1
|
Tu AB, Krishna G, Smith KR, Lewis JS. Harnessing Immunomodulatory Polymers for Treatment of Autoimmunity, Allergy, and Transplant Rejection. Annu Rev Biomed Eng 2024; 26:415-440. [PMID: 38959388 DOI: 10.1146/annurev-bioeng-110122-014306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Autoimmunity, allergy, and transplant rejection are a collection of chronic diseases that are currently incurable, drastically decrease patient quality of life, and consume considerable health care resources. Underlying each of these diseases is a dysregulated immune system that results in the mounting of an inflammatory response against self or an innocuous antigen. As a consequence, afflicted patients are required to adhere to lifelong regimens of multiple immunomodulatory drugs to control disease and reclaim agency. Unfortunately, current immunomodulatory drugs are associated with a myriad of side effects and adverse events, such as increased risk of cancer and increased risk of serious infection, which negatively impacts patient adherence rates and quality of life. The field of immunoengineering is a new discipline that aims to harness endogenous biological pathways to thwart disease and minimize side effects using novel biomaterial-based strategies. We highlight and discuss polymeric micro/nanoparticles with inherent immunomodulatory properties that are currently under investigation in biomaterial-based therapies for treatment of autoimmunity, allergy, and transplant rejection.
Collapse
Affiliation(s)
- Allen B Tu
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Gaddam Krishna
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| | - Kevin R Smith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| | - Jamal S Lewis
- Department of Biomedical Engineering, University of California, Davis, California, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
2
|
Gao Y, Zhang Y, Liu X. Rheumatoid arthritis: pathogenesis and therapeutic advances. MedComm (Beijing) 2024; 5:e509. [PMID: 38469546 PMCID: PMC10925489 DOI: 10.1002/mco2.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by the unresolved synovial inflammation for tissues-destructive consequence, which remains one of significant causes of disability and labor loss, affecting about 0.2-1% global population. Although treatments with disease-modifying antirheumatic drugs (DMARDs) are effective to control inflammation and decrease bone destruction, the overall remission rates of RA still stay at a low level. Therefore, uncovering the pathogenesis of RA and expediting clinical transformation are imminently in need. Here, we summarize the immunological basis, inflammatory pathways, genetic and epigenetic alterations, and metabolic disorders in RA, with highlights on the abnormality of immune cells atlas, epigenetics, and immunometabolism. Besides an overview of first-line medications including conventional DMARDs, biologics, and small molecule agents, we discuss in depth promising targeted therapies under clinical or preclinical trials, especially epigenetic and metabolic regulators. Additionally, prospects on precision medicine based on synovial biopsy or RNA-sequencing and cell therapies of mesenchymal stem cells or chimeric antigen receptor T-cell are also looked forward. The advancements of pathogenesis and innovations of therapies in RA accelerates the progress of RA treatments.
Collapse
Affiliation(s)
- Ying Gao
- Department of RheumatologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Yunkai Zhang
- Naval Medical CenterNaval Medical UniversityShanghaiChina
| | - Xingguang Liu
- National Key Laboratory of Immunity & InflammationNaval Medical UniversityShanghaiChina
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina
| |
Collapse
|
3
|
Johnson WT, McBride D, Kerr M, Nguyen A, Zoccheddu M, Bollmann M, Wei X, Jones RM, Wang W, Svensson MND, Bottini N, Shah NJ. Immunomodulatory Nanoparticles for Modulating Arthritis Flares. ACS NANO 2024; 18:1892-1906. [PMID: 38016062 DOI: 10.1021/acsnano.3c05298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Disease-modifying drugs have improved the treatment for autoimmune joint disorders, such as rheumatoid arthritis, but inflammatory flares are a common experience. This work reports the development and application of flare-modulating poly(lactic-co-glycolic acid)-poly(ethylene glycol)-maleimide (PLGA-PEG-MAL)-based nanoparticles conjugated with joint-relevant peptide antigens, aggrecan70-84 and type 2 bovine collagen256-270. Peptide-conjugated PLGA-PEG-MAL nanoparticles encapsulated calcitriol, which acted as an immunoregulatory agent, and were termed calcitriol-loaded nanoparticles (CLNP). CLNP had a ∼200 nm hydrodynamic diameter with a low polydispersity index. In vitro, CLNP induced phenotypic changes in bone marrow derived dendritic cells (DC), reducing the expression of costimulatory and major histocompatibility complex class II molecules, and proinflammatory cytokines. Bulk RNA sequencing of DC showed that CLNP enhanced expression of Ctla4, a gene associated with downregulation of immune responses. In vivo, CLNP accumulated in the proximal lymph nodes after intramuscular injection. Administration of CLNP was not associated with changes in peripheral blood cell numbers or cytokine levels. In the collagen-induced arthritis and SKG mouse models of autoimmune joint disorders, CLNP reduced clinical scores, prevented bone erosion, and preserved cartilage proteoglycan, as assessed by high-resolution microcomputed tomography and histomorphometry analysis. The disease protective effects were associated with increased CTLA-4 expression in joint-localized DC and CD4+ T cells but without generalized suppression of T cell-dependent immune response. The results support the potential of CLNP as modulators of disease flares in autoimmune arthropathies.
Collapse
Affiliation(s)
- Wade T Johnson
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - David McBride
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Matthew Kerr
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Anders Nguyen
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg 41346, Sweden
- SciLifeLab, University of Gothenburg, Gothenburg 41346, Sweden
| | - Martina Zoccheddu
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Miriam Bollmann
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg 41346, Sweden
- SciLifeLab, University of Gothenburg, Gothenburg 41346, Sweden
| | - Xiaofu Wei
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Ryan M Jones
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Mattias N D Svensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg 41346, Sweden
- SciLifeLab, University of Gothenburg, Gothenburg 41346, Sweden
| | - Nunzio Bottini
- Kao Autoimmunity Institute and Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Nisarg J Shah
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Zhang F, Jonsson AH, Nathan A, Millard N, Curtis M, Xiao Q, Gutierrez-Arcelus M, Apruzzese W, Watts GFM, Weisenfeld D, Nayar S, Rangel-Moreno J, Meednu N, Marks KE, Mantel I, Kang JB, Rumker L, Mears J, Slowikowski K, Weinand K, Orange DE, Geraldino-Pardilla L, Deane KD, Tabechian D, Ceponis A, Firestein GS, Maybury M, Sahbudin I, Ben-Artzi A, Mandelin AM, Nerviani A, Lewis MJ, Rivellese F, Pitzalis C, Hughes LB, Horowitz D, DiCarlo E, Gravallese EM, Boyce BF, Moreland LW, Goodman SM, Perlman H, Holers VM, Liao KP, Filer A, Bykerk VP, Wei K, Rao DA, Donlin LT, Anolik JH, Brenner MB, Raychaudhuri S. Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes. Nature 2023; 623:616-624. [PMID: 37938773 PMCID: PMC10651487 DOI: 10.1038/s41586-023-06708-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/03/2023] [Indexed: 11/09/2023]
Abstract
Rheumatoid arthritis is a prototypical autoimmune disease that causes joint inflammation and destruction1. There is currently no cure for rheumatoid arthritis, and the effectiveness of treatments varies across patients, suggesting an undefined pathogenic diversity1,2. Here, to deconstruct the cell states and pathways that characterize this pathogenic heterogeneity, we profiled the full spectrum of cells in inflamed synovium from patients with rheumatoid arthritis. We used multi-modal single-cell RNA-sequencing and surface protein data coupled with histology of synovial tissue from 79 donors to build single-cell atlas of rheumatoid arthritis synovial tissue that includes more than 314,000 cells. We stratified tissues into six groups, referred to as cell-type abundance phenotypes (CTAPs), each characterized by selectively enriched cell states. These CTAPs demonstrate the diversity of synovial inflammation in rheumatoid arthritis, ranging from samples enriched for T and B cells to those largely lacking lymphocytes. Disease-relevant cell states, cytokines, risk genes, histology and serology metrics are associated with particular CTAPs. CTAPs are dynamic and can predict treatment response, highlighting the clinical utility of classifying rheumatoid arthritis synovial phenotypes. This comprehensive atlas and molecular, tissue-based stratification of rheumatoid arthritis synovial tissue reveal new insights into rheumatoid arthritis pathology and heterogeneity that could inform novel targeted treatments.
Collapse
Affiliation(s)
- Fan Zhang
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anna Helena Jonsson
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aparna Nathan
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nghia Millard
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michelle Curtis
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Qian Xiao
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maria Gutierrez-Arcelus
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - William Apruzzese
- Accelerating Medicines Partnership Program: Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMP RA/SLE) Network, Bethesda, MD, USA
| | - Gerald F M Watts
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dana Weisenfeld
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Saba Nayar
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Nida Meednu
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kathryne E Marks
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ian Mantel
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Joyce B Kang
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Laurie Rumker
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joseph Mears
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kamil Slowikowski
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital (MGH), Boston, MA, USA
| | - Kathryn Weinand
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dana E Orange
- Hospital for Special Surgery, New York, NY, USA
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, NY, USA
| | - Laura Geraldino-Pardilla
- Division of Rheumatology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Kevin D Deane
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Darren Tabechian
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Arnoldas Ceponis
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, USA
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, USA
| | - Mark Maybury
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Ilfita Sahbudin
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Ami Ben-Artzi
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Arthur M Mandelin
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, EULAR Centre of Excellence, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Health NHS Trust, Barts Biomedical Research Centre (BRC), National Institute for Health and Care Research (NIHR), London, UK
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, EULAR Centre of Excellence, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Health NHS Trust, Barts Biomedical Research Centre (BRC), National Institute for Health and Care Research (NIHR), London, UK
| | - Felice Rivellese
- Centre for Experimental Medicine and Rheumatology, EULAR Centre of Excellence, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Health NHS Trust, Barts Biomedical Research Centre (BRC), National Institute for Health and Care Research (NIHR), London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, EULAR Centre of Excellence, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Health NHS Trust, Barts Biomedical Research Centre (BRC), National Institute for Health and Care Research (NIHR), London, UK
- Department of Biomedical Sciences, Humanitas University and Humanitas Research Hospital, Milan, Italy
| | - Laura B Hughes
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Diane Horowitz
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, NY, USA
| | - Edward DiCarlo
- Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, NY, USA
| | - Ellen M Gravallese
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Larry W Moreland
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Susan M Goodman
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Harris Perlman
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Katherine P Liao
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Andrew Filer
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Vivian P Bykerk
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura T Donlin
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Jennifer H Anolik
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael B Brenner
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Sun R, Wang Y, Abolhassani H. Cellular mechanisms and clinical applications for phenocopies of inborn errors of immunity: infectious susceptibility due to cytokine autoantibodies. Expert Rev Clin Immunol 2023:1-14. [PMID: 37114623 DOI: 10.1080/1744666x.2023.2208863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
INTRODUCTION With a growing knowledge of Inborn error immunity (IEI), immunological profiling and genetic predisposition to IEI phenocopies have been developed in recent years. AREAS COVERED Here we summarized the correlation between various pathogen invasions, autoantibody profiles, and corresponding clinical features in the context of patients with IEI phenocopies. It has been extensively evident that patients with anti-cytokine autoantibodies underly impaired anti-pathogen immune responses and lead to broad unregulated inflammation and tissue damage. Several hypotheses of anti-cytokine autoantibodies production were summarized here, including a defective negative selection of autoreactive T cells, abnormal germinal center formation, molecular mimicry, HLA class II allele region, lack of auto-reactive lymphocyte apoptosis, and other possible hypotheses. EXPERT OPINION Phenocopies of IEI associated with anti-cytokine autoantibodies are increasingly recognized as one of the causes of acquired immunodeficiency and susceptibility to certain pathogen infections, especially facing the current challenge of the COVID-19 pandemic. By investigating clinical, genetic, and pathogenesis autoantibodies profiles associated with various pathogens' susceptibilities, we could better understand the IEI phenocopies with anti-cytokine autoantibodies, especially for those that underlie life-threatening SARS-CoV-2.
Collapse
Affiliation(s)
- Rui Sun
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Yating Wang
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
6
|
McBride DA, Kerr MD, Johnson WT, Nguyen A, Zoccheddu M, Yao M, Prideaux EB, Dorn NC, Wang W, Svensson MN, Bottini N, Shah NJ. Immunomodulatory Microparticles Epigenetically Modulate T Cells and Systemically Ameliorate Autoimmune Arthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202720. [PMID: 36890657 PMCID: PMC10104670 DOI: 10.1002/advs.202202720] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/09/2023] [Indexed: 05/10/2023]
Abstract
Disease modifying antirheumatic drugs (DMARDs) have improved the prognosis of autoimmune inflammatory arthritides but a large fraction of patients display partial or nonresponsiveness to front-line DMARDs. Here, an immunoregulatory approach based on sustained joint-localized release of all-trans retinoic acid (ATRA), which modulates local immune activation and enhances disease-protective T cells and leads to systemic disease control is reported. ATRA imprints a unique chromatin landscape in T cells, which is associated with an enhancement in the differentiation of naïve T cells into anti-inflammatory regulatory T cells (Treg ) and suppression of Treg destabilization. Sustained release poly-(lactic-co-glycolic) acid (PLGA)-based biodegradable microparticles encapsulating ATRA (PLGA-ATRA MP) are retained in arthritic mouse joints after intra-articular (IA) injection. IA PLGA-ATRA MP enhance migratory Treg which in turn reduce inflammation and modify disease in injected and uninjected joints, a phenotype that is also reproduced by IA injection of Treg . PLGA-ATRA MP reduce proteoglycan loss and bone erosions in the SKG and collagen-induced arthritis mouse models of autoimmune arthritis. Strikingly, systemic disease modulation by PLGA-ATRA MP is not associated with generalized immune suppression. PLGA-ATRA MP have the potential to be developed as a disease modifying agent for autoimmune arthritis.
Collapse
Affiliation(s)
- David A. McBride
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCA92093USA
- Chemical Engineering ProgramUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Matthew D. Kerr
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCA92093USA
- Chemical Engineering ProgramUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Wade T. Johnson
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Anders Nguyen
- Department of Rheumatology and Inflammation ResearchSahlgrenska AcademyInstitute of MedicineUniversity of GothenburgGothenburg41346Sweden
| | - Martina Zoccheddu
- Department of MedicineDivision of RheumatologyAllergy and ImmunologyUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Mina Yao
- Department of Chemistry and BiochemistryUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Edward B. Prideaux
- Department of Chemistry and BiochemistryUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Nicholas C. Dorn
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCA92093USA
- Chemical Engineering ProgramUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Wei Wang
- Department of Chemistry and BiochemistryUniversity of CaliforniaLa JollaSan DiegoCA92093USA
- Department of Cellular and Molecular MedicineUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Mattias N.D. Svensson
- Department of Rheumatology and Inflammation ResearchSahlgrenska AcademyInstitute of MedicineUniversity of GothenburgGothenburg41346Sweden
| | - Nunzio Bottini
- Department of MedicineDivision of RheumatologyAllergy and ImmunologyUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Nisarg J. Shah
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCA92093USA
- Chemical Engineering ProgramUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| |
Collapse
|
7
|
Pharmacogenomics of Anti-TNF Treatment Response Marks a New Era of Tailored Rheumatoid Arthritis Therapy. Int J Mol Sci 2022; 23:ijms23042366. [PMID: 35216481 PMCID: PMC8879844 DOI: 10.3390/ijms23042366] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/19/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most commonly occurring chronic inflammatory arthritis, the exact mechanism of which is not fully understood. Tumor Necrosis Factor (TNF)-targeting drugs has been shown to exert high effectiveness for RA, which indicates the key importance of this cytokine in this disease. Nevertheless, the response to TNF inhibitors varies, and approximately one third of RA patients are non-responders, which is explained by the influence of genetic factors. Knowledge in the field of pharmacogenomics of anti-TNF drugs is growing, but has not been applied in the clinical practice so far. Different genome-wide association studies identified a few single nucleotide polymorphisms associated with anti-TNF treatment response, which largely map genes involved in T cell function. Studies of the gene expression profile of RA patients have also indicated specific gene signatures that may be useful to develop novel prognostic tools. In this article, we discuss the significance of TNF in RA and present the current knowledge in pharmacogenomics related to anti-TNF treatment response.
Collapse
|
8
|
Wang J, Yang J, Kopeček J. Nanomedicines in B cell-targeting therapies. Acta Biomater 2022; 137:1-19. [PMID: 34687954 PMCID: PMC8678319 DOI: 10.1016/j.actbio.2021.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
B cells play multiple roles in immune responses related to autoimmune diseases as well as different types of cancers. As such, strategies focused on B cell targeting attracted wide interest and developed intensively. There are several common mechanisms various B cell targeting therapies have relied on, including direct B cell depletion, modulation of B cell antigen receptor (BCR) signaling, targeting B cell survival factors, targeting the B cell and T cell costimulation, and immune checkpoint blockade. Nanocarriers, used as drug delivery vehicles, possess numerous advantages to low molecular weight drugs, reducing drug toxicity, enhancing blood circulation time, as well as augmenting targeting efficacy and improving therapeutic effect. Herein, we review the commonly used targets involved in B cell targeting approaches and the utilization of various nanocarriers as B cell-targeted delivery vehicles. STATEMENT OF SIGNIFICANCE: As B cells are engaged significantly in the development of many kinds of diseases, utilization of nanomedicines in B cell depletion therapies have been rapidly developed. Although numerous studies focused on B cell targeting have already been done, there are still various potential receptors awaiting further investigation. This review summarizes the most relevant studies that utilized nanotechnologies associated with different B cell depletion approaches, providing a useful tool for selection of receptors, agents and/or nanocarriers matching specific diseases. Along with uncovering new targets in the function map of B cells, there will be a growing number of candidates that can benefit from nanoscale drug delivery.
Collapse
Affiliation(s)
- Jiawei Wang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
9
|
Lamamy J, Boulard P, Brachet G, Tourlet S, Gouilleux-Gruart V, Ramdani Y. "Ways in which the neonatal Fc-receptor is involved in autoimmunity". J Transl Autoimmun 2021; 4:100122. [PMID: 34568803 PMCID: PMC8449123 DOI: 10.1016/j.jtauto.2021.100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Since the neonatal IgG Fc receptor (FcRn) was discovered, its role has evolved from immunoglobulin recycling and biodistribution to antigen presentation and immune complex routing, bringing it to the center of both humoral and cellular immune responses. FcRn is thus involved in the pathophysiology of immune-related diseases such as cancer, infection, and autoimmune disorders. This review focuses on the role of FcRn in autoimmunity, based on the available data from both animal models and human studies. The knowledge concerning ways in which FcRn is involved in autoimmune response has led to the development of inhibitors for the treatment of autoimmune diseases, also described here. Up to date, the literature remains scarce, shedding light on the need for further studies to fully understand the various pathophysiological roles of this unique receptor. FcRn is an intracellular receptor with a key role in IgG and immune complex management. FcRn-targeting therapies are a promising way of treatment in antibodies mediated diseases.
Collapse
Affiliation(s)
- Juliette Lamamy
- EA7501, GICC, Université François Rabelais de Tours, F-37032, Tours, France
| | - Pierre Boulard
- Laboratoire d'immunologie, CHU Tours, F-37032, Tours, France
| | | | | | | | - Yanis Ramdani
- Service de Médecine Interne, CHU Tours, F-37032, Tours, France
| |
Collapse
|
10
|
B Cell Adhesion to Fibroblast-Like Synoviocytes Is Up-Regulated by Tumor Necrosis Factor-Alpha via Expression of Human Vascular Cell Adhesion Molecule-1 Mediated by B Cell-Activating Factor. Int J Mol Sci 2021; 22:ijms22137166. [PMID: 34281218 PMCID: PMC8267633 DOI: 10.3390/ijms22137166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) play a key role in the pathogenesis of rheumatoid arthritis (RA) by producing inflammatory cytokines and interacting with various immune cells, which contribute to cartilage destruction. RA-FLSs activated by tumor necrosis factor alpha (TNF-α), exacerbate joint damage by triggering the expression of various inflammatory molecules, including human vascular cell adhesion molecule-1 (hVCAM1) and B cell-activating factor (hBAFF), with a role in maturation and maintenance of B cells. Here, we investigated whether B cell interaction with FLSs could be associated with hVCAM1 expression by TNF-α through hBAFF, using WiL2-NS B cells and MH7A synovial cells. TNF-α enhanced the expression of hVCAM1 and hBAFF. B cell adhesion to FLSs was increased by treatment with TNF-α or hBAFF protein. hVCAM expression was up-regulated by transcriptional activation of the hVCAM1 promoter(−1549 to −54) in MH7A cells treated with hBAFF protein or overexpressed with hBAFF gene. In contrast, hVCAM1 expression was down-regulated by treatment with hBAFF-siRNA. JNK was activated by TNF-α treatment. Then, hVCAM1 expression and B cell adhesion to FLSs were reduced by the treatment with JNK inhibitor SP600125. Transcriptional activity of hVCAM1 by the stimulation with TNF-α was inhibited by the deletion of −1549 to −229 from the hVCAM1 promoter. hVCAM1 expression and B cell adhesion to FLSs were reduced by treatment with hVCAM1-siRNA. Taken together, these results suggest that B cell adhesion to FLSs is associated with TNF-α-induced up-regulation of hVCAM1 expression via hBAFF expression. Thus, the pathological progression of RA may be associated with hVCAM1-mediated interaction of synovial cells with B lymphocytes.
Collapse
|
11
|
Reactivation of latent tuberculosis with TNF inhibitors: critical role of the beta 2 chain of the IL-12 receptor. Cell Mol Immunol 2021; 18:1644-1651. [PMID: 34021269 PMCID: PMC8245521 DOI: 10.1038/s41423-021-00694-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
Tumor necrosis factor (TNF) inhibitors have improved a lot the treatment of numerous diseases, with the well-known example of rheumatoid arthritis (RA). In the early 2000s, postmarketing data quickly revealed an alarming number of severe tuberculosis (TB) under such treatment. These findings were consistent with previous results in mice where TNF is essential for lymph node formation and granuloma organization. The effects of TNF inhibition on RA synovium structure are very similar to those on granuloma, with changes in cellular interactions, cytokine, and chemokine production. In addition to the role of TNF in granuloma, the interleukin (IL)-12/interferon (IFN)-γ pathway is required for an efficient host defense against TB. Primary and secondary immunodeficiencies affecting this pathway lead to severe bacillus Calmette-Guérin (BCG) reaction or full TB. Any chronic inflammation as in RA induces a systemic Th1 defect that predisposes to TB through specific downregulation of the IL-12Rß2 chain. When TNF inhibitors are initiated, this transiently increases this risk of TB, through effects on cellular interactions in a latent TB granuloma. At a later stage, when a better control disease activity is obtained, the risk of TB is reduced but not abrogated. Given the clear benefit from TNF inhibition, latent TB infection screening at baseline is essential for an optimal safety.
Collapse
|
12
|
Young C, Brink R. Germinal centers and autoantibodies. Immunol Cell Biol 2020; 98:480-489. [PMID: 32080878 DOI: 10.1111/imcb.12321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/24/2022]
Abstract
Preventing self-reactive lymphocytes from participating in effector responses is fundamental to maintaining immunological self-tolerance and circumventing autoimmunity. A range of complementary mechanisms are known to act upon the primary B- and T-cell repertoires to this effect, eliminating or silencing lymphocytes expressing self-reactive antigen receptors generated through V(D)J recombination in early lymphoid precursors. In the case of B cells, secondary diversification of antigen receptor repertoire by somatic hypermutation (SHM) provides an additional challenge, especially because this occurs in germinal center (GC) B cells that are actively responding to antigen and primed for differentiation into antibody-producing plasma cells. While it is clear that self-tolerance mechanisms do act to prevent antibody production by self-reactive GC B cells, it is also apparent that most pathogenic autoantibodies carry somatic mutations and so have derived from a GC response. Recent advances in the analysis of autoantibody-producing cells associated with human autoimmune diseases together with insights gained from animal models have increased our understanding of the relationships between GCs, SHM and autoantibody production. Here we discuss these developments and focus in particular on how they have illuminated the genesis and pathogenesis of one archetypal autoantibody, rheumatoid factor.
Collapse
Affiliation(s)
- Clara Young
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| |
Collapse
|
13
|
Luo S, Zhu R, Yu T, Fan H, Hu Y, Mohanta SK, Hu D. Chronic Inflammation: A Common Promoter in Tertiary Lymphoid Organ Neogenesis. Front Immunol 2019; 10:2938. [PMID: 31921189 PMCID: PMC6930186 DOI: 10.3389/fimmu.2019.02938] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) frequently develop locally in adults in response to non-resolving inflammation. Chronic inflammation leads to the differentiation of stromal fibroblast cells toward lymphoid tissue organizer-like cells, which interact with lymphotoxin α1β2+ immune cells. The interaction initiates lymphoid neogenesis by recruiting immune cells to the site of inflammation and ultimately leads to the formation of TLOs. Mature TLOs harbor a segregated T-cell zone, B-cell follicles with an activated germinal center, follicular dendritic cells, and high endothelial venules, which architecturally resemble those in secondary lymphoid organs. Since CXCL13 and LTα1β2 play key roles in TLO neogenesis, they might constitute potential biomarkers of TLO activity. The well-developed TLOs actively regulate local immune responses and influence disease progression, and they are thereby regarded as the powerhouses of local immunity. In this review, we recapitulated the determinants for TLOs development, with great emphasis on the fundamental role of chronic inflammation and tissue-resident stromal cells for TLO neogenesis, hence offering guidance for therapeutic interventions in TLO-associated diseases.
Collapse
Affiliation(s)
- Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sarajo Kumar Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Desheng Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Khoury T, Ilan Y. Introducing Patterns of Variability for Overcoming Compensatory Adaptation of the Immune System to Immunomodulatory Agents: A Novel Method for Improving Clinical Response to Anti-TNF Therapies. Front Immunol 2019; 10:2726. [PMID: 31824506 PMCID: PMC6879658 DOI: 10.3389/fimmu.2019.02726] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022] Open
Abstract
Primary lack of response and secondary loss of response (LOR) are major obstacles to the use of anti–tumor necrosis factor (TNF)-based therapies in patients with rheumatoid arthritis or inflammatory bowel disease. Here, we review the mechanisms and methods for predicting LOR and the currently used methods for overcoming the ineffectiveness of anti-TNFs. The complex functions of TNF and anti-TNF antibodies, which can promote both pro- or anti-inflammatory actions, and the factors that affect the induction of immune tolerance to their effects are presented. The lack of rules and the continuous dynamics of the immune processes partly underlie the unpredictability of the response to anti-TNFs. Variability is inherent to biological systems, including immune processes, and intra/inter-patient variability has been described in the response to drugs. This variability is viewed as a compensatory adaptation mechanism of the immune system in response to drugs and may contribute to treatment LOR. Dose reductions and drug holidays have been tested in patients treated with anti-TNFs. Regular dose-based regimens may be incompatible with physiological variability, further contributing to treatment inefficacy. We present the concept of overcoming immune system adaptation to anti-TNFs by introducing patient-tailored patterns of variability to treatment regimens.
Collapse
Affiliation(s)
- Tawfik Khoury
- Department of Gastroenterology, Galilee Medical Center, Nahariya, Israel.,Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
15
|
Shabgah AG, Shariati-Sarabi Z, Tavakkol-Afshari J, Mohammadi M. The role of BAFF and APRIL in rheumatoid arthritis. J Cell Physiol 2019; 234:17050-17063. [PMID: 30941763 DOI: 10.1002/jcp.28445] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022]
Abstract
Development and activation of B cells quickly became clear after identifying new ligands and receptors in the tumor necrosis factor superfamily. B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) are the members of membrane proteins Type 2 family released by proteolytic cleavage of furin to form active, soluble homotrimers. Except for B cells, ligands are expressed by all such immune cells like T cells, dendritic cells, monocytes, and macrophages. BAFF and APRIL have two common receptors, namely TNFR homolog transmembrane activator and Ca2+ modulator and CAML interactor (TACI) and B cell-maturation antigen. BAFF alone can also be coupled with a third receptor called BAFFR (also called BR3 or BLyS Receptor). These receptors are often expressed by immune cells in the B-cell lineage. The binding of BAFF or APRIL to their receptors supports B cells differentiation and proliferation, immunoglobulin production and the upregulation of B cell-effector molecules expression. It is possible that the overexpression of BAFF and APRIL contributes to the pathogenesis of autoimmune diseases. In BAFF transgenic mice, there is a pseudo-autoimmune manifestation, which is associated with an increase in B-lymphocytes, hyperglobulinemia, anti-single stranded DNA, and anti-double-stranded DNA antibodies, and immune complexes in their peripheral blood. Furthermore, overexpressing BAFF augments the number of peripheral B220+ B cells with a normal proliferation rate, high levels of Bcl2, and prolonged survival and hyperactivity. Therefore, in this review article, we studied BAFF and APRIL as important mediators in B-cell and discussed their role in rheumatoid arthritis.
Collapse
Affiliation(s)
- Arezoo G Shabgah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zhaleh Shariati-Sarabi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Asam S, Neag G, Berardicurti O, Gardner D, Barone F. The role of stroma and epithelial cells in primary Sjögren's syndrome. Rheumatology (Oxford) 2019; 60:3503-3512. [PMID: 30945742 DOI: 10.1093/rheumatology/kez050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/19/2018] [Indexed: 12/27/2022] Open
Abstract
Primary SS (pSS) is a chronic autoimmune condition characterized by infiltration of the exocrine glands and systemic B cell hyperactivation. This glandular infiltration is associated with loss of glandular function, with pSS patients primarily presenting with severe dryness of the eyes and mouth. Within the affected glands, the infiltrating lymphocytes are organized in tertiary lymphoid structures. Tertiary lymphoid structures subvert normal tissue architecture and impact on organ function, by promoting the activation and maintenance of autoreactive lymphocytes. This review summarizes the current knowledge about the role of stromal cells (including endothelium, epithelium, nerves and fibroblasts) in the pathogenesis of pSS, in particular the interactions taking place between stromal cells and infiltrating lymphocytes. We will provide evidences pointing towards the driving role of stromal cells in the orchestration of the local inflammatory milieu, thus highlighting the need for therapies aimed at targeting this compartment alongside classical immunosuppression in pSS.
Collapse
Affiliation(s)
- Saba Asam
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Georgiana Neag
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | - David Gardner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Francesca Barone
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
17
|
Frasca L, Palazzo R, Chimenti MS, Alivernini S, Tolusso B, Bui L, Botti E, Giunta A, Bianchi L, Petricca L, Auteri SE, Spadaro F, Fonti GL, Falchi M, Evangelista A, Marinari B, Pietraforte I, Spinelli FR, Colasanti T, Alessandri C, Conti F, Gremese E, Costanzo A, Valesini G, Perricone R, Lande R. Anti-LL37 Antibodies Are Present in Psoriatic Arthritis (PsA) Patients: New Biomarkers in PsA. Front Immunol 2018; 9:1936. [PMID: 30279686 PMCID: PMC6154218 DOI: 10.3389/fimmu.2018.01936] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022] Open
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory arthritis associated with psoriasis. A third of psoriatic patients develop PsA via unknown mechanisms. No reliable diagnostic markers are available for PsA, or prognostic biomarkers for PsA development in psoriasis. We previously uncovered a pro-inflammatory role for cathelicidin LL37 in lesional psoriasis skin. LL37 binds nucleic acids and stimulates plasmacytoid/myeloid dendritic cells (pDC, mDCs) to secrete type I interferon (IFN-I) and pro-inflammatory factors. LL37 becomes an autoantigen for psoriatic Th1-Th17/CD8 T cells. Anti-LL37 antibodies were detected in systemic lupus erythematosus, an autoimmune disease characterized by neutrophil-extracellular-traps release (NETosis) in target organs. LL37 can be substrate of irreversible post-translational modifications, citrullination or carbamylation, linked to neutrophil activity. Here we analyzed inflammatory factors, included LL37, in PsA and psoriasis plasma and PsA synovial fluids (SF)/biopsies. We show that LL37 (as a product of infiltrating neutrophils) and autoantibodies to LL37 are elevated in PsA, but not OA SF. Anti-LL37 antibodies correlate with clinical inflammatory markers. Anti-carbamylated/citrullinated-LL37 antibodies are present in PsA SF/plasma and, at lower extent, in psoriasis plasma, but not in controls. Plasma anti-carbamylated-LL37 antibodies correlate with PsA (DAS44) but not psoriasis (PASI) disease activity. Ectopic lymphoid structures, and deposition of immunoglobulin-(Ig)G-complexes (IC) co-localizing with infiltrating neutrophils, are observed in PsA and not OA synovial tissues (ST). Activated complement (C5a, C9), GM-CSF and IFN-I are up-regulated in PsA and not OA synovia and in PsA and psoriasis plasma but not in HD. C9 and GM-CSF levels in PsA SF correlate with clinical inflammatory markers and DAS44 (C9) and with anti-carbamylated/citrullinated-LL37 antibodies (GM-CSF and IFN-I). Thus, we uncover a role for LL37 as a novel PsA autoantibody target and correlation studies suggest participation of anti-LL37 antibodies to PsA pathogenesis. Notably, plasma antibodies to carbamylated-LL37, which correlate with DAS44, suggest their use as new disease activity markers. GM-CSF and complement C5a and C9 elevation may be responsible for autoantigens release by neutrophils and their modification, fueling inflammation and autoreactivity establishment. Finally, targeting GM-CSF, C5a, C9 can be beneficial in PsA.
Collapse
Affiliation(s)
- Loredana Frasca
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| | - Raffaella Palazzo
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| | - Maria S Chimenti
- Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Alivernini
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.,Division of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Barbara Tolusso
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Laura Bui
- Institute of Pathology, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Elisabetta Botti
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Giunta
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luca Petricca
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Simone E Auteri
- Rheumatology Unit, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Francesca Spadaro
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Giulia L Fonti
- Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Evangelista
- Institute of Pathology, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Barbara Marinari
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Immacolata Pietraforte
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca R Spinelli
- Rheumatology Unit, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Tania Colasanti
- Rheumatology Unit, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Cristiano Alessandri
- Rheumatology Unit, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Conti
- Rheumatology Unit, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Elisa Gremese
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.,Division of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Costanzo
- Skin Pathology Lab, Humanitas Clinical and Research Center, Milan, Italy
| | - Guido Valesini
- Rheumatology Unit, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Roberto Lande
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| |
Collapse
|
18
|
Pipi E, Nayar S, Gardner DH, Colafrancesco S, Smith C, Barone F. Tertiary Lymphoid Structures: Autoimmunity Goes Local. Front Immunol 2018; 9:1952. [PMID: 30258435 PMCID: PMC6143705 DOI: 10.3389/fimmu.2018.01952] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are frequently observed in target organs of autoimmune diseases. TLS present features of secondary lymphoid organs such as segregated T and B cell zones, presence of follicular dendritic cell networks, high endothelial venules and specialized lymphoid fibroblasts and display the mechanisms to support local adaptive immune responses toward locally displayed antigens. TLS detection in the tissue is often associated with poor prognosis of disease, auto-antibody production and malignancy development. This review focuses on the contribution of TLS toward the persistence of the inflammatory drive, the survival of autoreactive lymphocyte clones and post-translational modifications, responsible for the pathogenicity of locally formed autoantibodies, during autoimmune disease development.
Collapse
Affiliation(s)
- Elena Pipi
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Experimental Medicine Unit, Immuno-Inflammation Therapeutic Area, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - David H Gardner
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | | | - Charlotte Smith
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Francesca Barone
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
19
|
McKelvey KJ, Millier MJ, Doyle TC, Stamp LK, Highton J, Hessian PA. Co-expression of CD21L and IL17A defines a subset of rheumatoid synovia, characterised by large lymphoid aggregates and high inflammation. PLoS One 2018; 13:e0202135. [PMID: 30114200 PMCID: PMC6095528 DOI: 10.1371/journal.pone.0202135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To determine whether the expression of IL17A and CD21L genes in inflamed rheumatoid synovia is associated with the neogenesis of ectopic lymphoid follicle-like structures (ELS), and if this aids the stratification of rheumatoid inflammation and thereby distinguishes patients with rheumatoid arthritis that might be responsive to specific targeted biologic therapies. METHODS Expression of IL17A and CD21L genes was assessed by RT-PCR, qRT-PCR and dPCR in synovia from 54 patients with rheumatoid arthritis. A subset of synovia (n = 30) was assessed by immunohistology for the presence of CD20+ B-lymphocytes and size of CD20+ B-lymphocyte aggregates as indicated by maximum radial cell count. The molecular profiles of six IL17A+/CD21L+ and six IL17A-/CD21L- synovia were determined by complementary DNA microarray analysis. RESULTS By RT-PCR, 26% of synovia expressed IL17A and 52% expressed CD21L. This provided the basis for distinguishing four subgroups of rheumatoid synovia: IL17A+/CD21L+ (18.5% of synovia), IL17A+/CD21L- (7.5%), IL17A-/CD21L+ (33.3%) and IL17A-/CD21L- (40.7%). While the subgroups did not predict clinical outcome measures, comparisons between the synovial subgroups revealed the IL17A+/CD21L+ subgroup had significantly larger CD20+ B-lymphocyte aggregates (P = 0.007) and a gene expression profile skewed toward B-cell- and antibody-mediated immunity. In contrast, genes associated with bone and cartilage remodelling were prominent in IL17A-/CD21L- synovia. CONCLUSIONS Rheumatoid synovia can be subdivided on the basis of IL17A and CD21L gene expression. Ensuing molecular subgroups do not predict clinical outcome for patients but highlight high inflammation and the predominance of B-lymphocyte mediated mechanisms operating in IL17A+/CD21L+ synovia. This may provide a rationale for more refined therapeutic selection due to the distinct molecular profiles associated with IL17A+/CD21L+ and IL17A-/CD21L- rheumatoid synovia.
Collapse
Affiliation(s)
- Kelly J. McKelvey
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Melanie J. Millier
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Terence C. Doyle
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Lisa K. Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - John Highton
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Paul A. Hessian
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
20
|
Pala O, Diaz A, Blomberg BB, Frasca D. B Lymphocytes in Rheumatoid Arthritis and the Effects of Anti-TNF-α Agents on B Lymphocytes: A Review of the Literature. Clin Ther 2018; 40:1034-1045. [PMID: 29801753 DOI: 10.1016/j.clinthera.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE The aim of this article was to review published research related to B lymphocytes in rheumatoid arthritis, their role in the pathogenesis of the disease, the effects of tumor necrosis factor (TNF)-α inhibitors on B lymphocytes, the risk for infection, and responses to vaccines. METHODS A PubMed search was conducted to review recent advances related to B lymphocytes and the effects of anti-TNF-α on B lymphocytes in rheumatoid arthritis. FINDINGS B lymphocytes play an important role in the pathogenesis of rheumatoid arthritis. In this review, we summarize the major mechanisms by which B lymphocytes play a pathologic role in the development and propagation of the disease, as B lymphocytes are recruited to the synovial fluid, where they contribute to local inflammation through the secretion of pro-inflammatory mediators (cytokines, chemokines, micro-RNAs) and present antigens to T cells. We discuss the effects of TNF-α, either direct or indirect, on B lymphocytes expressing receptors for this cytokine. We also show that total B-cell numbers have been reported to be reduced in the blood of patients with rheumatoid arthritis versus healthy controls, but are significantly increased up to normal levels in patients undergoing anti-TNF-α therapy. As for B-cell subsets, controversial results have been reported, with studies showing decreased frequencies of total memory B cells (and memory subsets) and others showing no differences in patients versus healthy controls. Studies investigating the effects of anti-TNF-α therapy have also given controversial results, with therapy found to increase (or not) the frequency of memory B lymphocytes, in patients with rheumatoid arthritis versus healthy controls. Those highly variable results could have been due to differences in patient characteristics and limited numbers of subjects. Finally, we summarize the effects of blocking TNF-α with anti-TNF-α agents on possible infections that patients with rheumatoid arthritis may contract, as well as on responses to vaccination. IMPLICATIONS B lymphocytes play a significant role in the pathogenesis of rheumatoid arthritis, and B cell-depletion therapy has a major effect on the course of the disease. The advances in treatment of rheumatoid arthritis include the development of targeted therapies. Anti-TNF-α therapies are widely used despite potentially serious adverse events. The data on the effects of anti-TNF-α therapies on B lymphocytes are limited and conflicting. There is a need for larger studies to better understand the effects of newly discovered therapies on the different cells of the immune system.
Collapse
Affiliation(s)
- Ozlem Pala
- Division of Rheumatology, Miller School of Medicine, University of Miami, Miami, Florida.
| | - Alain Diaz
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Daniela Frasca
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
21
|
Mueller CG, Nayar S, Campos J, Barone F. Molecular and Cellular Requirements for the Assembly of Tertiary Lymphoid Structures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1060:55-72. [PMID: 30155622 DOI: 10.1007/978-3-319-78127-3_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
At sites of chronic inflammation, recruited immune cells form structures that resemble secondary lymphoid organs (SLOs). Those are characterized by segregated areas of prevalent T- or B-cell aggregation, differentiation of high endothelial venules (HEVs) and local activation of resident stromal cells. B-cell proliferation and affinity maturation towards locally displayed autoantigens have been demonstrated at those sites, known as tertiary lymphoid structures (TLSs). TLS formation has been associated with local disease persistence and progression as well as increased systemic manifestations. While bearing a similar histological structure to SLO, the signals that regulate TLS and SLO formation can diverge, and a series of pro-inflammatory cytokines has been ascribed as responsible for TLS formation at different anatomical sites. Here we review the structural elements as well as the signals responsible for TLS aggregation, aiming to provide an overview to this complex immunological phenomenon.
Collapse
Affiliation(s)
- C G Mueller
- CNRS UPR 3572, Laboratory of Immunopathology and Therapeutic Chemistry/Laboratory of Excellence MEDALIS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - S Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham, UK
| | - J Campos
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham, UK
| | - F Barone
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham, UK.
| |
Collapse
|
22
|
Mueller CG, Nayar S, Gardner D, Barone F. Cellular and Vascular Components of Tertiary Lymphoid Structures. Methods Mol Biol 2018; 1845:17-30. [PMID: 30141005 DOI: 10.1007/978-1-4939-8709-2_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Inflammatory immune cells recruited at the site of chronic inflammation form structures that resemble secondary lymphoid organs (SLO). These are characterized by segregated areas of prevalent T- or B-cell aggregation, differentiation of high endothelial venules, and local activation of resident stromal cells, including lymphatic endothelial cells. B-cell proliferation and affinity maturation toward locally displayed autoantigens have been demonstrated at these sites, known as tertiary lymphoid structures (TLS). TLS formation during chronic inflammation has been associated with local disease persistence and progression, as well as increased systemic manifestations. While bearing a similar histological structure to SLO, the signals that regulate TLS and SLO formation can diverge and a series of pro-inflammatory cytokines have been ascribed as responsible for TLS formation at different anatomical sites. Moreover, for a long time the structural compartment that regulates TLS homeostasis, including survival and recirculation of leucocytes has been neglected. In this chapter, we summarize the novel data available on TLS formation, structural organization, and the functional and anatomical links connecting TLS and SLOs.
Collapse
Affiliation(s)
- Christopher George Mueller
- Laboratoire d'Immunologie, Immunopathologie et Chimie Thérapeutique, Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR 3572, University of Strasbourg, Strasbourg, France
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - David Gardner
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Francesca Barone
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK.
| |
Collapse
|
23
|
Abstract
Germinal centers (GCs) are dynamic microenvironments that form in the secondary lymphoid organs and generate somatically mutated high-affinity antibodies necessary to establish an effective humoral immune response. Tight regulation of GC responses is critical for maintaining self-tolerance. GCs can arise in the absence of purposeful immunization or overt infection (called spontaneous GCs, Spt-GCs). In autoimmune-prone mice and patients with autoimmune disease, aberrant regulation of Spt-GCs is thought to promote the development of somatically mutated pathogenic autoantibodies and the subsequent development of autoimmunity. The mechanisms that control the formation of Spt-GCs and promote systemic autoimmune diseases remain an open question and the focus of ongoing studies. Here, we discuss the most current studies on the role of Spt-GCs in autoimmunity.
Collapse
Affiliation(s)
- Phillip P Domeier
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| | - Stephanie L Schell
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| | - Ziaur S M Rahman
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| |
Collapse
|
24
|
Kalden JR, Schulze-Koops H. Immunogenicity and loss of response to TNF inhibitors: implications for rheumatoid arthritis treatment. Nat Rev Rheumatol 2017; 13:707-718. [PMID: 29158574 DOI: 10.1038/nrrheum.2017.187] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The availability of monoclonal antibodies has revolutionized the treatment of an increasingly broad spectrum of diseases. Inflammatory diseases are among those most widely treated with protein-based therapeutics, termed biologics. Following the first large-scale clinical trials with monoclonal antibodies performed in the 1990s by rheumatologists and clinical immunologists, the approval of these agents for use in daily clinical practice led to substantial progress in the treatment of rheumatic diseases. Despite this progress, however, only a proportion of patients achieve a long-term clinical response. Data on the use of agents blocking TNF, which were among the first biologics introduced into clinical practice, provide ample evidence of primary and secondary treatment inefficacy in patients with rheumatoid arthritis (RA). Important issues relevant to primary and secondary failure of these agents in RA include immunogenicity, methodological problems for the detection of antidrug antibodies and trough drug levels, and the implications for treatment strategies. Although there is no strong evidence to support the routine estimation of antidrug antibodies or serum trough levels during anti-TNF therapy, these assessments might be helpful in a few clinical situations; in particular, they might guide decisions on switching the therapeutic biologic in certain instances of secondary clinical failure.
Collapse
Affiliation(s)
- Joachim R Kalden
- Friedrich-Alexander University Erlangen-Nürnberg, Division of Molecular Immunology, Nikolaus-Fiebiger Center, Glückstraße 6, D-91054 Erlangen, Germany
| | - Hendrik Schulze-Koops
- Ludwig-Maximilians-University, Division of Rheumatology and Clinical Immunology, Department of Internal Medicine IV, Pettenkoferstraße 8a, D-80336 Munich, Germany
| |
Collapse
|
25
|
Murphy D, Hutchinson D. Is Male Rheumatoid Arthritis an Occupational Disease? A Review. Open Rheumatol J 2017; 11:88-105. [PMID: 28932330 PMCID: PMC5585464 DOI: 10.2174/1874312901711010088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/21/2017] [Accepted: 07/09/2017] [Indexed: 11/24/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is a systemic, inflammatory disease with an estimated global prevalence of 0.3–1.0%. An unexplained association exists between low formal education and the development of RA independent of smoking. It is established that RA is initiated in the lungs and that various occupations associated with dust, fume and metal inhalation can increase the risk of RA development. Objective: The objective of this review is to evaluate published clinical reports related to occupations associated with RA development. We highlight the concept of a “double-hit” phenomenon involving adsorption of toxic metals from cigarette smoke by dust residing in the lung as a result of various work exposures. We discuss the relevant pathophysiological consequences of these inhalational exposures in relation to RA associated autoantibody production. Method: A thorough literature search was performed using available databases including Pubmed, Embase, and Cochrane database to cover all relative reports, using combinations of keywords: rheumatoid arthritis, rheumatoid factor, anti-citrullinated peptide antibody silica, dust, fumes, metals, cadmium, cigarette smoking, asbestos, mining, bronchial associated lymphoid tissue, heat shock protein 70, and adsorption. Conclusion: We postulate that the inhalation of dust, metals and fumes is a significant trigger factor for RA development in male patients and that male RA should be considered an occupational disease. To the best of our knowledge, this is the first review of occupations as a risk factor for RA in relation to the potential underlying pathophysiology.
Collapse
Affiliation(s)
- Dan Murphy
- Rheumatology Department, Royal Cornwall Hospital, Truro, Cornwall TR1 3LH, UK.,University of Exeter Medical School, Cornwall Campus, Knowledge Spa, Truro, Cornwall, TR1 3HD, UK.,St. Austell Healthcare Group, Wheal Northey Surgery, St Austell, Cornwall, PL25 3EF, UK
| | - David Hutchinson
- Rheumatology Department, Royal Cornwall Hospital, Truro, Cornwall TR1 3LH, UK.,University of Exeter Medical School, Cornwall Campus, Knowledge Spa, Truro, Cornwall, TR1 3HD, UK
| |
Collapse
|
26
|
Yamashita M, Matsumoto K, Endo T, Ukibe K, Hosoya T, Matsubara Y, Nakagawa H, Sakai F, Miyazaki T. Preventive Effect of Lactobacillus helveticus SBT2171 on Collagen-Induced Arthritis in Mice. Front Microbiol 2017; 8:1159. [PMID: 28680422 PMCID: PMC5478730 DOI: 10.3389/fmicb.2017.01159] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/07/2017] [Indexed: 12/18/2022] Open
Abstract
We recently reported that the intraperitoneal inoculation of Lactobacillus helveticus SBT2171 inhibited the development of collagen-induced arthritis (CIA), a murine model of rheumatoid arthritis (RA). In the present study, we evaluated the effect of the oral administration of L. helveticus SBT2171 on CIA development and on the regulation of antigen-specific antibody production and inflammatory immune cells, which have been implicated in the development of RA. Both oral administration and intraperitoneal inoculation of L. helveticus SBT2171 reduced joint swelling, body weight loss, and the serum level of bovine type II collagen (CII)-specific antibodies in the CIA mouse model. The intraperitoneal inoculation also decreased the arthritis incidence, joint damage, and serum level of interleukin (IL)-6. In addition, the numbers of total immune cells, total B cells, germinal center B cells, and CD4+ T cells in the draining lymph nodes were decreased following intraperitoneal inoculation of L. helveticus SBT2171. These findings demonstrate the ability of L. helveticus SBT2171 to downregulate the abundance of immune cells and the subsequent production of CII-specific antibodies and IL-6, thereby suppressing the CIA symptoms, indicating its potential for use in the prevention of RA.
Collapse
Affiliation(s)
- Maya Yamashita
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd.Saitama, Japan
| | - Kurumi Matsumoto
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd.Saitama, Japan
| | - Tsutomu Endo
- Department of Orthopedic Surgery, Graduate School of Medicine, Hokkaido UniversitySapporo, Japan
| | - Ken Ukibe
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd.Saitama, Japan
| | - Tomohiro Hosoya
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd.Saitama, Japan
| | - Yumi Matsubara
- Department of Probiotics Immunology, Institute for Genetic Medicine, Hokkaido UniversitySapporo, Japan
| | - Hisako Nakagawa
- Department of Probiotics Immunology, Institute for Genetic Medicine, Hokkaido UniversitySapporo, Japan
| | - Fumihiko Sakai
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd.Saitama, Japan
| | - Tadaaki Miyazaki
- Department of Probiotics Immunology, Institute for Genetic Medicine, Hokkaido UniversitySapporo, Japan
| |
Collapse
|
27
|
Sandigursky S, Silverman GJ, Mor A. Targeting the programmed cell death-1 pathway in rheumatoid arthritis. Autoimmun Rev 2017; 16:767-773. [PMID: 28572054 DOI: 10.1016/j.autrev.2017.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 01/01/2023]
Abstract
Since the introduction of TNF-α inhibitors and other biologic agents, the clinical outcome for many treated rheumatoid arthritis patients has significantly improved. However, there are still a substantial proportion of patients that are intolerant, or have inadequate responses, with current agents that have become the standards of care. While the majority of these agents are designed to affect the inflammatory features of the disease, there are also agents in the clinic that instead target lymphocyte subsets (e.g., rituximab) or interfere with lymphocyte co-receptor signaling pathways (e.g., abatacept). Due in part to their ability to orchestrate downstream inflammatory responses that lead to joint damage and disease progression, pathogenic expansions of T and B lymphocytes are appreciated to play key roles in the pathogenesis of rheumatoid arthritis. New insights into immune regulation have suggested novel approaches for the pharmacotherapeutic targeting of lymphocytes. In this review, we discuss deepening insights into human genetics and our understanding of the interface with rheumatoid arthritis pathogenesis providing a strong rationale for exploiting the co-inhibitory receptor programmed cell death-1 signaling pathway as a better approach for the treatment of this chronic, often progressive destructive joint disease.
Collapse
Affiliation(s)
- Sabina Sandigursky
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, New York, NY, United States
| | - Gregg J Silverman
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, New York, NY, United States
| | - Adam Mor
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, New York, NY, United States; Perlmutter Cancer Center, NYU School of Medicine, New York, NY, United States.
| |
Collapse
|
28
|
Synovial cellular and molecular markers in rheumatoid arthritis. Semin Immunopathol 2017; 39:385-393. [PMID: 28497350 DOI: 10.1007/s00281-017-0631-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023]
Abstract
The profound alterations in the structure, cellular composition, and function of synovial tissue in rheumatoid arthritis (RA) are the basis for the persistent inflammation and cumulative joint destruction that are hallmarks of this disease. In RA, the synovium develops characteristics of a tertiary lymphoid organ, with extensive infiltration of lymphocytes and myeloid cells. Concurrently, the fibroblast-like synoviocytes undergo massive hyperplasia and acquire a tissue-invasive phenotype. In this review, we summarize key components of these processes, focusing on recently-described roles of selected molecular markers of these cellular components of RA synovitis.
Collapse
|
29
|
Bombardieri M, Lewis M, Pitzalis C. Ectopic lymphoid neogenesis in rheumatic autoimmune diseases. Nat Rev Rheumatol 2017; 13:141-154. [PMID: 28202919 DOI: 10.1038/nrrheum.2016.217] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ectopic lymphoid neogenesis often occurs in the target tissues of patients with chronic rheumatic autoimmune diseases such as rheumatoid arthritis, Sjögren syndrome and other connective tissue disorders, including systemic lupus erythematosus and myositis. However, the mechanisms of ectopic lymphoid-like structure (ELS) formation and function are not entirely understood. For example, it is unclear whether ELSs indicate distinct disease phenotypes or whether they are evolutionary manifestations of chronic inflammation. Also unclear is why ELSs form in some patients but not in others. Nonetheless, ELSs frequently display functional features of ectopic germinal centres and can actively contribute to the maintenance of autoimmunity through the production of disease-specific autoantibodies; furthermore, they seem to influence disease severity and response to both synthetic and biologic DMARDs. In this Review, we discuss current knowledge and gaps in understanding of ELS formation and function including their prevalence in the above rheumatic autoimmune diseases; the mechanisms underlying their formation, maintenance and function, including positive and negative regulatory pathways; their functional relevance in the perpetuation of autoimmunity; their relationship with disease phenotypes, clinical outcomes and response to treatment; and the potential for specific targeting of ELSs through novel therapeutic modalities.
Collapse
Affiliation(s)
- Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, John Vane Science Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Myles Lewis
- Centre for Experimental Medicine and Rheumatology, John Vane Science Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, John Vane Science Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
30
|
Activated GL7 + B cells are maintained within the inflamed CNS in the absence of follicle formation during viral encephalomyelitis. Brain Behav Immun 2017; 60:71-83. [PMID: 27658544 PMCID: PMC5215090 DOI: 10.1016/j.bbi.2016.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/13/2016] [Accepted: 09/18/2016] [Indexed: 01/12/2023] Open
Abstract
Central nervous system (CNS) inflammation associated with viral infection and autoimmune disease results in the accumulation of B cells in various differentiation stages. However, the contribution between peripheral and CNS activation remains unclear. During gliatropic coronavirus induced encephalomyelitis, accumulation of protective antibody secreting cells is preceded by infiltration of B cells with a naïve and early differentiation phenotype (Phares et al., 2014). Investigation of the temporal dynamics of B cell activation in draining cervical lymph nodes (CLN) and the CNS revealed that peak CNS infiltration of early activated, unswitched IgD+ and IgM+ B cells coincided with polyclonal activation in CLN. By contrast, isotype-switched IgG+ B cells did not accumulate until peripheral germinal center formation. In the CNS, unswitched B cells were confined to the perivascular space and meninges, with only rare B cell clusters, while isotype-switched B cells localized to parenchymal areas. Although ectopic follicle formation was not observed, more differentiated B cell subsets within the CNS expressed the germinal center marker GL7, albeit at lower levels than CLN counterparts. During chronic infection, CNS IgDint and IgD- B cell subsets further displayed sustained markers of proliferation and CD4 T cell help, which were only transiently expressed in the CLN. A contribution of local CD4 T cell help to sustain B cell activation was supported by occasional B cells adjacent to T cells. The results suggest that accumulation of differentiated B cell subsets within the CNS is largely dictated by peripheral activation, but that local events contribute to their sustained activation independent of ectopic follicle formation.
Collapse
|
31
|
Ueno H. T follicular helper cells in human autoimmunity. Curr Opin Immunol 2016; 43:24-31. [DOI: 10.1016/j.coi.2016.08.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 12/18/2022]
|
32
|
Hughes CE, Benson RA, Bedaj M, Maffia P. Antigen-Presenting Cells and Antigen Presentation in Tertiary Lymphoid Organs. Front Immunol 2016; 7:481. [PMID: 27872626 PMCID: PMC5097899 DOI: 10.3389/fimmu.2016.00481] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) form in territorialized niches of peripheral tissues characterized by the presence of antigens; however, little is known about mechanism(s) of antigen handling by ectopic lymphoid structures. In this mini review, we will discuss the role of antigen-presenting cells and mechanisms of antigen presentation in TLOs, summarizing what is currently known about this facet of the formation and function of these tissues as well as identifying questions yet to be addressed.
Collapse
Affiliation(s)
- Catherine E Hughes
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow , UK
| | - Robert A Benson
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow , UK
| | - Marija Bedaj
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Rheumatology Research Group, Centre for Translational Inflammation Research, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; BHF Centre of Excellence in Vascular Science and Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
33
|
Andersson KME, Brisslert M, Cavallini NF, Svensson MND, Welin A, Erlandsson MC, Ciesielski MJ, Katona G, Bokarewa MI. Survivin co-ordinates formation of follicular T-cells acting in synergy with Bcl-6. Oncotarget 2016; 6:20043-57. [PMID: 26343374 PMCID: PMC4652986 DOI: 10.18632/oncotarget.4994] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023] Open
Abstract
Follicular T helper (Tfh) cells are recognized by the expression of CXCR5 and the transcriptional regulator Bcl-6. Tfh cells control B cell maturation and antibody production, and if deregulated, may lead to autoimmunity. Here, we study the role of the proto-oncogene survivin in the formation of Tfh cells. We show that blood Tfh cells of patients with the autoimmune condition rheumatoid arthritis, have intracellular expression of survivin. Survivin was co-localized with Bcl-6 in the nuclei of CXCR5+CD4 lymphocytes and was immunoprecipitated with the Bcl-6 responsive element of the target genes. Inhibition of survivin in arthritic mice led to the reduction of CXCR5+ Tfh cells and to low production of autoantibodies. Exposure to survivin activated STAT3 and induced enrichment of PD-1+Bcl-6+ subset within Tfh cells. Collectively, our study demonstrates that survivin belongs to the Tfh cell phenotype and ensures their optimal function by regulating transcriptional activity of Bcl-6.
Collapse
Affiliation(s)
- Karin M E Andersson
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Mikael Brisslert
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Nicola Filluelo Cavallini
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Mattias N D Svensson
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Division of Cellular Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA
| | - Amanda Welin
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Malin C Erlandsson
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Michael J Ciesielski
- Department of Neurosurgery, Roswell Park Cancer Institute and State University of New York School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Maria I Bokarewa
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
34
|
New insights into B cell biology in systemic lupus erythematosus and Sjögren's syndrome. Curr Opin Rheumatol 2016; 27:461-7. [PMID: 26164595 DOI: 10.1097/bor.0000000000000201] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Our understanding of the physiological and pathogenic functions of B cells in systemic lupus erythematosus (SLE) and Primary Sjögren's syndrome (pSS) continues to expand. In this review, we discuss novel insights published in the last 18 months into the roles of B cells in systemic autoimmunity. RECENT FINDINGS Data have continued to expand regarding the diverse mechanisms by which innate immune signals including Toll-like receptors (TLRs) regulate the B cell compartment. Localized B cells and long-lived plasma cells have been identified as playing an important role in target tissue including the development of ectopic lymphoid structures in kidney and salivary gland. In addition to pathogenic roles for B cells, there is mounting evidence for regulatory B cell subsets that play a protective role and new insights into the signals that regulate their development. SUMMARY The past few years have provided insights into the multiple paths by which innate immune signals can lead to B cell activation in SLE and pSS and the increasingly diverse ways in which B cells contribute to disease expression. Further understanding the imbalance between protective and pathogenic functions for B cells in disease including in understudied target tissue should yield new treatment approaches.
Collapse
|
35
|
Corneth OBJ, Reijmers RM, Mus AMC, Asmawidjaja PS, van Hamburg JP, Papazian N, Siegers JY, Mourcin F, Amin R, Tarte K, Hendriks RW, Cupedo T, Lubberts E. Loss of IL-22 inhibits autoantibody formation in collagen-induced arthritis in mice. Eur J Immunol 2016; 46:1404-14. [PMID: 27067635 DOI: 10.1002/eji.201546241] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/21/2016] [Accepted: 04/06/2016] [Indexed: 12/30/2022]
Abstract
Interleukin 22 (IL-22) expression is associated with increased joint destruction and disease progression in rheumatoid arthritis (RA). Although IL-22 is considered a pro-inflammatory cytokine, its mechanism of action in RA remains incompletely understood. Here, we used the collagen-induced arthritis model in IL-22 deficient (IL-22(-/-) ) mice to study the role of IL-22 in RA. In spite of normal disease incidence, disease severity is significantly diminished in IL-22(-/-) mice. Moreover, pathogenicity of Th17 cells and development and function of B cells are unaffected. In contrast, splenic plasma cells, as well as serum autoantibody titers, are reduced in the absence of IL-22. At the peak of disease, germinal centers (GCs) are severely reduced in the spleens of IL-22(-/-) mice, correlating with a decline in GC B-cell numbers. Within the GC, we identified IL-22R1 expressing follicular dendritic cell-like stromal cells. Human lymphoid stromal cells respond to IL-22 ex vivo by inducing transcription of CXCL12 and CXCL13. We therefore postulate IL-22 as an important enhancer of the GC reaction, maintaining chemokine levels for the persistence of GC reactions, essential for the production of autoantibody-secreting plasma cells. Blocking IL-22 might therefore prevent immune-complex deposition and destruction of joints in RA patients.
Collapse
MESH Headings
- Animals
- Antibody Formation/genetics
- Antibody Formation/immunology
- Antibody Specificity/immunology
- Arthritis, Experimental/etiology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Autoantibodies/immunology
- Cells, Cultured
- Chemokines/genetics
- Chemokines/metabolism
- Coculture Techniques
- Disease Models, Animal
- Germinal Center/immunology
- Germinal Center/metabolism
- Interleukins/deficiency
- Lymphocyte Activation
- Mice
- Mice, Knockout
- Plasma Cells/immunology
- Plasma Cells/metabolism
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- Severity of Illness Index
- Stromal Cells/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Interleukin-22
Collapse
Affiliation(s)
- Odilia B J Corneth
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rogier M Reijmers
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Adriana M C Mus
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Patrick S Asmawidjaja
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jan Piet van Hamburg
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Natalie Papazian
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jurre Y Siegers
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Rada Amin
- INSERM U917, Rennes 1 University, EFS, Rennes, France
| | - Karin Tarte
- INSERM U917, Rennes 1 University, EFS, Rennes, France
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tom Cupedo
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
36
|
Pandya JM, Lundell AC, Hallström M, Andersson K, Nordström I, Rudin A. Circulating T helper and T regulatory subsets in untreated early rheumatoid arthritis and healthy control subjects. J Leukoc Biol 2016; 100:823-833. [PMID: 27190305 DOI: 10.1189/jlb.5a0116-025r] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/20/2016] [Indexed: 12/23/2022] Open
Abstract
The pathogenic role and frequency of T cell subtypes in early rheumatoid arthritis are still unclear. We therefore performed a comprehensive analysis of the circulating T cell subtype pattern in patients with untreated early rheumatoid arthritis compared to healthy control subjects. Peripheral blood mononuclear cells were obtained from 26 patients with untreated early rheumatoid arthritis and from with 18 age- and sex-matched healthy control subjects. T helper cell types Th0, Th1, Th2, Th17, and Th1/17 and nonclassic T helper subsets were defined by flow cytometry based on the expression of chemokine receptors CCR4, CCR6, and CXCR3. Regulatory T cells were defined by expression of CD25+ CD127low and also FOXP3 CXCR5+ cells among regulatory and nonregulatory T cells were defined as T follicular regulatory and T follicular helper cells, respectively. The phenotype of T cell subsets was confirmed by transcription factor and cytokine secretion analyses. Multivariate discriminant analysis showed that patients with untreated early rheumatoid arthritis were segregated from healthy control subjects based on the circulating T cell subset profile. Among the discriminator subsets, CCR4+CXCR3- (Th2 and Th17), CTLA4+ and FOXP3+ subsets were present in significantly higher frequencies, whereas CCR4- (Th1/Th17, CCR6+CCR4-CXCR3-, and Th1) subsets were present in lower frequencies in patients with untreated early rheumatoid arthritis compared with healthy control subjects. The proportions of Th2 and Th17 subsets associated positively with each other and negatively with the CXCR3+/interferon γ-secreting subsets (Th1 and Th1/Th17) in patients with untreated rheumatoid arthritis. The proportions of Th2 cells increased with age in patients with untreated early rheumatoid arthritis and healthy control subjects. The dominance of circulating CCR4+CXCR3- T helper subsets (Th2 and Th17) in untreated early rheumatoid arthritis point toward a pathogenic role of these cells in early stages of the disease.
Collapse
Affiliation(s)
- Jayesh M Pandya
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Carin Lundell
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Hallström
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Inger Nordström
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
37
|
Paterka M, Siffrin V, Voss JO, Werr J, Hoppmann N, Gollan R, Belikan P, Bruttger J, Birkenstock J, Jung S, Esplugues E, Yogev N, Flavell RA, Bopp T, Zipp F. Gatekeeper role of brain antigen-presenting CD11c+ cells in neuroinflammation. EMBO J 2015; 35:89-101. [PMID: 26612827 DOI: 10.15252/embj.201591488] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/07/2015] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis is the most frequent chronic inflammatory disease of the CNS. The entry and survival of pathogenic T cells in the CNS are crucial for the initiation and persistence of autoimmune neuroinflammation. In this respect, contradictory evidence exists on the role of the most potent type of antigen-presenting cells, dendritic cells. Applying intravital two-photon microscopy, we demonstrate the gatekeeper function of CNS professional antigen-presenting CD11c(+) cells, which preferentially interact with Th17 cells. IL-17 expression correlates with expression of GM-CSF by T cells and with accumulation of CNS CD11c(+) cells. These CD11c(+) cells are organized in perivascular clusters, targeted by T cells, and strongly express the inflammatory chemokines Ccl5, Cxcl9, and Cxcl10. Our findings demonstrate a fundamental role of CNS CD11c(+) cells in the attraction of pathogenic T cells into and their survival within the CNS. Depletion of CD11c(+) cells markedly reduced disease severity due to impaired enrichment of pathogenic T cells within the CNS.
Collapse
Affiliation(s)
- Magdalena Paterka
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Volker Siffrin
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jan O Voss
- Molecular Neurology, Max Delbrück Center for Molecular Medicine Berlin-Buch, Berlin, Germany
| | - Johannes Werr
- Molecular Neurology, Max Delbrück Center for Molecular Medicine Berlin-Buch, Berlin, Germany
| | - Nicola Hoppmann
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - René Gollan
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Patrick Belikan
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Julia Bruttger
- Institute for Molecular Medicine, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jérôme Birkenstock
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Steffen Jung
- Department of Immunology Weizmann Institute of Science, Rehovot, Israel
| | - Enric Esplugues
- Howard Hughes Medical Institute Yale University School of Medicine, New Haven, CT, USA
| | - Nir Yogev
- Institute for Molecular Medicine, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Richard A Flavell
- Howard Hughes Medical Institute Yale University School of Medicine, New Haven, CT, USA
| | - Tobias Bopp
- Institute for Immunology, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neurosciences (FTN), Research Center for Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn²) University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
38
|
Endo T, Ito K, Morimoto J, Kanayama M, Ota D, Ikesue M, Kon S, Takahashi D, Onodera T, Iwasaki N, Uede T. Syndecan 4 Regulation of the Development of Autoimmune Arthritis in Mice by Modulating B Cell Migration and Germinal Center Formation. Arthritis Rheumatol 2015; 67:2512-22. [PMID: 25989265 DOI: 10.1002/art.39193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 05/07/2015] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Syndecan 4 has been implicated as a critical mediator of inflammatory responses because of its functions as a coreceptor and reservoir for growth factors and chemokines. Although syndecan 4 is known to be expressed on B cells, its role in immune responses remains unclear. The purpose of this study was to investigate the contribution of syndecan 4 to the development of immune arthritis in murine models. METHODS The clinical severity of 3 immunopathologically distinct models, collagen-induced arthritis (CIA), antigen-induced arthritis (AIA), and collagen antibody-induced arthritis (CAIA), was evaluated in wild-type (WT) mice and in syndecan 4-deficient (Sdc4(-/-) ) mice. Germinal center (GC) formation, B cell profiles, humoral immune responses, and B cell migration were analyzed during the course of CIA. RESULTS Sdc4(-/-) mice were resistant to the induction of CIA, which is T cell and B cell dependent, but AIA and CAIA, which are T cell dependent and T cell independent, respectively, occurred with equal frequency in WT mice and Sdc4(-/-) mice. Furthermore, Sdc4(-/-) mice had reduced numbers of B cells and deficient GC formation in draining lymph nodes (DLNs) during the course of CIA, resulting in reduced production of collagen-specific autoantibodies. Compared with B cells from WT mice, B cells from Sdc4(-/-) mice showed reduced chemotactic migration toward stromal cell-derived factor 1 (SDF-1) and reduced SDF-1-mediated Akt phosphorylation. Consistent with these findings, in vivo transfer experiments showed that fewer Sdc4(-/-) B cells than WT B cells were found in and around the follicles in the DLNs. CONCLUSION Our findings suggest that syndecan 4 contributes to the development of CIA by promoting GC formation and autoantibody production through its regulation of SDF-1-mediated B cell migration.
Collapse
Affiliation(s)
- Tsutomu Endo
- Institute for Genetic Medicine and Hokkaido University, Graduate School of Medicine, Sapporo, Japan
| | - Koyu Ito
- Institute for Genetic Medicine and Hokkaido University, Sapporo, Japan
| | - Junko Morimoto
- Institute for Genetic Medicine and Hokkaido University, Sapporo, Japan
| | - Masashi Kanayama
- Institute for Genetic Medicine and Hokkaido University, Sapporo, Japan
| | - Daichi Ota
- Institute for Genetic Medicine and Hokkaido University, Sapporo, Japan
| | - Masahiro Ikesue
- Institute for Genetic Medicine and Hokkaido University, Sapporo, Japan
| | - Shigeyuki Kon
- Hokkaido University, Graduate School of Pharmaceutical Sciences, Sapporo, Japan
| | | | - Tomohiro Onodera
- Hokkaido University, Graduate School of Medicine, Sapporo, Japan
| | - Norimasa Iwasaki
- Hokkaido University, Graduate School of Medicine, Sapporo, Japan
| | - Toshimitsu Uede
- Institute for Genetic Medicine and Hokkaido University, Sapporo, Japan
| |
Collapse
|
39
|
Recaldin T, Fear DJ. Transcription factors regulating B cell fate in the germinal centre. Clin Exp Immunol 2015; 183:65-75. [PMID: 26352785 DOI: 10.1111/cei.12702] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 12/27/2022] Open
Abstract
Diversification of the antibody repertoire is essential for the normal operation of the vertebrate adaptive immune system. Following antigen encounter, B cells are activated, proliferate rapidly and undergo two diversification events; somatic hypermutation (followed by selection), which enhances the affinity of the antibody for its cognate antigen, and class-switch recombination, which alters the effector functions of the antibody to adapt the response to the challenge faced. B cells must then differentiate into antibody-secreting plasma cells or long-lived memory B cells. These activities take place in specialized immunological environments called germinal centres, usually located in the secondary lymphoid organs. To complete the germinal centre activities successfully, a B cell adopts a transcriptional programme that allows it to migrate to specific sites within the germinal centre, proliferate, modify its DNA recombination and repair pathways, alter its apoptotic potential and finally undergo terminal differentiation. To co-ordinate these processes, B cells employ a number of 'master regulator' transcription factors which mediate wholesale transcriptomic changes. These master transcription factors are mutually antagonistic and form a complex regulatory network to maintain distinct gene expression programs. Within this network, multiple points of positive and negative feedback ensure the expression of the 'master regulators', augmented by a number of 'secondary' factors that reinforce these networks and sense the progress of the immune response. In this review we will discuss the different activities B cells must undertake to mount a successful T cell-dependent immune response and describe how a regulatory network of transcription factors controls these processes.
Collapse
Affiliation(s)
- T Recaldin
- Division of Asthma, Allergy and Lung Biology, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - D J Fear
- Division of Asthma, Allergy and Lung Biology, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| |
Collapse
|
40
|
Ballesteros-Tato A. Beyond regulatory T cells: the potential role for IL-2 to deplete T-follicular helper cells and treat autoimmune diseases. Immunotherapy 2015; 6:1207-20. [PMID: 25496335 DOI: 10.2217/imt.14.83] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Low-dose IL-2 administration suppresses unwanted immune responses in mice and humans, thus evidencing the potential of IL-2 to treat autoimmune disorders. Increased Tregs activity is one of the potential mechanisms by which low-dose IL-2 immunotherapy induces immunosuppression. In addition, recent data indicate that IL-2 may contribute to prevent unwanted self-reactive responses by preventing the developing of T-follicular helper cells, a CD4(+) T-cell subset that expands in autoimmune disease patients and promotes long-term effector B-cell responses. Here we discuss the mechanisms underlying the clinical benefits of low-dose IL-2 administration, focusing on the role of this cytokine in promoting Treg-mediated suppression and preventing self-reactive T-follicular helper cell responses.
Collapse
|
41
|
Group 3 innate lymphoid cells accumulate and exhibit disease-induced activation in the meninges in EAE. Cell Immunol 2015; 297:69-79. [PMID: 26163773 DOI: 10.1016/j.cellimm.2015.06.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/31/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
Abstract
Innate lymphoid cells are immune cells that reside in tissues that interface with the external environment and contribute to the first line defense against pathogens. However, they also have roles in promoting chronic inflammation. Here we demonstrate that group 3 ILCs, (ILC3s - CD45+Lin-IL-7Rα+RORγt+), are normal residents of the meninges and exhibit disease-induced accumulation and activation in EAE. In addition to production of the pro-inflammatory cytokines IL-17 and GM-CSF, ILC3s constitutively express CD30L and OX40L, molecules required for memory T cell survival. We show that disease-induced trafficking of transferred wild type T cells to the meninges is impaired in ILC3-deficient Rorc-/- mice. Furthermore, lymphoid tissue inducer cells, a c-kit+ ILC3 subset that promotes ectopic lymphoid follicle development, a hallmark of many autoimmune diseases, are reduced in the meninges of EAE-resistant c-kit mutant Kit(W/Wv) mice. We propose that ILC3s sustain neuroinflammation by supporting T cell survival and reactivation in the meninges.
Collapse
|
42
|
Noort AR, van Zoest KPM, van Baarsen LG, Maracle CX, Helder B, Papazian N, Romera-Hernandez M, Tak PP, Cupedo T, Tas SW. Tertiary Lymphoid Structures in Rheumatoid Arthritis: NF-κB-Inducing Kinase-Positive Endothelial Cells as Central Players. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1935-43. [PMID: 25963989 DOI: 10.1016/j.ajpath.2015.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 11/25/2022]
Abstract
Tertiary lymphoid structures (TLSs) in chronic inflammation, including rheumatoid arthritis (RA) synovial tissue (ST), often contain high endothelial venules and follicular dendritic cells (FDCs). Endothelial cell (EC)-specific lymphotoxin β (LTβ) receptor signaling is critical for the formation of lymph nodes and high endothelial venules. FDCs arise from perivascular platelet-derived growth factor receptor β(+) precursor cells (preFDCs) that require specific group 3 innate lymphoid cells (ILC3s) and LTβ for their expansion. Previously, we showed that RA ST contains ECs that express NF-κB-inducing kinase (NIK), which is pivotal in LTβ-induced noncanonical NF-κB signaling. We studied the relation between NIK(+) ECs, (pre)FDCs, and ILC3s with respect to TLSs in RA ST. TLS(+) tissues exhibited a significantly increased expression of genes involved in noncanonical NF-κB signaling, including NIK, and immunohistochemical analysis revealed that NIK was almost exclusively expressed by ECs. ILC3s were present in human RA ST in very low numbers, but not differentially in TLS(+) tissues. In contrast, TLS(+) tissues contained significantly more NIK(+) ECs and perivascular platelet-derived growth factor receptor β(+) preFDCs, which correlated significantly with the quantity of FDCs. We established a strong link between NIK(+) ECs, (pre)FDCs, and the presence of TLSs, indicating that NIK(+) ECs may not only be important orchestrators of lymph node development but also contribute to the formation of TLSs in chronic inflammation.
Collapse
Affiliation(s)
- Ae R Noort
- Department of Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Katinka P M van Zoest
- Department of Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Lisa G van Baarsen
- Department of Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Chrissta X Maracle
- Department of Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Boy Helder
- Department of Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Natalie Papazian
- Department of Hematology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Monica Romera-Hernandez
- Department of Hematology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Paul P Tak
- Department of Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Tom Cupedo
- Department of Hematology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sander W Tas
- Department of Clinical Immunology & Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
43
|
Adlowitz DG, Barnard J, Biear JN, Cistrone C, Owen T, Wang W, Palanichamy A, Ezealah E, Campbell D, Wei C, Looney RJ, Sanz I, Anolik JH. Expansion of Activated Peripheral Blood Memory B Cells in Rheumatoid Arthritis, Impact of B Cell Depletion Therapy, and Biomarkers of Response. PLoS One 2015; 10:e0128269. [PMID: 26047509 PMCID: PMC4457888 DOI: 10.1371/journal.pone.0128269] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/23/2015] [Indexed: 01/04/2023] Open
Abstract
Although B cell depletion therapy (BCDT) is effective in a subset of rheumatoid arthritis (RA) patients, both mechanisms and biomarkers of response are poorly defined. Here we characterized abnormalities in B cell populations in RA and the impact of BCDT in order to elucidate B cell roles in the disease and response biomarkers. In active RA patients both CD27+IgD- switched memory (SM) and CD27-IgD- double negative memory (DN) peripheral blood B cells contained significantly higher fractions of CD95+ and CD21- activated cells compared to healthy controls. After BCD the predominant B cell populations were memory, and residual memory B cells displayed a high fraction of CD21- and CD95+ compared to pre-depletion indicating some resistance of these activated populations to anti-CD20. The residual memory populations also expressed more Ki-67 compared to pre-treatment, suggesting homeostatic proliferation in the B cell depleted state. Biomarkers of clinical response included lower CD95+ activated memory B cells at depletion time points and a higher ratio of transitional B cells to memory at reconstitution. B cell function in terms of cytokine secretion was dependent on B cell subset and changed with BCD. Thus, SM B cells produced pro-inflammatory (TNF) over regulatory (IL10) cytokines as compared to naïve/transitional. Notably, B cell TNF production decreased after BCDT and reconstitution compared to untreated RA. Our results support the hypothesis that the clinical and immunological outcome of BCDT depends on the relative balance of protective and pathogenic B cell subsets established after B cell depletion and repopulation.
Collapse
Affiliation(s)
- Diana G. Adlowitz
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
| | - Jennifer Barnard
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
| | - Jamie N. Biear
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
| | - Christopher Cistrone
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
| | - Teresa Owen
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
| | - Wensheng Wang
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
| | - Arumugam Palanichamy
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
| | - Ezinma Ezealah
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
| | - Debbie Campbell
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
| | - Chungwen Wei
- Department of Medicine, Emory University, Atlanta, Georgia, 30332, United States of America
| | - R. John Looney
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
| | - Inaki Sanz
- Department of Medicine, Emory University, Atlanta, Georgia, 30332, United States of America
| | - Jennifer H. Anolik
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, 14642, United States of America
- * E-mail:
| |
Collapse
|
44
|
Störch H, Zimmermann B, Resch B, Tykocinski LO, Moradi B, Horn P, Kaya Z, Blank N, Rehart S, Thomsen M, Lorenz HM, Neumann E, Tretter T. Activated human B cells induce inflammatory fibroblasts with cartilage-destructive properties and become functionally suppressed in return. Ann Rheum Dis 2015; 75:924-32. [DOI: 10.1136/annrheumdis-2014-206965] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/26/2015] [Indexed: 12/21/2022]
|
45
|
Arron JR, Townsend MJ, Keir ME, Yaspan BL, Chan AC. Stratified medicine in inflammatory disorders: From theory to practice. Clin Immunol 2015; 161:11-22. [PMID: 25934386 DOI: 10.1016/j.clim.2015.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 04/17/2015] [Indexed: 02/08/2023]
Abstract
Chronic inflammatory disorders are complex and characterized by significant heterogeneity in molecular, pathological, and clinical features. This heterogeneity poses challenges for the development of targeted molecular interventions for these disorders, as not all patients with a given clinical diagnosis have disease driven by a single dominant molecular pathway, hence not all patients will benefit equally from a given intervention. Biomarkers related to molecular manifestations of disease are increasingly being applied to enable stratified approaches to drug development. Biomarkers may be used to identify which patients are most likely to benefit from an intervention (predictive), identify patients at increased risk of disease progression (prognostic), and monitor biological responsiveness to an intervention (pharmacodynamic). Here we consider how biomarker-guided stratification of patients may increase benefit from targeted therapies for asthma, rheumatoid arthritis and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Joseph R Arron
- Department of Immunology Diagnostic Discovery, Genentech, Inc., One DNA Way, South San Francisco, CA 94080, USA.
| | - Michael J Townsend
- Department of Immunology Diagnostic Discovery, Genentech, Inc., One DNA Way, South San Francisco, CA 94080, USA
| | - Mary E Keir
- Department of Immunology Diagnostic Discovery, Genentech, Inc., One DNA Way, South San Francisco, CA 94080, USA
| | - Brian L Yaspan
- Department of Human Genetics, Genentech, Inc., One DNA Way, South San Francisco, CA 94080, USA
| | - Andrew C Chan
- Department of Immunology, Genentech, Inc., One DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
46
|
Ectopic Germinal Centers and IgG4-Producing Plasmacytes Observed in Synovia of HLA-B27+ Ankylosing Spondylitis Patients with Advanced Hip Involvement. Int J Rheumatol 2015; 2015:316421. [PMID: 25954311 PMCID: PMC4410505 DOI: 10.1155/2015/316421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/28/2015] [Accepted: 03/28/2015] [Indexed: 12/24/2022] Open
Abstract
Introduction. Ectopic lymphoid neogenesis and the presence of IgG4-positive plasmacytes have been confirmed in chronic inflammatory sclerosing diseases. This study aims to investigate hip synovial tissues of ankylosing spondylitis (AS) patients for IgG4-positive plasma cells and ectopic lymphoid tissues with germinal centers (GCs). Methods. Synovial samples were collected from 7 AS patients who received total hip replacement and were evaluated using immunohistochemistry for the presence of CD20+ B-cells, CD3+ T-cells, CD21+ follicular dendritic cells (FDC), and CD38+ plasma cells. Furthermore, immunoglobulin G (IgG and IgG4), IgA, IgM, and complement components C3d and C4d in synovia were evaluated. Both synovial CD21+ FDCs and IgG4-producing plasmacytes were analyzed. Results. All seven patients had severe fibrosis. Massive infiltrations of lymphocytes were found in 5 out of 7 patients' synovia. Ectopic lymphoid tissues with CD21+ FDC networks and IgG4-positive plasma cells were observed coincidentally in two patients' synovia. Conclusion. The pathophysiological mechanism of AS patients' hip damage might be related to the coincidental presence of ectopic lymphoid tissue with FDCs network and IgG4-positive plasma cells identified here for the first time in AS patients' inflamed synovial tissue.
Collapse
|
47
|
Buckley CD, Barone F, Nayar S, Bénézech C, Caamaño J. Stromal Cells in Chronic Inflammation and Tertiary Lymphoid Organ Formation. Annu Rev Immunol 2015; 33:715-45. [DOI: 10.1146/annurev-immunol-032713-120252] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christopher D. Buckley
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham B15 2WD, United Kingdom
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Francesca Barone
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham B15 2WD, United Kingdom
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Saba Nayar
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham B15 2WD, United Kingdom
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Cecile Bénézech
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Jorge Caamaño
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
48
|
Russi AE, Brown MA. The meninges: new therapeutic targets for multiple sclerosis. Transl Res 2015; 165:255-69. [PMID: 25241937 PMCID: PMC4424790 DOI: 10.1016/j.trsl.2014.08.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 12/19/2022]
Abstract
The central nervous system (CNS) largely comprises nonregenerating cells, including neurons and myelin-producing oligodendrocytes, which are particularly vulnerable to immune cell-mediated damage. To protect the CNS, mechanisms exist that normally restrict the transit of peripheral immune cells into the brain and spinal cord, conferring an "immune-specialized" status. Thus, there has been a long-standing debate as to how these restrictions are overcome in several inflammatory diseases of the CNS, including multiple sclerosis (MS). In this review, we highlight the role of the meninges, tissues that surround and protect the CNS and enclose the cerebral spinal fluid, in promoting chronic inflammation that leads to neuronal damage. Although the meninges have traditionally been considered structures that provide physical protection for the brain and spinal cord, new data have established these tissues as sites of active immunity. It has been hypothesized that the meninges are important players in normal immunosurveillance of the CNS but also serve as initial sites of anti-myelin immune responses. The resulting robust meningeal inflammation elicits loss of localized blood-brain barrier (BBB) integrity and facilitates a large-scale influx of immune cells into the CNS parenchyma. We propose that targeting the cells and molecules mediating these inflammatory responses within the meninges offers promising therapies for MS that are free from the constraints imposed by the BBB. Importantly, such therapies may avoid the systemic immunosuppression often associated with the existing treatments.
Collapse
Affiliation(s)
- Abigail E Russi
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Melissa A Brown
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
49
|
Kitabatake M, Soma M, Zhang T, Kuwahara K, Fukushima Y, Nojima T, Kitamura D, Sakaguchi N. JNK regulatory molecule G5PR induces IgG autoantibody-producing plasmablasts from peritoneal B1a cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:1480-8. [PMID: 25601926 DOI: 10.4049/jimmunol.1401127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Peritoneal B1a cells expressing CD5 and CD11b generate autoantibody-producing precursors in autoimmune-prone mice. Previous studies show reduced JNK signaling in peritoneal B1a cells of female New Zealand Black mice and an abnormal increase of protein phosphatase 2A subunit G5PR that regulates BCR-mediated JNK signaling as a cause of autoimmunity. To investigate the mechanism regulating B1a differentiation into autoantibody-secreting plasmablasts (PBs), we applied an in vitro culture system that supports long-term growth of germinal center (GC) B cells (iGB) with IL-4, CD40L, and BAFF. Compared with spleen B2 cells, B1a cells differentiated into GC-like B cells, but more markedly into PBs, and underwent class switching toward IgG1. During iGB culture, B1a cells expressed GC-associated aicda, g5pr, and bcl6, and markedly PB-associated prdm1, irf4, and xbp1. B1a-derived iGB cells from New Zealand Black × New Zealand White F1 mice highly differentiated into autoantibody-secreting PBs in vitro and localized to the GC area in vivo. In iGB culture, JNK inhibitor SP600125 augmented the differentiation of C57BL/6 B1a cells into PBs. Furthermore, B1a cells from G5PR transgenic mice markedly differentiated into IgM and IgG autoantibody-secreting PBs. In conclusion, JNK regulation is critical to suppress autoantibody-secreting PBs from peritoneal B1a cells.
Collapse
Affiliation(s)
- Masahiro Kitabatake
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Miho Soma
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tianli Zhang
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kazuhiko Kuwahara
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshimi Fukushima
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takuya Nojima
- Division of Molecular Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; and
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; and
| | - Nobuo Sakaguchi
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| |
Collapse
|
50
|
Majka DS, Chang RW. Is preclinical autoimmunity benign?: The case of cardiovascular disease. Rheum Dis Clin North Am 2014; 40:659-68. [PMID: 25437283 DOI: 10.1016/j.rdc.2014.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although there are many examples of autoantibodies in disease-free individuals, they can be a preclinical phenomenon heralding future autoimmune rheumatic disease. They may be a marker for autoreactive B-cell activation and other inflammatory autoimmune processes. The increased prevalence of cardiovascular disease (CVD) in autoimmune rheumatic diseases such as rheumatoid arthritis and systemic lupus erythematosus, and the increased risk of CVD in patients with rheumatic disease with autoantibodies, suggest that CVD may have autoimmune features. Autoantibodies might be risk markers for subclinical and clinical CVD development not only in patients with rheumatic diseases but in the general population as well.
Collapse
Affiliation(s)
- Darcy S Majka
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, 240 East Huron, M300, Chicago, IL 60611, USA; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 North Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA.
| | - Rowland W Chang
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, 240 East Huron, M300, Chicago, IL 60611, USA; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 North Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA
| |
Collapse
|