present a large collection of clinical and preclinical evidence that adolescent nicotine exposure influences long-term molecular, biochemical, and functional changes in the brain that encourage subsequent drug abuse.
Collapse
Affiliation(s)
- Michelle Ren
- University of California, Irvine, Department of Pharmaceutical Sciences, Irvine, California
| | - Shahrdad Lotfipour
- University of California, Irvine, Department of Emergency Medicine and Pharmaceutical Sciences, Irvine, California
| |
Collapse
|
7
|
Liu W, Su K. A Review on the Receptor-ligand Molecular Interactions in the Nicotinic Receptor Signaling Systems. Pak J Biol Sci 2019; 21:51-66. [PMID: 30221881 DOI: 10.3923/pjbs.2018.51.66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nicotine is regarded as the main active addictive ingredient in tobacco products driving continued tobacco abuse behavior (smoking) to the addiction behavior, whereas nicotinic acetylcholine receptors (nAChR) is the crucial effective apparatus or molecular effector of nicotine and acetylcholine and other similar ligands. Many nAChR subunits have been revealed to bind to either neurotransmitters or exogenous ligands, such as nicotine and acetylcholine, being involved in the nicotinic receptor signal transduction. Therefore, the nicotinic receptor signalling molecules and the receptor-ligand molecular interactions between nAChRs and their ligands are universally regarded as crucial mediators of cellular functions and drug targets in medical treatment and clinical diagnosis. Given numerous endeavours have been made in defining the roles of nAChRs in response to nicotine and other addictive drugs, this review focuses on studies and reports in recent years on the receptor-ligand interactions between nAChR receptors and ligands, including lipid-nAChR and protein-nAChR molecular interactions, relevant signal transduction pathways and their molecular mechanisms in the nicotinic receptor signalling systems. All the references were carefully retrieved from the PubMed database by searching key words "nicotine", "acetylcholine", "nicotinic acetylcholine receptor(s)", "nAChR*", "protein and nAChR", "lipid and nAChR", "smok*" and "tobacco". All the relevant referred papers and reports retrieved were fully reviewed for manual inspection. This effort intend to get a quick insight and understanding of the nicotinic receptor signalling and their molecular interactions mechanisms. Understanding the cellular receptor-ligand interactions and molecular mechanisms between nAChRs and ligands will lead to a better translational and therapeutic operations and outcomes for the prevention and treatment of nicotine addiction and other chronic drug addictions in the brain's reward circuitry.
Collapse
|
8
|
Liu W, Li MD. Insights Into Nicotinic Receptor Signaling in Nicotine Addiction: Implications for Prevention and Treatment. Curr Neuropharmacol 2018; 16:350-370. [PMID: 28762314 PMCID: PMC6018190 DOI: 10.2174/1570159x15666170801103009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/18/2017] [Accepted: 07/28/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop ligandgated ion-channel (LGIC) superfamily, which also includes the GABA, glycine, and serotonin receptors. Many nAChR subunits have been identified and shown to be involved in signal transduction on binding to them of either the neurotransmitter acetylcholine or exogenous ligands such as nicotine. The nAChRs are pentameric assemblies of homologous subunits surrounding a central pore that gates cation flux, and they are expressed at neuromuscular junctions throughout the nervous system. METHODS AND RESULTS Because different nAChR subunits assemble into a variety of pharmacologically distinct receptor subtypes, and different nAChRs are implicated in various physiological functions and pathophysiological conditions, nAChRs represent potential molecular targets for drug addiction and medical therapeutic research. This review intends to provide insights into recent advances in nAChR signaling, considering the subtypes and subunits of nAChRs and their roles in nicotinic cholinergic systems, including structure, diversity, functional allosteric modulation, targeted knockout mutations, and rare variations of specific subunits, and the potency and functional effects of mutations by focusing on their effects on nicotine addiction (NA) and smoking cessation (SC). Furthermore, we review the possible mechanisms of action of nAChRs in NA and SC based on our current knowledge. CONCLUSION Understanding these cellular and molecular mechanisms will lead to better translational and therapeutic operations and outcomes for the prevention and treatment of NA and other drug addictions, as well as chronic diseases, such as Alzheimer's and Parkinson's. Finally, we put forward some suggestions and recommendations for therapy and treatment of NA and other chronic diseases.
Collapse
Affiliation(s)
- Wuyi Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,School of Biological Sciences and Food Engineering, Fuyang Normal University, Fuyang, Anuhi 236041, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.,Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
9
|
García-Rojo G, Gámiz F, Ampuero E, Rojas-Espina D, Sandoval R, Rozas C, Morales B, Wyneken U, Pancetti F. In Vivo Sub-chronic Treatment with Dichlorvos in Young Rats Promotes Synaptic Plasticity and Learning by a Mechanism that Involves Acylpeptide Hydrolase Instead of Acetylcholinesterase Inhibition. Correlation with Endogenous β-Amyloid Levels. Front Pharmacol 2017; 8:483. [PMID: 28790916 PMCID: PMC5524899 DOI: 10.3389/fphar.2017.00483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/05/2017] [Indexed: 11/21/2022] Open
Abstract
Acylpeptide hydrolase (APEH) is a serine hydrolase that displays two catalytic activities, acting both as an exopeptidase toward short N-acylated peptides and as an endopeptidase toward oxidized peptides or proteins. It has been demonstrated that this enzyme can degrade monomers, dimers, and trimers of the Aβ1-40 peptide in the conditioned media of neuroblastoma cells. In a previous report, we showed that the specific inhibition of this enzyme by the organophosphate molecule dichlorvos (DDVP) triggers an enhancement of long-term potentiation in rat hippocampal slices. In this study, we demonstrate that the same effect can be accomplished in vivo by sub-chronic treatment of young rats with a low dose of DDVP (0.1 mg/kg). Besides exhibiting a significant enhancement of LTP, the treated animals also showed improvements in parameters of spatial learning and memory. Interestingly, higher doses of DDVP such as 2 mg/kg did not prove to be beneficial for synaptic plasticity or behavior. Due to the fact that at 2 mg/kg we observed inhibition of both APEH and acetylcholinesterase, we interpret that in order to achieve positive effects on the measured parameters only APEH inhibition should be obtained. The treatment with both DDVP doses produced an increase in the endogenous concentration of Aβ1-40, although this was statistically significant only at the dose of 0.1 mg/kg. We propose that APEH represents an interesting pharmacological target for cognitive enhancement, acting through the modulation of the endogenous concentration of Aβ1-40.
Collapse
Affiliation(s)
- Gonzalo García-Rojo
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del NorteCoquimbo, Chile
| | - Fernando Gámiz
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del NorteCoquimbo, Chile
| | - Estíbaliz Ampuero
- Laboratory of Neuroscience, Faculty of Medicine, Universidad de Los AndesSantiago, Chile
| | - Daniel Rojas-Espina
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del NorteCoquimbo, Chile
| | - Rodrigo Sandoval
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del NorteCoquimbo, Chile
| | - Carlos Rozas
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de ChileSantiago, Chile
| | - Bernardo Morales
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de ChileSantiago, Chile
| | - Ursula Wyneken
- Laboratory of Neuroscience, Faculty of Medicine, Universidad de Los AndesSantiago, Chile
| | - Floria Pancetti
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del NorteCoquimbo, Chile
| |
Collapse
|
10
|
Hilscher MM, Leão RN, Edwards SJ, Leão KE, Kullander K. Chrna2-Martinotti Cells Synchronize Layer 5 Type A Pyramidal Cells via Rebound Excitation. PLoS Biol 2017; 15:e2001392. [PMID: 28182735 PMCID: PMC5300109 DOI: 10.1371/journal.pbio.2001392] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/05/2017] [Indexed: 12/22/2022] Open
Abstract
Martinotti cells are the most prominent distal dendrite–targeting interneurons in the cortex, but their role in controlling pyramidal cell (PC) activity is largely unknown. Here, we show that the nicotinic acetylcholine receptor α2 subunit (Chrna2) specifically marks layer 5 (L5) Martinotti cells projecting to layer 1. Furthermore, we confirm that Chrna2-expressing Martinotti cells selectively target L5 thick-tufted type A PCs but not thin-tufted type B PCs. Using optogenetic activation and inhibition, we demonstrate how Chrna2-Martinotti cells robustly reset and synchronize type A PCs via slow rhythmic burst activity and rebound excitation. Moreover, using optical feedback inhibition, in which PC spikes controlled the firing of surrounding Chrna2-Martinotti cells, we found that neighboring PC spike trains became synchronized by Martinotti cell inhibition. Together, our results show that L5 Martinotti cells participate in defined cortical circuits and can synchronize PCs in a frequency-dependent manner. These findings suggest that Martinotti cells are pivotal for coordinated PC activity, which is involved in cortical information processing and cognitive control. Cognitive functions and information processing are linked to the coordination of neuronal events and activities. This coordination is achieved through the synchronization of neuronal signals within subnetworks. Local networks contain different types of nerve cells, each of them playing distinct roles in the synchronization mechanism. To understand how synchronization is initiated and maintained, we have identified one of the key players using genetic strategies; we have identified a subtype of nicotine receptors uniquely expressed in cortical Martinotti cells. Because of their architecture and connection properties, Martinotti cells are able to synchronize ongoing activity of unconnected pyramidal cells (PCs). We show that this mechanism only applies to one subtype of PCs, thereby demonstrating that Martinotti cell inhibition is not spread randomly. By testing optimal firing patterns of Martinotti cells, we are able to coordinate the firing of this specific PC subtype over longer periods of time, showing how one unique interneuron is contributing to information processing.
Collapse
Affiliation(s)
- Markus M. Hilscher
- Unit of Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- * E-mail: (MMH); (KK)
| | - Richardson N. Leão
- Unit of Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Steven J. Edwards
- Unit of Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Katarina E. Leão
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Klas Kullander
- Unit of Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- * E-mail: (MMH); (KK)
| |
Collapse
|
11
|
Knox D. The role of basal forebrain cholinergic neurons in fear and extinction memory. Neurobiol Learn Mem 2016; 133:39-52. [PMID: 27264248 DOI: 10.1016/j.nlm.2016.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/26/2016] [Accepted: 06/02/2016] [Indexed: 12/30/2022]
Abstract
Cholinergic input to the neocortex, dorsal hippocampus (dHipp), and basolateral amygdala (BLA) is critical for neural function and synaptic plasticity in these brain regions. Synaptic plasticity in the neocortex, dHipp, ventral Hipp (vHipp), and BLA has also been implicated in fear and extinction memory. This finding raises the possibility that basal forebrain (BF) cholinergic neurons, the predominant source of acetylcholine in these brain regions, have an important role in mediating fear and extinction memory. While empirical studies support this hypothesis, there are interesting inconsistencies among these studies that raise questions about how best to define the role of BF cholinergic neurons in fear and extinction memory. Nucleus basalis magnocellularis (NBM) cholinergic neurons that project to the BLA are critical for fear memory and contextual fear extinction memory. NBM cholinergic neurons that project to the neocortex are critical for cued and contextual fear conditioned suppression, but are not critical for fear memory in other behavioral paradigms and in the inhibitory avoidance paradigm may even inhibit contextual fear memory formation. Medial septum and diagonal band of Broca cholinergic neurons are critical for contextual fear memory and acquisition of cued fear extinction. Thus, even though the results of previous studies suggest BF cholinergic neurons modulate fear and extinction memory, inconsistent findings among these studies necessitates more research to better define the neural circuits and molecular processes through which BF cholinergic neurons modulate fear and extinction memory. Furthermore, studies determining if BF cholinergic neurons can be manipulated in such a manner so as to treat excessive fear in anxiety disorders are needed.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, Behavioral Neuroscience Program, University of Delaware, Newark, DE, United States.
| |
Collapse
|
12
|
Kutlu MG, Parikh V, Gould TJ. Nicotine Addiction and Psychiatric Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:171-208. [PMID: 26472530 DOI: 10.1016/bs.irn.2015.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Even though smoking rates have long been on the decline, nicotine addiction still affects 20% of the US population today. Moreover, nicotine dependence shows high comorbidity with many mental illnesses including, but are not limited to, attention deficit hyperactivity disorder, anxiety disorders, and depression. The reason for the high rates of smoking in patients with mental illnesses may relate to attempts to self-medicate with nicotine. While nicotine may alleviate the symptoms of mental disorders, nicotine abstinence has been shown to worsen the symptoms of these disorders. In this chapter, we review the studies from animal and human research examining the bidirectional relationship between nicotine and attention deficit hyperactivity disorder, anxiety disorders, and depression as well as studies examining the roles of specific subunits of nicotinic acetylcholine receptors (nAChRs) in the interaction between nicotine and these mental illnesses. The results of these studies suggest that activation, desensitization, and upregulation of nAChRs modulate the effects of nicotine on mental illnesses.
Collapse
Affiliation(s)
| | - Vinay Parikh
- Temple University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
13
|
Kamens HM, Miyamoto J, Powers MS, Ro K, Soto M, Cox R, Stitzel JA, Ehringer MA. The β3 subunit of the nicotinic acetylcholine receptor: Modulation of gene expression and nicotine consumption. Neuropharmacology 2015; 99:639-49. [PMID: 26318101 DOI: 10.1016/j.neuropharm.2015.08.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/20/2015] [Accepted: 08/21/2015] [Indexed: 02/06/2023]
Abstract
Genetic factors explain approximately half of the variance in smoking behaviors, but the molecular mechanism by which genetic variation influences behavior is poorly understood. SNPs in the putative promoter region of CHRNB3, the gene that encodes the β3 subunit of the nicotinic acetylcholine receptor (nAChR), have been repeatedly associated with nicotine behaviors. In this work we sought to identify putative function of three SNPs in the promoter region of CHRNB3 on in vitro gene expression. Additionally, we used β3 null mutant mice as a model of reduced gene expression to assess the effects on nicotine behaviors. The effect of rs13277254, rs6474413, and rs4950 on reporter gene expression was examined using a luciferase reporter assay. A major and minor parent haplotype served as the background on which alleles at the three SNPs were flipped onto different backgrounds (e.g. minor allele on major haplotype background). Constructs were tested in three human cell lines: BE(2)-C, SH-SY5Y and HEK293T. In all cell types the major haplotype led to greater reporter gene expression compared to the minor haplotype, and results indicate that this effect is driven by rs6474413. Moreover, mice lacking the β3 subunit showed reduced voluntary nicotine consumption compared that of wildtype animals. These data provide evidence that the protective genetic variant at rs6474413 identified in human genetic studies reduces gene expression and that decreased β3 gene expression in mice reduces nicotine intake. This work contributes to our understanding of the molecular mechanisms that contribute to the human genetic associations of tobacco behaviors.
Collapse
Affiliation(s)
- Helen M Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Jill Miyamoto
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80303, USA
| | - Matthew S Powers
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80303, USA
| | - Kasey Ro
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80303, USA
| | - Marissa Soto
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80303, USA
| | - Ryan Cox
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80303, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80303, USA; Department of Integrative Physiology, University of Colorado, Boulder, CO 80303, USA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80303, USA; Department of Integrative Physiology, University of Colorado, Boulder, CO 80303, USA
| |
Collapse
|
14
|
Yuan M, Cross SJ, Loughlin SE, Leslie FM. Nicotine and the adolescent brain. J Physiol 2015; 593:3397-412. [PMID: 26018031 PMCID: PMC4560573 DOI: 10.1113/jp270492] [Citation(s) in RCA: 355] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/14/2015] [Indexed: 12/11/2022] Open
Abstract
Adolescence encompasses a sensitive developmental period of enhanced clinical vulnerability to nicotine, tobacco, and e-cigarettes. While there are sociocultural influences, data at preclinical and clinical levels indicate that this adolescent sensitivity has strong neurobiological underpinnings. Although definitions of adolescence vary, the hallmark of this period is a profound reorganization of brain regions necessary for mature cognitive and executive function, working memory, reward processing, emotional regulation, and motivated behavior. Regulating critical facets of brain maturation are nicotinic acetylcholine receptors (nAChRs). However, perturbations of cholinergic systems during this time with nicotine, via tobacco or e-cigarettes, have unique consequences on adolescent development. In this review, we highlight recent clinical and preclinical data examining the adolescent brain's distinct neurobiology and unique sensitivity to nicotine. First, we discuss what defines adolescence before reviewing normative structural and neurochemical alterations that persist until early adulthood, with an emphasis on dopaminergic systems. We review how acute exposure to nicotine impacts brain development and how drug responses differ from those seen in adults. Finally, we discuss the persistent alterations in neuronal signaling and cognitive function that result from chronic nicotine exposure, while highlighting a low dose, semi-chronic exposure paradigm that may better model adolescent tobacco use. We argue that nicotine exposure, increasingly occurring as a result of e-cigarette use, may induce epigenetic changes that sensitize the brain to other drugs and prime it for future substance abuse.
Collapse
Affiliation(s)
| | - Sarah J Cross
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | | | - Frances M Leslie
- Departments of Pharmacology
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
15
|
Kutlu MG, Gould TJ. Nicotine modulation of fear memories and anxiety: Implications for learning and anxiety disorders. Biochem Pharmacol 2015; 97:498-511. [PMID: 26231942 DOI: 10.1016/j.bcp.2015.07.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/24/2015] [Indexed: 12/14/2022]
Abstract
Anxiety disorders are a group of crippling mental diseases affecting millions of Americans with a 30% lifetime prevalence and costs associated with healthcare of $42.3 billion. While anxiety disorders show high levels of co-morbidity with smoking (45.3% vs. 22.5% in healthy individuals), they are also more common among the smoking population (22% vs. 11.1% in the non-smoking population). Moreover, there is clear evidence that smoking modulates symptom severity in patients with anxiety disorders. In order to better understand this relationship, several animal paradigms are used to model several key symptoms of anxiety disorders; these include fear conditioning and measures of anxiety. Studies clearly demonstrate that nicotine mediates acquisition and extinction of fear as well as anxiety through the modulation of specific subtypes of nicotinic acetylcholine receptors (nAChRs) in brain regions involved in emotion processing such as the hippocampus. However, the direction of nicotine's effects on these behaviors is determined by several factors that include the length of administration, hippocampus-dependency of the fear learning task, and source of anxiety (novelty-driven vs. social anxiety). Overall, the studies reviewed here suggest that nicotine alters behaviors related to fear and anxiety and that nicotine contributes to the development, maintenance, and reoccurrence of anxiety disorders.
Collapse
Affiliation(s)
| | - Thomas J Gould
- Temple University, Weiss Hall, Philadelphia, PA 19122, USA.
| |
Collapse
|
16
|
Mine N, Taniguchi W, Nishio N, Izumi N, Miyazaki N, Yamada H, Nakatsuka T, Yoshida M. Synaptic modulation of excitatory synaptic transmission by nicotinic acetylcholine receptors in spinal ventral horn neurons. Neuroscience 2015; 290:18-30. [PMID: 25613686 DOI: 10.1016/j.neuroscience.2015.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 12/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are distributed widely in the central nervous system and play important roles in higher brain functions, including learning, memory, and recognition. However, functions of the cholinergic system in spinal motoneurons remain poorly understood. In this study, we investigated the actions of presynaptic and postsynaptic nAChRs in spinal ventral horn neurons by performing whole-cell patch-clamp recordings on lumbar slices from male rats. The application of nicotine or acetylcholine generated slow inward currents and increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). Slow inward currents by acetylcholine or nicotine were not inhibited by tetrodotoxin (TTX) or glutamate receptor antagonists. In the presence of TTX, the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) were also increased by acetylcholine or nicotine. A selective α4β2 nicotinic receptor antagonist, dihydro-β-erythroidine hydrobromide (DhβE), significantly decreased nicotine-induced inward currents without affecting the enhancement of sEPSCs and mEPSCs. In addition, a selective α7 nicotinic receptor antagonist, methyllycaconitine, did not affect either nicotine-induced inward currents or the enhancement of sEPSCs and mEPSCs. These results suggest that α4β2 AChRs are localized at postsynaptic sites in the spinal ventral horn, non-α4β2 and non-α7 nAChRs are located presynaptically, and nAChRs enhance excitatory synaptic transmission in the spinal ventral horn.
Collapse
Affiliation(s)
- N Mine
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama 641-8510, Japan
| | - W Taniguchi
- Pain Research Center, Kansai University of Health Sciences, Kumatori, Osaka 590-0482, Japan.
| | - N Nishio
- Pain Research Center, Kansai University of Health Sciences, Kumatori, Osaka 590-0482, Japan
| | - N Izumi
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama 641-8510, Japan
| | - N Miyazaki
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama 641-8510, Japan
| | - H Yamada
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama 641-8510, Japan
| | - T Nakatsuka
- Pain Research Center, Kansai University of Health Sciences, Kumatori, Osaka 590-0482, Japan
| | - M Yoshida
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama 641-8510, Japan
| |
Collapse
|
17
|
Abstract
Nicotinic acetylcholine receptors (nAChRs) modulate the neurobiological processes underlying hippocampal learning and memory. In addition, nicotine's ability to desensitize and upregulate certain nAChRs may alter hippocampus-dependent memory processes. Numerous studies have examined the effects of nicotine on hippocampus-dependent learning, as well as the roles of low- and high-affinity nAChRs in mediating nicotine's effects on hippocampus-dependent learning and memory. These studies suggested that while acute nicotine generally acts as a cognitive enhancer for hippocampus-dependent learning, withdrawal from chronic nicotine results in deficits in hippocampus-dependent memory. Furthermore, these studies demonstrated that low- and high-affinity nAChRs functionally differ in their involvement in nicotine's effects on hippocampus-dependent learning. In the present chapter, we reviewed studies using systemic or local injections of acute or chronic nicotine, nAChR subunit agonists or antagonists; genetically modified mice; and molecular biological techniques to characterize the effects of nicotine on hippocampus-dependent learning.
Collapse
Affiliation(s)
- Munir Gunes Kutlu
- Temple University, 1701 N. 13th St, Weiss Hall, Philadelphia, PA, 19122, USA
| | | |
Collapse
|
18
|
Evidence for the exclusive expression of functional homomeric α7 nAChRs in hypothalamic histaminergic tuberomammillary neurons in rats. Neurosci Lett 2014; 563:107-11. [PMID: 24486841 DOI: 10.1016/j.neulet.2014.01.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/14/2014] [Accepted: 01/24/2014] [Indexed: 11/21/2022]
Abstract
Hypothalamic histaminergic tuberomammillary (TM) neurons in rats express high densities of nicotinic acetylcholine receptors (nAChRs) whose Ca(2+) permeability, kinetic and pharmacological properties are similar to those of heterologous homomeric α7 nAChRs. However, native α7 nAChR subunits can co-assemble with β or α5 nAChR subunits to form functional heteromeric α7-containing α7β or α7α5 nAChRs with kinetics and pharmacology similar to those of α7 homomers. Therefore, although TM nAChRs have been used as an ex vivo model of functional α7 homomers, the molecular makeup of TM nAChRs has not been determined and the expression of functional α7-containing heteromers in TM neurons has not been excluded. To determine the profile of TM nAChR subunit transcripts, we have conducted single-cell qRT-PCR experiments using acutely dissociated TM neurons in rats. TM neurons were found to express transcripts of only principal α3, α6 and α7 nAChR subunits. Transcripts of other known mammalian neuronal subunits (α2, α4-5, α9-10, β2-4) were not detected. In the absence of β and α5 subunits, the expression of functional α7-containing heteromers in TM neurons is highly unlikely because principal α3, α6 and α7 nAChR subunits alone are not known to form functional heteromeric nAChRs. These results support the exclusive expression of native functional α7 homomers in rat TM neurons and introduce these neurons as a unique reliable source of native functional homomeric α7 nAChRs suitable for ex vivo and in vitro pharmacological assays in developing selective α7 nAChR agents.
Collapse
|
19
|
Kamens HM, Corley RP, McQueen MB, Stallings MC, Hopfer CJ, Crowley TJ, Brown SA, Hewitt JK, Ehringer MA. Nominal association with CHRNA4 variants and nicotine dependence. GENES BRAIN AND BEHAVIOR 2013; 12:297-304. [PMID: 23350800 DOI: 10.1111/gbb.12021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/06/2012] [Accepted: 01/10/2013] [Indexed: 01/05/2023]
Abstract
Nicotine binds to nicotinic acetylcholine receptors and studies in animal models have shown that α4β2 receptors mediate many behavioral effects of nicotine. Human genetics studies have provided support that variation in the gene that codes for the α4 subunit influences nicotine dependence (ND), but the evidence for the involvement of the β2 subunit gene is less convincing. In this study, we examined the genetic association between variation in the genes that code for the α4 (CHRNA4) and β2 (CHRNB2) subunits of the nicotinic acetylcholine receptor and a quantitative measure of lifetime DSM-IV ND symptom counts. We performed this analysis in two longitudinal family-based studies focused on adolescent antisocial drug abuse: the Center on Antisocial Drug Dependence (CADD, N = 313 families) and Genetics of Antisocial Drug Dependence (GADD, N = 111 families). Family-based association tests were used to examine associations between 14 single nucleotide polymorphisms (SNPs) in CHRNA4 and CHRNB2 and ND symptoms. Symptom counts were corrected for age, sex and clinical status prior to the association analysis. Results, when the samples were combined, provided modest evidence that SNPs in CHRNA4 are associated with ND. The minor allele at both rs1044394 (A; Z = 1.988, P = 0.047, unadjusted P-value) and rs1044396 (G; Z = 2.398, P = 0.017, unadjusted P-value) was associated with increased risk of ND symptoms. These data provide suggestive evidence that variation in the α4 subunit of the nicotinic acetylcholine receptor may influence ND liability.
Collapse
Affiliation(s)
- H M Kamens
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shahsavar A, Kastrup JS, Nielsen EØ, Kristensen JL, Gajhede M, Balle T. Crystal structure of Lymnaea stagnalis AChBP complexed with the potent nAChR antagonist DHβE suggests a unique mode of antagonism. PLoS One 2012; 7:e40757. [PMID: 22927902 PMCID: PMC3425559 DOI: 10.1371/journal.pone.0040757] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 06/12/2012] [Indexed: 11/18/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels that belong to the Cys-loop receptor superfamily. These receptors are allosteric proteins that exist in different conformational states, including resting (closed), activated (open), and desensitized (closed) states. The acetylcholine binding protein (AChBP) is a structural homologue of the extracellular ligand-binding domain of nAChRs. In previous studies, the degree of the C-loop radial extension of AChBP has been assigned to different conformational states of nAChRs. It has been suggested that a closed C-loop is preferred for the active conformation of nAChRs in complex with agonists whereas an open C-loop reflects an antagonist-bound (closed) state. In this work, we have determined the crystal structure of AChBP from the water snail Lymnaea stagnalis (Ls) in complex with dihydro-β-erythroidine (DHβE), which is a potent competitive antagonist of nAChRs. The structure reveals that binding of DHβE to AChBP imposes closure of the C-loop as agonists, but also a shift perpendicular to previously observed C-loop movements. These observations suggest that DHβE may antagonize the receptor via a different mechanism compared to prototypical antagonists and toxins.
Collapse
Affiliation(s)
- Azadeh Shahsavar
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jette S. Kastrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jesper L. Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Balle
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
21
|
The α6 nicotinic acetylcholine receptor subunit influences ethanol-induced sedation. Alcohol 2012; 46:463-71. [PMID: 22572056 DOI: 10.1016/j.alcohol.2012.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 03/20/2012] [Accepted: 03/22/2012] [Indexed: 02/06/2023]
Abstract
Alcohol and nicotine are often co-used and data from human and animals studies have demonstrated that common genes underlie responses to these two drugs. Recently, the genes that code for the subunits of the nicotinic acetylcholine receptors have been implicated as a common genetic mediator for alcohol and nicotine responses. The mammalian genes that code for the α6 and β3 subunits of the nicotinic acetylcholine receptor (Chrna6 and Chrnb3, respectively) are located adjacent to each other on human and mouse chromosome 8. These subunits have gained attention as potential regulators of drug behaviors because of their expression in the striatum where they have been shown to modulate dopamine release. Human genetic studies have shown that variation in these genes is associated with alcohol phenotypes. In the current experiments, mice lacking the Chrna6 or Chrnb3 gene were tested for three ethanol behaviors: choice ethanol consumption, ataxia, and sedation. Wildtype (WT), heterozygous (HET), and knockout (KO) mice of each strain went through a standard 2-bottle choice drinking paradigm, the balance beam, and the Loss of Righting Reflex (LORR) paradigm. No genotypic effects on any of the 3 behavioral tasks were observed in Chrnb3 animals. While the Chrna6 gene did not significantly influence ethanol consumption (g/kg) or ataxia, mice lacking the α6 subunit took significantly longer to recover their righting reflex than WT animals. These data provide evidence that receptors containing this subunit modulate the sedative effects of ethanol. Further work examining other models of ethanol consumption and behavioral responses to ethanol is needed to fully characterize the role of these receptor subunits in modulating ethanol responses.
Collapse
|
22
|
Falsafi SK, Deli A, Höger H, Pollak A, Lubec G. Scopolamine administration modulates muscarinic, nicotinic and NMDA receptor systems. PLoS One 2012; 7:e32082. [PMID: 22384146 PMCID: PMC3285663 DOI: 10.1371/journal.pone.0032082] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/19/2012] [Indexed: 11/25/2022] Open
Abstract
Studies on the effect of scopolamine on memory are abundant but so far only regulation of the muscarinic receptor (M1) has been reported. We hypothesized that levels of other cholinergic brain receptors as the nicotinic receptors and the N-methyl-D-aspartate (NMDA) receptor, known to be involved in memory formation, would be modified by scopolamine administration. C57BL/6J mice were used for the experiments and divided into four groups. Two groups were given scopolamine 1 mg/kg i.p. (the first group was trained and the second group untrained) in the multiple T-maze (MTM), a paradigm for evaluation of spatial memory. Likewise, vehicle-treated mice were trained or untrained thus serving as controls. Hippocampal levels of M1, nicotinic receptor alpha 4 (Nic4) and 7 (Nic7) and subunit NR1containing complexes were determined by immunoblotting on blue native gel electrophoresis. Vehicle-treated trained mice learned the task and showed memory retrieval on day 8, while scopolamine-treatment led to significant impairment of performance in the MTM. At the day of retrieval, hippocampal levels for M1, Nic7 and NR1 were higher in the scopolamine treated groups than in vehicle-treated groups. The concerted action, i.e. the pattern of four brain receptor complexes regulated by the anticholinergic compound scopolamine, is shown. Insight into probable action mechanisms of scopolamine at the brain receptor complex level in the hippocampus is provided. Scopolamine treatment is a standard approach to test cognitive enhancers and other psychoactive compounds in pharmacological studies and therefore knowledge on mechanisms is of pivotal interest.
Collapse
Affiliation(s)
| | - Alev Deli
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Vienna, Austria
| | - Arnold Pollak
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
23
|
Varghese SB, Reid JC, Hartmann EE, Keyser KT. The effects of nicotine on the human electroretinogram. Invest Ophthalmol Vis Sci 2011; 52:9445-51. [PMID: 22064991 DOI: 10.1167/iovs.11-7874] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To examine the effects of nicotine on responses from the human retina measured electrophysiologically. METHODS Electroretinogram (ERG) responses were obtained from ten healthy, visually normal adults who were nonsmokers. Nicotine (2 and 4 mg) and a placebo were administered in the form of gum 30 minutes before testing in two separate experiments. ERG responses were collected and analyzed using a full-field ERG system. Responses were recorded from one eye of each subject using a bipolar contact-lens electrode. Intensity-response curves were obtained under both dark- and light-adapted conditions. In experiment 1, both dark- and light-adapted tests were completed sequentially. In experiment 2, only light-adapted testing was performed. Intensity-response functions were analyzed using the Naka-Rushton equation. RESULTS In experiment 1, compared with placebo, dark-adapted b-wave amplitude responses decreased significantly after chewing gum containing both 2 and 4 mg of nicotine. Under light-adapted conditions, the peak b-wave amplitude was significantly decreased after chewing gum containing 4 mg of nicotine. In experiment 2, light-adapted b-wave amplitudes were increased after 4 mg nicotine. Oscillatory potentials were measured but no significant effects under nicotine were observed. CONCLUSIONS To the knowledge of the authors, this is the first demonstration that nicotine by itself affects responses in the human retina. These data support reports of the expression of nicotinic acetylcholine receptors in rabbit and nonhuman primate retina.
Collapse
Affiliation(s)
- Stefanie B Varghese
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama 35294-4390, USA.
| | | | | | | |
Collapse
|
24
|
Wu J, Lukas RJ. Naturally-expressed nicotinic acetylcholine receptor subtypes. Biochem Pharmacol 2011; 82:800-7. [PMID: 21787755 DOI: 10.1016/j.bcp.2011.07.067] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/01/2011] [Accepted: 07/05/2011] [Indexed: 12/31/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) warrant attention, as they play many critical roles in brain and body function and have been implicated in a number of neurological and psychiatric disorders, including nicotine dependence. nAChRs are composed as diverse subtypes containing specific combinations of genetically-distinct subunits and that have different functional properties, distributions, and pharmacological profiles. There had been confidence that the rules that define ranges of assembly partners for specific subunits were well-established, especially for the more prominent nAChR subtypes. However, we review here some newer findings indicating that nAChRs having largely the same, major subunits exist as isoforms with unexpectedly different properties. Moreover, we also summarize our own studies indicating that novel nAChR subtypes exist and/or have distributions not heretofore described. Importantly, the nAChRs that exist as new isoforms or subtypes or have interesting distributions require alteration in thinking about their roles in health and disease.
Collapse
Affiliation(s)
- Jie Wu
- Division of Neurology, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, United States.
| | | |
Collapse
|
25
|
Kalappa BI, Feng L, Kem WR, Gusev AG, Uteshev VV. Mechanisms of facilitation of synaptic glutamate release by nicotinic agonists in the nucleus of the solitary tract. Am J Physiol Cell Physiol 2011; 301:C347-61. [PMID: 21613611 DOI: 10.1152/ajpcell.00473.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nucleus of the solitary tract (NTS) is the principal integrating relay in the processing of visceral sensory information. Functional nicotinic acetylcholine receptors (nAChRs) have been found on presynaptic glutamatergic terminals in subsets of caudal NTS neurons. Activation of these receptors has been shown to enhance synaptic release of glutamate and thus may modulate autonomic sensory-motor integration and visceral reflexes. However, the mechanisms of nAChR-mediated facilitation of synaptic glutamate release in the caudal NTS remain elusive. This study uses rat horizontal brainstem slices, patch-clamp electrophysiology, and fluorescent Ca(2+) imaging to test the hypothesis that a direct Ca(2+) entrance into glutamatergic terminals through active presynaptic non-α7- or α7-nAChR-mediated ion channels is sufficient to trigger synaptic glutamate release in subsets of caudal NTS neurons. The results of this study demonstrate that, in the continuous presence of 0.3 μM tetrodotoxin, a selective blocker of voltage-activated Na(+) ion channels, facilitation of synaptic glutamate release by activation of presynaptic nAChRs (detected as an increase in the frequency of miniature excitatory postsynaptic currents) requires external Ca(2+) but does not require activation of presynaptic Ca(2+) stores and presynaptic high- and low-threshold voltage-activated Ca(2+) ion channels. Expanding the knowledge of mechanisms and pharmacology of nAChRs in the caudal NTS should benefit therapeutic approaches aimed at restoring impaired autonomic homeostasis.
Collapse
Affiliation(s)
- Bopanna I Kalappa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | | | | | | | | |
Collapse
|
26
|
Smith AM, Dwoskin LP, Pauly JR. Early exposure to nicotine during critical periods of brain development: Mechanisms and consequences. JOURNAL OF PEDIATRIC BIOCHEMISTRY 2010; 1:125-141. [PMID: 24904708 PMCID: PMC4042244 DOI: 10.3233/jpb-2010-0012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tobacco use during pregnancy continues to be a major problem with more than 16% of pregnant women in the United States continuing to smoke during pregnancy. Tobacco smoke is known to contain more than 4,000 different chemicals, and while many of these compounds have the potential to interfere with proper neurodevelopment, there is direct evidence that nicotine, the major psychoactive substance present in tobacco, acts as a neuroteratogen. Nicotine activates, and subsequently desensitizes, neuronal nicotinic acetylcholine receptor subtypes (AChRs), which are expressed in the developing central nervous system (CNS) prior to the in-growth of cholinergic neurons. Nicotinic AChRs are present by the first trimester of development in both humans and rodents, and activation of these receptors by acetylcholine is thought to play a critical role in CNS development. The purpose of the current review is to provide an overview of the role that nicotinic AChRs play in the developing CNS and to describe the effects of nicotine exposure during early development on neuronal cell biology, nicotinic AChR expression and neurotransmitter system (e.g., dopamine, norepinephrine, serotonin) function. In particular, differences that occur as a result of the timing and duration of nicotine exposure will be discussed. Emphasis will be placed on preclinical studies examining particular periods of time which correspond to periods of prenatal development in humans (i.e., first, second and third trimesters). Finally, the effects of early nicotine exposure on neurobehavioral development as it pertains to specific disorders, i.e., attention deficit hyperactivity disorder (ADHD), depression and addiction, will be discussed.
Collapse
Affiliation(s)
- Andrew M. Smith
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0082, USA
| | - Linda P. Dwoskin
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0082, USA
| | - James R. Pauly
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0082, USA
| |
Collapse
|
27
|
Mouse RIC-3, an endoplasmic reticulum chaperone, promotes assembly of the alpha7 acetylcholine receptor through a cytoplasmic coiled-coil domain. J Neurosci 2009; 29:12625-35. [PMID: 19812337 DOI: 10.1523/jneurosci.1776-09.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
RIC-3 (resistant to inhibitor of cholinesterase) is a transmembrane protein, found in invertebrates and vertebrates, that modulates the surface expression of a variety of nicotinic acetylcholine receptors (nAChRs) in neurons and other cells. To understand its mechanism of action, we investigated the cellular location, transmembrane topology and cellular mechanism by which RIC-3 facilitates alpha7 assembly and surface expression in cultured mammalian cells. We show that the mouse protein is targeted to the ER by the first 31 aa which act as a cleavable signal sequence. The mature protein is a single-pass type I transmembrane protein whose N terminus resides in the lumen of the ER with the coiled-coil domain in the cytoplasm. RIC-3, which binds both unfolded and folded alpha7 subunits, facilitates the surface expression of receptor principally by promoting the folding and assembly of the alpha7 subunits in the ER into fully polymerized receptor. Functional analysis shows that facilitation of surface expression of alpha7 in mammalian cells is reduced in RIC-3 mutants lacking the signal peptide, the lumenal segment or the coiled-coil domain, but not in mutants lacking the long C-terminal region downstream of the coiled-coil domain. We show that the coiled-coil domain of mRIC-3 is not required for the interaction of mRIC-3 with alpha7, but does mediate a homotypic interaction between molecules of mRIC-3. We suggest that efficient assembly of the homomeric alpha7 nAChR may thus require mRIC-3 self-association through the cytoplasmic coiled-coil domain and suggest a model by which this may occur.
Collapse
|
28
|
Rucktooa P, Smit AB, Sixma TK. Insight in nAChR subtype selectivity from AChBP crystal structures. Biochem Pharmacol 2009; 78:777-87. [DOI: 10.1016/j.bcp.2009.06.098] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/19/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
|
29
|
Cui T, Canlas CG, Xu Y, Tang P. Anesthetic effects on the structure and dynamics of the second transmembrane domains of nAChR alpha4beta2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:161-6. [PMID: 19715664 DOI: 10.1016/j.bbamem.2009.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 07/31/2009] [Accepted: 08/12/2009] [Indexed: 01/03/2023]
Abstract
Channel functions of the neuronal alpha4beta2 nicotinic acetylcholine receptor (nAChR), one of the most widely expressed subtypes in the brain, can be inhibited by volatile anesthetics. Our Na(+) flux experiments confirmed that the second transmembrane domains (TM2) of alpha4 and beta2 in 2:3 stoichiometry, (alpha4)(2)(beta2)(3), could form pentameric channels, whereas the alpha4 TM2 alone could not. The structure, topology, and dynamics of the alpha4 TM2 and (alpha4)(2)(beta2)(3) TM2 in magnetically aligned phospholipid bicelles were investigated using solid-state NMR spectroscopy in the absence and presence of halothane and isoflurane, two clinically used volatile anesthetics. (2)H NMR demonstrated that anesthetics increased lipid conformational heterogeneity. Such anesthetic effects on lipids became more profound in the presence of transmembrane proteins. PISEMA experiments on the selectively (15)N-labeled alpha4 TM2 showed that the TM2 formed transmembrane helices with tilt angles of 12 degrees +/-1 degrees and 16 degrees +/-1 degrees relative to the bicelle normal for the alpha4 and (alpha4)(2)(beta2)(3) samples, respectively. Anesthetics changed the tilt angle of the alpha4 TM2 from 12 degrees +/-1 degrees to 14 degrees +/-1 degrees , but had only a subtle effect on the tilt angle of the (alpha4)(2)(beta2)(3) TM2. A small degree of wobbling motion of the helix axis occurred in the (alpha4)(2)(beta2)(3) TM2. In addition, a subset of the (alpha4)(2)(beta2)(3) TM2 exhibited counterclockwise rotational motion around the helix axis on a time scale slower than 10(-4) s in the presence of anesthetics. Both helical tilting and rotational motions have been identified computationally as critical elements for ion channel functions. This study suggested that anesthetics could alter these motions to modulate channel functions.
Collapse
Affiliation(s)
- Tanxing Cui
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
30
|
Olmos C, Sandoval R, Rozas C, Navarro S, Wyneken U, Zeise M, Morales B, Pancetti F. Effect of short-term exposure to dichlorvos on synaptic plasticity of rat hippocampal slices: Involvement of acylpeptide hydrolase and α7 nicotinic receptors. Toxicol Appl Pharmacol 2009; 238:37-46. [DOI: 10.1016/j.taap.2009.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 04/02/2009] [Accepted: 04/10/2009] [Indexed: 11/29/2022]
|
31
|
Raybuck JD, Gould TJ. Nicotine withdrawal-induced deficits in trace fear conditioning in C57BL/6 mice--a role for high-affinity beta2 subunit-containing nicotinic acetylcholine receptors. Eur J Neurosci 2009; 29:377-87. [PMID: 19200240 DOI: 10.1111/j.1460-9568.2008.06580.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nicotine alters cognitive processes that include working memory and long-term memory. Trace fear conditioning may involve working memory during acquisition while also allowing the assessment of long-term memory. The present study used trace fear conditioning in C57BL/6 mice to investigate the effects of acute nicotine, chronic nicotine and withdrawal of chronic nicotine on processes active during acquisition and recall 24 h later and to examine the nicotinic acetylcholine receptor subtypes (nAChRs) involved in withdrawal deficits in trace fear conditioning. During training, acute nicotine (0.09 mg/kg) enhanced, but chronic nicotine (6.3 mg/kg/day, 13 days) and withdrawal of chronic nicotine (6.3 mg/kg/day, 12 days) had no significant effect on, acquisition of trace conditioning. At recall, acute treatment enhanced conditioning while chronic nicotine had no effect and withdrawal of chronic nicotine resulted in deficits. Antagonist-precipitated withdrawal was used to characterize the nAChRs involved in the withdrawal deficits. The low-affinity nAChR antagonist MLA (1.5, 3 or 9 mg/kg) had no effect on trace fear conditioning, but the high-affinity nAChR antagonist DHbetaE (3 mg/kg) precipitated deficits in trace fear conditioning if administered at training or training and testing, but not if administered at testing alone. The beta2 nAChR subunit is involved in the withdrawal effects as withdrawal of chronic nicotine produced deficits in trace fear conditioning in wildtype but not in beta2-knockout mice. Thus, nicotine alters processes involved in both acquisition and long-term memory of trace fear conditioning, and high-affinity beta2 subunit-containing nAChRs are critically involved in the effects of nicotine withdrawal on trace fear conditioning.
Collapse
Affiliation(s)
- J D Raybuck
- Center for Substance Abuse Research & Department of Psychology, 1701n 13th, Weiss Hall, 657, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
32
|
Dwyer JB, McQuown SC, Leslie FM. The dynamic effects of nicotine on the developing brain. Pharmacol Ther 2009; 122:125-39. [PMID: 19268688 DOI: 10.1016/j.pharmthera.2009.02.003] [Citation(s) in RCA: 429] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 12/25/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) regulate critical aspects of brain maturation during the prenatal, early postnatal, and adolescent periods. During these developmental windows, nAChRs are often transiently upregulated or change subunit composition in those neural structures that are undergoing major phases of differentiation and synaptogenesis, and are sensitive to environmental stimuli. Nicotine exposure, most often via tobacco smoke, but increasingly via nicotine replacement therapy, has been shown to have unique effects on the developing human brain. Consistent with a dynamic developmental role for acetylcholine, exogenous nicotine produces effects that are unique to the period of exposure and that impact the developing structures regulated by acetylcholine at that time. Here we present a review of the evidence, available from both the clinical literature and preclinical animal models, which suggests that the diverse effects of nicotine exposure are best evaluated in the context of regional and temporal expression patterns of nAChRs during sensitive maturational periods, and disruption of the normal developmental influences of acetylcholine. We present evidence that nicotine interferes with catecholamine and brainstem autonomic nuclei development during the prenatal period of the rodent (equivalent to first and second trimester of the human), alters the neocortex, hippocampus, and cerebellum during the early postnatal period (third trimester of the human), and influences limbic system and late monoamine maturation during adolescence.
Collapse
Affiliation(s)
- Jennifer B Dwyer
- Department of Pharmacology, Med Surge II, School of Medicine, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
33
|
Kenney JW, Gould TJ. Modulation of hippocampus-dependent learning and synaptic plasticity by nicotine. Mol Neurobiol 2008; 38:101-21. [PMID: 18690555 DOI: 10.1007/s12035-008-8037-9] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 07/25/2008] [Indexed: 01/23/2023]
Abstract
A long-standing relationship between nicotinic acetylcholine receptors (nAChRs) and cognition exists. Drugs that act at nAChRs can have cognitive-enhancing effects and diseases that disrupt cognition such as Alzheimer's disease and schizophrenia are associated with altered nAChR function. Specifically, hippocampus-dependent learning is particularly sensitive to the effects of nicotine. However, the effects of nicotine on hippocampus-dependent learning vary not only with the doses of nicotine used and whether nicotine is administered acutely, chronically, or withdrawn after chronic nicotine treatment but also vary across different hippocampus-dependent tasks such as the Morris water maze, the radial arm maze, and contextual fear conditioning. In addition, nicotine has variable effects across different types of hippocampal long-term potentiation (LTP). Because different types of hippocampus-dependent learning and LTP involve different neural and molecular substrates, comparing the effects of nicotine across these paradigms can yield insights into the mechanisms that may underlie the effects of nicotine on learning and memory and aid in understanding the variable effects of nicotine on cognitive processes. This review compares and contrasts the effects of nicotine on hippocampus-dependent learning and LTP and briefly discusses how the effects of nicotine on learning could contribute to nicotine addiction.
Collapse
Affiliation(s)
- Justin W Kenney
- Department of Psychology, Center for Substance Abuse Research, Weiss Hall, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
34
|
Edwards JG, Greig A, Sakata Y, Elkin D, Michel WC. Cholinergic innervation of the zebrafish olfactory bulb. J Comp Neurol 2008; 504:631-45. [PMID: 17722029 DOI: 10.1002/cne.21480] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A number of fish species receive forebrain cholinergic input but two recent reports failed to find evidence of cholinergic cell bodies or fibers in the olfactory bulbs (OBs) of zebrafish. In the current study we sought to confirm these findings by examining the OBs of adult zebrafish for choline acetyltransferase (ChAT) immunoreactivity. We observed a diffuse network of varicose ChAT-positive fibers associated with the nervus terminalis ganglion innervating the mitral cell/glomerular layer (MC/GL). The highest density of these fibers occurred in the anterior region of the bulb. The cellular targets of this cholinergic input were identified by exposing isolated OBs to acetylcholine receptor (AChR) agonists in the presence of agmatine (AGB), a cationic probe that permeates some active ion channels. Nicotine (50 microM) significantly increased the activity-dependent labeling of mitral cells and juxtaglomerular cells but not of tyrosine hydroxlase-positive dopaminergic neurons (TH(+) cells) compared to control preparations. The nAChR antagonist mecamylamine, an alpha7-nAChR subunit-specific antagonist, calcium-free artificial cerebrospinal fluid, or a cocktail of ionotropic glutamate receptor (iGluR) antagonists each blocked nicotine-stimulated labeling, suggesting that AGB does not enter the labeled neurons through activated nAChRs but rather through activated iGluRs following ACh-stimulated glutamate release. Deafferentation of OBs did not eliminate nicotine-stimulated labeling, suggesting that cholinergic input is primarily acting on bulbar neurons. These findings confirm the presence of a functioning cholinergic system in the zebrafish OB.
Collapse
Affiliation(s)
- Jeffrey G Edwards
- University of Utah School of Medicine, Department of Physiology, Salt Lake City, Utah 84108-1297, USA
| | | | | | | | | |
Collapse
|
35
|
Takeda D, Nakatsuka T, Gu JG, Yoshida M. The activation of nicotinic acetylcholine receptors enhances the inhibitory synaptic transmission in the deep dorsal horn neurons of the adult rat spinal cord. Mol Pain 2007; 3:26. [PMID: 17894865 PMCID: PMC2039725 DOI: 10.1186/1744-8069-3-26] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 09/25/2007] [Indexed: 11/10/2022] Open
Abstract
Somatosensory information can be modulated by nicotinic acetylcholine receptors (nAChRs) in the superficial dorsal horn of the spinal cord. Nonetheless, the functional significance of nAChRs in the deep dorsal horn of adult animals remains unclear. Using whole-cell patch-clamp recordings from lamina V neurons in the adult rat spinal cord, we investigated whether the activation of nAChRs could modulate the inhibitory synaptic transmission in the deep dorsal horn. In the presence of CNQX and APV to block excitatory glutamatergic synaptic transmission, bath applications of nicotine (100 microM) significantly increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in almost all neurons tested. The effect of nicotine was mimicked by N-methyl-4-(3-pyridinyl)-3-butene-1-amine (RJR-2403, 100 microM), an alpha 4 beta 2-nAChR agonist, and was also mimicked by choline (10 mM), an alpha 7-nAChR agonist. The effect of nicotine was completely blocked by the nAChR antagonist mecamylamine (5 microM). In the presence of tetrodotoxin (0.5 microM), nicotine (100 microM) significantly increased the miniature IPSC frequency. On the other hand, RJR-2403 (100 microM) or choline (10 mM) did not affect miniature IPSCs. The application of nicotine (100 microM) also evoked a large inward current in all lamina V neurons tested when cells were held at -60 mV. Similarly, RJR-2403 (100 microM) induced inward currents in the majority of lamina V neurons examined. On the other hand, choline (10 mM) did not elicit any detectable whole-cell currents. These results suggest that several nAChR subtypes are expressed on the presynaptic terminals, preterminals, and neuronal cell bodies within lamina V and that these nAChRs are involved in the modulation of inhibitory synaptic activity in the deep dorsal horn of the spinal cord.
Collapse
Affiliation(s)
- Daisuke Takeda
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8510, Japan
- Department of Physiology, Kansai University of Health Sciences, Osaka 590-0482, Japan
| | - Terumasa Nakatsuka
- Department of Physiology, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Jianguo G Gu
- Brain Institute and Department of Oral Surgery, Division of Neuroscience, College of Dentistry, University of Florida, Gainesville, Florida 32610, USA
| | - Munehito Yoshida
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8510, Japan
| |
Collapse
|
36
|
Abstract
Anesthesiologists daily witness the consequences of tobacco use, the most common preventable cause of death. Smoking-related diseases such as atherosclerosis and chronic obstructive pulmonary disease increase anesthetic risk, and even smokers without overt disease are at increased risk for morbidity such as pulmonary and wound-related complications. Evidence suggests that stopping smoking will reduce the frequency of these complications. Nicotine and the other constituents of cigarette smoke, such as carbon monoxide, have important physiologic effects that may affect perioperative management. In addition, it is now apparent that the scheduling of elective surgery represents an excellent opportunity for smokers to quit in the long term. This review serves as an introduction to tobacco control for anesthesiologists, first examining issues of importance to perioperative management. It then discusses how anesthesiologists and other perioperative physicians can help address tobacco use, both at an individual level with their patients, and by contributing to the implementation of effective public health strategies in their countries. Anesthesiologists can play a key role in helping their patients quit smoking. Effective tobacco control measures applied to surgical patients will not only improve immediate perioperative outcomes but also long-term health.
Collapse
Affiliation(s)
- David O Warner
- Department of Anesthesiology, the Anesthesia Clinical Research Unit, and the Nicotine Dependence Center, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
37
|
Bozkurt NB, Vural IM, Sarioglu Y, Pekiner C. Nicotine potentiates the nitrergic relaxation responses of rabbit corpus cavernosum tissue via nicotinic acetylcholine receptors. Eur J Pharmacol 2007; 558:172-8. [PMID: 17208220 DOI: 10.1016/j.ejphar.2006.11.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 11/23/2006] [Accepted: 11/24/2006] [Indexed: 10/23/2022]
Abstract
The presence of neuronal nicotinic acetylcholine receptors in rabbit corpus cavernosum tissue and possible mechanisms underlying the potentiation of electrical field stimulation induced relaxation by nicotine were analyzed. In corpus cavernosum tissue strips nicotine (3 x 10(-5) M) and acetylcholine (10(-3) M) produced potentiation on electrical field stimulation (amplitude 50 V; frequency 4 Hz; width 0.8 ms) induced relaxation responses. This nicotine-induced potentiation was not altered by atropine (10(-6) M), guanethidine (5 x 10(-6) M) and indomethacin (10(-5) M), but abolished by hexamethonium chloride (10(-5) M) and L-nitro arginine methyl ester (10(-5) M). Nicotine did not cause any alteration on a single dose of carbachol (3 x 10(-5) M) and sodium nitroprusside (10(-5) M) induced relaxation responses. The results suggest that, nicotine-induced potentiation is NO and nicotinic acetylcholine receptor dependent but independent from prostaglandin synthesis, activation of muscarinic receptors and does not require intact adrenergic neurons. Nicotine did not affect smooth muscle and endothelium directly. In conclusion, in this study we showed for the first time that, nicotine acts on the nicotinic acetylcholine receptors located on the nitrergic nerves, thereby evoking the release of NO from these nerve terminals inducing relaxation response in rabbit corpus cavernosum tissue.
Collapse
Affiliation(s)
- Nihan Burul Bozkurt
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, 06100, Sihhiye, Ankara, Turkey
| | | | | | | |
Collapse
|
38
|
Toborek M, Son KW, Pudelko A, King-Pospisil K, Wylegala E, Malecki A. ERK 1/2 signaling pathway is involved in nicotine-mediated neuroprotection in spinal cord neurons. J Cell Biochem 2007; 100:279-92. [PMID: 16888810 DOI: 10.1002/jcb.21013] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Evidence indicates that agonists of neuronal nicotinic receptors (nAChRs), including nicotine, can induce neuroprotective and anti-apoptotic effects in the CNS. To study these mechanisms, the present study focused on nicotine-mediated modulation of the extracellular regulated kinase 1 and 2 (ERK1/2) pathway in cultured spinal cord neurons. Exposure to nicotine (0.1-10 microM) for as short as 1 min markedly upregulated levels of phosphorylated ERK1/2 (pERK1/2) and increased total ERK1/2 activity. Inhibition studies with mecamylamine and alpha-bungarotoxin revealed that these effects were mediated by the alpha7 nicotinic receptor. In addition, pre-exposure to U0126, a specific inhibitor of the ERK1/2 signaling, prevented nicotine-mediated anti-apoptotic effects. To indicate if treatment with nicotine also can activate ERK1/2 in vivo, a moderate spinal cord injury (SCI) was induced in rats using a weight-drop device and nicotine was injected 2 h post-trauma. Consistent with in vitro data, nicotine increased levels of pERK1/2 in this animal model of spinal cord trauma. Results of the present study indicate that the ERK1/2 pathway is involved in anti-apoptotic effects of nicotine in spinal cord neurons and may be involved in therapeutic effects of nicotine in spinal cord trauma.
Collapse
Affiliation(s)
- Michal Toborek
- Department of Surgery, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Davis JA, Gould TJ. beta2 subunit-containing nicotinic receptors mediate the enhancing effect of nicotine on trace cued fear conditioning in C57BL/6 mice. Psychopharmacology (Berl) 2007; 190:343-52. [PMID: 17136517 PMCID: PMC2722435 DOI: 10.1007/s00213-006-0624-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 10/23/2006] [Indexed: 10/23/2022]
Abstract
RATIONALE Previous research indicates that acute nicotine administration enhances the acquisition of contextual fear conditioning and trace cued fear conditioning. Pharmacological inhibition of alpha4beta2 nicotinic acetylcholine receptors (nAChRs), but not alpha7 nAChRs, blocked the enhancing effect of nicotine on contextual fear conditioning. Similarly, genetic deletion of the beta2 nAChR subunit but not the alpha7 nAChR subunit blocked the enhancing effect of nicotine on contextual fear conditioning. OBJECTIVES In the present study, nAChR subunit knockout mice were used to compare the involvement of beta2 subunit-containing nAChRs and alpha7 subunit-containing nAChRs in the effects of nicotine on hippocampus-dependent trace cued fear conditioning and contextual fear conditioning. METHODS beta2 nAChR subunit knockout mice, alpha7 nAChR subunit knockout mice, and their wild-type littermates received either nicotine or saline 5 minutes before training and testing. Mice were trained using five conditioned stimulus (CS; 30 s, 85 dB white noise)--trace (30 s)--unconditioned stimulus (US; 2 s footshock) pairings. Freezing to the context and freezing to the CS were assessed 24 h later. RESULTS Both contextual and trace cued fear conditioning were enhanced by nicotine administration in wild-type littermates and in alpha7 nAChR subunit knockout mice. In contrast, neither contextual fear conditioning nor trace cued fear conditioning was enhanced by nicotine administration in beta2 nAChR subunit knockout mice. CONCLUSIONS These results suggest that beta2 subunit-containing nAChRs but not alpha7 nAChR subunit-containing nAChRs are critically involved in the enhancing effect of nicotine on contextual and trace cued fear conditioning.
Collapse
|
40
|
Dmitrieva NA, Strang CE, Keyser KT. Expression of alpha 7 nicotinic acetylcholine receptors by bipolar, amacrine, and ganglion cells of the rabbit retina. J Histochem Cytochem 2006; 55:461-76. [PMID: 17189521 DOI: 10.1369/jhc.6a7116.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cholinergic agents affect the light responses of many ganglion cells (GCs) in the mammalian retina by activating nicotinic acetylcholine receptors (nAChRs). Whereas retinal neurons that express beta2 subunit-containing nAChRs have been characterized in the rabbit retina, expression patterns of other nAChR subtypes remain unclear. Therefore, we evaluated the expression of alpha7 nAChRs in retinal neurons by means of single-, double-, and triple-label immunohistochemistry. Our data demonstrate that, in the rabbit retina, several types of bipolar cells, amacrine cells, and cells in the GC layer express alpha7 nAChRs. At least three different populations of cone bipolar cells exhibited alpha7 labeling, whereas glycine-immunoreactive amacrine cells comprised the majority of alpha7-positive amacrine cells. Some GABAergic amacrine cells also displayed alpha7 immunoreactivity; alpha7 labeling was never detected in rod bipolar cells or rod amacrine cells (AII amacrine cells). Our data suggest that activation of alpha7 nAChRs by acetylcholine (ACh) or choline may affect glutamate release from several types of cone bipolar cells, modulating GC responses. ACh-induced excitation of inhibitory amacrine cells might cause either inhibition or disinhibition of other amacrine and GC circuits. Finally, ACh may act on alpha7 nAChRs expressed by GCs themselves.
Collapse
Affiliation(s)
- Nina A Dmitrieva
- Vision Science Research Center, The University of Alabama at Birmingham, WORB, 626 Birmingham, AL 35294-4390, USA
| | | | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Postural tachycardia syndrome is an autonomic disorder primarily of younger women. The patient population is heterogeneous, making diagnosis and treatment a challenge. A mutation in the norepinephrine (noradrenaline) transporter gene prompted further genetic analysis. RECENT FINDINGS Eleven new mutations were found in the human norepinephrine transporter gene, although none were directly associated with postural tachycardia syndrome. The 5'-flanking -1012C --> T variant of the dopamine beta-hydroxylase gene was slightly increased and protection was associated with a reduced incidence of two mutations in the endothelial nitric oxide synthase gene, and one in endothelin-1. Mutations in other disease-related genes suggest a potential relationship with the pathogenesis of postural tachycardia syndrome. Benign joint hypermobility syndrome, for example, shares similar autonomic symptoms and is linked to a mutation in tenascin-X. Additional genetic findings are discussed as potential contributors to vascular health and neurodegeneration. SUMMARY Genetic testing can reveal molecular mechanisms of disease and provide an additional strategy for diagnosis and treatment of heterogeneous patient populations such as postural tachycardia syndrome. It is quite likely that the pathogenesis of this disorder will be attributed to numerous genetic mutations, both subtle and overt. Therefore, continued study of the relationships between genotype and phenotype are necessary to better understand this syndrome and others with associated dysautonomia.
Collapse
Affiliation(s)
- Nancy R Keller
- Autonomic Dysfunction Center, Division of Clinical Pharmacology, Departments of Medicine, Pharmacology and Neurology, Tennessee, USA
| | | |
Collapse
|
42
|
Liu Q, Wu J. Neuronal nicotinic acetylcholine receptors serve as sensitive targets that mediate beta-amyloid neurotoxicity. Acta Pharmacol Sin 2006; 27:1277-86. [PMID: 17007734 DOI: 10.1111/j.1745-7254.2006.00430.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of brain dementia characterized by the accumulation of beta-amyloid peptides (Abeta) and loss of forebrain cholinergic neurons. Abeta accumulation and aggregation are thought to contribute to cholinergic neuronal degeneration, in turn causing learning and memory deficits, but the specific targets that mediate Abeta neurotoxicity remain elusive. Recently, accumulating lines of evidence have demonstrated that Abeta directly modulates the function of neuronal nicotinic acetylcholine receptors (nAChRs), which leads to the new hypothesis that neuronal nAChRs may serve as important targets that mediate Abeta neurotoxicity. In this review, we summarize current studies performed in our laboratory and in others to address the question of how Abeta modulates neuronal nAChRs, especially nAChR subunit function.
Collapse
Affiliation(s)
- Qiang Liu
- Division of Neurology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA
| | | |
Collapse
|
43
|
Thompson SA, Smith O, Linn DM, Linn CL. Acetylcholine neuroprotection against glutamate-induced excitotoxicity in adult pig retinal ganglion cells is partially mediated through alpha4 nAChRs. Exp Eye Res 2006; 83:1135-45. [PMID: 16928373 DOI: 10.1016/j.exer.2006.05.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 05/21/2006] [Accepted: 05/31/2006] [Indexed: 01/10/2023]
Abstract
In the mammalian retina, excess glutamate release has been shown to be involved in retinal ganglion cell (RGC) death associated with various diseases. Recent studies have determined that activation of alpha7 nicotinic acetylcholine receptors (nAChRs) partially protect isolated RGCs from glutamate-induced excitotoxicity. In this study, we further classify the types of nAChRs involved in neuroprotection against glutamate-induced excitotoxicity using isolated adult pig RGCs. Cells were isolated with a modified two-step immunoselective panning technique designed to isolate RGCs from other retinal neurons. Once isolated, nAChR subunits were identified using a combination of pharmacological and immunocytochemical techniques. In cell culture experiments, a variety of alpha4 nAChR specific agonists were found to have a partial neuroprotective against glutamate-induced excitotoxicity. This neuroprotection was abolished in the presence of the alpha4 nAChR antagonist, dihydro-beta-erythroidine (DHbetaE). Immunocytochemical results localized several nAChR subunits on isolated adult pig RGCs; in particular alpha4, alpha7 and beta2 nAChR subunits. Large RGCs exclusively immunostained with antibodies against alpha7 nAChR subunits whereas alpha4 and beta2 subunits exclusively immunostained only small RGCs. Double label experiments provided evidence that alpha4 and beta2 subunits co-localize on small RGCs. Knowledge of the receptor subtypes responsible for neuroprotection may lead to treatments associated with glutamate-induced excitotoxicity.
Collapse
Affiliation(s)
- S A Thompson
- Department of Biological Sciences, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008, USA
| | | | | | | |
Collapse
|
44
|
Wheeler DG, Barrett CF, Tsien RW. L-type calcium channel ligands block nicotine-induced signaling to CREB by inhibiting nicotinic receptors. Neuropharmacology 2006; 51:27-36. [PMID: 16631827 DOI: 10.1016/j.neuropharm.2006.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 02/17/2006] [Accepted: 02/20/2006] [Indexed: 11/30/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are inhibited by several drugs that are commonly thought to be specific for L-type calcium channels (LTCCs). In neurons, LTCCs are activated by nicotine-induced depolarization to engage downstream signaling events; however, the role of LTCC drug interactions with nAChRs in signaling has not been examined in detail. We investigated the effects of LTCC ligands on nAChR currents and downstream signaling in rat superior cervical ganglion (SCG) neurons. We found that 10microM nicotine and 40mM K(+) both reversibly depolarize SCG neurons to -20mV, sufficient to activate LTCCs and downstream signaling, including induction of nuclear phospho-CREB (pCREB); this induction was blocked by LTCC antagonists. Interestingly, the effects of LTCC antagonists on nicotine-induced signaling to CREB are not mediated by their actions on LTCCs, but rather via inhibition of nAChRs, which prevents nicotine-induced depolarization. We show that this effect is sufficient to block pCREB induction in neurons expressing an antagonist-insensitive LTCC. Taken together, our data show that, at concentrations typically used to block LTCCs, these antagonists inhibit nAChR currents and downstream signaling. These findings serve as a caution in attributing a role for LTCCs when using these drugs experimentally or therapeutically.
Collapse
Affiliation(s)
- Damian G Wheeler
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | | | | |
Collapse
|
45
|
Davis JA, Gould TJ. The effects of DHBE and MLA on nicotine-induced enhancement of contextual fear conditioning in C57BL/6 mice. Psychopharmacology (Berl) 2006; 184:345-52. [PMID: 15988571 DOI: 10.1007/s00213-005-0047-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 04/04/2005] [Indexed: 11/25/2022]
Abstract
RATIONALE Previous research indicates that nicotine administration enhances hippocampus-dependent forms of learning, including contextual fear conditioning. This effect is blocked by mecamylamine, a noncompetitive, broad-spectrum nicotinic receptor antagonist. OBJECTIVES The present study extends previous research by further characterizing the nicotinic acetylcholinergic receptor (nAChR) subtypes through which nicotine acts to enhance contextual fear conditioning. METHODS C57BL/6J mice were trained with two conditioned stimulus (CS; 30 s, 85-dB white noise)-unconditioned stimulus (US; 2 s, 0.57-mA foot shock) pairings and tested 24 h later for contextual and cued fear conditioning. The effects of the alpha7 nAChR antagonist methyllycaconitine (MLA; 1.00, 10.00, and 20.00 mg/kg) and the effects of the alpha4beta2 nAChR antagonist dihydro-beta-erythroidine (DHBE; 1.00, 3.00, and 6.00 mg/kg) on cued and contextual fear conditioning and on the enhancement of contextual fear conditioning by nicotine (0.25 mg/kg) were examined. RESULTS We demonstrate that DHBE (all doses) administration attenuates the enhancing effect of nicotine on contextual fear conditioning, and MLA administration has no significant effect on the enhancement of contextual fear conditioning by nicotine. CONCLUSIONS The data suggest that non-alpha7 nAChRs (most likely alpha4beta2 nAChRs) underlie the enhancement of contextual fear conditioning by nicotine.
Collapse
Affiliation(s)
- Jennifer A Davis
- Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
46
|
Ishii K, Wong JK, Sumikawa K. Comparison of alpha2 nicotinic acetylcholine receptor subunit mRNA expression in the central nervous system of rats and mice. J Comp Neurol 2005; 493:241-60. [PMID: 16255031 PMCID: PMC4289636 DOI: 10.1002/cne.20762] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) alpha2 subunit was the first neuronal nAChR to be cloned. However, data for the distribution of alpha2 mRNA in the rodent exists in only a few studies. Therefore, we investigated the expression of alpha2 mRNA in the rat and mouse central nervous systems using nonradioactive in situ hybridization histochemistry. We detected strong hybridization signals in cell bodies located in the internal plexiform layer of the olfactory bulb, the interpeduncular nucleus of the midbrain, the ventral and dorsal tegmental nuclei, the median raphe nucleus of the pons, the ventral part of the medullary reticular nucleus, the ventral horn in the spinal cord of both rats and mice, and in a few Purkinje cells of rats, but not of mice. Cells that moderately express alpha2 mRNA were localized to the cerebral cortex layers V and VI, the subiculum, the oriens layer of CA1, the medial septum, the diagonal band complex, the substantia innominata, and the amygdala of both animals. They were also located in a few midbrain nuclei of rats, whereas in mice they were either few or absent in these areas. However, in the upper medulla oblongata alpha2 mRNA was expressed in several large neurons of the gigantocellular reticular nucleus and the raphe magnus nucleus of mice, but not of rats. The data obtained show that a similar pattern of alpha2 mRNA expression exists in both rats and mice, with the exception of a few regions, and provide the basis for cellular level analysis.
Collapse
Affiliation(s)
- Katsuyoshi Ishii
- Department of Neurobiology and Behavior, University of California, Irvine, 92697-4550, USA.
| | | | | |
Collapse
|
47
|
Kulak JM, Schneider JS. Differences in alpha7 nicotinic acetylcholine receptor binding in motor symptomatic and asymptomatic MPTP-treated monkeys. Brain Res 2004; 999:193-202. [PMID: 14759498 DOI: 10.1016/j.brainres.2003.10.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2003] [Indexed: 10/26/2022]
Abstract
We studied [(125)I]alpha-bungarotoxin (btx) binding to alpha7 nicotinic acetylcholine receptors in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exposed macaque monkeys. [(125)I]alpha-Btx binds throughout the normal monkey brain, with the greatest density in the thalamic nuclei and with moderate to low binding in the hippocampus, prefrontal cortex, caudate, putamen, and substantia nigra. Chronic administration of low doses of MPTP resulted in animals with stable cognitive deficits without overt parkinsonian motor symptoms. [(125)I]alpha-Btx binding in the brains of these animals was significantly increased in the outermost layers of the supplementary motor cortex (area 6M, approximately 50%), primary motor cortex (area 4, approximately 112%) and throughout the putamen (approximately 50-72%). In contrast, there was no change in [(125)I]alpha-btx binding in the brain regions thought to be involved in mediating the cognitive functions impaired in these monkeys (e.g., the hippocampus, areas 9/46D and 46D of the principal sulcus, and area 24c of the cingulate sulcus). Animals with cognitive dysfunction that received escalating doses of MPTP for >6 months developed motor signs of parkinsonism which were indistinguishable from those seen in animals rendered acutely parkinsonian with short term administration of large doses of MPTP. These two "motor symptomatic" groups had significantly increased [(125)I]alpha-btx binding only in the dorsolateral putamen. Immunohistochemical studies showed that the increased [(125)I]alpha-btx binding, when observed, was associated with enhanced immunohistochemical staining localized to neurons and was not a result of an astrocytic response to MPTP. These results suggest that the increase in alpha7 nicotinic acetylcholine receptor expression in the chronic low-dose MPTP treated, motor asymptomatic monkeys may be a part of compensatory processes contributing to the maintained motor functioning in these animals.
Collapse
Affiliation(s)
- Jennifer M Kulak
- Department of Pathology, Thomas Jefferson University, 1020 Locust Street, 521 JAH, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
48
|
Sixma TK, Smit AB. Acetylcholine binding protein (AChBP): a secreted glial protein that provides a high-resolution model for the extracellular domain of pentameric ligand-gated ion channels. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:311-34. [PMID: 12695308 DOI: 10.1146/annurev.biophys.32.110601.142536] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acetylcholine binding protein (AChBP) has recently been identified from molluskan glial cells. Glial cells secrete it into cholinergic synapses, where it plays a role in modulating synaptic transmission. This novel mechanism resembles glia-dependent modulation of glutamate synapses, with several key differences. AChBP is a homolog of the ligand binding domain of the pentameric ligand-gated ion-channels. The crystal structure of AChBP provides the first high-resolution structure for this family of Cys-loop receptors. Nicotinic acetylcholine receptors and related ion-channels such as GABAA, serotonin 5HT3, and glycine can be interpreted in the light of the 2.7 A AChBP structure. The structural template provides critical details of the binding site and helps create models for toxin binding, mutational effects, and molecular gating.
Collapse
Affiliation(s)
- Titia K Sixma
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | |
Collapse
|
49
|
Fagen ZM, Mansvelder HD, Keath JR, McGehee DS. Short- and Long-Term Modulation of Synaptic Inputs to Brain Reward Areas by Nicotine. Ann N Y Acad Sci 2003; 1003:185-95. [PMID: 14684446 DOI: 10.1196/annals.1300.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dopamine signaling in brain reward areas is a key element in the development of drug abuse and dependence. Recent anatomical and electrophysiological research has begun to elucidate both complexity and specificity in synaptic connections between ventral tegmental neurons and their inputs. Specifically, the activity of dopamine neurons in the ventral tegmental area relies on the combination of both excitatory and inhibitory inputs. Controlling endogenous neurotransmission to dopamine neurons is one mechanism by which drugs of abuse affect both transient and long-term changes in synaptic activity. Here, we review recent findings concerning glutamatergic, GABAergic, and cholinergic inputs to dopamine neurons, and their roles in the reinforcement associated with drug abuse. Importantly, several studies support that a single drug exposure can lead to changes in synaptic strength that are associated with learning and memory. Ultimately, these cellular changes could underlie the long-lasting effects of drugs. Furthermore, nicotinic acetylcholine receptors in the ventral tegmental area emerge as a possible common target for the behavioral and cellular actions not only of nicotine, but also of several other drugs of abuse. Finally, we explore age-related differences in nicotine sensitivity in order to understand both human epidemiological data, and laboratory animal behavioral findings that suggest adolescents are more susceptible to developing nicotine dependence.
Collapse
Affiliation(s)
- Zara M Fagen
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
50
|
Mann EO, Greenfield SA. Novel modulatory mechanisms revealed by the sustained application of nicotine in the guinea-pig hippocampus in vitro. J Physiol 2003; 551:539-50. [PMID: 12815181 PMCID: PMC2343228 DOI: 10.1113/jphysiol.2003.045492] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The alpha 7 nicotinic acetylcholine receptor (nAChR) has been implicated widely in behavioural functions and dysfunctions related to the hippocampus, but the detailed mechanisms by which this receptor contributes to these behavioural processes have yet to be elucidated. In the present study, sustained application (5 min) of nicotine significantly lowered the threshold for synaptic plasticity, and thus a long-lasting potentiation was induced by a stimulus that would normally evoke only a short-term potentiation. This effect appeared to be mediated by alpha 7 nAChRs, as it was inhibited by the alpha 7 nAChR-specific antagonist alpha-bungarotoxin (100 nM), but not by mecamylamine (50 microM) or dihydro-beta-erythroidine (DH beta E; 1 microM) at concentrations known to be selective for non-alpha 7 nAChRs. Further pharmacological dissection revealed that the effect was also abolished by the NMDA receptor antagonist, D-(-)-2-amino-5-phosphonopentanoic acid (D-AP5; 50 microM). This blockade, however, unmasked a slowly developing nicotine-induced potentiation of field excitatory postsynaptic potential that appeared to be dependent on both alpha 7 nAChR activation and non-alpha 7 nAChR desensitisation. This secondary effect of nicotine was blocked by a combination of picrotoxin (50 microM) and saclofen (100 microM), and thus appeared to be mediated via GABAergic interneurons. The important implication of this study was that the sustained application of alpha 7 nAChR agonists could modulate the conditions for synaptic plasticity through multiple transduction pathways, and not simply the inactivation of alpha 7 nAChRs. These alpha 7-nAChR-dependent mechanisms could reconcile the discrepancies between the previously reported behavioural versus electrophysiological effects of nicotine in the hippocampus. Effects of sustained alpha 7 nAChR stimulation Effects of sustained alpha 7 nAChR stimulation Effects of sustained alpha 7 nAChR stimulation Effects of sustained alpha 7 nAChR stimulation Effects of sustained alpha 7 nAChR stimulation
Collapse
Affiliation(s)
- Edward O Mann
- Department of Pharmacology, Oxford University, Mansfield Road, Oxford OX1 3QT, UK.
| | | |
Collapse
|