1
|
Cai MY, Mao X, Zhang B, Yip CY, Pan KW, Niu Y, Kwok-Wing Tsui S, Si-Long Vong J, Choi-Wo Mak J, Luo W, Ko WH. Single-cell RNA sequencing reveals heterogeneity of ALI model and epithelial cell alterations after exposure to electronic cigarette aerosol. Heliyon 2024; 10:e38552. [PMID: 39397927 PMCID: PMC11470615 DOI: 10.1016/j.heliyon.2024.e38552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Electronic cigarettes (e-cigarettes) have been advertised as a healthier alternative to traditional cigarettes; however, their exact effects on the bronchial epithelium are poorly understood. Air-liquid interface culture human bronchial epithelium (ALI-HBE) contains various cell types, including basal cell, ciliated cell and secretory cell, providing an in vitro model that simulates the biological characteristics of normal bronchial epithelium. Multiplex single-cell RNA sequencing of ALI-HBE was used to reveal previously unrecognized transcriptional heterogeneity within the human bronchial epithelium and cell type-specific responses to acute exposure to e-cigarette aerosol (e-aerosol) containing distinct components (nicotine and/or flavoring). The findings of our study show that nicotine-containing e-aerosol affected gene expression related to transformed basal cells into secretory cells after acute exposure; inhibition of secretory cell function by down-regulating genes related to epithelial cell differentiation, calcium ion binding, extracellular exosomes, and secreted proteins; and enhanced interaction between secretory cells and other cells. On the other hand, flavoring may alter the growth pattern of epithelial cells and make basal cells more susceptible to SARS-CoV infection. Besides, the data also indicate factors that may promote SARS-CoV-2 infection and suggest therapeutic targets for restoring normal bronchial epithelium function after e-cigarette use. In summary, the current study offered fresh perspectives on alterations in the cellular landscape and cell type-specific responses in human bronchial epithelium that are brought about by e-cigarette use.
Collapse
Affiliation(s)
- Meng-yun Cai
- Institute of Translational Medicine, The First People's Hospital of Foshan, Guangdong, PR China
| | - Xiaofan Mao
- Institute of Translational Medicine, The First People's Hospital of Foshan, Guangdong, PR China
| | - Beiying Zhang
- Institute of Translational Medicine, The First People's Hospital of Foshan, Guangdong, PR China
| | - Chung-Yin Yip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Ke-wu Pan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Ya Niu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Joaquim Si-Long Vong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Judith Choi-Wo Mak
- Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong
| | - Wei Luo
- Institute of Translational Medicine, The First People's Hospital of Foshan, Guangdong, PR China
| | - Wing-Hung Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| |
Collapse
|
2
|
Johnson AN, Dickinson J, Nelson A, Gaurav R, Kudrna K, Evans SE, Janike K, Wyatt TA, Poole JA. Effect of epithelial-specific MyD88 signaling pathway on airway inflammatory response to organic dust exposure. J Immunotoxicol 2023; 20:2148782. [PMID: 36538286 PMCID: PMC9912912 DOI: 10.1080/1547691x.2022.2148782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022] Open
Abstract
The Toll-like receptor (TLR) adaptor protein MyD88 is integral to airway inflammatory response to microbial-enriched organic dust extract (ODE) exposures. ODE-induced airway neutrophil influx and release of pro-inflammatory cytokines was essentially abrogated in global MyD88-deficient mice, yet these mice demonstrate an increase in airway epithelial cell mucin expression. To further elucidate the role of MyD88-dependent responses specific to lung airway epithelial cells in response to ODE in vivo, the surfactant protein C protein (SPC) Cre+ embryologic expressing airway epithelial cells floxed for MyD88 to disrupt MyD88 signaling were utilized. The inducible club cell secretory protein (CCSP) Cre+, MyD88 floxed, were also developed. Using an established protocol, mice were intranasally instilled with ODE or saline once or daily up to 3 weeks. Mice with MyD88-deficient SPC+ lung epithelial cells exhibited decreased neutrophil influx following ODE exposure once and repetitively for 1 week without modulation of classic pro-inflammatory mediators including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and neutrophil chemoattractants. This protective response was lost after 3 weeks of repetitive exposure. ODE-induced Muc5ac mucin expression at 1 week was also reduced in MyD88-deficient SPC+ cells. Acute ODE-induced IL-33 was reduced in MyD88-deficient SPC+ cells whereas serum IgE levels were increased at one week. In contrast, mice with inducible MyD88-deficient CCSP+ airway epithelial cells demonstrated no significant difference in experimental indices following ODE exposure. Collectively, these findings suggest that MyD88-dependent signaling targeted to all airway epithelial cells plays an important role in mediating neutrophil influx and mucin production in response to acute organic dust exposures.
Collapse
Affiliation(s)
- Amber N. Johnson
- Pulmonary Critical Care and Sleep Division University of Nebraska Medical Center (UNMC), Omaha, NE
| | - John Dickinson
- Pulmonary Critical Care and Sleep Division University of Nebraska Medical Center (UNMC), Omaha, NE
| | - Amy Nelson
- Allergy and Immunology Division, Department of Internal Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE
| | - Rohit Gaurav
- Allergy and Immunology Division, Department of Internal Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE
| | - Katrina Kudrna
- Pulmonary Critical Care and Sleep Division University of Nebraska Medical Center (UNMC), Omaha, NE
| | - Scott E. Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Katherine Janike
- Allergy and Immunology Division, Department of Internal Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE
| | - Todd A. Wyatt
- Pulmonary Critical Care and Sleep Division University of Nebraska Medical Center (UNMC), Omaha, NE
- VA Nebraska Western Iowa Health Care System, Omaha, NE
- Department of Environmental, Agricultural and Occupational Health, UNMC, Omaha, NE
| | - Jill A. Poole
- Allergy and Immunology Division, Department of Internal Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE
| |
Collapse
|
3
|
Bruno S, Lamberty A, McCoy M, Mark Z, Daphtary N, Aliyeva M, Butnor K, Poynter ME, Anathy V, Cunniff B. Deletion of Miro1 in airway club cells potentiates allergic asthma phenotypes. FRONTIERS IN ALLERGY 2023; 4:1187945. [PMID: 37377691 PMCID: PMC10291198 DOI: 10.3389/falgy.2023.1187945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondria are multifaceted organelles necessary for numerous cellular signaling and regulatory processes. Mitochondria are dynamic organelles, trafficked and anchored to subcellular sites depending upon the cellular and tissue requirements. Precise localization of mitochondria to apical and basolateral membranes in lung epithelial cells is important for key mitochondrial processes. Miro1 is an outer mitochondrial membrane GTPase that associates with adapter proteins and microtubule motors to promote intracellular movement of mitochondria. We show that deletion of Miro1 in lung epithelial cells leads to perinuclear clustering of mitochondria. However, the role of Miro1 in epithelial cell response to allergic insults remains unknown. We generated a conditional mouse model to delete Miro1 in Club Cell Secretory Protein (CCSP) positive lung epithelial cells to examine the potential roles of Miro1 and mitochondrial trafficking in the lung epithelial response to the allergen, house dust mite (HDM). Our data show that Miro1 suppresses epithelial induction and maintenance of the inflammatory response to allergen, as Miro1 deletion modestly induces increases in pro-inflammatory signaling, specifically IL-6, IL-33, CCL20 and eotaxin levels, tissue reorganization, and airway hyperresponsiveness. Furthermore, loss of Miro1 in CCSP+ lung epithelial cells blocks resolution of the asthmatic insult. This study further demonstrates the important contribution of mitochondrial dynamic processes to the airway epithelial allergen response and the pathophysiology of allergic asthma.
Collapse
Affiliation(s)
- Sierra Bruno
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Amelia Lamberty
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Margaret McCoy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Zoe Mark
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Nirav Daphtary
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Minara Aliyeva
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Kelly Butnor
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Matthew E. Poynter
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| |
Collapse
|
4
|
Boateng E, Kovacevic D, Oldenburg V, Rådinger M, Krauss-Etschmann S. Role of airway epithelial cell miRNAs in asthma. FRONTIERS IN ALLERGY 2022; 3:962693. [PMID: 36203653 PMCID: PMC9530201 DOI: 10.3389/falgy.2022.962693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/01/2022] [Indexed: 12/07/2022] Open
Abstract
The airway epithelial cells and overlying layer of mucus are the first point of contact for particles entering the lung. The severity of environmental contributions to pulmonary disease initiation, progression, and exacerbation is largely determined by engagement with the airway epithelium. Despite the cellular cross-talk and cargo exchange in the microenvironment, epithelial cells produce miRNAs associated with the regulation of airway features in asthma. In line with this, there is evidence indicating miRNA alterations related to their multifunctional regulation of asthma features in the conducting airways. In this review, we discuss the cellular components and functions of the airway epithelium in asthma, miRNAs derived from epithelial cells in disease pathogenesis, and the cellular exchange of miRNA-bearing cargo in the airways.
Collapse
Affiliation(s)
- Eistine Boateng
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Correspondence: Eistine Boateng
| | - Draginja Kovacevic
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Vladimira Oldenburg
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
5
|
Aquila G, Alaimo A, Marracino L, Martino V, Camponogara F, Vieceli Dalla Sega F, Fortini F, Pannuti A, Zanotti C, Malagutti N, Pelucchi S, Rizzo P. Characterization of the Notch pathway in nasal polyps of patients with chronic rhinosinusitis: A pilot study. Physiol Rep 2022; 10:e15403. [PMID: 36029197 PMCID: PMC9419157 DOI: 10.14814/phy2.15403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyps is a widespread pathology characterized by persistent inflammation of nasal and paranasal mucosa. Although it represents one of the most frequent diseases of the nasal cavities, its etiology is still not completely elucidated. There is evidence suggesting that the Notch signaling, a highly conserved intercellular pathway known to regulate many cellular processes, including inflammation, is implicated in nasal polyps formation. The purpose of this study was to investigate the expression of genes of the Notch pathway in nasal polyps from patients with chronic rhinosinusitis. Nasal polyps and adjacent mucosa tissue were obtained from 10 patients. RNA was analyzed by quantitative reverse transcriptase-polymerase chain reaction for the expression level of (1) Notch pathway components such as receptors (NOTCH1-4), ligands (DLL4, JAGGED-1), and target genes (HEY1, 2, and HES1) and (2) genes providing information on the pathogenesis of polyposis (C-MYC and SCGB1A1) and on eosinophils content (CCL26, IL5, and SAA2). We report a Notch-driven gene expression pattern in nasal polyps which correlates with the expression of genes highly expressed in eosinophils, whose presence is an important parameter to define the pathophysiologic diversity characterizing nasal polyps. Taken together, our results suggest a role for Notch signaling in the pathophysiology of polyposis. Further studies are needed to elucidate the role of Notch in nasal polyps formation and to establish whether it could represent a novel therapeutic target for this pathology.
Collapse
Affiliation(s)
- Giorgio Aquila
- Department of Medical SciencesUniversity of FerraraFerraraItaly
| | - Alessandra Alaimo
- Department of Ear, Nose and ThroatUniversity Hospital of FerraraFerraraItaly
| | - Luisa Marracino
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerraraItaly
| | - Valeria Martino
- Department of Medical SciencesUniversity of FerraraFerraraItaly
| | - Francesca Camponogara
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerraraItaly
| | - Francesco Vieceli Dalla Sega
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerraraItaly
| | - Francesca Fortini
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerraraItaly
| | - Antonio Pannuti
- University of Hawaii Cancer Center, University of HawaiiHonoluluHawaiiUSA
| | - Claudia Zanotti
- Department of Neuroscience DNS, Section of OtolaryngologyUniversity of PadovaPadovaItaly
| | - Nicola Malagutti
- Department of Ear, Nose and ThroatUniversity Hospital of FerraraFerraraItaly
| | - Stefano Pelucchi
- Department of Ear, Nose and ThroatUniversity Hospital of FerraraFerraraItaly
| | - Paola Rizzo
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA)University of FerraraFerraraItaly
| |
Collapse
|
6
|
Czechtizky W, Su W, Ripa L, Schiesser S, Höijer A, Cox RJ. Advances in the design of new types of inhaled medicines. PROGRESS IN MEDICINAL CHEMISTRY 2022; 61:93-162. [PMID: 35753716 DOI: 10.1016/bs.pmch.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inhalation of small molecule drugs has proven very efficacious for the treatment of respiratory diseases due to enhanced efficacy and a favourable therapeutic index compared with other dosing routes. It enables targeted delivery to the lung with rapid onset of therapeutic action, low systemic drug exposure, and thereby reduced systemic side effects. An increasing number of pharmaceutical companies and biotechs are investing in new modalities-for this review defined as therapeutic molecules with a molecular weight >800Da and therefore beyond usual inhaled small molecule drug-like space. However, our experience with inhaled administration of PROTACs, peptides, oligonucleotides (antisense oligonucleotides, siRNAs, miRs and antagomirs), diverse protein scaffolds, antibodies and antibody fragments is still limited. Investigating the retention and metabolism of these types of molecules in lung tissue and fluid will contribute to understanding which are best suited for inhalation. Nonetheless, the first such therapeutic molecules have already reached the clinic. This review will provide information on the physiology of healthy and diseased lungs and their capacity for drug metabolism. It will outline the stability, aggregation and immunogenicity aspects of new modalities, as well as recap on formulation and delivery aspects. It concludes by summarising clinical trial outcomes with inhaled new modalities based on information available at the end of 2021.
Collapse
Affiliation(s)
- Werngard Czechtizky
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden.
| | - Wu Su
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Lena Ripa
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Stefan Schiesser
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Andreas Höijer
- Cardiovascular, Renal & Metabolism CMC Projects, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rhona J Cox
- Department of Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| |
Collapse
|
7
|
Kuwata F, Ohnishi H, Yamamoto N, Takezawa T, Yamashita M, Okuyama H, Hayashi Y, Yoshimatsu M, Kitada Y, Tada T, Kobayashi M, Omori K. Transplantation of human iPS cell-derived airway cells on vitrigel membrane into rat nasal cavity. Tissue Eng Part A 2021; 28:586-594. [PMID: 34841888 DOI: 10.1089/ten.tea.2021.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The nasal mucosa functions as a frontline biological defense against various foreign substances and pathogens. Maintaining homeostasis of the nasal epithelium is necessary to promote good health. Nasal epithelia are constantly replaced under normal conditions. However, hereditary diseases, including primary ciliary dyskinesia and cystic fibrosis, can result in intractable dysfunction of the nasal mucosa. Since there is no treatment for this underlying condition, extrinsic manipulation is necessary to recover and maintain nasal epithelia in cases of hereditary diseases. In this study, we explored the use of airway epithelial cells (AECs), including multi-ciliated airway cells (MCACs), derived from human induced pluripotent stem cells (hiPSCs) on porcine atelocollagen vitrigel membranes, as a candidate of a therapeutic method for irreversible nasal epithelial disorders. To confirm the regenerative capacity of iPSC-derived AECs, we transplanted them into nasal cavities of nude rats. Although the transplanted cells were found within cysts isolated from the recipient nasal respiratory epithelia, they survived in some rats. Furthermore, the surviving cells were composed of multiple cell types similar to the human airway epithelia. The results could contribute to the development of novel transplantation-related technologies for the treatment of severe irreversible nasal epithelial disorders.
Collapse
Affiliation(s)
- Fumihiko Kuwata
- Kyoto University Graduate School of Medicine Faculty of Medicine, 38049, Otolaryngology, Head and Neck Surgery, Kyoto, Japan;
| | - Hiroe Ohnishi
- Kyoto University Graduate School of Medicine Faculty of Medicine, 38049, Otolaryngology, Head and Neck Surgery, Kyoto, Japan;
| | - Norio Yamamoto
- Kyoto University Graduate School of Medicine Faculty of Medicine, 38049, Otolaryngology, Head and Neck Surgery, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan, 606-8501;
| | - Toshiaki Takezawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Division of Biotechnology, Ohwashi 1-2, Tsukuba, Ibaraki, Japan, 305-8634;
| | - Masaru Yamashita
- Kagoshima University Graduate School of Medicine and Dental Sciences, 208512, Kagoshima, Kagoshima, Japan;
| | - Hideaki Okuyama
- Kyoto University Graduate School of Medicine Faculty of Medicine, 38049, Otolaryngology, Head and Neck Surgery, Kyoto, Japan;
| | - Yasuyuki Hayashi
- Kyoto University Graduate School of Medicine Faculty of Medicine, 38049, Otolaryngology, Head and Neck Surgery, Kyoto, Japan;
| | - Masayoshi Yoshimatsu
- Kyoto University Graduate School of Medicine Faculty of Medicine, 38049, Otolaryngology, Head and Neck Surgery, Kyoto, Japan;
| | - Yuji Kitada
- Kyoto University Graduate School of Medicine Faculty of Medicine, 38049, Otolaryngology, Head and Neck Surgery, Kyoto, Japan;
| | - Takeshi Tada
- Jikei University School of Medicine, 12839, Minato-ku, Tokyo, Japan;
| | - Masayoshi Kobayashi
- Mie University Graduate School of Medicine Faculty of Medicine, 38072, Otolaryngology, Head and Neck Surgery, Tsu, Mie, Japan;
| | - Koichi Omori
- Kyoto University Graduate School of Medicine Faculty of Medicine, 38049, Otolaryngology, Head and Neck Surgery, Kyoto, Japan;
| |
Collapse
|
8
|
Fransen LFH, Leonard MO. Small Airway Susceptibility to Chemical and Particle Injury. Respiration 2021; 101:321-333. [PMID: 34649249 DOI: 10.1159/000519344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
Small airways (SA) in humans are commonly defined as those conducting airways <2 mm in diameter. They are susceptible to particle- and chemical-induced injury and play a major role in the development of airway disease such as COPD and asthma. Susceptibility to injury can be attributed in part to structural features including airflow dynamics and tissue architecture, but recent evidence may indicate a more prominent role for cellular composition in directing toxicological responses. Animal studies support the hypothesis that inherent cellular differences across the tracheobronchial tree, including metabolic CYP450 expression in the distal conducting airways, can influence SA susceptibility to injury. Currently, there is insufficient information in humans to make similar conclusions, prompting further necessary work in this area. An understanding of why the SA are more susceptible to certain chemical and particle exposures than other airway regions is fundamental to our ability to identify hazardous materials, their properties, and accompanying exposure scenarios that compromise lung function. It is also important for the ability to develop appropriate models for toxicity testing. Moreover, it is central to our understanding of SA disease aetiology and how interventional strategies for treatment may be developed. In this review, we will document the structural and cellular airway regional differences that are likely to influence airway susceptibility to injury, including the role of secretory club cells. We will also describe recent advances in single-cell sequencing of human airways, which have provided unprecedented details of cell phenotype, likely to impact airway chemical and particle injury.
Collapse
Affiliation(s)
| | - Martin Oliver Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, United Kingdom
| |
Collapse
|
9
|
Wang A, Zhang Q, Wang Y, Li X, Li K, Li Y, Wang J, Li L, Chen H. Inhibition of Gabrp reduces the differentiation of airway epithelial progenitor cells into goblet cells. Exp Ther Med 2021; 22:720. [PMID: 34007329 PMCID: PMC8120639 DOI: 10.3892/etm.2021.10152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/12/2021] [Indexed: 12/05/2022] Open
Abstract
Bronchial asthma is an intractable pulmonary disease that affects millions of individuals worldwide, with the overproduction of mucus contributing to high morbidity and mortality. Gamma-aminobutyric acid (GABA) is associated with goblet cell hyperplasia in the lungs of primate models and Club cells serve as airway epithelial progenitor cells that may differentiate into goblet and ciliated cells. In the present study, it was investigated whether the GABAA receptor pi (Gabrp) is essential for Club cell proliferation and differentiation in mice. Validation of microarray analysis results by reverse transcription-quantitative PCR (RT-qPCR) demonstrated that Gabrp is highly expressed in mouse Club cells. Predominant expression of Gabrp in mouse Club cells was further confirmed based on naphthalene-induced Club cell injury in mice, with organoid cultures indicating significant reductions in the organoid-forming ability of mouse Club cells in the presence of Gabrp antagonist bicuculline methiodide (BMI). Furthermore, the RT-qPCR results indicated that the mRNA levels of chloride channel accessory 3, pseudogene (Clca3p), mucin (Muc)5Ac and Muc5B were significantly decreased in BMI organoid cultures. These results suggested that blocking GABA signaling through Gabrp inhibits mouse Club cell proliferation, as well as differentiation into goblet cells. Therefore, targeting GABA/Gabrp signaling may represent a promising strategy for treating goblet cell hyperplasia in bronchial asthma.
Collapse
Affiliation(s)
- An Wang
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, P.R. China
| | - Qiuyang Zhang
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China
| | - Yongmei Wang
- Department of Pathology, Tianjin University Haihe Hospital, Tianjin 300350, P.R. China
| | - Xue Li
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China
| | - Kuan Li
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China
| | - Yu Li
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China
| | - Jianhai Wang
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China
| | - Li Li
- Department of Respiratory Medicine, Tianjin University Haihe Hospital, Tianjin 300350, P.R. China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, P.R. China.,Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin 300350, P.R. China.,Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin 300350, P.R. China
| |
Collapse
|
10
|
Smith CJ, Perfetti TA. High-dose exposure to synthetic chemicals, hormones, or homeostatic substances in experimental animals or humans can induce artefactual pathology. TOXICOLOGY RESEARCH AND APPLICATION 2020. [DOI: 10.1177/2397847320940557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The maximum tolerated dose (MTD) provides the highest probability of a positive result in a toxicology bioassay. The assumption underlying the MTD in animal bioassays is that adverse effects at very high doses are qualitatively the same as those occurring at low doses. In contrast with the MTD, the optimal top dose in a toxicology animal study is the highest dose that does not produce a pathological end point that presents no risk at lower doses, for example, the dose below which cytotoxicity induces tumors in the absence of genotoxicity or other carcinogenic mechanisms. Normal concentrations or biological activity levels of many substances necessary for normal physiological function induce pathology when found at high levels. For example, the demonstration that ingestion of abnormally high levels of certain dietary fats can cause or exacerbate atherosclerosis in relevant animal models like rhesus macaques does not demonstrate that normal levels of these fats should be considered as toxic. Excessive estrogenic stimulation is associated with breast, ovarian, and endometrial cancers. This does not imply that normal age-appropriate levels of estrogen are toxic. Normal wound healing is associated with transforming growth factors beta 1 and 2. Excessive stimulation of fibroblasts by these growth factors results in hypertrophic scarring and keloid formation. An understanding of the mode of action of a test substance can facilitate the selection of dose levels much higher than those expected to be experienced by humans, but not beyond a dose level at which pathology is an experimental artefact of the high-dose level.
Collapse
|
11
|
Duclos GE, Teixeira VH, Autissier P, Gesthalter YB, Reinders-Luinge MA, Terrano R, Dumas YM, Liu G, Mazzilli SA, Brandsma CA, van den Berge M, Janes SM, Timens W, Lenburg ME, Spira A, Campbell JD, Beane J. Characterizing smoking-induced transcriptional heterogeneity in the human bronchial epithelium at single-cell resolution. SCIENCE ADVANCES 2019; 5:eaaw3413. [PMID: 31844660 PMCID: PMC6905872 DOI: 10.1126/sciadv.aaw3413] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The human bronchial epithelium is composed of multiple distinct cell types that cooperate to defend against environmental insults. While studies have shown that smoking alters bronchial epithelial function and morphology, its precise effects on specific cell types and overall tissue composition are unclear. We used single-cell RNA sequencing to profile bronchial epithelial cells from six never and six current smokers. Unsupervised analyses led to the characterization of a set of toxin metabolism genes that localized to smoker ciliated cells, tissue remodeling associated with a loss of club cells and extensive goblet cell hyperplasia, and a previously unidentified peri-goblet epithelial subpopulation in smokers who expressed a marker of bronchial premalignant lesions. Our data demonstrate that smoke exposure drives a complex landscape of cellular alterations that may prime the human bronchial epithelium for disease.
Collapse
Affiliation(s)
- Grant E. Duclos
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Vitor H. Teixeira
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Patrick Autissier
- Boston University Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA
| | - Yaron B. Gesthalter
- Department of Medicine, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Marjan A. Reinders-Luinge
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Robert Terrano
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yves M. Dumas
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Gang Liu
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sarah A. Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, Netherlands
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- Department of Thoracic Medicine, University College London Hospital, London, UK
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Marc E. Lenburg
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Johnson & Johnson Innovation, Cambridge, MA, USA
| | - Joshua D. Campbell
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jennifer Beane
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
12
|
Zhu L, An L, Ran D, Lizarraga R, Bondy C, Zhou X, Harper RW, Liao SY, Chen Y. The Club Cell Marker SCGB1A1 Downstream of FOXA2 is Reduced in Asthma. Am J Respir Cell Mol Biol 2019; 60:695-704. [PMID: 30576223 PMCID: PMC6543749 DOI: 10.1165/rcmb.2018-0199oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/21/2018] [Indexed: 01/08/2023] Open
Abstract
Human SCGB1A1 protein has been shown to be significantly reduced in BAL, sputum, and serum from humans with asthma as compared with healthy individuals. However, the mechanism of this reduction and its functional impact have not been entirely elucidated. By mining online datasets, we found that the mRNA of SCGB1A1 was significantly repressed in brushed human airway epithelial cells from individuals with asthma, and this repression appeared to be associated with reduced expression of FOXA2. Consistently, both Scgb1A1 and FoxA2 were downregulated in an ovalbumin-induced mouse model of asthma. Furthermore, compared with wild-type mice, Scgb1a1 knockout mice had increased airway hyperreactivity and inflammation when they were exposed to ovalbumin, confirming the antiinflammatory role of Scgb1a1 in protection against asthma phenotypes. To search for potential asthma-related stimuli of SCGB1A1 repression, we tested T-helper cell type 2 cytokines. Both IL-4 and IL-13 repressed epithelial expression of SCGB1A1 and FOXA2. Importantly, infection of epithelial cells with human rhinovirus similarly reduced expression of these two genes, which suggests that FOXA2 may be the common regulator of SCGB1A1. To establish the causal role of reduced FOXA2 in SCGB1A1 repression, we demonstrated that FOXA2 was required for SCGB1A1 expression at baseline. FOXA2 overexpression was sufficient to drive promoter activity and expression of SCGB1A1 and was also able to restore the repressed SCGB1A1 expression in IL-13-treated or rhinovirus-infected cells. Taken together, these findings suggest that low levels of epithelial SCGB1A1 in asthma are caused by reduced FOXA2 expression.
Collapse
Affiliation(s)
- Lingxiang Zhu
- Department of Pharmacology and Toxicology, School of Pharmacy
| | - Lingling An
- Department of Epidemiology Biostatistics
- Interdisciplinary Program in Statistics
- Department of Biosystems Engineering, and
| | - Di Ran
- Department of Epidemiology Biostatistics
| | - Rosa Lizarraga
- Department of Pharmacology and Toxicology, School of Pharmacy
| | - Cheryl Bondy
- Department of Pharmacology and Toxicology, School of Pharmacy
| | - Xu Zhou
- Department of Pharmacology and Toxicology, School of Pharmacy
| | - Richart W. Harper
- Department of Internal Medicine, University of California, Davis, California
| | - Shu-Yi Liao
- Department of Internal Medicine, University of California, Davis, California
| | - Yin Chen
- Department of Pharmacology and Toxicology, School of Pharmacy
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona; and
| |
Collapse
|
13
|
Malvin NP, Kern JT, Liu TC, Brody SL, Stappenbeck TS. Autophagy proteins are required for club cell structure and function in airways. Am J Physiol Lung Cell Mol Physiol 2019; 317:L259-L270. [PMID: 31116580 DOI: 10.1152/ajplung.00394.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epithelial cells that line lung airways produce and secrete proteins with important roles in barrier function and host defense. Secretion of airway goblet cells is controlled by autophagy proteins during inflammatory conditions, resulting in accumulation of mucin proteins. We hypothesized that autophagy proteins would also be important in the function of club cells, dominant secretory airway epithelial cells that are dysregulated in chronic lung disease. We found that in the absence of an inflammatory stimulus, mice with club cells deficient for the autophagy protein Atg5 had a markedly diminished expression of secreted host defense proteins secretoglobulin family 1A, member 1 (Scgb1a1) and surfactant proteins A1 and D (Sftpa1 and Sftpd), as well as abnormal club cell morphology. Adult mice with targeted loss of Atg5 also showed diminished levels of host defense proteins in regenerating cells following ablation with naphthalene. A mouse strain with global deficiency of Atg16-like 1 (Atg16l1), an Atg5 binding partner, had a similar loss of host defense proteins and abnormal club cell morphology. Cigarette smoke exposure reduced levels of Scgb1a1 in wild-type mice as expected. Smoke exposure was not required to trigger club cell abnormalities in mice bearing the human ATG16 variant Atg16l1T300A/T300A, which had low Scgb1a1 levels independent of this environmental stress. Evaluation of lung tissues from former smokers with severe chronic obstructive pulmonary disease showed evidence of reduced autophagy and SCGB1A1 expression in club cells. Thus, autophagy proteins are required for the function of club cells, independent of the cellular stress of cigarette smoke, with roles that appear to be distinct from those of other secretory cell types.
Collapse
Affiliation(s)
- Nicole P Malvin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Justin T Kern
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
14
|
Zhang N, Wang H, Xie Q, Cao H, Wu F, Di Wu DB, Wan Y. Identification of potential diagnostic and therapeutic target genes for lung squamous cell carcinoma. Oncol Lett 2019; 18:169-180. [PMID: 31289486 PMCID: PMC6539486 DOI: 10.3892/ol.2019.10300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study was to identify potential molecular markers of lung squamous cell carcinoma (LUSC). Three datasets containing LUSC mRNA sequencing data were downloaded from the Gene Expression Omnibus, The Cancer Genome Atlas and the Gene Expression Profiling Interactive Analysis databases. These datasets were used to identify significantly differentially expressed genes (DEGs) in LUSC. A protein-protein interaction network of the DEGs was constructed followed by Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and overall survival analyses of the DEGs. A total of 37 DEGs between LUSC and normal tissues were identified, including 26 downregulated genes and 11 upregulated genes. Biological Process enrichment analysis revealed that the DEGs were mainly enriched in ‘cell adhesion’, ‘cell-matrix adhesion’, ‘anatomical structure morphogenesis’, ‘ECM-receptor interaction’ and ‘focal adhesion’. Overall survival analysis demonstrated that transcription factor 21, α-2-macroglobulin, acyl-CoA synthetase long chain family member 5, integrin subunit β8, meiotic nuclear divisions 1 and secretoglobin family 1A member 1 were significantly associated with the occurrence and development of lung cancer, and these genes were selected as hub genes. The results obtained in the present study may aid the elucidation of the molecular mechanisms involved in the development of LUSC and may provide potential targets for LUSC treatment.
Collapse
Affiliation(s)
- Nana Zhang
- Department of Respiration, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hong Wang
- Department of Respiration, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Qiqi Xie
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hua Cao
- Department of Respiration, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Fanqi Wu
- Department of Respiration, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Dan Bei Di Wu
- Department of Respiration, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yixin Wan
- Department of Respiration, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
15
|
Bronchioloalveolar lung tumors induced in “mice only” by non-genotoxic chemicals are not useful for quantitative assessment of pulmonary adenocarcinoma risk in humans. TOXICOLOGY RESEARCH AND APPLICATION 2018. [DOI: 10.1177/2397847318816617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chemicals classified as known human carcinogens by International Agency for Research on Cancer (IARC) show a low level of concordance between rodents and humans for induction of pulmonary carcinoma. Rats and mice exposed via inhalation for 2 years show a low level of concordance in both tumor development and organ site location. In 2-year inhalation studies using rats and mice, when pulmonary tumors are seen in only male or female mice or both, but not in either sex of rat, there is a high probability that the murine pulmonary tumor has been produced via Clara cell or club cell (CC) metabolism of the inhaled chemical to a cytotoxic metabolite. Cytotoxicity-induced mitogenesis increases mutagenesis via amplification of the background mutation rate. If the chemical being tested is also negative in the Ames Salmonella mutagenicity assay, and only mouse pulmonary tumors are induced, the probability that this pulmonary tumor is not relevant to human lung cancer risk goes even higher. Mice have a larger percentage of CCs in their distal airways than rats, and a much larger percentage than in humans. The CCs of mice have a much higher concentration of metabolic enzymes capable of metabolizing xenobiotics than CCs in either rats or humans. A principal threat to validity of extrapolating from the murine model lies in the unique capacity of murine CCs to metabolize a significant spectrum of xenobiotics which in turn produces toxicants not seen in rat or human pulmonary pathophysiology.
Collapse
|
16
|
Wang Y, Wang ZF, Zhang Z, Su Y. Expression of Clara cell 10-kDa protein and trefoil factor family 1 in patients with chronic rhinosinusitis and nasal polyps. Exp Ther Med 2018; 15:2541-2546. [PMID: 29456658 DOI: 10.3892/etm.2018.5725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
The current study measured the expression of Clara cell 10-kDa protein (CC10) and trefoil factor family 1 (TFF1) in the sinus mucosa of patients exhibiting chronic rhinosinusitis (CRS) and nasal polyps (NP). CC10 and TFF1 expression in the sinus mucosa of the control group and patients with CRS and NP was determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting and immunohistochemistry. The correlation between CC10 and TFF1 expression was further analyzed using Spearman's correlation analysis. The expression of TFF1 was significantly increased in the sinus mucosa of patients with CRS and NP, whereas CC10 expression was significantly decreased compared with controls. Spearman's correlation analysis identified a negative correlation between CC10 and TFF1 expression in the sinus mucosa of patients with CRS and NP. The results of immunohistochemistry and RT-qPCR were consistent with each other. Hematoxylin and eosin staining revealed notable lesions in the mucous membranes, goblet cells and cilia of sinus mucosa samples from patients with CRS and NP. The negative correlation between CC10 and TFF1 expression during the progression of CRS and NP suggest that CC10 and TFF1 may serve important roles in its pathogenesis.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Otolaryngology, Head and Neck Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Zong-Feng Wang
- Department of Otolaryngology, Head and Neck Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Zhili Zhang
- Department of Orthodontics, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Yi Su
- Department of Otolaryngology, Head and Neck Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| |
Collapse
|
17
|
Abstract
The lung is constantly exposed to a large volume of inhaled air that may contain toxicant xenobiotics. With the possibility of exposure to a variety of respiratory toxicants from airborne pollutants in our environment during the course of daily activities, in occupational settings, the use of aerosol sprays for household products, and the development of inhalant bronchial therapies, pulmonary toxicology has become an important subspecialty of toxicology. The lung is susceptible to injury following hematogenous exposure to toxicants. Susceptibility to injury and the type of response following exposure to air- or blood-borne toxicants is largely dependent on the physiochemical characteristics and concentration of the toxicant, duration of exposure, site/tissue specific sensitivity, and the integrity of the defense mechanisms of the lung. In this chapter, nonneoplastic and neoplastic spontaneous lesions and those that develop in the lungs of rats following exposure to toxicants by various routes, but primarily by inhalation, are discussed in detail which provides insight into our understanding of how human lungs respond to toxic chemicals. In addition, the gross and microscopic anatomy of the rat lung is also discussed some detail. Although inhalation is the primary route of exposure in experimental studies, in the past, many studies used intratracheal instillation or direct injection of known carcinogens into the lung. These experiments often resulted in the development of squamous cell carcinomas even though they are very rare as a naturally occurring neoplasm. Instillation of chemicals or particles into the trachea or pleura or direct injection into the lung results in lesions or responses that may not be as relevant to understanding the mechanism of pulmonary carcinogenesis as inhalation of materials under more normal conditions. There remain, however, many areas where our understanding of the response of the lung to toxic chemicals is incomplete.
Collapse
|
18
|
The role and importance of club cells (Clara cells) in the pathogenesis of some respiratory diseases. POLISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2016; 13:26-30. [PMID: 27212975 PMCID: PMC4860431 DOI: 10.5114/kitp.2016.58961] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 05/20/2015] [Accepted: 02/18/2016] [Indexed: 11/17/2022]
Abstract
The report presents the cellular structure of the respiratory system as well as the history of club cells (Clara cells), their ultrastructure, and location in the airways and human organs. The authors discuss the biochemical structure of proteins secreted by these cells and their importance for the integrity and regeneration of the airway epithelium. Their role as progenitor cells for the airway epithelium and their involvement in the biotransformation of toxic xenobiotics introduced into the lungs during breathing is emphasized. This is followed by a discussion of the clinical aspects associated with club cells, demonstrating that tracking the serum concentration of club cell-secreted proteins is helpful in the diagnosis of a number of lung tissue diseases. Finally, suggestions are provided regarding the possible use of proteins secreted by club cells in the treatment of serious respiratory conditions.
Collapse
|
19
|
Ho CM, Huang CJ, Huang SH, Chang SF, Cheng WF. Demethylation of HIN-1 reverses paclitaxel-resistance of ovarian clear cell carcinoma through the AKT-mTOR signaling pathway. BMC Cancer 2015; 15:789. [PMID: 26497956 PMCID: PMC4619992 DOI: 10.1186/s12885-015-1744-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Methylation of HIN-1 is associated with poor outcomes in patients with ovarian clear cell carcinoma (OCCC), which is regarded to be an aggressive, chemo-resistant histological subtype. This study aimed to evaluate whether 5-aza-2-deoxycytidine (5-aza-2-dC) can reverse methylation of the HIN-1 gene to restore chemo-sensitivity of OCCC and the possible mechanism. METHODS In vitro flow cytometric analysis and evaluation of caspase-3/7 activity of paclitaxel-sensitive and resistant OCCC cell lines were performed. Methylation status and expression changes of HIN-1 in the OCCC cell lines treated with 5-aza-2-dC were evaluated, and immunohistochemical staining of HIN-1 in OCCC tissues was performed. In vivo tumor growth with or without 5-aza-2-dC treatment was analyzed, and Western blotting of AKT-mTOR signaling-related molecules was performed. RESULTS G2-M phase arrest was absent in paclitaxel-resistant OCCC cells after treatment with the cytotoxic drug. The caspase activities of the chemo-resistant OCCC cells were lower than those of the chemo-sensitive OCCC cells when treated with paclitaxel. Methylation of HIN-1 was noted in paclitaxel-resistant OCCC cell lines and cancerous tissues. 5-aza-2-dC reversed the methylation of HIN-1, re-activated the expression of HIN-1, and then suppressed the in vivo tumor growth of paclitaxel-resistant OCCC cells. Immunoblotting revealed that phospho-AKT473 and phospho-mTOR were significantly increased in HIN-1-methylated paclitaxel-resistant OCCC cell lines. However, the expressions of phospho-AKT at Ser473 and Thr308 and phospho-mTOR decreased in the OCCC cells with a high expression of HIN-1. CONCLUSIONS Demethylating agents can restore the HIN-1 expression in paclitaxel-resistant OCCC cells through the HIN-1-AKT-mTOR signaling pathway to inhibit tumor growth.
Collapse
Affiliation(s)
- Chih-Ming Ho
- Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan.
- School of Medicine, Fu Jen Catholic University, Hsinchuang, New Taipei City, Taiwan.
- School of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Sijhih, New Taipei, Taiwan.
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| | - Shih-Hung Huang
- Department of Pathology, Cathay General Hospital, Taipei, Taiwan.
| | - Shwu-Fen Chang
- Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Wen-Fang Cheng
- Department of Obstetrics and Gynecology, National Taiwan, University Hospital, Taipei, Taiwan.
- Graduate Institute of Oncology, National Taiwan, University Hospital, Taipei, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan, University, Taipei, Taiwan.
| |
Collapse
|
20
|
Syndecan 4 Mediates Nrf2-dependent Expansion of Bronchiolar Progenitors That Protect Against Lung Inflammation. Mol Ther 2015; 24:41-52. [PMID: 26307669 PMCID: PMC4754542 DOI: 10.1038/mt.2015.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 08/11/2015] [Indexed: 12/16/2022] Open
Abstract
The use of lung progenitors for regenerative medicine appears promising, but their biology is not fully understood. Here, we found anti-inflammatory attributes in bronchiolar progenitors that were sorted as a multipotent subset of mouse club cells and found to express secretory leukocyte protease inhibitor (SLPI). Notably, the impaired expression of SLPI in mice increased the number of bronchiolar progenitors and decreased the lung inflammation. We determined a transcriptional profile for the bronchiolar progenitors of Slpi-deficient mice and identified syndecan 4, whose expression was markedly elevated as compared to that of wild-type mice. Systemic administration of recombinant syndecan 4 protein caused a substantial increase in the number of bronchiolar progenitors with concomitant attenuation of both airway and alveolar inflammation. The syndecan 4 administration also resulted in activation of the Keap1-Nrf2 antioxidant pathway in lung cells, which is critically involved in the therapeutic responses to the syndecan 4 treatment. Moreover, in 3D culture, the presence of syndecan 4 induced differentiated club cells to undergo Nrf2-dependent transition into bronchiolar progenitors. Our observations reveal that differentiative switches between bronchiolar progenitors and club cells are under the Nrf2-mediated control of SLPI and syndecan 4, suggesting the possibility of new therapeutic approaches in inflammatory lung diseases.
Collapse
|
21
|
Gamez AS, Gras D, Petit A, Knabe L, Molinari N, Vachier I, Chanez P, Bourdin A. Supplementing Defect in Club Cell Secretory Protein Attenuates Airway Inflammation in COPD. Chest 2015; 147:1467-1476. [DOI: 10.1378/chest.14-1174] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
22
|
Leeming GH, Kipar A, Hughes DJ, Bingle L, Bennett E, Moyo NA, Tripp RA, Bigley AL, Bingle CD, Sample JT, Stewart JP. Gammaherpesvirus infection modulates the temporal and spatial expression of SCGB1A1 (CCSP) and BPIFA1 (SPLUNC1) in the respiratory tract. J Transl Med 2015; 95:610-24. [PMID: 25531566 PMCID: PMC4450743 DOI: 10.1038/labinvest.2014.162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/23/2014] [Accepted: 11/11/2014] [Indexed: 11/09/2022] Open
Abstract
Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an established model of γ-herpesvirus infection. We have previously developed an alternative system using a natural host, the wood mouse (Apodemus sylvaticus), and shown that the MHV-68 M3 chemokine-binding protein contributes significantly to MHV-68 pathogenesis. Here we demonstrate in A. sylvaticus using high-density micro-arrays that M3 influences the expression of genes involved in the host response including Scgb1a1 and Bpifa1 that encode potential innate defense proteins secreted into the respiratory tract. Further analysis of MHV-68-infected animals showed that the levels of both protein and RNA for SCGB1A1 and BPIFA1 were decreased at day 7 post infection (p.i.) but increased at day 14 p.i. as compared with M3-deficient and mock-infected animals. The modulation of expression was most pronounced in bronchioles but was also present in the bronchi and trachea. Double staining using RNA in situ hybridization and immunohistology demonstrated that much of the BPIFA1 expression occurs in club cells along with SCGB1A1 and that BPIFA1 is stored within granules in these cells. The increase in SCGB1A1 and BPIFA1 expression at day 14 p.i. was associated with the differentiation of club cells into mucus-secreting cells. Our data highlight the role of club cells and the potential of SCGB1A1 and BPIFA1 as innate defense mediators during respiratory virus infection.
Collapse
Affiliation(s)
- Gail H Leeming
- Department of Infection Biology, University of Liverpool, Liverpool, UK,Department of Veterinary Pathology, School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Anja Kipar
- Department of Infection Biology, University of Liverpool, Liverpool, UK,Department of Veterinary Pathology, School of Veterinary Science, University of Liverpool, Liverpool, UK,Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - David J Hughes
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Lynne Bingle
- Academic Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Elaine Bennett
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Nathifa A Moyo
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Alison L Bigley
- Investigative and Translational Pathology, AstraZeneca, R&D Innovative Medicines, Global Safety Assessment, Macclesfield, UK
| | - Colin D Bingle
- Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, Sheffield, UK
| | - Jeffery T Sample
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - James P Stewart
- Department of Infection Biology, University of Liverpool, Liverpool, UK,Department of Infection Biology, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool L3 5RF, UK. E-mail:
| |
Collapse
|
23
|
Katsirntaki K, Mauritz C, Olmer R, Schmeckebier S, Sgodda M, Puppe V, Eggenschwiler R, Duerr J, Schubert SC, Schmiedl A, Ochs M, Cantz T, Salwig I, Szibor M, Braun T, Rathert C, Martens A, Mall MA, Martin U. Bronchoalveolar sublineage specification of pluripotent stem cells: effect of dexamethasone plus cAMP-elevating agents and keratinocyte growth factor. Tissue Eng Part A 2014; 21:669-82. [PMID: 25316003 DOI: 10.1089/ten.tea.2014.0097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Respiratory progenitors can be efficiently generated from pluripotent stem cells (PSCs). However, further targeted differentiation into bronchoalveolar sublineages is still in its infancy, and distinct specifying effects of key differentiation factors are not well explored. Focusing on airway epithelial Clara cell generation, we analyzed the effect of the glucocorticoid dexamethasone plus cAMP-elevating agents (DCI) on the differentiation of murine embryonic and induced pluripotent stem cells (iPSCs) into bronchoalveolar epithelial lineages, and whether keratinocyte growth factor (KGF) might further influence lineage decisions. We demonstrate that DCI strongly induce expression of the Clara cell marker Clara cell secretory protein (CCSP). While KGF synergistically supports the inducing effect of DCI on alveolar markers with increased expression of surfactant protein (SP)-C and SP-B, an inhibitory effect on CCSP expression was shown. In contrast, neither KGF nor DCI seem to have an inducing effect on ciliated cell markers. Furthermore, the use of iPSCs from transgenic mice with CCSP promoter-dependent lacZ expression or a knockin of a YFP reporter cassette in the CCSP locus enabled detection of derivatives with Clara cell typical features. Collectively, DCI was shown to support bronchoalveolar specification of mouse PSCs, in particular Clara-like cells, and KGF to inhibit bronchial epithelial differentiation. The targeted in vitro generation of Clara cells with their important function in airway protection and regeneration will enable the evaluation of innovative cellular therapies in animal models of lung diseases.
Collapse
Affiliation(s)
- Katherina Katsirntaki
- 1 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School , Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tokita E, Tanabe T, Asano K, Suzaki H, Rubin BK. Club cell 10-kDa protein attenuates airway mucus hypersecretion and inflammation. Eur Respir J 2014; 44:1002-10. [DOI: 10.1183/09031936.00080913] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Bacterial lipopolysaccharide (LPS) and interleukin (IL)-13 increase mucus secretion and inflammatory cytokine production in normal human bronchial epithelial (NHBE) cells. We evaluated the effect of club cell 10-kDa protein (CC10), an anti-inflammatory protein produced by epithelial cells, on mucus secretion, cell morphology and inflammatory cytokine production.NHBE cells were cultured at an air–liquid interface with CC10 or vehicle and exposed to LPS on day 14. Mucin MUC5AC, IL-8 and granulocyte-macrophage colony-stimulating factor were measured in cell supernatants. MUC5AC and IL-8 mRNA expression were measured by real-time PCR. Western blotting was used to evaluate nuclear factor (NF)-κB and extracellular signal-regulated kinase (ERK) activation. Cells were evaluated histologically. Additionally, NHBE cells were exposed to IL-13 and CC10 for 14 days, and secretion of the mucins MUC5AC and MUC5B was measured.MUC5AC secretion stimulated either by LPS or by IL-13 was attenuated by CC10 at 20 ng·mL−1 (p<0.05). CC10 at 20 ng·mL−1 also attenuated IL-8 secretion (p<0.05). MUC5AC and IL-8 mRNA expression were also decreased by CC10 (p<0.05). CC10 attenuated phosphorylation of NF-κB (p<0.05) and ERK1/2 (p<0.05).CC10 attenuates LPS-induced mucus secretion in airway cells, in part due to inhibition of NF-κB and ERK phosphorylation.
Collapse
|
25
|
Wendt C, Tram K, Price A, England K, Stiehm A, Panoskaltsis-Mortari A. Club cell secretory protein improves survival in a murine obliterative bronchiolitis model. Am J Physiol Lung Cell Mol Physiol 2013; 305:L642-50. [PMID: 23997179 DOI: 10.1152/ajplung.00021.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Club cell secretory protein (CCSP) is an indirect phospholipase A2 inhibitor with some immunosuppressive and antiproliferative properties that is expressed in bronchiolar Club cells. In our murine bone marrow transplant (BMT) model of obliterative bronchiolitis (OB), CCSP is diminished; however, its role is unknown. To determine the role of CCSP, B6 wild-type (WT) or CCSP-deficient (CCSP(-/-)) mice were lethally conditioned and given allogeneic bone marrow with a sublethal dose of allogeneic splenic T cells to induce OB. We found that CCSP(-/-) mice demonstrated a higher mortality following BMT-induced OB compared with WT mice. Mice were analyzed 60 days post-BMT for protein expression, pulmonary function, and histology. CCSP levels were reduced in WT mice with BMT-induced OB, and lower levels correlated to decreased lung compliance. CCSP(-/-) had a higher degree of injury and fibrosis as measured by hydroxy proline, along with an increased lung resistance and the inflammatory markers, leukotriene B4 and CXCL1. Replacement with recombinant intravenous CCSP partially reversed the weight loss and improved survival in the CCSP(-/-) mice. In addition, CCSP replacement improved histology and decreased inflammatory cells and markers. These findings indicate that CCSP has a regulatory role in OB and may have potential as a preventive therapy.
Collapse
|
26
|
Derscheid RJ, Ackermann MR. The Innate Immune System of the Perinatal Lung and Responses to Respiratory Syncytial Virus Infection. Vet Pathol 2013; 50:827-41. [DOI: 10.1177/0300985813480216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The response of the preterm and newborn lung to airborne pathogens, particles, and other insults is initially dependent on innate immune responses since adaptive responses may not fully mature and require weeks for sufficient responses to antigenic stimuli. Foreign material and microbial agents trigger soluble, cell surface, and cytoplasmic receptors that activate signaling cascades that invoke release of surfactant proteins, defensins, interferons, lactoferrin, oxidative products, and other innate immune substances that have antimicrobial activity, which can also influence adaptive responses. For viral infections such as respiratory syncytial virus (RSV), the pulmonary innate immune responses has an essential role in defense as there are no fully effective vaccines or therapies for RSV infections of humans and reinfections are common. Understanding the innate immune response by the preterm and newborn lung may lead to preventive strategies and more effective therapeutic regimens.
Collapse
Affiliation(s)
- R. J. Derscheid
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - M. R. Ackermann
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
27
|
Côté O, Lillie BN, Hayes MA, Clark ME, van den Bosch L, Katavolos P, Viel L, Bienzle D. Multiple secretoglobin 1A1 genes are differentially expressed in horses. BMC Genomics 2012; 13:712. [PMID: 23253434 PMCID: PMC3556144 DOI: 10.1186/1471-2164-13-712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 12/18/2012] [Indexed: 11/19/2022] Open
Abstract
Background Secretoglobin 1A1 (SCGB 1A1), also called Clara cell secretory protein, is the most abundantly secreted protein of the airway. The SCGB1A1 gene has been characterized in mammals as a single copy in the genome. However, analysis of the equine genome suggested that horses might have multiple SCGB1A1 gene copies. Non-ciliated lung epithelial cells produce SCGB 1A1 during inhalation of noxious substances to counter airway inflammation. Airway fluid and lung tissue of horses with recurrent airway obstruction (RAO), a chronic inflammatory lung disease affecting mature horses similar to environmentally induced asthma of humans, have reduced total SCGB 1A1 concentration. Herein, we investigated whether horses have distinct expressed SCGB1A1 genes; whether the transcripts are differentially expressed in tissues and in inflammatory lung disease; and whether there is cell specific protein expression in tissues. Results We identified three SCGB1A1 gene copies on equine chromosome 12, contained within a 512-kilobase region. Bioinformatic analysis showed that SCGB1A1 genes differ from each other by 8 to 10 nucleotides, and that they code for different proteins. Transcripts were detected for SCGB1A1 and SCGB1A1A, but not for SCGB1A1P. The SCGB1A1P gene had most inter-individual variability and contained a non-sense mutation in many animals, suggesting that SCGB1A1P has evolved into a pseudogene. Analysis of SCGB1A1 and SCGB1A1A sequences by endpoint-limiting dilution PCR identified a consistent difference affecting 3 bp within exon 2, which served as a gene-specific “signature”. Assessment of gene- and organ-specific expression by semiquantitative RT-PCR of 33 tissues showed strong expression of SCGB1A1 and SCGB1A1A in lung, uterus, Fallopian tube and mammary gland, which correlated with detection of SCGB 1A1 protein by immunohistochemistry. Significantly altered expression of the ratio of SCGB1A1A to SCGB1A1 was detected in RAO-affected animals compared to controls, suggesting different roles for SCGB 1A1 and SCGB 1A1A in this inflammatory condition. Conclusions This is the first report of three SCGB1A1 genes in a mammal. The two expressed genes code for proteins predicted to differ in function. Alterations in the gene expression ratio in RAO suggest cell and tissue specific regulation and functions. These findings may be important for understanding of lung and reproductive conditions.
Collapse
Affiliation(s)
- Olivier Côté
- Department of Pathobiology, University of Guelph, Stone Road, Guelph, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Donor Clara Cell Secretory Protein Polymorphism is a Risk Factor for Bronchiolitis Obliterans Syndrome After Lung Transplantation. Transplantation 2012; 94:652-8. [DOI: 10.1097/tp.0b013e31825ffca6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Liu Y, Di YP. Effects of second hand smoke on airway secretion and mucociliary clearance. Front Physiol 2012; 3:342. [PMID: 22973232 PMCID: PMC3428780 DOI: 10.3389/fphys.2012.00342] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/08/2012] [Indexed: 11/13/2022] Open
Abstract
The airway acts as the first defense against inhaled pathogens and particulate matter from the environment. One major way for the airway to clear inhaled foreign objects is through mucociliary clearance (MCC), an important component of the respiratory innate immune defense against lung disease. MCC is characterized by the upward movement of mucus by ciliary motion that requires a balance between the volume and composition of the mucus, adequate periciliary liquid (PCL) volume, and normal ciliary beat frequency (CBF). Airway surface fluid (ASL) is a thin layer liquid that consists of the highly viscous mucus upper “gel” layer, and the watery lubricating lower “sol” layer. Mucus production, secretion and clearance are considered to play a critical role in maintenance of airway health because it maintains hydration in the airway and traps particulates, bacteria, and viruses. Different types of epithelial cells, including secretory cells, and ciliated cells, contribute to the MCC function. Cigarette smoke (CS) contains chemicals and particulates that significantly affect airway secretion. Active and passive CS-induced chronic obstructive pulmonary disease (COPD) is frequently associated with hyperplasia of goblet cells and submucosal glands (SMGs), thus increasing the secretory capacity of the airways that impairs MCC.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Environmental and Occupational Health, University of Pittsburgh Pittsburgh, PA, USA
| | | |
Collapse
|
30
|
Ho CM, Huang CJ, Huang CY, Wu YY, Chang SF, Cheng WF. Promoter methylation status of HIN-1 associated with outcomes of ovarian clear cell adenocarcinoma. Mol Cancer 2012; 11:53. [PMID: 22871047 PMCID: PMC3520826 DOI: 10.1186/1476-4598-11-53] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/24/2012] [Indexed: 11/10/2022] Open
Abstract
Background This study is to analyze promoter methylation of various tumor suppressor genes in different types of ovarian carcinoma and to identify potential therapeutic targets of ovarian clear cell adenocarcinoma (OCCA). Materials and methods The promoter methylation statuses of 40 genes in primary ovarian carcinomas including 47 clear- and 63 non-clear-cell type tissues, 6 OCCA cell lines, 29 benign ovarian endometriotic cysts, and 31 normal controls were analyzed by methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). The MS-MLPA results were correlated with clinicopathological features and outcomes of 47 OCCA patients. Functions of the target genes were further explored by Western Blot Analysis, apoptosis assay, and caspase-3/7 activity analysis. Results Frequencies of methylated RASSF1A, CDH13, CACNA1A, HIN-1, and sFRP5 genes in OCCA tissues were significantly higher than those in non-OCCA cancerous tissues and benign endometriotic cysts. The expected OS for patients with methylated promoters of HIN-1 was significantly worse than those for patients without methylated HIN-1 (30% vs. 62%, p = 0.002). The HIN-1 gene was over-expressed in ES2 cells, a significant reduction in cell growth and induction of apoptosis, and increasing paclitaxel sensitivity by reducing phosphorylation of Akt were observed. Conclusions Methylation of HIN-1 promoter is a novel epigenetic biomarker associated with poor outcomes in OCCA patients. Ectopic expression of the HIN-1 gene increased paclitaxel sensitivity which is partly through Akt pathway.
Collapse
Affiliation(s)
- Chih-Ming Ho
- Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
31
|
Long XB, Hu S, Wang N, Zhen HT, Cui YH, Liu Z. Clara cell 10-kDa protein gene transfection inhibits NF-κB activity in airway epithelial cells. PLoS One 2012; 7:e35960. [PMID: 22558282 PMCID: PMC3338482 DOI: 10.1371/journal.pone.0035960] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 03/24/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Clara cell 10-kDa protein (CC10) is a multifunctional protein with anti-inflammatory and immunomodulatory effects. Induction of CC10 expression by gene transfection may possess potential therapeutic effect. Nuclear factor κB (NF-κB) plays a key role in the inflammatory processes of airway diseases. METHOD/RESULTS To investigate potential therapeutic effect of CC10 gene transfection in controlling airway inflammation and the underlying intracellular mechanisms, in this study, we constructed CC10 plasmid and transfected it into bronchial epithelial cell line BEAS-2B cells and CC10 knockout mice. In BEAS-2B cells, CC10's effect on interleukin (IL)-1β induced IL-8 expression was explored by means of RT-PCR and ELISA and its effect on NF-κB classical signaling pathway was studied by luciferase reporter, western blot, and immunoprecipitation assay. The effect of endogenous CC10 on IL-1β evoked IL-8 expression was studied by means of nasal explant culture. In mice, CC10's effect on IL-1β induced IL-8 and nuclear p65 expression was examined by immunohistochemistry. First, we found that the CC10 gene transfer could inhibit IL-1β induced IL-8 expression in BEAS-2B cells. Furthermore, we found that CC10 repressed IL-1β induced NF-κB activation by inhibiting the phosphorylation of IκB-α but not IκB kinase-α/β in BEAS-2B cells. Nevertheless, we did not observe a direct interaction between CC10 and p65 subunit in BEAS-2B cells. In nasal explant culture, we found that IL-1β induced IL-8 expression was inversely correlated with CC10 levels in human sinonasal mucosa. In vivo study revealed that CC10 gene transfer could attenuate the increase of IL-8 and nuclear p65 staining in nasal epithelial cells in CC10 knockout mice evoked by IL-1β administration. CONCLUSION These results indicate that CC10 gene transfer may inhibit airway inflammation through suppressing the activation of NF-κB, which may provide us a new consideration in the therapy of airway inflammation.
Collapse
Affiliation(s)
- Xiao-Bo Long
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shuang Hu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Nan Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hong-Tao Zhen
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yong-Hua Cui
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
32
|
Prytherch Z, Job C, Marshall H, Oreffo V, Foster M, BéruBé K. Tissue-Specific stem cell differentiation in an in vitro airway model. Macromol Biosci 2011; 11:1467-77. [PMID: 21994115 DOI: 10.1002/mabi.201100181] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/21/2011] [Indexed: 11/06/2022]
Abstract
The respiratory tract is the primary site of exposure to airborne compounds, with the bronchial epithelium providing one of the first lines of defence. A growing need exists for an accurate in vitro model of the bronchial epithelium. Here, normal human bronchial epithelial (NHBE) cells cultured at an air/liquid interface create a fully differentiated, in-vivo-like model of the human bronchial epithelium. Developmental characterisation includes (i) trans-epithelial electrical resistance, (ii) morphology and (iii) bronchial cell specific stains/markers. It is concluded that the basal/progenitor cells create a pseudo-stratified, mucociliary NHBE model containing basal, serous, Clara, goblet and ciliated cells, reflective of the normal human bronchial epithelium (days 24-33 ALI culture).
Collapse
Affiliation(s)
- Zoë Prytherch
- School of Biosciences, Cardiff University, Cardiff, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Allergic asthma is a chronic airway inflammatory disease in which exposure to allergens causes intermittent attacks of breathlessness, airway hyper-reactivity, wheezing, and coughing. Allergic asthma has been called a "syndrome" resulting from a complex interplay between genetic and environmental factors. Worldwide, >300 million individuals are affected by this disease, and in the United States alone, it is estimated that >35 million people, mostly children, suffer from asthma. Although animal models, linkage analyses, and genome-wide association studies have identified numerous candidate genes, a solid definition of allergic asthma has not yet emerged; however, such studies have contributed to our understanding of the multiple pathways to this syndrome. In contrast with animal models, in which T-helper 2 (T(H)2) cell response is the dominant feature, in human asthma, an initial exposure to allergen results in T(H)2 cell-dependent stimulation of the immune response that mediates the production of IgE and cytokines. Re-exposure to allergen then activates mast cells, which release mediators such as histamines and leukotrienes that recruit other cells, including T(H)2 cells, which mediate the inflammatory response in the lungs. In this minireview, we discuss the current understanding of how associated genetic and environmental factors increase the complexity of allergic asthma and the challenges allergic asthma poses for the development of novel approaches to effective treatment and prevention.
Collapse
Affiliation(s)
- Anil B Mukherjee
- Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-1830, USA.
| | | |
Collapse
|
34
|
Martineau HM, Cousens C, Imlach S, Dagleish MP, Griffiths DJ. Jaagsiekte sheep retrovirus infects multiple cell types in the ovine lung. J Virol 2011; 85:3341-55. [PMID: 21270155 PMCID: PMC3067841 DOI: 10.1128/jvi.02481-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 01/20/2011] [Indexed: 01/06/2023] Open
Abstract
Ovine pulmonary adenocarcinoma (OPA) is a transmissible lung cancer of sheep caused by Jaagsiekte sheep retrovirus (JSRV). The details of early events in the pathogenesis of OPA are not fully understood. For example, the identity of the JSRV target cell in the lung has not yet been determined. Mature OPA tumors express surfactant protein-C (SP-C) or Clara cell-specific protein (CCSP), which are specific markers of type II pneumocytes or Clara cells, respectively. However, it is unclear whether these are the cell types initially infected and transformed by JSRV or whether the virus targets stem cells in the lung that subsequently acquire a differentiated phenotype during tumor growth. To examine this question, JSRV-infected lung tissue from experimentally infected lambs was studied at early time points after infection. Single JSRV-infected cells were detectable 10 days postinfection in bronchiolar and alveolar regions. These infected cells were labeled with anti-SP-C or anti-CCSP antibodies, indicating that differentiated epithelial cells are early targets for JSRV infection in the ovine lung. In addition, undifferentiated cells that expressed neither SP-C nor CCSP were also found to express the JSRV Env protein. These results enhance the understanding of OPA pathogenesis and may have comparative relevance to human lung cancer, for which samples representing early stages of tumor growth are difficult to obtain.
Collapse
Affiliation(s)
- Henny M. Martineau
- Moredun Research Institute, Pentlands Science Park, Penicuik, Scotland, United Kingdom
| | - Chris Cousens
- Moredun Research Institute, Pentlands Science Park, Penicuik, Scotland, United Kingdom
| | - Stuart Imlach
- Moredun Research Institute, Pentlands Science Park, Penicuik, Scotland, United Kingdom
| | - Mark P. Dagleish
- Moredun Research Institute, Pentlands Science Park, Penicuik, Scotland, United Kingdom
| | - David J. Griffiths
- Moredun Research Institute, Pentlands Science Park, Penicuik, Scotland, United Kingdom
| |
Collapse
|
35
|
Bourdin A, Kotsimbos T, Nguyen K, Vachier I, Mainprice B, Farce M, Paganin F, Marty-Ané C, Vernhet H, Godard P, Chanez P. Non-invasive assessment of small airway remodelling in smokers. COPD 2010; 7:102-10. [PMID: 20397810 DOI: 10.3109/15412551003631709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Smoking associated COPD progression is likely to be directly linked to differential injury and repair dynamics in small airways (SA). Although IL8 is a well-accepted marker for injured airway epithelium, Clara cells [the predominant proliferating cells in SA] and SCGB1A1 protein [their major secretory product] have only recently emerged as potential SA repair markers. We therefore postulate that the SCGB1A1/IL8 ratio in the airways of smokers would be inversely associated with physiological, radiological and clinical measures of COPD. A cross-sectional cohort of 28 smokers undergoing surgery for peripheral nodule was recruited (24M/4F, age 61 +/- 11 y, FEV1s 76 +/- 20%, smoking 40 +/- 12 p.y). SCGB1A1 and IL8 were measured by ELISA in the induced sputum (IS) 3 to 5 days prior to surgery as well as by immunohistochemistry from lung tissue (also assessed morphometrically) obtained distant to the cancer surgery site. COPD was assessed using standard clinical, functional and radiological parameters. Log-transformed IS-SCGB1A1 was linearly correlated with SCGB1A1-positive epithelial cells detected via immunohistochemistry (r = .533, p = .001), while IS-IL8 was positively related to SA infiltrating neutrophils (Elastase-positive cells). There was a striking negative correlation between IS-SCGB1A1/IL8 levels and whole airway thickness [SA < 2 mm] at morphometry (r = -0.83, p < 0.0001). IS-SCGB1A1/IL8 levels were also inversely associated with nitrogen slope [r = -0.52, p < 0.001] and HRCT SA score [r = -0.51, p < 0.001]. In a multivariate analysis the IS-SCGB1A1/IL8 ratio was a stronger predictor than both the physiological and radiological measures of SA disease assessed. The SCGB1A1/IL8 ratio measured in sputum is a potentially valuable biomarker for non-invasive assessment of SA remodelling in smokers.
Collapse
|
36
|
Cecchini MP, Merigo F, Cristofoletti M, Osculati F, Sbarbati A. Immunohistochemical localization of Clara cell secretory proteins (CC10-CC26) and Annexin-1 protein in rat major salivary glands. J Anat 2010; 214:752-8. [PMID: 19438769 DOI: 10.1111/j.1469-7580.2009.01074.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The oral cavity is continuously bathed by saliva secreted by the major and minor salivary glands. Saliva is the first biological medium to confront external materials that are taken into the body as part of food or drink or inhaled volatile substances, and it contributes to the first line of oral defence. In humans, it has been shown that sputum and a variety of biological fluids contain Clara cell secretory proteins (CC10-CC26). Various studies of the respiratory apparatus have suggested their protective effect against inflammatory response and oxidative stress. Recently, CC10 deficiency has been related to the protein Annexin-1 (ANXA1), which has immunomodulatory and anti-inflammatory properties. Considering the defensive role of both Clara cell secretory proteins and ANXA1 in the respiratory apparatus, and the importance of salivary gland secretion in the first line of oral defence, we decided to evaluate the expression of CC10, CC26 and ANXA1 proteins in rat major salivary glands using immunohistochemistry. CC10 expression was found only in the ductal component of the sublingual gland. Parotid and submandibular glands consistently lacked CC10 immunoreactivity. In the parotid gland, both acinar and ductal cells were always CC26-negative, whereas in the submandibular gland, immunostaining was localized in the ductal component and in the periodic acid Schiff (PAS)-positive area. In the sublingual gland, ductal cells were always positive. Acinar cells were not immunostained at all. ANXA1 was expressed in ductal cells in all three major glands. In parotid and sublingual glands, acinar cells were negative. In submandibular glands, immunostaining was present in the mucous PAS-positive portion, whereas serous acinar cells were consistently negative. The existence of some CC10-CC26-ANXA1-positive cells in rat salivary glandular tissue is an interesting preliminary finding which could support the hypothesis, suggested for airway tissue, that these proteins have a defensive and protective role. Protein expression heterogeneity in the different portions of the glands could be an important clue in further investigations of their role.
Collapse
Affiliation(s)
- Maria Paola Cecchini
- Department of Morphological and Biomedical Sciences, Anatomy and Histology Section, Faculty of Medicine, University of Verona, Italy.
| | | | | | | | | |
Collapse
|
37
|
Van Haute L, De Block G, Liebaers I, Sermon K, De Rycke M. Generation of lung epithelial-like tissue from human embryonic stem cells. Respir Res 2009; 10:105. [PMID: 19891764 PMCID: PMC2777141 DOI: 10.1186/1465-9921-10-105] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 11/05/2009] [Indexed: 11/12/2022] Open
Abstract
Background Human embryonic stem cells (hESC) have the capacity to differentiate in vivo and in vitro into cells from all three germ lineages. The aim of the present study was to investigate the effect of specific culture conditions on the differentiation of hESC into lung epithelial cells. Methods Undifferentiated hESC, grown on a porous membrane in hESC medium for four days, were switched to a differentiation medium for four days; this was followed by culture in air-liquid interface conditions during another 20 days. Expression of several lung markers was measured by immunohistochemistry and by quantitative real-time RT-PCR at four different time points throughout the differentiation and compared to appropriate controls. Results Expression of CC16 and NKX2.1 showed a 1,000- and 10,000- fold increase at day 10 of differentiation. Other lung markers such as SP-C and Aquaporin 5 had the highest expression after twenty days of culture, as well as two markers for ciliated cells, FOXJ1 and β-tubulin IV. The results from qRT-PCR were confirmed by immunohistochemistry on paraffin-embedded samples. Antibodies against CC16, SP-A and SP-C were chosen as specific markers for Clara Cells and alveolar type II cells. The functionality was tested by measuring the secretion of CC16 in the medium using an enzyme immunoassay. Conclusion These results suggest that by using our novel culture protocol hESC can be differentiated into the major cell types of lung epithelial tissue.
Collapse
|
38
|
Gene-expression signatures of nasal polyps associated with chronic rhinosinusitis and aspirin-sensitive asthma. Curr Opin Allergy Clin Immunol 2009; 9:23-8. [PMID: 19532090 DOI: 10.1097/aci.0b013e32831d8170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight recent advances in gene-expression profiling of nasal polyps in patients with chronic rhinosinusitis and aspirin-sensitive asthma. RECENT FINDINGS Gene-expression profiling has allowed simultaneous interrogation of thousands of genes, including the entire genome, to better understand distinct biological and clinical phenotypes associated with nasal polyps. The genes with altered expression in nasal polyps are involved in many cellular processes, including growth and development, immune functions, and signal transduction. The wide-ranging and typically nonoverlapping results reported in the published studies reflect methodological and demographic differences. The identified genes present possible novel therapeutic targets for nasal polyps associated with chronic rhinosinusitis and aspirin-sensitive asthma. SUMMARY Gene-expression profiling is a powerful technology that allows definition of expression signatures to characterize patient subgroups, predict response to treatment, and offer novel therapies. Although the ability to interpret the meaning of the individual gene in these signatures remains a challenge, integrated analysis of a large number of these signatures with other genome-scale data sets and more traditional targeted approaches has a potential to revolutionarize understanding and treatment of chronic rhinosinusitis and aspirin-sensitive asthma.
Collapse
|
39
|
Kambara T, McKevitt TP, Francis I, Woodfine JA, McCawley SJ, Jones SA, Pilling AM, Lewis DJ, Williams TC. Eosinophilic Inclusions in Rat Clara Cells and the Effect of an Inhaled Corticosteroid. Toxicol Pathol 2009; 37:315-23. [DOI: 10.1177/0192623309332989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Large eosinophilic cytoplasmic inclusions (ECIs) are occasionally seen in untreated rat Clara cells. Following inhalation exposure to a corticosteroid, the number of ECIs was increased. This is the first histopathological description of rat ECIs and attempted characterization by immunohistochemistry, in situ hybridization, and electron microscopy. ECIs were strongly positive for surfactant protein D (SP-D) and weakly positive for Clara cell specific protein (CCSP). Clara cell cytoplasm was positive for CCSP mRNA regardless of ECIs, but not within ECIs. Corticosteroid treatment and ECI presence did not affect the immunohistochemistry and in situ hybridization staining intensities. Electron microscopy revealed large intracytoplasmic granules with an irregular limiting membrane. The ECI number was microscopically quantified in rats from three-, six-, and twenty-four-month studies. The mean ECI counts in treated rats increased from three- to fifty-four-fold with a positive dose-related trend, when compared with vehicle controls. Although the mechanism is unclear, SP-D and to a lesser extent CCSP accumulate in the ECIs. As human bronchial epithelium does not appear to contain structures analogous to the ECI, it is suggested that the observation of an increased number of ECIs in the treated rats is not likely to be relevant for human clinical risk assessment.
Collapse
Affiliation(s)
- Takahito Kambara
- Pathology, Safety Assessment—UK, GlaxoSmithKline, Ware, UK
- Pathology, Safety Assessment—US, GlaxoSmithKline, King of Prussia, PA, USA
| | | | - Ian Francis
- Pathology, Safety Assessment—UK, GlaxoSmithKline, Ware, UK
| | | | | | | | | | - David J. Lewis
- Pathology, Safety Assessment—UK, GlaxoSmithKline, Ware, UK
| | | |
Collapse
|
40
|
Howroyd P, Allison N, Foley JF, Hardisty J. Apparent Alveolar Bronchiolar Tumors Arising in the Mediastinum of F344 Rats. Toxicol Pathol 2009; 37:351-8. [DOI: 10.1177/0192623309332988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rare tumors were observed in chronic studies in F-344 rats that were purely or largely free in the mediastinal cavity, yet had the histological architecture of alveolar bronchiolar tumors. They had originally been diagnosed as either pulmonary alveolar bronchiolar tumors, mediastinal mesotheliomas, or thymomas. The authors described these tumors, estimated the fraction of thoracic tumors that they represented, and carried out a preliminary immunohistochemical investigation of whether they were of pulmonary or mesothelial origin. Sections of 715 thoracic tumors originally diagnosed as alveolar bronchiolar tumors, mesotheliomas, or thymomas from control or treated F-344 rats in NTP two-year studies were reviewed. Thirty (4%) were found to be purely or largely mediastinal, yet to have an alveolar bronchiolar histological pattern. A subset of these tumors and some typical intrapulmonary alveolar bronchiolar carcinomas and pleural mesotheliomas were immunostained for Clara cell secretory protein (CCSP), β-tubulin IV, and Wilm’s tumor 1 susceptibility gene products (WT1). The tumors with the histological architecture of alveolar bronchiolar tumors immunostained positive for CCSP and negative for WT1, implying they might have been of alveolar bronchiolar origin, despite their predominantly mediastinal location, although more certain identification would require the use of a larger panel of antibodies.
Collapse
Affiliation(s)
- Paul Howroyd
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
- MDS Pharma Services, Les Oncins, France
| | - Neil Allison
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
- Experimental Pathology Laboratories, Inc., National Toxicology Program Archives, Research Triangle Park, North Carolina, USA
| | - Julie F. Foley
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Jerry Hardisty
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| |
Collapse
|
41
|
Katavolos P, Ackerley CA, Viel L, Clark ME, Wen X, Bienzle D. Clara cell secretory protein is reduced in equine recurrent airway obstruction. Vet Pathol 2009; 46:604-13. [PMID: 19276063 DOI: 10.1354/vp.08-vp-0255-b-fl] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Horses are prone to recurrent airway obstruction (RAO), an inflammatory lung disease induced by repeated exposure to environmental mold, dust, and bacterial components. Active disease manifests with mucus hyperproduction, neutrophilic inflammation, bronchoconstriction, and coughing. Chronically affected animals have lung remodeling characterized by smooth muscle hyperplasia, collagen deposition, lymphoid hyperplasia, and impaired aerobic performance. Clara cell secretory protein (CCSP) counters inflammation in the lung, hence we hypothesized that CCSP depletion is a key feature of RAO in horses. Recombinant equine CCSP and specific antiserum were produced, and percutaneous lung biopsies were obtained from 3 healthy horses and from 3 RAO-affected horses before and after induction of RAO. CCSP relative gene expression in tissue, as well as protein concentration in lung lavage fluid, was determined. Immunocytochemical analysis, using both light and immunogold ultrastructural methods, demonstrated reduced CCSP staining in lung tissue of animals with RAO. Immunogold label in Clara cell granules was less in animals with chronic RAO than in normal animals, and absent in animals that had active disease. Median lung lavage CCSP concentration was 132 and 129 ng/ml in healthy horses, and 62 and 24 ng/ml in RAO horses before and after challenge, respectively. CCSP lung gene expression was significantly higher in healthy animals than in animals with chronic RAO. Together, these preliminary findings suggest that reduced production of CCSP and subcellular changes in Clara cells are features of chronic environmentally induced lung inflammation in horses.
Collapse
Affiliation(s)
- P Katavolos
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Karnati S, Baumgart-Vogt E. Peroxisomes in airway epithelia and future prospects of these organelles for pulmonary cell biology. Histochem Cell Biol 2009; 131:447-54. [DOI: 10.1007/s00418-009-0566-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2009] [Indexed: 10/21/2022]
|
43
|
Distribution and regulation of protein expression of the free fatty acid receptor GPR120. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2009; 379:427-34. [DOI: 10.1007/s00210-008-0390-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 12/29/2008] [Indexed: 11/26/2022]
|
44
|
Liu Z, Lu X, Zhang XH, Bochner BS, Long XB, Zhang F, Wang H, Cui YH. Clara cell 10-kDa protein expression in chronic rhinosinusitis and its cytokine-driven regulation in sinonasal mucosa. Allergy 2009; 64:149-57. [PMID: 19076932 DOI: 10.1111/j.1398-9995.2008.01847.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Clara cell 10-kDa protein (CC10) is a multifunction protein with anti-inflammatory and immunomodulatory effects; hence we compared the CC10 expression between chronic rhinosinusitis (CRS) patients with and without nasal polyps (NPs), analyzed its association with disease severity and response to surgery, and explored its regulation via cytokines. METHODS The plasma and tissue CC10 levels were compared between controls and CRS patients with and without NPs by means of quantitative RT-PCR, ELISA, and immunohistochemistry. Computed tomography (CT) scan and endoscopy findings and symptoms were scored. Nasal explant culture was used to explore the effect of TNF-alpha, IL-1beta, IL-4, INF-gamma, and IL-10 on CC10 gene regulation. RESULTS Compared with controls, the CC10 expression in sinonasal mucosa was significantly inhibited in both CRS patients with and without NPs. There was a significant further decrease of CC10 expression in patients with NPs and asthma. No difference in CC10 plasma levels was found between controls and patients. CC10 levels inversely correlated with preoperative CT scores, and postoperative endoscopy and symptom scores. TNF-alpha, IL-1beta and IL-4 inhibited, whereas INF-gamma and IL-10 promoted CC10 production in nasal mucosa. A significantly faster decay of CC10 transcripts was seen after IL-1beta treatment. IL-1beta and IL-10 induced thyroid transcription factor-1 expression. INF-gamma increased, whereas IL-4 inhibited hepatocyte nuclear factor-3alpha expression. CONCLUSION CC10 may take part in the pathogenesis of CRS and correlates with disease severity and response to surgery. Different cytokines can regulate CC10 expression in nasal mucosa differentially through modulating mRNA stability and certain transcriptional factors expression.
Collapse
Affiliation(s)
- Z Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Gibbs JE, Beesley S, Plumb J, Singh D, Farrow S, Ray DW, Loudon ASI. Circadian timing in the lung; a specific role for bronchiolar epithelial cells. Endocrinology 2009; 150:268-76. [PMID: 18787022 PMCID: PMC4340583 DOI: 10.1210/en.2008-0638] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In addition to the core circadian oscillator, located within the suprachiasmatic nucleus, numerous peripheral tissues possess self-sustaining circadian timers. In vivo these are entrained and temporally synchronized by signals conveyed from the core oscillator. In the present study, we examine circadian timing in the lung, determine the cellular localization of core clock proteins in both mouse and human lung tissue, and establish the effects of glucocorticoids (widely used in the treatment of asthma) on the pulmonary clock. Using organotypic lung slices prepared from transgenic mPER2::Luc mice, luciferase levels, which report PER2 expression, were measured over a number of days. We demonstrate a robust circadian rhythm in the mouse lung that is responsive to glucocorticoids. Immunohistochemical techniques were used to localize specific expression of core clock proteins, and the glucocorticoid receptor, to the epithelial cells lining the bronchioles in both mouse and human lung. In the mouse, these were established to be Clara cells. Murine Clara cells retained circadian rhythmicity when grown as a pure population in culture. Furthermore, selective ablation of Clara cells resulted in the loss of circadian rhythm in lung slices, demonstrating the importance of this cell type in maintaining overall pulmonary circadian rhythmicity. In summary, we demonstrate that Clara cells are critical for maintaining coherent circadian oscillations in lung tissue. Their coexpression of the glucocorticoid receptor and core clock components establishes them as a likely interface between humoral suprachiasmatic nucleus output and circadian lung physiology.
Collapse
Affiliation(s)
- J E Gibbs
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhang F, Xiong ZG, Cao PP, You XJ, Gao QX, Cui YH, Liu Z. Lack of association of Clara cell 10-kDa protein gene variant with chronic rhinosinusitis in a Chinese Han population. ACTA ACUST UNITED AC 2008; 22:376-80. [PMID: 18702901 DOI: 10.2500/ajr.2008.22.3188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Clara cell 10-kDa protein (CC10) is an anti-inflammatory molecule and has been implicated in the involvement of the pathogenesis of asthma and chronic rhinosinusitis (CRS). A single nucleotide polymorphism (SNP) in CC10 gene (A + 38G) was previously shown to be associated with asthma and plasma CC10 levels. The purpose of this study is to examine whether there is an association between the CC10 A + 38G SNP, plasma CC10 levels, and CRS in a central Chinese population of Han nationality. METHODS The CC10 A + 38G SNP was analyzed by means of polymerase chain reaction with restriction fragment length polymorphism and plasma CC10 levels were measured using enzyme-linked immunosorbent assay in 220 patients with CRS (90 patients with nasal polyps [NPs] and 130 patients without NPs) and 180 healthy control subjects. Among 220 patients with CRS, 108 patients were atopic subjects. Severity of disease was determined by coronal computed tomography (CT) scan in CRS patients, which was graded according to Lund and Mackay. RESULTS The frequency of the A allele was 0.394, which was not significantly higher than the frequencies of other reported ethnic groups except for German. No association between the CC10 A + 38G SNP and CRS, any subgroup of CRS, or CRS severity could be found. Although subjects carrying the AA genotype had a significantly lower plasma CC10 concentration than those carrying the GG and GA genotypes in both CRS and control groups (p = 0.00 for all), no association was found between the plasma CC10 levels and CRS phenotype. CONCLUSION The CC10 A + 38G SNP may not exert a substantial influence on the development of CRS in the Chinese Han population.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University Of Science and Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Zemke AC, Snyder JC, Brockway BL, Drake JA, Reynolds SD, Kaminski N, Stripp BR. Molecular staging of epithelial maturation using secretory cell-specific genes as markers. Am J Respir Cell Mol Biol 2008; 40:340-8. [PMID: 18757308 DOI: 10.1165/rcmb.2007-0380oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bronchiolar Clara cells undergo phenotypic changes during development and in disease. These changes are poorly described due to a paucity of molecular markers. We used chemical and transgenic approaches to ablate Clara cells, allowing identification of their unique gene expression profile. Flavin monooxygenase 3 (Fmo3), paraoxonase 1 (Pon1), aldehyde oxidase 3 (Aox3), and claudin 10 (Cldn10) were identified as novel Clara cell markers. New and existing Clara cell marker genes were categorized into three classes based on their unique developmental expression pattern. Cldn10 was uniformly expressed in the epithelium at Embryonic Day (E)14.5 and became restricted to secretory cells at E18.5. This transition was defined by induction of CCSP. Maturation of secretory cells was associated with progressive increases in the expression of Fmo3, Pon1, Aox3, and Cyp2f2 between late embryonic and postnatal periods. Messenger RNA abundance of all categories of genes was dramatically decreased after naphthalene-induced airway injury, and displayed a sequence of temporal induction during repair that suggested sequential secretory cell maturation. We have defined a broader repertoire of Clara cell-specific genes that allows staging of epithelial maturation during development and repair.
Collapse
Affiliation(s)
- Anna C Zemke
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, 2075 MSRBII, 106 Research Drive, DUMC Box 103000, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Merigo F, Benati D, Galie M, Crescimanno C, Osculati F, Sbarbati A. Immunohistochemical Localization of Cystic Fibrosis Transmembrane Regulator and Clara Cell Secretory Protein in Taste Receptor Cells of Rat Circumvallate Papillae. Chem Senses 2007; 33:231-41. [DOI: 10.1093/chemse/bjm082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
49
|
Prozialeck WC, Vaidya VS, Liu J, Waalkes MP, Edwards JR, Lamar PC, Bernard AM, Dumont X, Bonventre JV. Kidney injury molecule-1 is an early biomarker of cadmium nephrotoxicity. Kidney Int 2007; 72:985-93. [PMID: 17687258 PMCID: PMC2747605 DOI: 10.1038/sj.ki.5002467] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cadmium (Cd) exposure results in injury to the proximal tubule characterized by polyuria and proteinuria. Kidney injury molecule-1 (Kim-1) is a transmembrane glycoprotein not normally detected in the mature kidney, but is upregulated and shed into the urine following nephrotoxic injury. In this study, we determine if Kim-1 might be a useful early biomarker of Cd nephrotoxicity. Male Sprague-Dawley rats were given daily injections of Cd for up to 12 weeks. Weekly urine samples were analyzed for Kim-1, protein, creatinine, metallothionein, and Clara cell protein CC-16. Significant levels of Kim-1 were detected in the urine by 6 weeks and continued to increase throughout the treatment period. This appearance of Kim-1 occurred 4-5 weeks before the onset of proteinuria, and 1-3 weeks before the appearance of metallothionein and CC-16. Higher doses of Cd gave rise to higher Kim-1 excretion. Reverse transcriptase-polymerase chain reaction (RT-PCR) expression analysis showed that Kim-1 transcript levels were increased after 6 weeks at the low dose of Cd. Immunohistochemical analysis showed that Kim-1 was present in proximal tubule cells of the Cd-treated rats. Our results suggest that Kim-1 may be a useful biomarker of early stages of Cd-induced proximal tubule injury.
Collapse
Affiliation(s)
- W C Prozialeck
- Department of Pharmacology, Midwestern University, Downers Grove, Illinois 60515, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Liu Z, Lu X, Wang H, You XJ, Gao QX, Cui YH. Group II subfamily secretory phospholipase A2 enzymes: expression in chronic rhinosinusitis with and without nasal polyps. Allergy 2007; 62:999-1006. [PMID: 17578498 DOI: 10.1111/j.1398-9995.2007.01381.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Group II subfamily secretory phospholipases A(2) (sPLA(2)s) are the enzymes that can play a major role in inflammation. However, the presence of group II subfamily sPLA(2)s in human sinonasal mucosa and their roles in chronic rhinosinusitis (CRS) are not well known. The purpose of this study was to investigate the expression of group II subfamily sPLA(2)s in human sinonasal mucosa from controls and CRS patients with and without nasal polyps (NPs) and the regulation of expression by proinflammatory cytokines. METHODS Surgical samples were investigated by means of reverse transcriptase polymerase chain reaction (RT-PCR) for evaluation of group II subfamily sPLA(2)s mRNA expression, and the presence and location of group II subfamily sPLA(2)s-positive cells were analyzed by means of immunohistochemistry. Furthermore, nasal explant culture and quantitative RT-PCR techniques were used to investigate the effect of interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha on group II subfamily sPLA(2)s mRNA production in sinonasal mucosa. RESULTS Messenger RNA expression of sPLA(2)-IIA, -IID, and -IIE was significantly upregulated in tissues from CRS patients compared with control tissues. Among CRS patients, patients without NPs showed significantly stronger expression in sinonasal mucosa than patients with NPs of sPLA(2)-IIA mRNA, and weaker expression of sPLA(2)-IIE mRNA. Immunohistochemistry revealed enhanced protein expression of type II sPLA(2)s and specific type IIA sPLA(2) in epithelial cells and submucosal glands in samples from CRS patients. Stronger type IIA sPLA(2) protein expression was found in samples from CRS patients without NPs when compared with NPs. Nasal explant culture experiments demonstrated that mRNA expression of sPLA(2)-IIA, -IID, and -IIE was dramatically induced by IL-1beta and TNF-alpha. CONCLUSIONS The expression of some members of group II subfamily of sPLA(2)s is upregulated in CRS and it may result from IL-1beta and TNF-alpha overexpression. Different individual group II subfamily sPLA(2)s may play different roles in the pathogenesis of CRS with and without NPs.
Collapse
Affiliation(s)
- Z Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|