1
|
Kaczmarska I, Mokra K, Michałowicz J. Perfluorooctanoic Acid and Its Short-Chain Substitutes Induce Cytotoxic and Prooxidative Changes in Human Peripheral Blood Mononuclear Cells: A Comparative Study. Int J Mol Sci 2025; 26:5408. [PMID: 40508216 PMCID: PMC12154501 DOI: 10.3390/ijms26115408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/25/2025] [Accepted: 06/03/2025] [Indexed: 06/16/2025] Open
Abstract
Perfluorooctanoic acid (PFOA) and its short-chain substitutes, perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA), are persistent environmental pollutants associated with widespread human exposure through occupational and environmental routes. The aim of this was to investigate the effects of PFOA, PFHxA, and PFBA on the intracellular level of adenosine-5'-triphosphate (ATP) in human peripheral blood mononuclear cells (PBMCs) and their viability, size, and granularity. Moreover, oxidative and nitrosative stress was assessed based on the levels of reactive oxygen species (ROS), reactive nitrogen species (RNS), and highly reactive oxygen species (hROS, mainly hydroxyl radical). Finally, oxidative damage to protein and lipids in PBMCs was measured. The cells were incubated for 1 h and 24 h at concentrations correlated to human occupational and environmental exposure (0.001-200 µg/mL) to the substances. Our findings indicate that PFOA and its short-chain analogs cause different effects in human PBMCs. PFOA induced statistically significant alterations almost in all studied parameters, substantially decreasing cell viability and ATP level and altering the size and granularity of tested cells; in contrast, PFHxA and PFBA induced significant changes only at some studied parameters. PFOA also induced a notable increase in intracellular ROS and RNS levels, which suggest that both oxidative stress and nitrosative stress influence its cytotoxic potential. Interestingly, the shortest-chain compound, PFBA, induced changes that were not observed for PFHxA. This suggests that the length of the chain determines the triggering of certain alterations in PBMCs. Importantly, the changes were noted at concentrations corresponding to those associated with occupational exposure. These findings contribute to our understanding of the immunotoxicity of PFOA and its substitutes, indicating the potential health risks associated with chronic exposure, particularly in populations with occupational exposure or high environmental PFOA burdens.
Collapse
Affiliation(s)
- Izabela Kaczmarska
- Doctoral School of Exact and Natural Sciences, University of Lodz, Matejki 21/23 St., 90-237 Lodz, Poland;
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland;
| | - Katarzyna Mokra
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland;
| | - Jaromir Michałowicz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland;
| |
Collapse
|
2
|
Zavvari Oskuye Z, Mehri K, Khalilpour J, Nemati S, Hosseini L, Bafadam S, Abdollahzade N, Badalzadeh R. Klotho in age-related cardiovascular diseases: Insights into mitochondrial dysfunction and cell death. IJC HEART & VASCULATURE 2025; 57:101629. [PMID: 40129656 PMCID: PMC11930703 DOI: 10.1016/j.ijcha.2025.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/26/2025] [Accepted: 02/08/2025] [Indexed: 03/26/2025]
Abstract
Aging is a major risk factor for the development of cardiovascular diseases (CVD), leading to specific alterations in the heart and vasculature. Besides, the mechanisms and intracellular pathways of aging and the factors affecting it are still not completely clear. Age-related complications such as oxidative stress, decreased autophagy, mitochondrial dysfunction, inflammatory responses, and cardiac dysfunction are associated with relative Klotho deficiency. Klotho, an anti-aging protein, with anti-oxidative and anti-inflammatory properties, has been shown to modulate calcium regulation and autophagy. It also protects against endothelial dysfunction by increasing nitric oxide production. Furthermore, emerging research has revealed that klotho significantly impacts vascular smooth muscle cells (VSMC) energetics and survival. This article has focused on recent advances in using Klotho in age-related CVD and summarizes the pre-clinical evidence supporting this approach. Based on the research, Klotho could provide more therapeutic options for ameliorating aging-related CVD.
Collapse
Affiliation(s)
- Zohreh Zavvari Oskuye
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Keyvan Mehri
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Jamal Khalilpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Nemati
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soleyman Bafadam
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naseh Abdollahzade
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Iskandar M, Xiao Barbero M, Jaber M, Chen R, Gomez-Guevara R, Cruz E, Westerheide S. A Review of Telomere Attrition in Cancer and Aging: Current Molecular Insights and Future Therapeutic Approaches. Cancers (Basel) 2025; 17:257. [PMID: 39858038 PMCID: PMC11764024 DOI: 10.3390/cancers17020257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES As cells divide, telomeres shorten through a phenomenon known as telomere attrition, which leads to unavoidable senescence of cells. Unprotected DNA exponentially increases the odds of mutations, which can evolve into premature aging disorders and tumorigenesis. There has been growing academic and clinical interest in exploring this duality and developing optimal therapeutic strategies to combat telomere attrition in aging and cellular immortality in cancer. The purpose of this review is to provide an updated overview of telomere biology and therapeutic tactics to address aging and cancer. METHODS We used the Rayyan platform to review the PubMed database and examined the ClinicalTrial.gov registry to gain insight into clinical trials and their results. RESULTS Cancer cells activate telomerase or utilize alternative lengthening of telomeres to escape telomere shortening, leading to near immortality. Contrarily, normal cells experience telomeric erosion, contributing to premature aging disorders, such as Werner syndrome and Hutchinson-Gilford Progeria, and (2) aging-related diseases, such as neurodegenerative and cardiovascular diseases. CONCLUSIONS The literature presents several promising therapeutic approaches to potentially balance telomere maintenance in aging and shortening in cancer. This review highlights gaps in knowledge and points to the potential of these optimal interventions in preclinical and clinical studies to inform future research in cancer and aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandy Westerheide
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (M.I.); (M.X.B.); (M.J.); (R.C.); (R.G.-G.); (E.C.)
| |
Collapse
|
4
|
Mapuskar KA, London B, Zacharias ZR, Houtman JC, Allen BG. Immunometabolism in the Aging Heart. J Am Heart Assoc 2025; 14:e039216. [PMID: 39719411 PMCID: PMC12054428 DOI: 10.1161/jaha.124.039216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024]
Abstract
Structural, functional, and molecular-level changes in the aging heart are influenced by a dynamic interplay between immune signaling and cellular metabolism that is referred to as immunometabolism. This review explores the crosstalk between cellular metabolic pathways including glycolysis, oxidative phosphorylation, fatty acid metabolism, and the immune processes that govern cardiac aging. With a rapidly aging population that coincides with increased cardiovascular risk and cancer incidence rates, understanding the immunometabolic underpinnings of cardiac aging provides a foundation for identifying therapeutic targets to mitigate cardiac dysfunction. Aging alters the immune environment of the heart by concomitantly driving the changes in immune cell metabolism, mitochondrial dysfunction, and redox signaling. Shifts in these metabolic pathways exacerbate inflammation and impair tissue repair, creating a vicious cycle that accelerates cardiac functional decline. Treatment with cancer therapy further complicates this landscape, as aging-associated immunometabolic disruptions augment the susceptibility to cardiotoxicity. The current review highlights therapeutic strategies that target the immunometabolic axis to alleviate cardiac aging pathologies. Interventions include modulating metabolic intermediates, improving mitochondrial function, and leveraging immune signaling pathways to restore cardiac health. Advances in immunometabolism thus hold significant potential for translating preclinical findings into therapies that improve the quality of life for the aging population and underscore the need for approaches that address the immunometabolic mechanisms of cardiac aging, providing a framework for future research.
Collapse
Affiliation(s)
- Kranti A. Mapuskar
- Department of Radiation OncologyUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Holden Comprehensive Cancer Center, Carver College of MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
| | - Barry London
- Holden Comprehensive Cancer Center, Carver College of MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Department of Internal MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
| | - Zeb R. Zacharias
- Holden Comprehensive Cancer Center, Carver College of MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Human Immunology CoreUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
| | - Jon C.D. Houtman
- Holden Comprehensive Cancer Center, Carver College of MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Human Immunology CoreUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Department of Microbiology and ImmunologyUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
| | - Bryan G. Allen
- Department of Radiation OncologyUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Holden Comprehensive Cancer Center, Carver College of MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
| |
Collapse
|
5
|
Matin M, Joshi T, Wang D, Tzvetkov NT, Matin FB, Wierzbicka A, Jóźwik A, Horbańczuk JO, Atanasov AG. Effects of Ginger ( Zingiber officinale) on the Hallmarks of Aging. Biomolecules 2024; 14:940. [PMID: 39199328 PMCID: PMC11352747 DOI: 10.3390/biom14080940] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Ginger (Zingiber officinale Roscoe) is broadly used as a traditional remedy and food ingredient, and numerous preclinical and clinical studies have demonstrated health benefits in a range of age-related disorders. Moreover, longevity-promoting effects have been demonstrated in several (preclinical) research models. With this work, we aimed to comprehensively review the reported effects of ginger and its bioactive constituents on the twelve established hallmarks of aging, with the ultimate goal of gaining a deeper understanding of the potential for future interventions in the area of longevity-extension and counteracting of aging-related diseases. The reviewed literature supports the favorable effects of ginger and some of its constituents on all twelve hallmarks of aging, with a particularly high number of animal research studies indicating counteraction of nutrient-sensing dysregulations, mitochondrial dysfunction, chronic inflammation, and dysbiosis. On this background, validation in human clinical trials is still insufficient or is entirely missing, with the exception of some studies indicating positive effects on deregulated nutrient-sensing, chronic inflammation, and dysbiosis. Thus, the existing body of literature clearly supports the potential of ginger to be further studied in clinical trials as a supplement for the promotion of both lifespan and health span.
Collapse
Affiliation(s)
- Maima Matin
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University, Nainital 263002, India;
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada;
| | - Nikolay T. Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Farhan Bin Matin
- Department of Pharmacy, East West University, Aftabnagar, Dhaka 1212, Bangladesh;
| | - Agnieszka Wierzbicka
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Artur Jóźwik
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| |
Collapse
|
6
|
Cakmak-Arslan G, Kaya Y, Mamuk S, Akarsu ES, Severcan F. The investigation of the molecular changes during lipopolysaccharide-induced systemic inflammation on rat hippocampus by using FTIR spectroscopy. JOURNAL OF BIOPHOTONICS 2024; 17:e202300541. [PMID: 38531619 DOI: 10.1002/jbio.202300541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/12/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The aim of this study is to reveal the molecular changes accompanying the neuronal hyper-excitability during lipopolysaccharide (LPS)-induced systemic inflammation on rat hippocampus using Fourier transform infrared (FTIR) spectroscopy. For this aim, the body temperature of Wistar albino rats administered LPS or saline was recorded by radiotelemetry. The animals were decapitated when their body temperature began to decrease by 0.5°C after LPS treatment and the hippocampi of them were examined by FTIR spectroscopy. The results indicated that systemic inflammation caused lipid peroxidation, an increase in the amounts of lipids, proteins and nucleic acids, a decrease in membrane order, an increase in membrane dynamics and changes in the secondary structure of proteins. Principal component analysis successfully separated control and LPS-treated groups. In conclusion, significant structural, compositional and functional alterations occur in the hippocampus during systemic inflammation and these changes may have specific characteristics which can lead to neuronal hyper-excitability.
Collapse
Affiliation(s)
- Gulgun Cakmak-Arslan
- Department of Biology, Faculty of Arts and Sciences, Duzce University, Duzce, Turkey
| | - Yildiray Kaya
- Department of Biology, Faculty of Arts and Sciences, Duzce University, Duzce, Turkey
| | - Soner Mamuk
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Eyup Sabri Akarsu
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Feride Severcan
- Department of Biophysics, Faculty of Medicine, Altinbas University, Istanbul, Turkey
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
7
|
Jonak K, Suppanz I, Bender J, Chacinska A, Warscheid B, Topf U. Ageing-dependent thiol oxidation reveals early oxidation of proteins with core proteostasis functions. Life Sci Alliance 2024; 7:e202302300. [PMID: 38383455 PMCID: PMC10881836 DOI: 10.26508/lsa.202302300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Oxidative post-translational modifications of protein thiols are well recognized as a readily occurring alteration of proteins, which can modify their function and thus control cellular processes. The development of techniques enabling the site-specific assessment of protein thiol oxidation on a proteome-wide scale significantly expanded the number of known oxidation-sensitive protein thiols. However, lacking behind are large-scale data on the redox state of proteins during ageing, a physiological process accompanied by increased levels of endogenous oxidants. Here, we present the landscape of protein thiol oxidation in chronologically aged wild-type Saccharomyces cerevisiae in a time-dependent manner. Our data determine early-oxidation targets in key biological processes governing the de novo production of proteins, protein folding, and degradation, and indicate a hierarchy of cellular responses affected by a reversible redox modification. Comparison with existing datasets in yeast, nematode, fruit fly, and mouse reveals the evolutionary conservation of these oxidation targets. To facilitate accessibility, we integrated the cross-species comparison into the newly developed OxiAge Database.
Collapse
Affiliation(s)
- Katarzyna Jonak
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ida Suppanz
- CIBSS Centre for Integrative Biological Signalling Research, University of Freiburg, Freiburg, Germany
| | - Julian Bender
- Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Research, University of Freiburg, Freiburg, Germany
- Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ulrike Topf
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Hegemann N, Barth L, Döring Y, Voigt N, Grune J. Implications for neutrophils in cardiac arrhythmias. Am J Physiol Heart Circ Physiol 2024; 326:H441-H458. [PMID: 38099844 PMCID: PMC11219058 DOI: 10.1152/ajpheart.00590.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Cardiac arrhythmias commonly occur as a result of aberrant electrical impulse formation or conduction in the myocardium. Frequently discussed triggers include underlying heart diseases such as myocardial ischemia, electrolyte imbalances, or genetic anomalies of ion channels involved in the tightly regulated cardiac action potential. Recently, the role of innate immune cells in the onset of arrhythmic events has been highlighted in numerous studies, correlating leukocyte expansion in the myocardium to increased arrhythmic burden. Here, we aim to call attention to the role of neutrophils in the pathogenesis of cardiac arrhythmias and their expansion during myocardial ischemia and infectious disease manifestation. In addition, we will elucidate molecular mechanisms associated with neutrophil activation and discuss their involvement as direct mediators of arrhythmogenicity.
Collapse
Affiliation(s)
- Niklas Hegemann
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Lukas Barth
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Yannic Döring
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Jana Grune
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|
9
|
Sharma S, Warsi MS, Abidi M, Tufail N, Ahmad R, Siddiqui SA, Moinuddin. Crotonaldehyde induced structural alterations in Low-Density Lipoprotein: Immunogenicity of the modified protein in experimental animals and auto-antibodies generation in various cancers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123332. [PMID: 37725881 DOI: 10.1016/j.saa.2023.123332] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Crotonaldehyde (CA), a prominent component of cigarette smoke (CS) is a pervasive environmental pollutant that is a highly toxic, unsaturated aldehyde. Exposure to CA-rich pollutants has been linked to the emergence of many malignancies in humans. To better understand the role of CA in biomolecule modification, this study investigated the detailed structural alterations in low-density lipoprotein (LDL) modified by CA, as well as the immunogenicity of the modified protein in experimental animals and the search for autoantibodies in various cancers patients.In vitro, results indicated alterations in secondary and tertiary structures; examined using UV-visible, fluorescence, far-UV circular dichroism, and Fourier transform infrared spectroscopy techniques. Changes in the oxidation status of LDL were studied by carbonyl content assay and NBT assay. ThT binding assay, scanning, and transmission electron microscopy were used to study aggregate formation. The findings revealed significant structural damage in LDL modified by CA. The modification resulted in the unmasking of hydrophobic clusters, the loss of the protein α-helix, and the formation of β-pleated sheet structure. The amyloid aggregate formation was confirmed through ThT microscopy and electron spectroscopy. Rabbits immunized with crotonaldehyde; lead to structural changes in the LDL; that acted as extra antigenic determinants, eliciting strong antibody response. Immunoglobulin response is highly specific for modified LDL as demonstrated by the ELISA. The presence of antibodies against CA-modified LDL was confirmed by the immunoglobulin content of blood sera from human subjects with lung cancer, and competitive ELISA demonstrated the specificity of these antibodies. This study offers insights into the CA-mediated LDL modification and immunogenicity in lung cancer that will have diagnostic importance.
Collapse
Affiliation(s)
- Surabhi Sharma
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Sharib Warsi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Minhal Abidi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Neda Tufail
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Rizwan Ahmad
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shahid Ali Siddiqui
- Department of Radiotherapy, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Moinuddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
10
|
Negah SS, Forouzanfar F. Oxidative Stress is a New Avenue for Treatment of Neuropsychiatric Disorders: Hype of Hope? Curr Mol Med 2024; 24:1494-1505. [PMID: 37670697 DOI: 10.2174/1566524023666230904150907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 09/07/2023]
Abstract
The biochemical integrity of the brain is critical in maintaining normal central nervous system (CNS) functions. One of the factors that plays an important role in causing biochemical impairment of the brain is known as oxidative stress. Oxidative stress is generally defined as the excessive formation of free radicals relative to antioxidant defenses. The brain is particularly susceptible to oxidative stress because of its high oxygen consumption and lipid-rich content. Therefore, oxidative stress damage is associated with abnormal CNS function. Psychiatric disorders are debilitating diseases. The underlying pathophysiology of psychiatric disorders is poorly defined and may involve the interplay of numerous clinical factors and mechanistic mechanisms. Considerable evidence suggests that oxidative stress plays a complex role in several neuropsychiatric disorders, including anxiety, bipolar disorder, depression, obsessivecompulsive disorder, panic disorder, and schizophrenia. To address these issues, we reviewed the literature and considered the role of oxidative stress as one of the first pathological changes in the course of neuropsychiatric disorders, which should receive more attention in future research.
Collapse
Affiliation(s)
- Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Paredes J, Wang Z, Patel P, Rose KL, Schey KL. Dehydroalanine and dehydrobutyrine in aging and cataractous lenses reveal site-specific consequences of spontaneous protein degradation. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1241001. [PMID: 38983090 PMCID: PMC11182102 DOI: 10.3389/fopht.2023.1241001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/02/2023] [Indexed: 07/11/2024]
Abstract
Introduction Protein post-translational modifications (PTMs) have been associated with aging and age-related diseases. PTMs are particularly impactful in long-lived proteins, such as those found in the ocular lens, because they accumulate with age. Two PTMs that lead to protein-protein crosslinks in aged and cataractous lenses are dehydroalanine (DHA) and dehydrobutyrine (DHB); formed from cysteine/serine and threonine residues, respectively. The purpose of this study was to quantitate DHA and DHB in human lens proteins as a function of age and cataract status. Methods Human lenses of various ages were divided into five donor groups: transparent lenses (18-22-year-old, 48-64-year-old, and 70-93-year-old) and cataractous human lenses of two age groups (48-64-year-old lenses, and 70-93-year-old lenses) and were subjected to proteomic analysis. Relative DHA and DHB peptide levels were quantified and compared to their non-modified peptide counterparts. Results For most lens proteins containing DHA or DHB, higher amounts of DHA- and DHB-modified peptides were detected in aged and cataractous lenses. DHA-containing peptides were classified into three groups based on abundance changes with age and cataract: those that (1) increased only in age-related nuclear cataract (ARNC), (2) increased in aged and cataractous lenses, and (3) decreased in aged lenses and ARNC. There was no indication that DHA or DHB levels were dependent on lens region. In most donor groups, proteins with DHA and DHB were more likely to be found among urea-insoluble proteins rather than among water- or urea-soluble proteins. Discussion DHA and DHB formation may induce structural effects that make proteins less soluble in water that leads to age-related protein insolubility and possibly aggregation and light scattering.
Collapse
Affiliation(s)
- Jessica Paredes
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Zhen Wang
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Kristie L. Rose
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Kevin L. Schey
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
12
|
Devi V, Bhushan B, Gupta M, Sethi M, Kaur C, Singh A, Singh V, Kumar R, Rakshit S, Chaudhary DP. Genetic and molecular understanding for the development of methionine-rich maize: a holistic approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1249230. [PMID: 37794928 PMCID: PMC10546030 DOI: 10.3389/fpls.2023.1249230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Maize (Zea mays) is the most important coarse cereal utilized as a major energy source for animal feed and humans. However, maize grains are deficient in methionine, an essential amino acid required for proper growth and development. Synthetic methionine has been used in animal feed, which is costlier and leads to adverse health effects on end-users. Bio-fortification of maize for methionine is, therefore, the most sustainable and environmental friendly approach. The zein proteins are responsible for methionine deposition in the form of δ-zein, which are major seed storage proteins of maize kernel. The present review summarizes various aspects of methionine including its importance and requirement for different subjects, its role in animal growth and performance, regulation of methionine content in maize and its utilization in human food. This review gives insight into improvement strategies including the selection of natural high-methionine mutants, molecular modulation of maize seed storage proteins and target key enzymes for sulphur metabolism and its flux towards the methionine synthesis, expression of synthetic genes, modifying gene codon and promoters employing genetic engineering approaches to enhance its expression. The compiled information on methionine and essential amino acids linked Quantitative Trait Loci in maize and orthologs cereals will give insight into the hotspot-linked genomic regions across the diverse range of maize germplasm through meta-QTL studies. The detailed information about candidate genes will provide the opportunity to target specific regions for gene editing to enhance methionine content in maize. Overall, this review will be helpful for researchers to design appropriate strategies to develop high-methionine maize.
Collapse
Affiliation(s)
- Veena Devi
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Bharat Bhushan
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Mamta Gupta
- Division of Biotechnology, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Mehak Sethi
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Charanjeet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Alla Singh
- Division of Biotechnology, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Vishal Singh
- Division of Plant Breeding, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Ramesh Kumar
- Division of Plant Breeding, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Sujay Rakshit
- Division of Plant Breeding, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Dharam P. Chaudhary
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| |
Collapse
|
13
|
Song J, Wang D, Zhou M, You X, Tan Q, Liu W, Yu L, Wang B, Chen W, Zhang X. Carbon disulfide exposure induced lung function reduction partly through oxidative protein damage: A cross-sectional and longitudinal analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131464. [PMID: 37104953 DOI: 10.1016/j.jhazmat.2023.131464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023]
Abstract
Carbon disulfide (CS2) exposure has been associated with lung function reduction in occupational population. However, evidence on the general population with relatively low CS2 exposure is lacking and the mechanism involved remains largely unknown. Urinary CS2 metabolite (2-mercaptothiazolidine-4-carboxylic acid, TTCA) and lung function were determined in the urban adults from the Wuhan-Zhuhai cohort at baseline in 2011-2012 and were repeated every 3 years. Cross-sectional and longitudinal associations between TTCA and lung function were estimated using linear mixed models. Inflammation and oxidative damage biomarkers in blood/urine were measured to evaluate their potential mediating roles involved. Cross-sectionally, participants in the highest quartile of TTCA level showed a 0.64% reduction in FEV1/FVC and a -308.22 mL/s reduction in PEF, compared to those in the lowest quartile. Longitudinally, participants with consistently high TTCA level had annually -90.27 mL/s decline in PEF, compared to those with consistently low TTCA level. Mediation analysis revealed that plasma protein carbonyl mediated 49.89% and 22.10% of TTCA-associated FEV1/FVC and PEF reductions, respectively. Conclusively, there was a cross-sectional and longitudinal association between CS2 exposure and lung function reduction in the general urban adults, and protein carbonylation (oxidative protein damage) partly mediated lung function reduction from CS2 exposure.
Collapse
Affiliation(s)
- Jiahao Song
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojie You
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qiyou Tan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| |
Collapse
|
14
|
Rosenfeld MA, Yurina LV, Vasilyeva AD. Antioxidant role of methionine-containing intra- and extracellular proteins. Biophys Rev 2023; 15:367-383. [PMID: 37396452 PMCID: PMC10310685 DOI: 10.1007/s12551-023-01056-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/24/2023] [Indexed: 07/04/2023] Open
Abstract
Significant evidence suggests that reversible oxidation of methionine residues provides a mechanism capable of scavenging reactive species, thus creating a cycle with catalytic efficiency to counteract or mitigate deleterious effects of ROS on other functionally important amino acid residues. Because of the absence of MSRs in the blood plasma, oxidation of methionines in extracellular proteins is effectively irreversible and, therefore, the ability of methionines to serve as interceptors of oxidant molecules without impairment of the structure and function of plasma proteins is still debatable. This review presents data on the oxidative modification of both intracellular and extracellular proteins that differ drastically in their spatial structures and functions indicating that the proteins contain antioxidant methionines/the oxidation of which does not affect (or has a minor effect) on their functional properties. The functional consequences of methionine oxidation in proteins have been mainly identified from studies in vitro and, to a very limited extent, in vivo. Hence, much of the functioning of plasma proteins constantly subjected to oxidative stress remains unclear and requires further research to understand the evolutionary role of methionine oxidation in proteins for the maintenance of homeostasis and risk factors affecting the development of ROS-related pathologies. Data presented in this review contribute to increased evidence of antioxidant role of surface-exposed methionines and can be useful for understanding a possible mechanism that supports or impairs structure-function relationships of proteins subjected to oxidative stress.
Collapse
Affiliation(s)
- Mark A. Rosenfeld
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334 Russia
| | - Lyubov V. Yurina
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334 Russia
| | - Alexandra D. Vasilyeva
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
15
|
Indiarto R, Irawan AN, Subroto E. Meat Irradiation: A Comprehensive Review of Its Impact on Food Quality and Safety. Foods 2023; 12:1845. [PMID: 37174383 PMCID: PMC10178114 DOI: 10.3390/foods12091845] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Food irradiation is a proven method commonly used for enhancing the safety and quality of meat. This technology effectively reduces the growth of microorganisms such as viruses, bacteria, and parasites. It also increases the lifespan and quality of products by delaying spoilage and reducing the growth of microorganisms. Irradiation does not affect the sensory characteristics of meats, including color, taste, and texture, as long as the appropriate dose is used. However, its influence on the chemical and nutritional aspects of meat is complex as it can alter amino acids, fatty acids, and vitamins as well as generate free radicals that cause lipid oxidation. Various factors, including irradiation dose, meat type, and storage conditions, influence the impact of these changes. Irradiation can also affect the physical properties of meat, such as tenderness, texture, and water-holding capacity, which is dose-dependent. While low irradiation doses potentially improve tenderness and texture, high doses negatively affect these properties by causing protein denaturation. This research also explores the regulatory and public perception aspects of food irradiation. Although irradiation is authorized and controlled in many countries, its application is controversial and raises concerns among consumers. Food irradiation is reliable for improving meat quality and safety but its implication on the chemical, physical, and nutritional properties of products must be considered when determining the appropriate dosage and usage. Therefore, more research is needed to better comprehend the long-term implications of irradiation on meat and address consumer concerns.
Collapse
Affiliation(s)
- Rossi Indiarto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | | |
Collapse
|
16
|
Khatoon S, Samim M, Dahalia M. Fisetin provides neuroprotection in pentylenetetrazole-induced cognition impairment by upregulating CREB/BDNF. Eur J Pharmacol 2023; 944:175583. [PMID: 36764352 DOI: 10.1016/j.ejphar.2023.175583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
OBJECTIVES Fisetin is a flavonoid molecule known to be neuroprotective by its multiple mechanisms. The present study was designed to explore the effect of fisetin in the pentylenetetrazole (PTZ) kindling-induced cognitive dysfunction in mice. METHODS Kindling was established by the intraperitoneal administration of PTZ in a subconvulsive dose (25 mg/kg). Mice were administered fisetin (5, 10, and 20 mg/kg, p.o.) to study its probable cognition-enhancing effect. The kindled mice were evaluated for cognition using behavioral tests-elevated plus maze and passive avoidance response. Then, the oxidative stress markers, gene expressions and neurotransmitters levels were estimated in the hippocampus and cortex of mice. RESULTS Passive avoidance response and elevated plus maze paradigms showed that fisetin administration improved the cognitive function in kindled mice. The increased levels of lipid peroxidation and protein carbonyl were modulated upon fisetin administration through increasing the levels of antioxidants (reduced glutathione, glutathione reductase, glutathione peroxidase, superoxide dismutase, and catalase) in the hippocampus and cortex of kindled mice. Upregulated gene expressions of cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) were observed in the hippocampus and cortex of fisetin-administered mice which play a crucial role in cognitive function. Furthermore, alterations of neurotransmitter levels (dopamine, GABA, and glutamate) and acetylcholinesterase (AchE) were ameliorated by fisetin administration in the hippocampus and cortex of kindled mice. CONCLUSION Our findings suggest a therapeutic potential of fisetin against cognitive dysfunction associated with PTZ-induced kindling.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed Samim
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mansi Dahalia
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
17
|
AlAshqar A, Lulseged B, Mason-Otey A, Liang J, Begum UAM, Afrin S, Borahay MA. Oxidative Stress and Antioxidants in Uterine Fibroids: Pathophysiology and Clinical Implications. Antioxidants (Basel) 2023; 12:antiox12040807. [PMID: 37107181 PMCID: PMC10135366 DOI: 10.3390/antiox12040807] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
In the last few decades, our understanding of the complex pathobiology of uterine fibroid development has grown. While previously believed to be a purely neoplastic entity, we now understand that uterine fibroids possess different and equally important aspects of their genesis. An increasing body of evidence suggests that oxidative stress, the imbalance between pro- and antioxidants, is an important factor in fibroid development. Oxidative stress is controlled by multiple, interconnecting cascades, including angiogenesis, hypoxia, and dietary factors. Oxidative stress in turn influences fibroid development through genetic, epigenetic, and profibrotic mechanisms. This unique aspect of fibroid pathobiology has introduced several clinical implications, both diagnostic and therapeutic, that can aid us in managing these debilitating tumors by using biomarkers as well as dietary and pharmaceutical antioxidants for diagnosis and treatment. This review strives to summarize and add to the current evidence revealing the relationship between oxidative stress and uterine fibroids by elucidating the proposed mechanisms and clinical implications.
Collapse
|
18
|
Voronkova KV, Alieva AM, Nikitin IG, Musina GM, Surskaya EV, Zaitseva OS, Mashkevich NG, Gomonova LV, Petrukhin AS. [The role of the phenosanic acid in the combined treatment of patients with epilepsy]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:151-157. [PMID: 36843473 DOI: 10.17116/jnevro2023123021151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Epilepsy is one of the most studied chronic neurological disorders in the world. Despite significant progress in epilepsy research, some patients continue to experience recurrent seizures. It has been proven that oxidative stress plays an important role in epilepsy. Targeting oxidative stress may provide a novel therapeutic intervention to attenuate epileptogenesis as well as cognitive and psychiatric impairment in patients with epilepsy. One of the promising directions in the search for new strategies for the treatment of epilepsy is the combined use of antiepileptic drugs with antioxidants that affect the pathogenetic links of this disease. The new Russian antiepileptic drug fenosanoic acid (Dibufelon) has an anticonvulsant effect due to the inhibition of lipid peroxidation of brain cells and the reconstruction of cell membranes. This mechanism of action also paves the way for an increase in the effectiveness of co-administered drugs with phenosanoic acid. The effect of the drug on the cognitive and mental functions of patients, the regression of asthenia phenomena is also observed. The clinical efficacy and safety of the combination of this drug with other antiepileptic drugs in epilepsy has been demonstrated in experimental and clinical studies.
Collapse
Affiliation(s)
- K V Voronkova
- Pirogov Russian National Research Medical University, Moscow, Russia.,Petrovsky Russian Scientific Center for Surgery, Moscow, Russia
| | - A M Alieva
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - I G Nikitin
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - G M Musina
- Medical Center NORIS, Sterlitamak, Russia
| | - E V Surskaya
- Petrovsky Russian Scientific Center for Surgery, Moscow, Russia
| | - O S Zaitseva
- Petrovsky Russian Scientific Center for Surgery, Moscow, Russia
| | - N G Mashkevich
- Petrovsky Russian Scientific Center for Surgery, Moscow, Russia
| | - L V Gomonova
- Petrovsky Russian Scientific Center for Surgery, Moscow, Russia
| | - A S Petrukhin
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
19
|
A Review on Forced Degradation Strategies to Establish the Stability of Therapeutic Peptide Formulations. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
20
|
Abdelhameed SAM, de Azambuja F, Vasović T, Savić ND, Ćirković Veličković T, Parac-Vogt TN. Regioselective protein oxidative cleavage enabled by enzyme-like recognition of an inorganic metal oxo cluster ligand. Nat Commun 2023; 14:486. [PMID: 36717594 PMCID: PMC9887005 DOI: 10.1038/s41467-023-36085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
Oxidative modifications of proteins are key to many applications in biotechnology. Metal-catalyzed oxidation reactions efficiently oxidize proteins but with low selectivity, and are highly dependent on the protein surface residues to direct the reaction. Herein, we demonstrate that discrete inorganic ligands such as polyoxometalates enable an efficient and selective protein oxidative cleavage. In the presence of ascorbate (1 mM), the Cu-substituted polyoxometalate K8[Cu2+(H2O)(α2-P2W17O61)], (CuIIWD, 0.05 mM) selectively cleave hen egg white lysozyme under physiological conditions (pH =7.5, 37 °C) producing only four bands in the gel electropherogram (12.7, 11, 10, and 5 kDa). Liquid chromatography/mass spectrometry analysis reveals a regioselective cleavage in the vicinity of crystallographic CuIIWD/lysozyme interaction sites. Mechanistically, polyoxometalate is critical to position the Cu at the protein surface and limit the generation of oxidative species to the proximity of binding sites. Ultimately, this study outlines the potential of discrete, designable metal oxo clusters as catalysts for the selective modification of proteins through radical mechanisms under non-denaturing conditions.
Collapse
Affiliation(s)
| | | | - Tamara Vasović
- Center of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Nada D Savić
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Tanja Ćirković Veličković
- Center of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia.,Ghent University Global Campus, Yeonsu-gu, Incheon, South Korea.,Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Tatjana N Parac-Vogt
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, 3001, Leuven, Belgium.
| |
Collapse
|
21
|
Lee SH, Tsutsui M, Matsunaga A, Oe T. Lipid hydroperoxide-derived insulin resistance and its inhibition by pyridoxamine in skeletal muscle cells. Toxicol Res 2023; 39:147-156. [PMID: 36726824 PMCID: PMC9839902 DOI: 10.1007/s43188-022-00155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress is strongly associated with the onset and/or progression of diabetes. Under conditions of oxidative stress, lipid hydroperoxides are decomposed to reactive aldehydes that have been reported to induce insulin resistance by modifying proteins involved in insulin signaling. Pyridoxamine (PM) can inhibit the formation of advanced glycation/lipoxidation end products by scavenging reactive carbonyl species. Thus, PM has emerged as a promising drug candidate for various chronic conditions, including diabetic complications. In this study, L6 skeletal muscle cells were treated with 4-oxo-2(E)-nonenal (ONE), one of the most abundant and reactive lipid-derived aldehydes. Cellular insulin resistance was assessed by measuring insulin-stimulated glucose uptake using 2-deoxyglucose. ONE induced a time- and dose-dependent decrease in glucose uptake. Liquid chromatography/electrospray ionization-mass spectrometry analysis of the reaction between ONE and insulin receptor substrate 1 (IRS1) lysate identified multiple modifications that could disturb the interaction between IRS1 and activated IR, leading to insulin resistance. Pretreatment of the cells with PM restored the ONE-induced decrease in glucose uptake. Concomitantly, the formation of PM-ONE adducts in cell culture medium was increased in a PM-dose dependent manner. PM can therefore prevent lipid hydroperoxide-derived insulin resistance by quenching ONE. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-022-00155-z.
Collapse
Affiliation(s)
- Seon Hwa Lee
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Mizuki Tsutsui
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Atsushi Matsunaga
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Tomoyuki Oe
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578 Japan
| |
Collapse
|
22
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
23
|
Martemucci G, Portincasa P, Centonze V, Mariano M, Khalil M, D'Alessandro AG. Prevention of Oxidative Stress and Diseases by Antioxidant Supplementation. Med Chem 2023; 19:509-537. [PMID: 36453505 DOI: 10.2174/1573406419666221130162512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022]
Abstract
Excessive and uncontrolled oxidative stress can damage biomacromolecules, such as lipids, proteins, carbohydrates, and DNA, by free radical and oxidant overproduction. In this review, we critically discuss the main properties of free radicals, their implications in oxidative stress, and specific pathological conditions. In clinical medicine, oxidative stress can play a role in several chronic noncommunicable diseases, such as diabetes mellitus, cardiovascular, inflammatory, neurodegenerative diseases, and tumours. Antioxidant supplements can theoretically prevent or stop the progression of diseases, but a careful literature analysis finds that more evidence is needed to dissect the ultimate beneficial effect of antioxidants versus reactive oxygen species in several diseases.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A - 70126 Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Centonze
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Michele Mariano
- Unità Operativa Complessa di Radiodiagnostica Universitaria, Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Angela Gabriella D'Alessandro
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A - 70126 Bari, Italy
| |
Collapse
|
24
|
Carigga Gutierrez NM, Pujol-Solé N, Arifi Q, Coll JL, le Clainche T, Broekgaarden M. Increasing cancer permeability by photodynamic priming: from microenvironment to mechanotransduction signaling. Cancer Metastasis Rev 2022; 41:899-934. [PMID: 36155874 DOI: 10.1007/s10555-022-10064-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
The dense cancer microenvironment is a significant barrier that limits the penetration of anticancer agents, thereby restraining the efficacy of molecular and nanoscale cancer therapeutics. Developing new strategies to enhance the permeability of cancer tissues is of major interest to overcome treatment resistance. Nonetheless, early strategies based on small molecule inhibitors or matrix-degrading enzymes have led to disappointing clinical outcomes by causing increased chemotherapy toxicity and promoting disease progression. In recent years, photodynamic therapy (PDT) has emerged as a novel approach to increase the permeability of cancer tissues. By producing excessive amounts of reactive oxygen species selectively in the cancer microenvironment, PDT increases the accumulation, penetration depth, and efficacy of chemotherapeutics. Importantly, the increased cancer permeability has not been associated to increased metastasis formation. In this review, we provide novel insights into the mechanisms by which this effect, called photodynamic priming, can increase cancer permeability without promoting cell migration and dissemination. This review demonstrates that PDT oxidizes and degrades extracellular matrix proteins, reduces the capacity of cancer cells to adhere to the altered matrix, and interferes with mechanotransduction pathways that promote cancer cell migration and differentiation. Significant knowledge gaps are identified regarding the involvement of critical signaling pathways, and to which extent these events are influenced by the complicated PDT dosimetry. Addressing these knowledge gaps will be vital to further develop PDT as an adjuvant approach to improve cancer permeability, demonstrate the safety and efficacy of this priming approach, and render more cancer patients eligible to receive life-extending treatments.
Collapse
Affiliation(s)
| | - Núria Pujol-Solé
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Qendresa Arifi
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Jean-Luc Coll
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Tristan le Clainche
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| | - Mans Broekgaarden
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| |
Collapse
|
25
|
Red Beetroot and Banana Peels as Value-Added Ingredients: Assessment of Biological Activity and Preparation of Functional Edible Films. Polymers (Basel) 2022; 14:polym14214724. [DOI: 10.3390/polym14214724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
In the present study, water extracts from banana and red beetroot peels were evaluated as a potential source of biologically active compounds for the formulation of edible films. Using spectrophotometric and HPLC-DAD methodologies, banana peel extract was found to be a valuable source of dopamine (156.08 mg L−1), while red beetroot peel extract was abundant in red-violet pigments betacyanins (90.1 mg betanin L−1). The biological activity of the extracts was studied by determining their effects on macromolecular models, including DNA (plasmid phiX RF1 DNA), protein (bovine serum albumin), and lipid (linoleic acid) models, as well as on continuous human cell lines of colon cancer Caco-2 and hepatocellular liver cancer Hep G2 at concentrations of 0.2 and 1 mg mL−1. Results showed that the extracts had no adverse effects and both were further used for the formulation of edible films using alginate in combination with three types of plant proteins—rice, peanut, and pumpkin. In general, edible films based on banana peel extract were characterized by better bioactive properties compared with the films based on red beetroot peel extract. The addition of peanut proteins into the formulations resulted in the most desirable bioactive profile of the formulated edible films, including total phenolic content and antioxidant capacity. Aside from the control sample prepared only with the alginate, the highest dopamine content was determined in the film with incorporated pumpkin proteins (10.72 mg g−1 dw), while the sample prepared with peanut proteins was richest in betacyanins (175.58 mg betanin g−1 dw).
Collapse
|
26
|
Shahid MS, Zhou S, Nie W, Wang L, Lv H, Yuan J. Phytogenic Antioxidants Prolong n-3 Fatty Acid-Enriched Eggs’ Shelf Life by Activating the Nrf-2 Pathway through Phosphorylation of MAPK. Foods 2022. [PMCID: PMC9601970 DOI: 10.3390/foods11203158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Helpful for human health, omega-3 (n-3)-enriched eggs are preferred by consumers. However, antioxidants should be added to the hen’s diet to prevent n-3 fatty acid oxidation due to their unsaturated bonds. A study was designed to investigate the effects of different antioxidants on performance, egg quality, fatty acid profile, oxidation parameters, gene expression, and magnum morphology. A total of 450 hens were divided into five dietary groups. Wheat–flaxseed was used for the basic diet (control) and supplemented with vitamin E (VE), chlorogenic acid (CA), polyphenol (PF), and lutein (L). The experiment lasted for 10 weeks. The eggs were collected on the 5th week and were analyzed for quality, oxidative stability, and fatty acid (FA) content, being stored for 0 d, 7 d, 14 d, 21 d, 28 d, 35 d, and 42 d. The results showed that supplemental VE, PF, CA, and L improved the egg weight and hen day egg production compared to the control group (p < 0.05). The VE, PF, and L groups significantly (p < 0.05) reduced the malondialdehyde (MDA) and maintained the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) in the egg yolk. The albumen height and Haugh unit were maintained in the egg yolk till 35 days of storage by the VE, PF, and L groups, while the CA group reduced the albumen quality after 21 d storage. The VE, PF, CA, and lutein maintained the content of alpha-linolenic acid (ALA), during the whole storage period. The total n-3 FA and docosahexaenoic acid (DHA) were retained in the egg yolk till 35 and 28 days of storage, respectively, and slightly decreased after 35 and 28 days in the L groups. The total n-6 (Tn-6) FA was maintained in the yolk till 28 days of storage in the CA and PF groups, respectively. The VE, PF, and L groups upregulated the expression of Nrf-2, P38MAPK, HO-1, SOD-1, and GSH-Px as compared to the CA and control groups. The VE, PF, and L groups significantly increased the magnum primary folds and epithelium height as compared to CA and the control. Thus, it was concluded that the use of PF and L is better at preventing egg quality deterioration and lipid oxidation, maintaining more than 300 mg/egg n-3 FA during storage, by activating the Nrf-2 pathway through the phosphorylation of P38MAPK, and enhancing the phase-2 antioxidant defense enzymes, namely, SOD, GSH-Px, and HO-1.
Collapse
Affiliation(s)
- Muhammad Suhaib Shahid
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengyu Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Nie
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Liang Wang
- Beijing General Station of Animal Husbandry, Beijing 100101, China
| | - Huiyuan Lv
- Beijing Center of Biology Co., Ltd., Beijing 102206, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence:
| |
Collapse
|
27
|
Prakash C, Tyagi J, Rabidas SS, Kumar V, Sharma D. Therapeutic Potential of Quercetin and its Derivatives in Epilepsy: Evidence from Preclinical Studies. Neuromolecular Med 2022:10.1007/s12017-022-08724-z. [PMID: 35951285 DOI: 10.1007/s12017-022-08724-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/18/2022] [Indexed: 10/15/2022]
Abstract
Quercetin is a polyphenolic bioactive compound highly enriched in dietary fruits, vegetables, nuts, and berries. Quercetin and its derivatives like rutin and hyperoside are known for their beneficial effects in various neurological conditions including epilepsy. The clinical studies of quercetin and its derivatives in relation to epilepsy are limited. This review provides the evidence of most recent knowledge of anticonvulsant properties of quercetin and its derivatives on preclinical studies. Additionally, the studies demonstrating antiseizure potential of various plants extracts enriched with quercetin and its derivatives has been included in this review. Herein, we have also discussed neuroprotective effect of these bioactive compound and presented underlying mechanisms responsible for anticonvulsant properties in brief. Finally, limitations of quercetin and its derivatives as antiseizure compounds as well as possible strategies to enhance efficacy have also been discussed.
Collapse
Affiliation(s)
- Chandra Prakash
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jyoti Tyagi
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shyam Sunder Rabidas
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Deepak Sharma
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
28
|
Mlejnek P. Direct Interaction between N-Acetylcysteine and Cytotoxic Electrophile—An Overlooked In Vitro Mechanism of Protection. Antioxidants (Basel) 2022; 11:antiox11081485. [PMID: 36009205 PMCID: PMC9405167 DOI: 10.3390/antiox11081485] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
In laboratory experiments, many electrophilic cytotoxic agents induce cell death accompanied by reactive oxygen species (ROS) production and/or by glutathione (GSH) depletion. Not surprisingly, millimolar concentrations of N-acetylcysteine (NAC), which is used as a universal ROS scavenger and precursor of GSH biosynthesis, inhibit ROS production, restore GSH levels, and prevent cell death. The protective effect of NAC is generally used as corroborative evidence that cell death induced by a studied cytotoxic agent is mediated by an oxidative stress-related mechanism. However, any simple interpretation of the results of the protective effects of NAC may be misleading because it is unable to interact with superoxide (O2•−), the most important biologically relevant ROS, and is a very weak scavenger of H2O2. In addition, NAC is used in concentrations that are unnecessarily high to stimulate GSH synthesis. Unfortunately, the possibility that NAC as a nucleophile can directly interact with cytotoxic electrophiles to form non-cytotoxic NAC–electrophile adduct is rarely considered, although it is a well-known protective mechanism that is much more common than expected. Overall, apropos the possible mechanism of the cytoprotective effect of NAC in vitro, it is appropriate to investigate whether there is a direct interaction between NAC and the cytotoxic electrophile to form a non-cytotoxic NAC–electrophilic adduct(s).
Collapse
Affiliation(s)
- Petr Mlejnek
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 77515 Olomouc, Czech Republic
| |
Collapse
|
29
|
Bai J, Tan R, An Z, Xu Y. Quantitative estimation of intracellular oxidative stress in human tissues. Brief Bioinform 2022; 23:6599072. [PMID: 35653708 PMCID: PMC9294418 DOI: 10.1093/bib/bbac206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Oxidative stress is known to be involved in and possibly a key driver of the development of numerous chronic diseases, including cancer. It is highly desired to have a capability to reliably estimate the level of intracellular oxidative stress as it can help to identify functional changes and disease phenotypes associated with such a stress, but the problem proves to be very challenging. We present a novel computational model for quantitatively estimating the level of oxidative stress in tissues and cells based on their transcriptomic data. The model consists of (i) three sets of marker genes found to be associated with the production of oxidizing molecules, the activated antioxidation programs and the intracellular stress attributed to oxidation, respectively; (ii) three polynomial functions defined over the expression levels of the three gene sets are developed aimed to capture the total oxidizing power, the activated antioxidation capacity and the oxidative stress level, respectively, with their detailed parameters estimated by solving an optimization problem and (iii) the optimization problem is so formulated to capture the relevant known insights such as the oxidative stress level generally goes up from normal to chronic diseases and then to cancer tissues. Systematic assessments on independent datasets indicate that the trained predictor is highly reliable and numerous insights are made based on its application results to samples in the TCGA, GTEx and GEO databases.
Collapse
Affiliation(s)
- Jun Bai
- Cancer Systems Biology Center, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China.,School of Artificial Intelligence, Jilin University, Changchun, China
| | - Renbo Tan
- Cancer Systems Biology Center, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China.,College of Computer Science and Technology, Jilin University, Changchun, China
| | - Zheng An
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, the University of Georgia, Athens, GA, USA
| | - Ying Xu
- Cancer Systems Biology Center, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China.,College of Computer Science and Technology, Jilin University, Changchun, China.,Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, the University of Georgia, Athens, GA, USA
| |
Collapse
|
30
|
Dai D, Qi GH, Wang J, Zhang HJ, Qiu K, Wu SG. Intestinal microbiota of layer hens and its association with egg quality and safety. Poult Sci 2022; 101:102008. [PMID: 35841638 PMCID: PMC9289868 DOI: 10.1016/j.psj.2022.102008] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/27/2022] Open
Abstract
The intestinal microbiota has attracted tremendous attention in the field of the poultry industry due to its critical role in the modulation of nutrient utilization, immune system, and consequently the improvement of the host health and production performance. Accumulating evidence implies intestinal microbiota of laying hens is a potential mediator to improve the prevalent issues in terms of egg quality decline in the late phase of laying production. However, the regulatory effect of intestinal microbiota on egg quality in laying hens remains elusive, which requires consideration of microbial baseline composition and succession during their long lifespans. Notable, although Firmicutes, Bacteroidetes, and Proteobacteria form the vast majority of intestinal microbiota in layer hens, dynamic intestinal microbiota succession occurs throughout all laying periods. In addition to the direct effects on egg safety, intestinal microbiota and its metabolites such as short-chain fatty acids, bile acids, and tryptophan derivatives, are suggested to indirectly modulate egg quality through the microbiota-gut-liver/brain-reproductive tract axis. These findings can extend our understanding of the crosstalk between intestinal microbiota and the host to improve egg quality and safety. This paper reviews the compositions of intestinal microbiota in different physiological stages of laying hens and their effects on egg quality and proposes that intestinal microbiota may become a potential target for modulating egg quality and safety by nutritional strategies in the future.
Collapse
Affiliation(s)
- Dong Dai
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guang-Hai Qi
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hai-Jun Zhang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shu-Geng Wu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
31
|
Anti-lipogenic and thermogenic potency of Padina tetrastromatica bioactives in hypertrophied 3T3-L1 cells and their efficacy based thermogenic food supplement to mitigate obesity. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Zhu A, Zheng F, Zhang W, Li L, Li Y, Hu H, Wu Y, Bao W, Li G, Wang Q, Li H. Oxidation and Antioxidation of Natural Products in the Model Organism Caenorhabditiselegans. Antioxidants (Basel) 2022; 11:antiox11040705. [PMID: 35453390 PMCID: PMC9029379 DOI: 10.3390/antiox11040705] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
Natural products are small molecules naturally produced by multiple sources such as plants, animals, fungi, bacteria and archaea. They exert both beneficial and detrimental effects by modulating biological targets and pathways involved in oxidative stress and antioxidant response. Natural products’ oxidative or antioxidative properties are usually investigated in preclinical experimental models, including virtual computing simulations, cell and tissue cultures, rodent and nonhuman primate animal models, and human studies. Due to the renewal of the concept of experimental animals, especially the popularization of alternative 3R methods for reduction, replacement and refinement, many assessment experiments have been carried out in new alternative models. The model organism Caenorhabditis elegans has been used for medical research since Sydney Brenner revealed its genetics in 1974 and has been introduced into pharmacology and toxicology in the past two decades. The data from C. elegans have been satisfactorily correlated with traditional experimental models. In this review, we summarize the advantages of C. elegans in assessing oxidative and antioxidative properties of natural products and introduce methods to construct an oxidative damage model in C. elegans. The biomarkers and signaling pathways involved in the oxidative stress of C. elegans are summarized, as well as the oxidation and antioxidation in target organs of the muscle, nervous, digestive and reproductive systems. This review provides an overview of the oxidative and antioxidative properties of natural products based on the model organism C. elegans.
Collapse
Affiliation(s)
- An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
| | - Wenjing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
| | - Yajiao Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Department of Pathogen Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Wenqiang Bao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Department of Pathogen Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Guojun Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
- School of Public Health, Capital Medical University, Beijing 100069, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| |
Collapse
|
33
|
Gonzalez A, van Lier JB, de Kreuk MK. Effects of mild thermal pre-treatment combined with H 2O 2 addition on waste activated sludge digestibility. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 141:163-172. [PMID: 35123250 DOI: 10.1016/j.wasman.2022.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/23/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The pre-treatment of waste activated sludge (WAS) has become more common since it often results in improved bioconversion to methane, in both rate and extent. However, thorough insights on the possible effects and mechanisms of mild pre-treatment techniques, such as temperatures <100 °C combined with the addition of H2O2, are still limited. This study reports the effects of the addition of 5-30 mgH2O2/g TS and its interaction with thermal pre-treatment at 70 °C on methane production, using WAS as the substrate. It was found that the addition of H2O2 increased the methane production rate, coinciding with a decrease in apparent viscosity of WAS, which probably improved mass transfer under non-ideal mixing conditions. While H2O2 solubilized proteins and carbohydrates and mineralized a small fraction of the humic substances in WAS, these biochemical transformations did not suffice to explain the observed extent and rate of methane production. A decreased particle size, the presence of Fenton's reagent, and the presence of cationic polymers in the WAS were discarded as the reasons for the observed decrease in apparent viscosity. It was concluded that the pre-treatment conditions applied in the present study might be a strategy to enhance mixing conditions in full-scale anaerobic digesters.
Collapse
Affiliation(s)
- Adrian Gonzalez
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Sanitary Engineering Section, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands.
| | - Jules B van Lier
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Sanitary Engineering Section, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
| | - Merle K de Kreuk
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Sanitary Engineering Section, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
| |
Collapse
|
34
|
Seixas AF, Quendera AP, Sousa JP, Silva AFQ, Arraiano CM, Andrade JM. Bacterial Response to Oxidative Stress and RNA Oxidation. Front Genet 2022; 12:821535. [PMID: 35082839 PMCID: PMC8784731 DOI: 10.3389/fgene.2021.821535] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/21/2021] [Indexed: 01/03/2023] Open
Abstract
Bacteria have to cope with oxidative stress caused by distinct Reactive Oxygen Species (ROS), derived not only from normal aerobic metabolism but also from oxidants present in their environments. The major ROS include superoxide O2−, hydrogen peroxide H2O2 and radical hydroxide HO•. To protect cells under oxidative stress, bacteria induce the expression of several genes, namely the SoxRS, OxyR and PerR regulons. Cells are able to tolerate a certain number of free radicals, but high levels of ROS result in the oxidation of several biomolecules. Strikingly, RNA is particularly susceptible to this common chemical damage. Oxidation of RNA causes the formation of strand breaks, elimination of bases or insertion of mutagenic lesions in the nucleobases. The most common modification is 8-hydroxyguanosine (8-oxo-G), an oxidized form of guanosine. The structure and function of virtually all RNA species (mRNA, rRNA, tRNA, sRNA) can be affected by RNA oxidation, leading to translational defects with harmful consequences for cell survival. However, bacteria have evolved RNA quality control pathways to eliminate oxidized RNA, involving RNA-binding proteins like the members of the MutT/Nudix family and the ribonuclease PNPase. Here we summarize the current knowledge on the bacterial stress response to RNA oxidation, namely we present the different ROS responsible for this chemical damage and describe the main strategies employed by bacteria to fight oxidative stress and control RNA damage.
Collapse
Affiliation(s)
- André F Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana P Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João P Sousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alda F Q Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
35
|
Domínguez R, Pateiro M, Munekata PES, Zhang W, Garcia-Oliveira P, Carpena M, Prieto MA, Bohrer B, Lorenzo JM. Protein Oxidation in Muscle Foods: A Comprehensive Review. Antioxidants (Basel) 2021; 11:60. [PMID: 35052564 PMCID: PMC8773412 DOI: 10.3390/antiox11010060] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/26/2022] Open
Abstract
Muscle foods and their products are a fundamental part of the human diet. The high protein content found in muscle foods, as well as the high content of essential amino acids, provides an appropriate composition to complete the nutritional requirements of humans. However, due to their special composition, they are susceptible to oxidative degradation. In this sense, proteins are highly susceptible to oxidative reactions. However, in contrast to lipid oxidation, which has been studied in depth for decades, protein oxidation of muscle foods has been investigated much less. Moreover, these reactions have an important influence on the quality of muscle foods, from physico-chemical, techno-functional, and nutritional perspectives. In this regard, the loss of essential nutrients, the impairment of texture, water-holding capacity, color and flavor, and the formation of toxic substances are some of the direct consequences of protein oxidation. The loss of quality for muscle foods results in consumer rejection and substantial levels of economic losses, and thus the control of oxidative processes is of vital importance for the food industry. Nonetheless, the complexity of the reactions involved in protein oxidation and the many different factors that influence these reactions make the mechanisms of protein oxidation difficult to fully understand. Therefore, the present manuscript reviews the fundamental mechanisms of protein oxidation, the most important oxidative reactions, the main factors that influence protein oxidation, and the currently available analytical methods to quantify compounds derived from protein oxidation reactions. Finally, the main effects of protein oxidation on the quality of muscle foods, both from physico-chemical and nutritional points of view, are also discussed.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; (R.D.); (M.P.); (P.E.S.M.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; (R.D.); (M.P.); (P.E.S.M.)
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; (R.D.); (M.P.); (P.E.S.M.)
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, 32004 Ourense, Spain; (P.G.-O.); (M.C.); (M.A.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, 32004 Ourense, Spain; (P.G.-O.); (M.C.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, 32004 Ourense, Spain; (P.G.-O.); (M.C.); (M.A.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Benjamin Bohrer
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; (R.D.); (M.P.); (P.E.S.M.)
- Facultade de Ciencias, Área de Tecnoloxía dos Alimentos, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
36
|
Hydrogen Peroxide and Amyotrophic Lateral Sclerosis: From Biochemistry to Pathophysiology. Antioxidants (Basel) 2021; 11:antiox11010052. [PMID: 35052556 PMCID: PMC8773294 DOI: 10.3390/antiox11010052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 11/19/2022] Open
Abstract
Free radicals are unstable chemical reactive species produced during Redox dyshomeostasis (RDH) inside living cells and are implicated in the pathogenesis of various neurodegenerative diseases. One of the most complicated and life-threatening motor neurodegenerative diseases (MND) is amyotrophic lateral sclerosis (ALS) because of the poor understanding of its pathophysiology and absence of an effective treatment for its cure. During the last 25 years, researchers around the globe have focused their interest on copper/zinc superoxide dismutase (Cu/Zn SOD, SOD1) protein after the landmark discovery of mutant SOD1 (mSOD1) gene as a risk factor for ALS. Substantial evidence suggests that toxic gain of function due to redox disturbance caused by reactive oxygen species (ROS) changes the biophysical properties of native SOD1 protein thus, instigating its fibrillization and misfolding. These abnormal misfolding aggregates or inclusions of SOD1 play a role in the pathogenesis of both forms of ALS, i.e., Sporadic ALS (sALS) and familial ALS (fALS). However, what leads to a decrease in the stability and misfolding of SOD1 is still in question and our scientific knowledge is scarce. A large number of studies have been conducted in this area to explore the biochemical mechanistic pathway of SOD1 aggregation. Several studies, over the past two decades, have shown that the SOD1-catalyzed biochemical reaction product hydrogen peroxide (H2O2) at a pathological concentration act as a substrate to trigger the misfolding trajectories and toxicity of SOD1 in the pathogenesis of ALS. These toxic aggregates of SOD1 also cause aberrant localization of TAR-DNA binding protein 43 (TDP-43), which is characteristic of neuronal cytoplasmic inclusions (NCI) found in ALS. Here in this review, we present the evidence implicating the pivotal role of H2O2 in modulating the toxicity of SOD1 in the pathophysiology of the incurable and highly complex disease ALS. Also, highlighting the role of H2O2 in ALS, we believe will encourage scientists to target pathological concentrations of H2O2 thereby halting the misfolding of SOD1.
Collapse
|
37
|
Rey V, Abatedaga I, Vera C, Vieyra FEM, Borsarelli CD. Photosensitized Formation of Soluble Bionanoparticles of Lysozyme. ChemistrySelect 2021. [DOI: 10.1002/slct.202103215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Valentina Rey
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
- Instituto de Ciencias Químicas (ICQ) Facultad de Agronomía y Agroindustrias (FAyA) Universidad Nacional de Santiago del Estero (UNSE) Av. Belgrano S) 1912 4200. Santiago del Estero Argentina
| | - Inés Abatedaga
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
| | - Cecilia Vera
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
| | - Faustino E. Morán Vieyra
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
- Instituto de Ciencias Químicas (ICQ) Facultad de Agronomía y Agroindustrias (FAyA) Universidad Nacional de Santiago del Estero (UNSE) Av. Belgrano S) 1912 4200. Santiago del Estero Argentina
| | - Claudio D. Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
- Instituto de Ciencias Químicas (ICQ) Facultad de Agronomía y Agroindustrias (FAyA) Universidad Nacional de Santiago del Estero (UNSE) Av. Belgrano S) 1912 4200. Santiago del Estero Argentina
| |
Collapse
|
38
|
Ni YQ, Liu YS. New Insights into the Roles and Mechanisms of Spermidine in Aging and Age-Related Diseases. Aging Dis 2021; 12:1948-1963. [PMID: 34881079 PMCID: PMC8612618 DOI: 10.14336/ad.2021.0603] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
High incidences of morbidity and mortality associated with age-related diseases among the elderly population are a socio-economic challenge. Aging is an irreversible and inevitable process that is a risk factor for pathological progression of diverse age-related diseases. Spermidine, a natural polyamine, plays a critical role in molecular and cellular interactions involved in various physiological and functional processes. Spermidine has been shown to modulate aging, suppress the occurrence and severity of age-related diseases, and prolong lifespan. However, the precise mechanisms through which spermidine exerts its anti-aging effects have not been established. In this review, we elucidate on the mechanisms and roles underlying the beneficial effects of spermidine in aging from a molecular and cellular perspective. Moreover, we provide new insights into the promising potential diagnostic and therapeutic applications of spermidine in aging and age-related diseases.
Collapse
Affiliation(s)
- Yu-Qing Ni
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - You-Shuo Liu
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| |
Collapse
|
39
|
Mazheika IS, Semenova MA, Voronko OV, Psurtseva NV, Kolomiets OL, Kamzolkina OV. Evaluation of the carbonylation of filamentous fungi proteins by dry immune dot blotting. Fungal Biol 2021; 125:923-933. [PMID: 34649679 DOI: 10.1016/j.funbio.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/28/2022]
Abstract
The development of mycological gerontology requires effective methods for assessing the biological age of fungal cells. This assessment is based on the analysis of a complex of aging and oxidative stress markers. One of the most powerful such markers is the protein carbonylation. In this study, the already known method of dry immune dot blotting is adapted for mycological studies of the content of protein carbonyl groups. After testing the method on a number of filamentous fungi species, some features of the accumulation of carbonylated proteins in mycelium were established. Among these features: (i) a weak effect of exogenous oxidative stress on the accumulation of carbonyls in a number of fungi, (ii) reversibility of the carbonyl accumulation, (iii) possibility of arbitrary regulation of carbonyl content by fungus itself and (iv) the influence of hormesis. In addition, two polar strategies for the accumulation of carbonyl modification were revealed, named Id-strategy (Indifferent) and Cn-strategy (Concern). Thus, even the analysis of one marker allows making some preliminary general assumptions and conclusions. For example, the idea that fungi can freely regulate their biological age is confirmed. This feature makes fungi very flexible in terms of responding to environmental influences and promising objects for gerontology.
Collapse
Affiliation(s)
- Igor S Mazheika
- Department of Mycology and Algology, Lomonosov Moscow State University, Moscow, 119991, Russia; Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 117971, Russia.
| | - Marina A Semenova
- Department of Mycology and Algology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Oxana V Voronko
- Department of Mycology and Algology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nadezhda V Psurtseva
- Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, 197376, Russia
| | - Oxana L Kolomiets
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 117971, Russia
| | - Olga V Kamzolkina
- Department of Mycology and Algology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
40
|
Inhibition of miR-134-5p protects against kainic acid-induced excitotoxicity through Sirt3-mediated preservation of mitochondrial function. Epilepsy Res 2021; 176:106722. [PMID: 34273723 DOI: 10.1016/j.eplepsyres.2021.106722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022]
Abstract
Epilepsy is a neurological disorder which is characterized by brain hyper-excitability and manifests as seizure. Due to its complicated pathogenesis, treatment for epilepsy still remains a huge challenge for neurology in the whole world. MciroRNA-134 (miR-134) is one kind of miRNAs which was firstly found abundant in synapses. In this study, we tried to unveil the role of inhibiting MciroRNA-134-5p (miR-134-5p) in excitotoxicity induced by kainic acid (KA) in the hippocampal neurons (HT22) cells. The results showed that treatment of KA increased the expression of miR-134-5p significantly and caused marked neuron excitotoxicity, evidenced by risen cell death rate, higher LDH release and aggravated cell viability. After suppressing miR-134-5p expression via transfecting HT22 cells with miR-134-5p antisense (Anti-134), cell viability was promoted obviously, along with decreased LDH release and cell death rate. In addition, KA-induced lipid peroxidation, cytochrome c release and mitochondrial ROS generation were also attenuated by Anti-134. The level of Sirtuin 3 (Sirt3) and its downstream antioxidant enzymes, such as mitochondrial superoxide dismutase 2 (SOD2), isocitrate dehydrogenase 2 (IDH2) and glutathione peroxidase (GSH-Px), were significantly higher in Anti-134 group compared with the control and scramble group. After inhibiting Sirt3 expression with SiRNA targeting Sirt3 (Si-Sirt3) and 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP), the positive role of Anti-134 was apparently reversed. In conclusion, this research highly suggests that inhibition of miR-134-5p could protect neurons from KA-induced excitotoxicity through Sirt3-mediated preservation of mitochondrial function.
Collapse
|
41
|
Saito Y, Kimura W. Roles of Phase Separation for Cellular Redox Maintenance. Front Genet 2021; 12:691946. [PMID: 34306032 PMCID: PMC8299301 DOI: 10.3389/fgene.2021.691946] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
The oxidation reaction greatly alters characteristics of various cellular components. In exchange for efficient energy production, mitochondrial aerobic respiration substantially increases the risk of excess oxidation of cellular biomolecules such as lipids, proteins, nucleic acids, and numerous small molecules. To maintain a physiologically balanced cellular reduction-oxidation (redox) state, cells utilize a variety of molecular machineries including cellular antioxidants and protein degradation complexes such as the ubiquitin-proteasome system or autophagy. In the past decade, biomolecular liquid-liquid phase separation (LLPS) has emerged as a subject of great interest in the biomedical field, as it plays versatile roles in the maintenance of cellular homeostasis. With regard to redox homeostasis, LLPS arose as a major player in both well-characterized and newly emerging redox pathways. LLPS is involved in direct redox imbalance sensing, signal transduction, and transcriptional regulation. Also, LLPS is at play when cells resist redox imbalance through metabolic switching, translational remodeling, activating the DNA damage response, and segregation of vulnerable lipids and proteins. On the other hand, chronic accumulation of phase-separated molecular condensates such as lipid droplets and amyloid causes neurotoxic outcomes. In this review we enumerate recent progress on understanding how cells utilize LLPS to deal with oxidative stress, especially related to cell survival or pathogenesis, and we discuss future research directions for understanding biological phase separation in cellular redox regulation.
Collapse
Affiliation(s)
| | - Wataru Kimura
- Laboratory for Heart Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
42
|
Kehm R, Baldensperger T, Raupbach J, Höhn A. Protein oxidation - Formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biol 2021; 42:101901. [PMID: 33744200 PMCID: PMC8113053 DOI: 10.1016/j.redox.2021.101901] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
Generation of reactive oxygen species and related oxidants is an inevitable consequence of life. Proteins are major targets for oxidation reactions, because of their rapid reaction rates with oxidants and their high abundance in cells, extracellular tissues, and body fluids. Additionally, oxidative stress is able to degrade lipids and carbohydrates to highly reactive intermediates, which eventually attack proteins at various functional sites. Consequently, a wide variety of distinct posttranslational protein modifications is formed by protein oxidation, glycoxidation, and lipoxidation. Reversible modifications are relevant in physiological processes and constitute signaling mechanisms ("redox signaling"), while non-reversible modifications may contribute to pathological situations and several diseases. A rising number of publications provide evidence for their involvement in the onset and progression of diseases as well as aging processes. Certain protein oxidation products are chemically stable and formed in large quantity, which makes them promising candidates to become biomarkers of oxidative damage. Moreover, progress in the development of detection and quantification methods facilitates analysis time and effort and contributes to their future applicability in clinical routine. The present review outlines the most important classes and selected examples of oxidative protein modifications, elucidates the chemistry beyond their formation and discusses available methods for detection and analysis. Furthermore, the relevance and potential of protein modifications as biomarkers in the context of disease and aging is summarized.
Collapse
Affiliation(s)
- Richard Kehm
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Tim Baldensperger
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Jana Raupbach
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
43
|
The Effect of the New Lupeol Derivatives on Human Skin Cells as Potential Agents in the Treatment of Wound Healing. Biomolecules 2021; 11:biom11060774. [PMID: 34064164 PMCID: PMC8224297 DOI: 10.3390/biom11060774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/26/2022] Open
Abstract
Skin barrier damage can be the result of various external factors including heat, radiation, chemicals and many others. Any interruption of the skin barrier integrity causes the exposure of the organism to harmful environmental factors. Therefore, there is an urgent need to develop novel therapeutics characterized by high bioavailability and effectiveness in skin damage recovery. Birch bark is known as a clinically proven, traditional medicinal remedy to accelerate wound healing. Lupeol, one of the main birch bark ingredients, shows a wide range of biological activity beneficial to the skin. The purpose of the research was to determine the influence of new lupeol derivatives on keratinocyte and fibroblast migration and proliferation, as well as to investigate various mechanisms of their antioxidant activity. The chemical modification of lupeol structure was intended to obtain more effective therapeutics characterized by higher bioavailability, permeability and safety of use. The novel triterpenes presented in this study were evaluated as the potential active ingredients preventing skin tissue degradation. Lupeol esters influence skin cells' motility and proliferation. Importantly, they are able to reduce reactive oxygen species and act indirectly by protecting the skin protein structure from being oxidized by free radicals.
Collapse
|
44
|
Brozek-Pluska B, Beton K. Oxidative stress induced by tBHP in human normal colon cells by label free Raman spectroscopy and imaging. The protective role of natural antioxidants in the form of β-carotene. RSC Adv 2021; 11:16419-16434. [PMID: 35479133 PMCID: PMC9030785 DOI: 10.1039/d1ra01950c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/25/2021] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the protective effect of β-carotene on the oxidative stress injury of human normal colon cell line CCD-18Co triggered by tert-butyl hydroperoxide (tBHP). XTT examination was used to determine cell viability after β-carotene supplementation and to determine the optimal concentration of antioxidant in spectroscopic studies. Cell biochemistry for the CCD-18Co control group, after tBHP addition and for cells in the β-carotene-tBHP model was studied using label-free Raman microspectroscopy. Results for stress treated CCD-18Co human colon normal cells and human colon cancer cells Caco-2 based on vibration features were also compared. Pretreatment with β-carotene alleviated damage in CCD-18Co human normal colon cells induced by tBHP and showed the preventative effect on cell apoptosis. Treatment with β-carotene altered the level of ROS investigated based on intensities of Raman peaks typical for lipids, proteins and nucleic acids. The present study confirmed the antioxidant, protective role of β-carotene against ROS by using spectroscopic label-free Raman techniques.
Collapse
Affiliation(s)
- B Brozek-Pluska
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy Wroblewskiego 15 93-590 Lodz Poland
| | - K Beton
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy Wroblewskiego 15 93-590 Lodz Poland
| |
Collapse
|
45
|
Effects of Lacosamide Treatment on Epileptogenesis, Neuronal Damage and Behavioral Comorbidities in a Rat Model of Temporal Lobe Epilepsy. Int J Mol Sci 2021; 22:ijms22094667. [PMID: 33925082 PMCID: PMC8124899 DOI: 10.3390/ijms22094667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Clinically, temporal lobe epilepsy (TLE) is the most prevalent type of partial epilepsy and often accompanied by various comorbidities. The present study aimed to evaluate the effects of chronic treatment with the antiepileptic drug (AED) lacosamide (LCM) on spontaneous motor seizures (SMS), behavioral comorbidities, oxidative stress, neuroinflammation, and neuronal damage in a model of TLE. Vehicle/LCM treatment (30 mg/kg, p.o.) was administered 3 h after the pilocarpine-induced status epilepticus (SE) and continued for up to 12 weeks in Wistar rats. Our study showed that LCM attenuated the number of SMS and corrected comorbid to epilepsy impaired motor activity, anxiety, memory, and alleviated depressive-like responses measured in the elevated plus maze, object recognition test, radial arm maze test, and sucrose preference test, respectively. This AED suppressed oxidative stress through increased superoxide dismutase activity and glutathione levels, and alleviated catalase activity and lipid peroxidation in the hippocampus. Lacosamide treatment after SE mitigated the increased levels of IL-1β and TNF-α in the hippocampus and exerted strong neuroprotection both in the dorsal and ventral hippocampus, basolateral amygdala, and partially in the piriform cortex. Our results suggest that the antioxidant, anti-inflammatory, and neuroprotective activity of LCM is an important prerequisite for its anticonvulsant and beneficial effects on SE-induced behavioral comorbidities.
Collapse
|
46
|
Segovia-Roldan M, Diez ER, Pueyo E. Melatonin to Rescue the Aged Heart: Antiarrhythmic and Antioxidant Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8876792. [PMID: 33791076 PMCID: PMC7984894 DOI: 10.1155/2021/8876792] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022]
Abstract
Aging comes with gradual loss of functions that increase the vulnerability to disease, senescence, and death. The mechanisms underlying these processes are linked to a prolonged imbalance between damage and repair. Damaging mechanisms include oxidative stress, mitochondrial dysfunction, chronodisruption, inflammation, and telomere attrition, as well as genetic and epigenetic alterations. Several endogenous tissue repairing mechanisms also decrease. These alterations associated with aging affect the entire organism. The most devastating manifestations involve the cardiovascular system and may lead to lethal cardiac arrhythmias. Together with structural remodeling, electrophysiological and intercellular communication alterations during aging predispose to arrhythmic events. Despite the knowledge on repairing mechanisms in the cardiovascular system, effective antiaging strategies able to reduce the risk of arrhythmias are still missing. Melatonin is a promising therapeutic candidate due to its pleiotropic actions. This indoleamine regulates chronobiology and endocrine physiology. Of relevance, melatonin is an antiaging, antioxidant, antiapoptotic, antiarrhythmic, immunomodulatory, and antiproliferative molecule. This review focuses on the protective effects of melatonin on age-induced cardiac functional and structural alterations, potentially becoming a new fountain of youth for the heart.
Collapse
Affiliation(s)
- Margarita Segovia-Roldan
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), I3A, Universidad de Zaragoza, IIS Aragón and CIBER-BBN, Spain
| | | | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), I3A, Universidad de Zaragoza, IIS Aragón and CIBER-BBN, Spain
| |
Collapse
|
47
|
The Neuromelanin Paradox and Its Dual Role in Oxidative Stress and Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10010124. [PMID: 33467040 PMCID: PMC7829956 DOI: 10.3390/antiox10010124] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is associated with an increasing dysfunction of key brain homeostasis mechanisms and represents the main risk factor across most neurodegenerative disorders. However, the degree of dysregulation and the affectation of specific pathways set apart normal aging from neurodegenerative disorders. In particular, the neuronal metabolism of catecholaminergic neurotransmitters appears to be a specifically sensitive pathway that is affected in different neurodegenerations. In humans, catecholaminergic neurons are characterized by an age-related accumulation of neuromelanin (NM), rendering the soma of the neurons black. This intracellular NM appears to serve as a very efficient quencher for toxic molecules. However, when a neuron degenerates, NM is released together with its load (many undegraded cellular components, transition metals, lipids, xenobiotics) contributing to initiate and worsen an eventual immune response, exacerbating the oxidative stress, ultimately leading to the neurodegenerative process. This review focuses on the analysis of the role of NM in normal aging and neurodegeneration related to its capabilities as an antioxidant and scavenging of harmful molecules, versus its involvement in oxidative stress and aberrant immune response, depending on NM saturation state and its extracellular release.
Collapse
|
48
|
Alachkar A, Ojha SK, Sadeq A, Adem A, Frank A, Stark H, Sadek B. Experimental Models for the Discovery of Novel Anticonvulsant Drugs: Focus on Pentylenetetrazole-Induced Seizures and Associated Memory Deficits. Curr Pharm Des 2020; 26:1693-1711. [PMID: 32003682 DOI: 10.2174/1381612826666200131105324] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Epilepsy is a chronic neurological disorder characterized by irregular, excessive neuronal excitability, and recurrent seizures that affect millions of patients worldwide. Currently, accessible antiepileptic drugs (AEDs) do not adequately support all epilepsy patients, with around 30% patients not responding to the existing therapies. As lifelong epilepsy treatment is essential, the search for new and more effective AEDs with an enhanced safety profile is a significant therapeutic goal. Seizures are a combination of electrical and behavioral events that can induce biochemical, molecular, and anatomic changes. Therefore, appropriate animal models are required to evaluate novel potential AEDs. Among the large number of available animal models of seizures, the acute pentylenetetrazole (PTZ)-induced myoclonic seizure model is the most widely used model assessing the anticonvulsant effect of prospective AEDs, whereas chronic PTZ-kindled seizure models represent chronic models in which the repeated administration of PTZ at subconvulsive doses leads to the intensification of seizure activity or enhanced seizure susceptibility similar to that in human epilepsy. In this review, we summarized the memory deficits accompanying acute or chronic PTZ seizure models and how these deficits were evaluated applying several behavioral animal models. Furthermore, major advantages and limitations of the PTZ seizure models in the discovery of new AEDs were highlighted. With a focus on PTZ seizures, the major biochemicals, as well as morphological alterations and the modulated brain neurotransmitter levels associated with memory deficits have been illustrated. Moreover, numerous medicinal compounds with concurrent anticonvulsant, procognitive, antioxidant effects, modulating effects on several brain neurotransmitters in rodents, and several newly developed classes of compounds applying computer-aided drug design (CADD) have been under development as potential AEDs. The article details the in-silico approach following CADD, which can be utilized for generating libraries of novel compounds for AED discovery. Additionally, in vivo studies could be useful in demonstrating efficacy, safety, and novel mode of action of AEDs for further clinical development.
Collapse
Affiliation(s)
- Alaa Alachkar
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United States.,Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United States
| | - Shreesh K Ojha
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United States.,Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United States
| | - Adel Sadeq
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United States.,Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United States
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United States.,Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United States
| |
Collapse
|
49
|
Estaras M, Ameur FZ, Estévez M, Díaz-Velasco S, Gonzalez A. The lysine derivative aminoadipic acid, a biomarker of protein oxidation and diabetes-risk, induces production of reactive oxygen species and impairs trypsin secretion in mouse pancreatic acinar cells. Food Chem Toxicol 2020; 145:111594. [PMID: 32738373 DOI: 10.1016/j.fct.2020.111594] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
We have examined the effects of α-aminoadipic acid, an oxidized derivative from the amino acid lysine, on the physiology of mouse pancreatic acinar cells. Changes in intracellular free-Ca2+ concentration, the generation of reactive oxygen species, the levels of carbonyls and thiobarbituric-reactive substances, cellular metabolic activity and trypsin secretion were studied. Stimulation of mouse pancreatic cells with cholecystokinin (1 nM) evoked a transient increase in [Ca2+]i. In the presence of α-amoniadipic acid increases in [Ca2+]i were observed. In the presence of the compound, cholecystokinin induced a Ca2+ response that was smaller compared with that observed when cholecystokinin was applied alone. Stimulation of cells with cholecystokinin in the absence of Ca2+ in the extracellular medium abolished further mobilization of Ca2+ by α-aminoadipic acid. In addition, potential pro-oxidant conditions, reflected as increases in ROS generation, oxidation of proteins and lipids, were noted in the presence of α-aminoadipic acid. Finally, the compound impaired trypsin secretion induced by the secretagogue cholecystokinin. We conclude that the oxidized derivative from the amino acid lysine induces pro-oxidative conditions and the impairment of enzyme secretion in pancreatic acinar cells. α-aminoadipic acid thus creates a situation that could potentially lead to disorders in the physiology of the pancreas.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Fatma Z Ameur
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire, Université d'Oran1 Ahmed BenBella, Algeria
| | - Mario Estévez
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura, 10003, Cáceres, Spain
| | - Silvia Díaz-Velasco
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura, 10003, Cáceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
50
|
Casciaro F, Borghesan M, Beretti F, Zavatti M, Bertucci E, Follo MY, Maraldi T, Demaria M. Prolonged hypoxia delays aging and preserves functionality of human amniotic fluid stem cells. Mech Ageing Dev 2020; 191:111328. [DOI: 10.1016/j.mad.2020.111328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 01/10/2023]
|