1
|
Bormann A, Körner MB, Dahse AK, Gläser MS, Irmer J, Lede V, Alenfelder J, Lehmann J, Hall DCN, Thane M, Schleyer M, Kostenis E, Schöneberg T, Bigl M, Langenhan T, Ljaschenko D, Scholz N. Intron retention of an adhesion GPCR generates 1TM isoforms required for 7TM-GPCR function. Cell Rep 2024; 44:115078. [PMID: 39705141 DOI: 10.1016/j.celrep.2024.115078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/22/2024] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are expressed in all organs and are involved in various mechanobiological processes. They are heavily alternatively spliced, forecasting an extraordinary molecular structural diversity. Here, we uncovered the existence of unconventional single-transmembrane (1TM)-containing ADGRL/Cirl proteins devoid of the conventional GPCR layout (i.e., the 7TM signaling unit) in Drosophila. These 1TM proteins are made as a result of intron retention and provide an N-terminal fragment that acts as an interactor to allow Gαo-dependent signaling through conventional 7TM-containing Cirl isoforms encoded by the same gene. This molecular mechanism determines sensory precision of neurons in response to mechanical stimulation in vivo. This action mode of aGPCR provides a promising entry point for experimental and therapeutic approaches to intervene in aGPCR signaling and implicates alternative splicing as a physiological strategy to express a given aGPCR together with its molecular interactor.
Collapse
Affiliation(s)
- Anne Bormann
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Marek B Körner
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany; Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Anne-Kristin Dahse
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Marie S Gläser
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Johanna Irmer
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Vera Lede
- Rudolf Schönheimer Institute of Biochemistry, Division of Molecular Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Joris Lehmann
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany; Institute of Biology/Zoology, Department of Animal Physiology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Daniella C N Hall
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany; Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Michael Thane
- Department of Genetics Learning and Memory, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Michael Schleyer
- Department of Genetics Learning and Memory, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-08080, Japan
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Division of Molecular Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Marina Bigl
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Dmitrij Ljaschenko
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany.
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany.
| |
Collapse
|
2
|
Chen X, Li Y, Lu L, Wu J, Yan R, Xiang J, Fan Q, Liu J, Li S, Xue Y, Fu T, Liu J, Li Z. Activation of the SST-SSTR5 signaling pathway enhances corneal wound healing in diabetic mice. Mucosal Immunol 2024; 17:858-870. [PMID: 38866206 DOI: 10.1016/j.mucimm.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/23/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Corneal wound healing in diabetic patients is usually delayed and accompanied by excessive inflammation. However, the underlying cellular and molecular mechanisms remain poorly understood. Here, we found that somatostatin (SST), an immunosuppressive peptide produced by corneal nerve fibers, was significantly reduced in streptozotocin-induced diabetic mice. In addition, we discovered that topical administration of exogenous SST significantly improved re-epithelialization and nerve regeneration following diabetic corneal epithelial abrasion. Further analysis showed that topical SST significantly reduced the expression of injury inflammation-related genes, inhibited neutrophil infiltration, and shifted macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 in diabetic corneas' healing. Moreover, the application of L-817,818, an agonist of the SST receptor type 5 subtype, significantly reduced the inflammatory response following epithelial injury and markedly improved the process of re-epithelialization and nerve regeneration in mice. Taken together, these data suggest that activation of the SST-SST receptor type 5 pathway significantly ameliorates diabetes-induced abnormalities in corneal wound repair in mice. Targeting this pathway may provide a novel strategy to restore impaired corneal wound closure and nerve regeneration in diabetic patients.
Collapse
Affiliation(s)
- Xinwei Chen
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Yan Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liyuan Lu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiaxin Wu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruyu Yan
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiayan Xiang
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiwei Fan
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Jiangman Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Senmao Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Therapeutic Effect of a Latent Form of Cortistatin in Experimental Inflammatory and Fibrotic Disorders. Pharmaceutics 2022; 14:pharmaceutics14122785. [PMID: 36559278 PMCID: PMC9784182 DOI: 10.3390/pharmaceutics14122785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Cortistatin is a cyclic neuropeptide that recently emerged as an attractive therapeutic factor for treating inflammatory, autoimmune, fibrotic, and pain disorders. Despite of its efficiency and apparent safety in experimental preclinical models, its short half-life in body fluids and its potential pleiotropic effects, due to its promiscuity for several receptors expressed in various cells and tissues, represent two major drawbacks for the clinical translation of cortistatin-based therapies. Therefore, the design of new strategies focused on increasing the stability, bioavailability, and target specificity of cortistatin are lately demanded by the industry. Here, we generated by molecular engineering a new cortistatin-based prodrug formulation that includes, beside the bioactive cortistatin, a molecular-shield provided by the latency-associated protein of the transforming growth factor-β1 and a cleavage site specifically recognized by metalloproteinases, which are abundant in inflammatory/fibrotic foci. Using different models of sepsis, inflammatory bowel disease, scleroderma, and pulmonary fibrosis, we demonstrated that this latent form of cortistatin was a highly effective protection against these severe disorders. Noteworthy, from a therapeutic point of view, is that latent cortistatin seems to require significantly lower doses and fewer administrations than naive cortistatin to reach the same efficacy. Finally, the metalloproteinase-cleavage site was essential for the latent molecule to exert its therapeutic action. In summary, latent cortistatin emerges as a promising innovative therapeutic tool for treating chronic diseases of different etiologies with difficult clinical solutions and as a starting point for a rational development of prodrugs based on the use of bioactive peptides.
Collapse
|
4
|
High-Dose Somatostatin Analogs for the Treatment of Neuroendocrine Neoplasms: where are we Now? Curr Treat Options Oncol 2022; 23:1001-1013. [PMID: 35501552 DOI: 10.1007/s11864-022-00983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 11/03/2022]
Abstract
OPINION STATEMENT Neuroendocrine tumors (NET) represent a complex and heterogeneous group of malignancies arising from the diffuse endocrine cells and other cells derived from the neural crest. Advanced disease is observed at diagnosis in more than one-third of patients. Somatostatin analogs (SSA) are the cornerstone in advanced well-differentiated NET treatment. Unfortunately, most patients will eventually develop resistance to SSA treatment by different mechanisms that are not fully understood. In some cases of refractory carcinoid syndrome or progressive disease, the increase of SSA dose may help to reach out a symptomatic and/or tumor growth control. The clinical evidence behind above-label SSA administration is limited and should be individualized and discussed patient by patient. Some questions regarding high-dose SSA use are unsolved, such as the optimal dose to use, the frequency of administration, or the need of deepen molecular understanding that could help to adequately select patients for this approach.
Collapse
|
5
|
Somatostatin Receptor Splicing Variant sst5TMD4 Overexpression in Glioblastoma Is Associated with Poor Survival, Increased Aggressiveness Features, and Somatostatin Analogs Resistance. Int J Mol Sci 2022; 23:ijms23031143. [PMID: 35163067 PMCID: PMC8835306 DOI: 10.3390/ijms23031143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant and lethal brain tumor. Current standard treatment consists of surgery followed by radiotherapy/chemotherapy; however, this is only a palliative approach with a mean post-operative survival of scarcely ~12-15 months. Thus, the identification of novel therapeutic targets to treat this devastating pathology is urgently needed. In this context, the truncated splicing variant of the somatostatin receptor subtype 5 (sst5TMD4), which is produced by aberrant alternative splicing, has been demonstrated to be overexpressed and associated with increased aggressiveness features in several tumors. However, the presence, functional role, and associated molecular mechanisms of sst5TMD4 in GBM have not been yet explored. Therefore, we performed a comprehensive analysis to characterize the expression and pathophysiological role of sst5TMD4 in human GBM. sst5TMD4 was significantly overexpressed (at mRNA and protein levels) in human GBM tissue compared to non-tumor (control) brain tissue. Remarkably, sst5TMD4 expression was significantly associated with poor overall survival and recurrent tumors in GBM patients. Moreover, in vitro sst5TMD4 overexpression (by specific plasmid) increased, whereas sst5TMD4 silencing (by specific siRNA) decreased, key malignant features (i.e., proliferation and migration capacity) of GBM cells (U-87 MG/U-118 MG models). Furthermore, sst5TMD4 overexpression in GBM cells altered the activity of multiple key signaling pathways associated with tumor aggressiveness/progression (AKT/JAK-STAT/NF-κB/TGF-β), and its silencing sensitized GBM cells to the antitumor effect of pasireotide (a somatostatin analog). Altogether, these results demonstrate that sst5TMD4 is overexpressed and associated with enhanced malignancy features in human GBMs and reveal its potential utility as a novel diagnostic/prognostic biomarker and putative therapeutic target in GBMs.
Collapse
|
6
|
Borga C, Businello G, Murgioni S, Bergamo F, Martini C, De Carlo E, Trevellin E, Vettor R, Fassan M. Treatment personalization in gastrointestinal neuroendocrine tumors. Curr Treat Options Oncol 2021; 22:29. [PMID: 33641005 DOI: 10.1007/s11864-021-00825-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
OPINION STATEMENT The clinical scenario of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) is continuously changing due to significant improvements in the definition of their molecular landscapes and the introduction of innovative therapeutic approaches. Many efforts are currently employed in the integration of the genetics/epigenetics and clinical information. This is leading to an improvement of tumor classification, prognostic stratification and ameliorating the management of patients based on a personalized approach.
Collapse
Affiliation(s)
- Chiara Borga
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Gianluca Businello
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Sabina Murgioni
- Unit of Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Francesca Bergamo
- Unit of Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Chiara Martini
- Endocrine-Metabolic Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Eugenio De Carlo
- Endocrine-Metabolic Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Elisabetta Trevellin
- Endocrine-Metabolic Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Roberto Vettor
- Endocrine-Metabolic Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy.
| |
Collapse
|
7
|
Fuentes-Fayos AC, Vázquez-Borrego MC, Jiménez-Vacas JM, Bejarano L, Pedraza-Arévalo S, L-López F, Blanco-Acevedo C, Sánchez-Sánchez R, Reyes O, Ventura S, Solivera J, Breunig JJ, Blasco MA, Gahete MD, Castaño JP, Luque RM. Splicing machinery dysregulation drives glioblastoma development/aggressiveness: oncogenic role of SRSF3. Brain 2020; 143:3273-3293. [PMID: 33141183 PMCID: PMC7904102 DOI: 10.1093/brain/awaa273] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/17/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastomas remain the deadliest brain tumour, with a dismal ∼12–16-month survival from diagnosis. Therefore, identification of new diagnostic, prognostic and therapeutic tools to tackle glioblastomas is urgently needed. Emerging evidence indicates that the cellular machinery controlling the splicing process (spliceosome) is altered in tumours, leading to oncogenic splicing events associated with tumour progression and aggressiveness. Here, we identify for the first time a profound dysregulation in the expression of relevant spliceosome components and splicing factors (at mRNA and protein levels) in well characterized cohorts of human high-grade astrocytomas, mostly glioblastomas, compared to healthy brain control samples, being SRSF3, RBM22, PTBP1 and RBM3 able to perfectly discriminate between tumours and control samples, and between proneural-like or mesenchymal-like tumours versus control samples from different mouse models with gliomas. Results were confirmed in four additional and independent human cohorts. Silencing of SRSF3, RBM22, PTBP1 and RBM3 decreased aggressiveness parameters in vitro (e.g. proliferation, migration, tumorsphere-formation, etc.) and induced apoptosis, especially SRSF3. Remarkably, SRSF3 was correlated with patient survival and relevant tumour markers, and its silencing in vivo drastically decreased tumour development and progression, likely through a molecular/cellular mechanism involving PDGFRB and associated oncogenic signalling pathways (PI3K-AKT/ERK), which may also involve the distinct alteration of alternative splicing events of specific transcription factors controlling PDGFRB (i.e. TP73). Altogether, our results demonstrate a drastic splicing machinery-associated molecular dysregulation in glioblastomas, which could potentially be considered as a source of novel diagnostic and prognostic biomarkers as well as therapeutic targets for glioblastomas. Remarkably, SRSF3 is directly associated with glioblastoma development, progression, aggressiveness and patient survival and represents a novel potential therapeutic target to tackle this devastating pathology.
Collapse
Affiliation(s)
- Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain.,Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - Mari C Vázquez-Borrego
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain.,Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain.,Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - Leire Bejarano
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Sergio Pedraza-Arévalo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain.,Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - Fernando L-López
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain.,Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - Cristóbal Blanco-Acevedo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain.,Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.,Department of Neurosurgery, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain.,Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.,Pathology Service, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - Oscar Reyes
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Computer Sciences, University of Cordoba, 14004 Cordoba, Spain
| | - Sebastián Ventura
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Computer Sciences, University of Cordoba, 14004 Cordoba, Spain
| | - Juan Solivera
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain.,Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.,Department of Neurosurgery, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - Joshua J Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - María A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain.,Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain.,Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain.,Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| |
Collapse
|
8
|
Peptides derived from the extracellular domain of the somatostatin receptor splicing variant SST5TMD4 increase malignancy in multiple cancer cell types. Transl Res 2019; 211:147-160. [PMID: 30904441 DOI: 10.1016/j.trsl.2019.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/06/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022]
Abstract
Extracellular fragments derived from plasma membrane receptors can play relevant roles in the development/progression of tumor pathologies, thereby offering novel diagnostic or therapeutic opportunities. The truncated variant of somatostatin receptor subtype-5, SST5TMD4, is an aberrantly spliced receptor with 4 transmembrane domains, highly overexpressed in several tumor types, whose C-terminal tail is exposed towards the extracellular matrix, and could therefore be the substrate for proteolytic enzymes. In silico analysis implemented herein predicted 2 possible cleavage sites for metalloproteases MMP2, 9, 14, and 16 in its sequence, which could generate 3 releasable peptides. Of note, expression of those MMPs was directly correlated with SST5TMD4 in several cancer-derived cell lines (ie neuroendocrine tumors and prostate, breast, and liver cancers). Moreover, incubation with SST5TMD4-derived peptides enhanced malignancy features in all cancer cell types tested (ie proliferation, migration, etc.) and blunted the antiproliferative response to somatostatin in QGP-1 cells, acting probably through PI3K/AKT and/or MEK/ERK signaling pathways and the modulation of key cancer-associated genes (eg MMPs, MKI67, ACTR2/3, CD24/44). These results suggest that SST5TMD4-derived peptides could contribute to the strong oncogenic role of SST5TMD4 observed in multiple tumor pathologies, and, therefore, represent potential candidates to identify novel diagnostic, prognostic, or therapeutic targets in cancer.
Collapse
|
9
|
Biological and Biochemical Basis of the Differential Efficacy of First and Second Generation Somatostatin Receptor Ligands in Neuroendocrine Neoplasms. Int J Mol Sci 2019; 20:ijms20163940. [PMID: 31412614 PMCID: PMC6720449 DOI: 10.3390/ijms20163940] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Endogenous somatostatin shows anti-secretory effects in both physiological and pathological settings, as well as inhibitory activity on cell growth. Since somatostatin is not suitable for clinical practice, researchers developed synthetic somatostatin receptor ligands (SRLs) to overcome this limitation. Currently, SRLs represent pivotal tools in the treatment algorithm of neuroendocrine tumors (NETs). Octreotide and lanreotide are the first-generation SRLs developed and show a preferential binding affinity to somatostatin receptor (SST) subtype 2, while pasireotide, which is a second-generation SRL, has high affinity for multiple SSTs (SST5 > SST2 > SST3 > SST1). A number of studies demonstrated that first-generation and second-generation SRLs show distinct functional properties, besides the mere receptor affinity. Therefore, the aim of the present review is to critically review the current evidence on the biological effects of SRLs in pituitary adenomas and neuroendocrine tumors, by mainly focusing on the differences between first-generation and second-generation ligands.
Collapse
|
10
|
Günther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ, Lupp A, Korbonits M, Castaño JP, Wester HJ, Culler M, Melmed S, Schulz S. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol Rev 2019; 70:763-835. [PMID: 30232095 PMCID: PMC6148080 DOI: 10.1124/pr.117.015388] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Somatostatin, also known as somatotropin-release inhibitory factor, is a cyclopeptide that exerts potent inhibitory actions on hormone secretion and neuronal excitability. Its physiologic functions are mediated by five G protein-coupled receptors (GPCRs) called somatostatin receptor (SST)1-5. These five receptors share common structural features and signaling mechanisms but differ in their cellular and subcellular localization and mode of regulation. SST2 and SST5 receptors have evolved as primary targets for pharmacological treatment of pituitary adenomas and neuroendocrine tumors. In addition, SST2 is a prototypical GPCR for the development of peptide-based radiopharmaceuticals for diagnostic and therapeutic interventions. This review article summarizes findings published in the last 25 years on the physiology, pharmacology, and clinical applications related to SSTs. We also discuss potential future developments and propose a new nomenclature.
Collapse
Affiliation(s)
- Thomas Günther
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Giovanni Tulipano
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Pascal Dournaud
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Corinne Bousquet
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Zsolt Csaba
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Kreienkamp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Márta Korbonits
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Justo P Castaño
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Wester
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Michael Culler
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Shlomo Melmed
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| |
Collapse
|
11
|
Chatzellis E, Kaltsas G. Somatostatin Receptor Expression in Gastrointestinal Tumors. ENCYCLOPEDIA OF ENDOCRINE DISEASES 2019:587-596. [DOI: 10.1016/b978-0-12-801238-3.64282-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Marazuela M, Ramos-Leví AM, Borges de Souza P, Zatelli MC. Is receptor profiling useful for predicting pituitary therapy? Eur J Endocrinol 2018; 179:D15-D25. [PMID: 30139823 DOI: 10.1530/eje-18-0549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/13/2018] [Accepted: 08/22/2018] [Indexed: 12/31/2022]
Abstract
Medical treatment of pituitary tumours may present important challenges in the presence of resistance to first line therapy. In this setting, the availability of specific markers of responsiveness/resistance could be helpful to provide tailored patients' treatment. Pituitary receptor profiling has emerged as a potentially useful tool for predicting the response to specific pituitary-directed medical therapy, mainly somatostatin analogues and dopamine agonists. However, its utility is not always straightforward. In fact, agonist-receptor coupling to the consequent biological response is complex and sometimes jeopardizes the understanding of the molecular basis of pharmacological resistance. Defective expression of pituitary receptors, genetic alterations, truncated variants, impaired signal transduction or involvement of other proteins, such as cytoskeleton proteins or the Aryl hydrocarbon receptor interacting protein amongst others, have been linked to differential tumour phenotype or treatment responsiveness with conflicting results, keeping the debate on the utility of pituitary receptor profiling open. Why does this occur? How can we overcome the difficulties? Is there a true role for pituitary receptor profiling in the near future? All authors of this debate article agree on the need of prospective studies using standardized methods in order to assess the efficacy of receptor profiling as a reliable clinical predictive factor.
Collapse
Affiliation(s)
- Monica Marazuela
- Department of Endocrinology, Hospital Universitario La Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana M Ramos-Leví
- Department of Endocrinology, Hospital Universitario La Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Patricia Borges de Souza
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
13
|
Clementi ME, Sampaolese B, Lazzarino G, Tringali G. Ultraviolet A radiation induces cortistatin overexpression and activation of somatostatin receptors in ARPE‑19 cells. Mol Med Rep 2018; 17:5538-5543. [PMID: 29393496 DOI: 10.3892/mmr.2018.8547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/16/2018] [Indexed: 11/06/2022] Open
Abstract
Long-term exposure to ultraviolet (UV) radiation is associated with pathological alterations of the retinal pigment epithelium (RPE). It has been indicated that Cortistatin (CST) and somatostatin (SST) are able to inhibit the neurodegeneration of the RPE associated with diabetic retinopathy and retinal ischemia via activation of SST receptors (SSTRs). To the best of our knowledge, the present study indicated for the first time that treatment with UV‑A (30 and 60 min) causes an increase of CST expression, rather than SST, which was linked with the upregulation of STTR3,4,5 subtype receptor gene expression levels. The study revealed that: i) SST and CST mRNA expression were both detected under basal conditions in a human retinal pigment epithelial cell line (Arpe‑19); ii) SST expression remained constant from baseline to 1 h of UV‑A treatment; iii) CST mRNA expression levels were 80 times increased compared with time 0 and after 30 min of exposition to ultraviolet irradiation; iv) SSTR1, SSTR2 mRNA and low levels of SSTR4 were expressed in basal conditions, whereas SSTR3 and SSTR5 mRNA were not detected under the same conditions; and v) only SSTR3, SSTR4 and SSTR5 were overexpressed after UV‑A treatment, although in a different way. In conclusion, the findings provide reasonable evidence to support the pathophysiological role of the CST/SST/SSTRs system in the adaptive response of the RPE exposed to UV‑A radiation.
Collapse
Affiliation(s)
- Maria Elisabetta Clementi
- CNR‑ICRM Institute of Chemistry of Molecular Recognition (ICRM), Institute of Biochemistry and Clinical Biochemistry, Catholic University School of Medicine, I‑00168 Rome, Italy
| | - Beatrice Sampaolese
- CNR‑ICRM Institute of Chemistry of Molecular Recognition (ICRM), Institute of Biochemistry and Clinical Biochemistry, Catholic University School of Medicine, I‑00168 Rome, Italy
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Catholic University School of Medicine, I‑00168 Rome, Italy
| | - Giuseppe Tringali
- Institute of Pharmacology, Catholic University School of Medicine, I‑00168 Rome, Italy
| |
Collapse
|
14
|
Pedraza-Arévalo S, Hormaechea-Agulla D, Gómez-Gómez E, Requena MJ, Selth LA, Gahete MD, Castaño JP, Luque RM. Somatostatin receptor subtype 1 as a potential diagnostic marker and therapeutic target in prostate cancer. Prostate 2017; 77:1499-1511. [PMID: 28905400 DOI: 10.1002/pros.23426] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/23/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is a highly prevalent neoplasia that is strongly influenced by the endocrine system. Somatostatin (SST) and its five receptors (sst1-5 encoded by SSTR1-5 genes) comprise a pleiotropic system present in most endocrine-related cancers, some of which are successfully treated with SST analogs. Interestingly, it has been reported that SSTR1 is overexpressed in PCa, but its regulation, functional role, and clinical implications are still poorly known. METHODS PCa specimens (n = 52) from biopsies and control prostates from cystoprostatectomies (n = 12), as well as in silico databases were used to evaluate SSTR1 and miRNAs expression. In vitro studies in 22Rv1 PCa cells were implemented to explore the regulation of SSTR1/sst1 by different miRNAs, and to evaluate the consequences of SSTR1/sst1 overexpression, silencing and/or activation [with the specific BIM-23926 sst1 agonist (IPSEN)] on cell-proliferation, migration, signaling-pathways, and androgen-signaling. RESULTS We found that SSTR1 is overexpressed in multiple cohorts of PCa samples, as compared with normal prostate tissues, wherein it correlates with androgen receptor (AR) expression, and appears to be associated with aggressiveness (metastasis). Furthermore, our data revealed that SSTR1/sst1 expression might be regulated by specific miRNAs in PCa, including miR-24, which is downregulated in PCa samples and correlates inversely with SSTR1 expression. In vitro studies indicated that treatment with the BIM-23926 sst1 agonist, as well as SSTR1 overexpression, decreased, whereas SSTR1 silencing increased, cell-proliferation in 22Rv1 cells, likely through the regulation of PI3K/AKT-CCND3 signaling-pathway. Importantly, sst1 action was also able to modulate androgen/AR activity, and reduced PSA secretion from PCa cell lines. CONCLUSIONS Altogether, our results indicate that SSTR1 is overexpressed in PCa, where it can exert a relevant pathophysiological role by decreasing cell-proliferation and PSA secretion. Therefore, sst1, possibly in combination with miR-24, could be used as a novel tool to explore therapeutic targets in PCa.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Cell Line, Tumor
- Humans
- Male
- Middle Aged
- Molecular Targeted Therapy
- Prostatic Neoplasms, Castration-Resistant/diagnosis
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/therapy
- Receptors, Somatostatin/biosynthesis
- Receptors, Somatostatin/genetics
Collapse
Affiliation(s)
- Sergio Pedraza-Arévalo
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Daniel Hormaechea-Agulla
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Urology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - María J Requena
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Urology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, SA, 5005, Australia
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Raul M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| |
Collapse
|
15
|
The components of somatostatin and ghrelin systems are altered in neuroendocrine lung carcinoids and associated to clinical-histological features. Lung Cancer 2017; 109:128-136. [PMID: 28577942 DOI: 10.1016/j.lungcan.2017.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/02/2017] [Accepted: 05/07/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Lung carcinoids (LCs) are rare tumors that comprise 1-5% of lung malignancies but represent 20-30% of neuroendocrine tumors. Their incidence is progressively increasing and a better characterization of these tumors is required. Alterations in somatostatin (SST)/cortistatin (CORT) and ghrelin systems have been associated to development/progression of various endocrine-related cancers, wherein they may become useful diagnostic, prognostic and therapeutic biomarkers. OBJECTIVES We aimed to evaluate the expression levels of ghrelin and SST/CORT system components in LCs, as well as to explore their putative relationship with histological/clinical characteristics. PATIENTS AND METHODS An observational retrospective study was performed; 75 LC patients with clinical/histological characteristics were included. Samples from 46 patients were processed to isolate mRNA from tumor and adjacent non-tumor region, and the expression levels of SST/CORT and ghrelin systems components, determined by quantitative-PCR, were compared to those of 7 normal lung tissues. RESULTS Patient cohort was characterized by mean age 53±15 years, 48% males, 34% with tobacco exposure; 71.4/28.6% typical/atypical carcinoids, 21.7% incidental tumors, 4.3% functioning tumors, 17.7% with metastasis. SST/CORT and ghrelin system components were expressed at variable levels in a high proportion of tumors, as well as in adjacent non-tumor tissues, while a lower proportion of normal lung samples also expressed these molecules. A gradation was observed from normal non-neoplastic lung tissues, non-tumor adjacent tissue and LCs, being SST, sst4, sst5, GHS-R1a and GHS-R1b overexpressed in tumor tissue compared to normal tissue. Importantly, several SST/CORT and ghrelin system components displayed significant correlations with relevant clinical parameters, such as necrosis, peritumoral and vascular invasion, or metastasis. CONCLUSION Altogether, these data reveal a prominent, widespread expression of key SST/CORT/ghrelin system components in LCs, where they display clinical-histological correlations, which could provide novel, valuable markers for NET patient management.
Collapse
|
16
|
Stengel A, Taché YF. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response. Front Neurosci 2017; 11:231. [PMID: 28487631 PMCID: PMC5403923 DOI: 10.3389/fnins.2017.00231] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/06/2017] [Indexed: 12/30/2022] Open
Abstract
Corticotropin-releasing factor (CRF) is the hallmark brain peptide triggering the response to stress and mediates—in addition to the stimulation of the hypothalamus-pituitary-adrenal (HPA) axis—other hormonal, behavioral, autonomic and visceral components. Earlier reports indicate that somatostatin-28 injected intracerebroventricularly counteracts the acute stress-induced ACTH and catecholamine release. Mounting evidence now supports that activation of brain somatostatin signaling exerts a broader anti-stress effect by blunting the endocrine, autonomic, behavioral (with a focus on food intake) and visceral gastrointestinal motor responses through the involvement of distinct somatostatin receptor subtypes.
Collapse
Affiliation(s)
- Andreas Stengel
- Division of Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin BerlinBerlin, Germany
| | - Yvette F Taché
- Vatche and Tamar Manoukian Digestive Diseases Division, CURE Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Department of Medicine, University of California, Los AngelesLos Angeles, CA, USA.,VA Greater Los Angeles Health Care SystemLos Angeles, CA, USA
| |
Collapse
|
17
|
Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases. Mediators Inflamm 2017; 2017:5048616. [PMID: 28154473 PMCID: PMC5244030 DOI: 10.1155/2017/5048616] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/26/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.
Collapse
|
18
|
Villa-Osaba A, Gahete MD, Cordoba-Chacon J, de Lecea L, Castaño JP, Luque RM. Fasting modulates GH/IGF-I axis and its regulatory systems in the mammary gland of female mice: Influence of endogenous cortistatin. Mol Cell Endocrinol 2016; 434:14-24. [PMID: 27291340 DOI: 10.1016/j.mce.2016.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/27/2016] [Accepted: 06/08/2016] [Indexed: 11/19/2022]
Abstract
Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are essential factors in mammary-gland (MG) development and are altered during fasting. However, no studies have investigated the alterations in the expression of GH/IGF-I and its regulatory systems (somatostatin/cortistatin and ghrelin) in MG during fasting. Therefore, this study was aimed at characterizing the regulation of GH/IGF-I/somatostatin/cortistatin/ghrelin-systems expression in MG of fasted female-mice (compared to fed-controls) and the influence of endogenous-cortistatin (using cortistatin-knockouts). Fasting decreased IGF-I while increased IGF-I/Insulin-receptors expression in MGs. Fasting provoked an increase in GH expression that might be associated to enhanced ghrelin-variants/ghrelin-O-acyl-transferase enzyme expression, while an upregulation of somatostatin-receptors was observed. However, cortistatin-knockouts mice showed a decrease in GH and somatostatin receptor-subtypes expression. Altogether, we demonstrate that GH/IGF-I, somatostatin/cortistatin and ghrelin systems expression is altered in MG during fasting, suggesting a relevant role in coordinating its response to metabolic stress, wherein endogenous cortistatin might be essential for an appropriate response.
Collapse
Affiliation(s)
- Alicia Villa-Osaba
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain
| | - José Cordoba-Chacon
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain.
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain.
| |
Collapse
|
19
|
Gahete MD, Rincón-Fernández D, Durán-Prado M, Hergueta-Redondo M, Ibáñez-Costa A, Rojo-Sebastián A, Gracia-Navarro F, Culler MD, Casanovas O, Moreno-Bueno G, Luque RM, Castaño JP. The truncated somatostatin receptor sst5TMD4 stimulates the angiogenic process and is associated to lymphatic metastasis and disease-free survival in breast cancer patients. Oncotarget 2016; 7:60110-60122. [PMID: 27507050 PMCID: PMC5312372 DOI: 10.18632/oncotarget.11076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022] Open
Abstract
The truncated somatostatin receptor sst5TMD4 is associated with poor prognosis in breast cancer and increases breast cancer cell malignancy. Here, we examined the cellular/molecular mechanisms underlying this association, aiming to identify new molecular tools to improve diagnosis, prognosis or therapy. A gene expression array comparing sst5TMD4 stably-transfected MCF-7 cells and their controls (empty-plasmid) revealed the existence of profound alterations in the expression of genes involved in key tumoral processes, such as cell survival or angiogenesis. Moreover, sst5TMD4-overexpressing MCF-7 and MDA-MB-231 cells demonstrated increased expression/production of pro-angiogenic factors and enhanced capacity to form mammospheres. Consistently, sst5TMD4-expressing MCF-7 cells induced xenografted tumors with higher VEGF levels and elevated number of blood vessels. Importantly, sst5TMD4 was expressed in a subset of breast cancers, where it correlated with angiogenic markers, lymphatic metastasis, and reduced disease-free survival. These results, coupled to our previous data, support a relevant role of sst5TMD4 in the angiogenic process and reinforce the role of sst5TMD4 in breast cancer malignancy and metastatic potential, supporting its possible utility to develop new molecular biomarkers and drug therapies for these tumors.
Collapse
Affiliation(s)
- Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - David Rincón-Fernández
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Mario Durán-Prado
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
| | - Marta Hergueta-Redondo
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, MD Anderson Internacional Foundation, Madrid, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | | | - Francisco Gracia-Navarro
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | | | - Oriol Casanovas
- Tumor Angiogenesis Group, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Gema Moreno-Bueno
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, MD Anderson Internacional Foundation, Madrid, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofia University Hospital (HURS), Cordoba, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| |
Collapse
|
20
|
Ramos-Leví AM, Bernabeu I, Sampedro-Núñez M, Marazuela M. Genetic Predictors of Response to Different Medical Therapies in Acromegaly. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 138:85-114. [PMID: 26940388 DOI: 10.1016/bs.pmbts.2015.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the era of predictive medicine, management of diseases is evolving into a more personal and individualized approach, as more data are available regarding clinical, biochemical, radiological, molecular, histopathological, and genetic aspects. In the particular setting of acromegaly, which is a rare, chronic, debilitating, and disfiguring disease, an optimized approach deems even more necessary, especially because of an associated increased morbidity and mortality, the impact on patients' quality of life, and the increased cost of frequently necessary life-long treatments. In this paper, we review the available studies that address potential genetic influences on acromegaly, their role in the outcome, and response to treatments, as well as their contribution to the risk of developing side effects. We focus mainly on pharmacogenetic factors involved during treatment with dopamine agonists, somatostatin analogs, and pegvisomant. Specifically, mutations in dopamine receptors, somatostatin receptors, growth hormone receptors, and metabolic pathways involved in growth hormone action; polymorphisms in the insulin-like growth factor and the insulin-like growth factor binding proteins; and polymorphisms in other genes that may determine differences in the frequency of developing adverse events.
Collapse
Affiliation(s)
- Ana M Ramos-Leví
- Department of Endocrinology and Nutrition, Hospital Universitario la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ignacio Bernabeu
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario de Santiago de Compostela, Servicio Gallego de Salud (SERGAS); Universidad de Santiago de Compostela, La Coruña, Spain
| | - Miguel Sampedro-Núñez
- Department of Endocrinology and Nutrition, Hospital Universitario la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mónica Marazuela
- Department of Endocrinology and Nutrition, Hospital Universitario la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
21
|
Ruble CL, Smith RM, Calley J, Munsie L, Airey DC, Gao Y, Shin JH, Hyde TM, Straub RE, Weinberger DR, Nisenbaum LK. Genomic structure and expression of the human serotonin 2A receptor gene (HTR2A) locus: identification of novel HTR2A and antisense (HTR2A-AS1) exons. BMC Genet 2016; 17:16. [PMID: 26738766 PMCID: PMC4702415 DOI: 10.1186/s12863-015-0325-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/22/2015] [Indexed: 01/16/2023] Open
Abstract
Background The serotonin 2A receptor is widely implicated in genetic association studies and remains an important drug target for psychiatric, neurological, and cardiovascular conditions. RNA sequencing redefined the architecture of the serotonin 2A receptor gene (HTR2A), revealing novel mRNA transcript isoforms utilizing unannotated untranslated regions of the gene. Expression of these untranslated regions is modulated by common single nucleotide polymorphisms (SNPs), namely rs6311. Previous studies did not fully capture the complexity of the sense- and antisense-encoded transcripts with respect to novel exons in the HTR2A gene locus. Here, we comprehensively catalogued exons and RNA isoforms for both HTR2A and HTR2A-AS1 using RNA-Seq from human prefrontal cortex and multiple mouse tissues. We subsequently tested associations between expression of newfound gene features and common SNPs in humans. Results We find that the human HTR2A gene spans ~66 kilobases and consists of 7, rather than 4 exons. Furthermore, the revised human HTR2A-AS1 gene spans ~474 kilobases and consists of 18, rather than 3 exons. Three HTR2A exons directly overlap with HTR2A-AS1 exons, suggesting potential for complementary nucleotide interactions. The repertoire of possible mouse Htr2a splice isoforms is remarkably similar to humans and we also find evidence for overlapping sense-antisense transcripts in the same relative positions as the human transcripts. rs6311 and SNPs in high linkage disequilibrium are associated with HTR2A-AS1 expression, in addition to previously described associations with expression of the extended 5’ untranslated region of HTR2A. Conclusions Our proposed HTR2A and HTR2A-AS1 gene structures dramatically differ from current annotations, now including overlapping exons on the sense and anti-sense strands. We also find orthologous transcript isoforms expressed in mice, providing opportunities to elucidate the biological roles of the human isoforms using a model system. Associations between rs6311 and expression of HTR2A and HTR2A-AS1 suggest this polymorphism is capable of modulating the expression of the sense or antisense transcripts. Still unclear is whether these SNPs act directly on the expression of the sense or antisense transcripts and whether overlapping exons are capable of interacting through complimentary base-pairing. Additional studies are necessary to determine the extent and nature of interactions between the SNPs and the transcripts prior to interpreting these findings in the context of phenotypes associated with HTR2A. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0325-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cara L Ruble
- Tailored Therapeutics, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, ᅟ.
| | - Ryan M Smith
- Tailored Therapeutics, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, ᅟ.
| | - John Calley
- Tailored Therapeutics, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, ᅟ.
| | - Leanne Munsie
- Tailored Therapeutics, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, ᅟ.
| | - David C Airey
- Tailored Therapeutics, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, ᅟ.
| | - Yuan Gao
- Lieber Institute for Brain Development, Baltimore, MD, ᅟ.
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, ᅟ.
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, ᅟ. .,Departments of Neurology, Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, MD, ᅟ.
| | | | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, ᅟ. .,Departments of Psychiatry, Neurology, Neuroscience, and the Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, ᅟ.
| | - Laura K Nisenbaum
- Tailored Therapeutics, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, ᅟ.
| |
Collapse
|
22
|
Molè D, Gentilin E, Ibañez-Costa A, Gagliano T, Gahete MD, Tagliati F, Rossi R, Pelizzo MR, Pansini G, Luque RM, Castaño JP, degli Uberti E, Zatelli MC. The expression of the truncated isoform of somatostatin receptor subtype 5 associates with aggressiveness in medullary thyroid carcinoma cells. Endocrine 2015; 50:442-52. [PMID: 25854304 DOI: 10.1007/s12020-015-0594-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/30/2015] [Indexed: 12/23/2022]
Abstract
The truncated somatostatin receptor variant sst5TMD4 associates with increased invasiveness and aggressiveness in breast cancer. We previously found that sst5 activation may counteract sst2 selective agonist effects in a medullary thyroid carcinoma (MTC) cell line, the TT cells, and that sst5TMD4 is overexpressed in poorly differentiated thyroid cancers. The purpose of this study is to evaluate sst5TMD4 expression in a series of human MTC and to explore the functional role of sst5TMD4 in TT cells. We evaluated sst5TMD4 and sst5 expression in 36 MTC samples. Moreover, we investigated the role of sst5TMD4 in TT cells evaluating cell number, DNA synthesis, free cytosolic calcium concentration ([Ca(2+)]i), calcitonin and vascular endothelial growth factor levels, cell morphology, protein expression, and invasion. We found that in MTC the balance between sst5TMD4 and sst5 expression influences disease stage. sst5TMD4 overexpression in TT cells confers a greater growth capacity, blocks sst2 agonist-induced antiproliferative effects, modifies the cell phenotype, decreases E-cadherin and phosphorylated β-catenin levels, increases vimentin, total β-catenin and phosphorylated GSK3B levels (in keeping with the development of epithelial to mesenchymal transition), and confers a greater invasion capacity. This is the first evidence indicating that sst5TMD4 is expressed in human MTC cells, where it associates with more aggressive behavior, suggesting that sst5TMD4 might play a functionally relevant role.
Collapse
Affiliation(s)
- Daniela Molè
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Via Savonarola 9, 44100, Ferrara, Italy
| | - Erica Gentilin
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Via Savonarola 9, 44100, Ferrara, Italy
- Laboratorio in rete del Tecnopolo "Tecnologie delle terapie avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Alejandro Ibañez-Costa
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, University of Cordoba, 14014, Córdoba, Spain
| | - Teresa Gagliano
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Via Savonarola 9, 44100, Ferrara, Italy
| | - Manuel D Gahete
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, University of Cordoba, 14014, Córdoba, Spain
| | - Federico Tagliati
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Via Savonarola 9, 44100, Ferrara, Italy
| | - Roberta Rossi
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Via Savonarola 9, 44100, Ferrara, Italy
| | - Maria Rosa Pelizzo
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Via Giustiniani 2, Padua, Italy
| | - Giancarlo Pansini
- Depatment of Surgery, University of Ferrara, Via Savonarola 9, 44100, Ferrara, Italy
| | - Raúl M Luque
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, University of Cordoba, 14014, Córdoba, Spain
| | - Justo P Castaño
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, University of Cordoba, 14014, Córdoba, Spain
| | - Ettore degli Uberti
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Via Savonarola 9, 44100, Ferrara, Italy
- Laboratorio in rete del Tecnopolo "Tecnologie delle terapie avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Via Savonarola 9, 44100, Ferrara, Italy.
- Laboratorio in rete del Tecnopolo "Tecnologie delle terapie avanzate" (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
23
|
Neuroendocrine regulation of somatic growth in fishes. SCIENCE CHINA-LIFE SCIENCES 2015; 58:137-47. [DOI: 10.1007/s11427-015-4805-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
|
24
|
Gahete MD, Luque RM, Yubero-Serrano EM, Cruz-Teno C, Ibañez-Costa A, Delgado-Lista J, Gracia-Navarro F, Perez-Jimenez F, Castaño JP, Lopez-Miranda J. Dietary fat alters the expression of cortistatin and ghrelin systems in the PBMCs of elderly subjects: putative implications in the postprandial inflammatory response. Mol Nutr Food Res 2014; 58:1897-906. [PMID: 24995559 DOI: 10.1002/mnfr.201400059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/02/2014] [Accepted: 05/18/2014] [Indexed: 12/11/2022]
Abstract
SCOPE Dietary fat influences systemic inflammatory status, which determines the progression of age-associated diseases. Since somatostatin (SST), cortistatin (CORT), and ghrelin systems modulate inflammatory response, we aim to comprehensively characterize the presence and regulation of the components of these systems in the peripheral blood mononuclear cells (PMBCs), a subset of white blood cells placed at the crossroad between diet and inflammation, in response to diets with different fat composition, and during the postprandial phase in elderly subjects. METHODS AND RESULTS The applied nutrigenomic, inflammation-related PBMC-based approach revealed that the majority of components of SST/CORT and ghrelin systems are present in the human PBMCs. Particularly, CORT, SST/CORT receptors (sst2, sst3, sst5, and sst5TMD4), ghrelin, its acylating enzyme (GOAT), In1-ghrelin variant, and GHSR1b were detected in PBMCs. Their expression was altered in the long-term by diet composition, and in the short-term, during the postprandial phase. Of particular relevance is the postprandial elevation of CORT, sst2, and sst5 expression in PBMCs of subjects under n-3 PUFAs-enriched diet. CONCLUSION Our results suggest a potential relevant role of CORT/ssts and ghrelin systems in regulating PBMCs response to nutrient intake, which could help to explain the positive effects of n-3 PUFAs-enriched diets in reducing the inflammatory response.
Collapse
Affiliation(s)
- Manuel D Gahete
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Reina Sofia University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Córdoba, Spain; Lipid and Atherosclerosis Research Unit, Reina Sofia University Hospital, University of Cordoba, IMIBIC and CIBERObn, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Puig-Domingo M, Luque RM, Reverter JL, López-Sánchez LM, Gahete MD, Culler MD, Díaz-Soto G, Lomeña F, Squarcia M, Mate JL, Mora M, Fernández-Cruz L, Vidal O, Alastrué A, Balibrea J, Halperin I, Mauricio D, Castaño JP. The truncated isoform of somatostatin receptor5 (sst5TMD4) is associated with poorly differentiated thyroid cancer. PLoS One 2014; 9:e85527. [PMID: 24465589 PMCID: PMC3897452 DOI: 10.1371/journal.pone.0085527] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/28/2013] [Indexed: 01/22/2023] Open
Abstract
Somatostatin receptors (ssts) are expressed in thyroid cancer cells, but their biological significance is not well understood. The aim of this study was to assess ssts in well differentiated (WDTC) and poorly differentiated thyroid cancer (PDTC) by means of imaging and molecular tools and its relationship with the efficacy of somatostatin analog treatment. Thirty-nine cases of thyroid carcinoma were evaluated (20 PDTC and 19 WDTC). Depreotide scintigraphy and mRNA levels of sst-subtypes, including the truncated variant sst5TMD4, were carried out. Depreotide scans were positive in the recurrent tumor in the neck in 6 of 11 (54%) PDTC, and in those with lung metastases in 5/11 cases (45.4%); sst5TMD4 was present in 18/20 (90%) of PDTC, being the most densely expressed sst-subtype, with a 20-fold increase in relation to sst2. In WDTC, sst2 was the most represented, while sst5TMD4 was not found; sst2 was significantly increased in PDTC in comparison to WDTC. Five depreotide positive PDTC received octreotide for 3–6 months in a pilot study with no changes in the size of the lesions in 3 of them, and a significant increase in the pulmonary and cervical lesions in the other 2. All PDTC patients treated with octreotide showed high expression of sst5TMD4. ROC curve analysis demonstrated that only sst5TMD4 discriminates between PDTC and WDTC. We conclude that sst5TMD4 is overexpressed in PDTC and may be involved in the lack of response to somatostatin analogue treatment.
Collapse
Affiliation(s)
- Manel Puig-Domingo
- Service of Endocrinology and Nutrition, Department of Medicine, Germans Trias i Pujol Health Science Research Institute and Hospital, Universitat Autònoma de Barcelona, Badalona, Spain
- * E-mail:
| | - Raúl M. Luque
- Department of Cell Biology, Physiology and Immunology University of Córdoba, Reina Sofía University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Jordi L. Reverter
- Service of Endocrinology and Nutrition, Department of Medicine, Germans Trias i Pujol Health Science Research Institute and Hospital, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Laura M. López-Sánchez
- Department of Cell Biology, Physiology and Immunology University of Córdoba, Reina Sofía University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Manuel D. Gahete
- Department of Cell Biology, Physiology and Immunology University of Córdoba, Reina Sofía University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | | | - Gonzalo Díaz-Soto
- Service of Endocrinology, Hospital Clínico de Valladolid, Valladolid, IEN-UVa, Valladolid, Spain
| | - Francisco Lomeña
- Service of Nuclear Medicine, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Mattia Squarcia
- Service of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - José Luis Mate
- Department of Pathology, Germans Trias i Pujol Health Science Research Institute and Hospital, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Mireia Mora
- Service of Endocrinology and Nutrition, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Oscar Vidal
- Service of Surgery, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Antonio Alastrué
- Service of General Surgery, Department of Surgery, Germans Trias i Pujol Health Science Research Institute and Hospital, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Jose Balibrea
- Service of General Surgery, Department of Surgery, Germans Trias i Pujol Health Science Research Institute and Hospital, Universitat Autònoma de Barcelona, Badalona, Spain
- Service of General Surgery, Department of Surgery, Vall d'Hebron Research Institute and Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irene Halperin
- Service of Endocrinology and Nutrition, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Dídac Mauricio
- Service of Endocrinology and Nutrition, Department of Medicine, Germans Trias i Pujol Health Science Research Institute and Hospital, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Justo P. Castaño
- Department of Cell Biology, Physiology and Immunology University of Córdoba, Reina Sofía University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| |
Collapse
|
26
|
Abstract
This paper summarizes the current understanding of the biology of somatostatin receptor (sst), role of immunotherapy in neuroendocrine tumor (NET), new agents for PPRT, and methods to assess response and clinical benefit in NET. One of the most interesting aspects of sst biology is the recent discovery of truncated variants of the sst5 receptor subtype with unique tissue distribution and response to somatostatin (SST). These truncated receptors are associated with bad patient prognosis, decreased response to SST analogs, and may be new targets for diagnoses and treatment. IFN remains a cost-effective agent, particularly in classic mid gut carcinoids, and there is interest to continue examining immunotherapy's in this disease. PRRT remains a key strategy for treatment and imaging. In addition to the classic agents, there are a series of new agents targeting other receptors such as the incretin receptors (GLP-1R; GIPR) and other G-protein coupled receptors with great potential. With regards to therapy monitoring, the most commonly used criteria are Response Criteria Evaluation in Solid Tumors (RECIST). However, for different reasons, these criteria are not very useful in NET. Incorporation of other criteria such as Choi as well as functional imaging assessment with PET would be of great interest in this area.
Collapse
|
27
|
Reubi JC, Schonbrunn A. Illuminating somatostatin analog action at neuroendocrine tumor receptors. Trends Pharmacol Sci 2013; 34:676-88. [PMID: 24183675 DOI: 10.1016/j.tips.2013.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 02/08/2023]
Abstract
Somatostatin analogs for the diagnosis and therapy of neuroendocrine tumors (NETs) have been used in clinical applications for more than two decades. Five somatostatin receptor subtypes have been identified and molecular mechanisms of somatostatin receptor signaling and regulation have been elucidated. These advances increased understanding of the biological role of each somatostatin receptor subtype, their distribution in NETs, as well as agonist-specific regulation of receptor signaling, internalization, and phosphorylation, particularly for the sst2 receptor subtype, which is the primary target of current somatostatin analog therapy for NETs. Various hypotheses exist to explain differences in patient responsiveness to somatostatin analog inhibition of tumor secretion and growth as well as differences in the development of tumor resistance to therapy. In addition, we now have a better understanding of the action of both first generation (octreotide, lanreotide, Octreoscan) and second generation (pasireotide) FDA-approved somatostatin analogs, including the biased agonistic character of some agonists. The increased understanding of somatostatin receptor pharmacology provides new opportunities to design more sophisticated assays to aid the future development of somatostatin analogs with increased efficacy.
Collapse
Affiliation(s)
- Jean Claude Reubi
- Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, Berne, Switzerland.
| | | |
Collapse
|
28
|
Mayr B, Buslei R, Theodoropoulou M, Stalla GK, Buchfelder M, Schöfl C. Molecular and functional properties of densely and sparsely granulated GH-producing pituitary adenomas. Eur J Endocrinol 2013; 169:391-400. [PMID: 23847328 DOI: 10.1530/eje-13-0134] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE GH-producing pituitary adenomas display two distinct morphological patterns of cytoplasmic GH-containing secretory granules, namely the densely and sparsely granulated somatotroph adenoma subtype. It is unknown whether these morphological variants reflect distinct pathophysiological entities at the molecular level. METHODS In 28 GH-producing adenoma tissues from a consecutive set of patients undergoing pituitary surgery for acromegaly, we studied the GH granulation pattern, the expression of somatostatin receptor subtypes (SSTR) as well as the calcium, cAMP and ZAC1 pathways in primary adenoma cell cultures. RESULTS The expression of GSP oncogene was similar between densely and sparsely granulated somatotroph adenoma cells. There were no differences in the calcium, cAMP and ZAC1 pathways as well as in their regulation by SSTR agonists. SSTR2 was exclusively expressed in densely but not in sparsely granulated tumours (membrane expression 86 vs 0%; cytoplasmic expression 67 vs 0%). By contrast, expression of SSTR5 was only found in sparsely but not in densely granulated somatotroph adenomas (membrane expression 29 vs 0%; cytoplasmic expression 57 vs 0%). CONCLUSIONS Our results indicate that different granulation patterns in GH-producing adenomas do not reflect differences in pathways and factors pivotal for somatotroph differentiation and function. In vitro, the vast majority of both densely and sparsely granulated tumour cells were responsive to SSTR activation at the molecular level. Sparsely granulated adenomas lacking SSTR2, but expressing SSTR5, might be responsive to novel SSTR agonists with increased affinity to SSTR5.
Collapse
Affiliation(s)
- Bernhard Mayr
- Division of Endocrinology and Diabetes, Department of Medicine I
| | | | | | | | | | | |
Collapse
|
29
|
Veenstra MJ, de Herder WW, Feelders RA, Hofland LJ. Targeting the somatostatin receptor in pituitary and neuroendocrine tumors. Expert Opin Ther Targets 2013; 17:1329-43. [DOI: 10.1517/14728222.2013.830711] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Mary S, Fehrentz JA, Damian M, Gaibelet G, Orcel H, Verdié P, Mouillac B, Martinez J, Marie J, Banères JL. Heterodimerization with Its splice variant blocks the ghrelin receptor 1a in a non-signaling conformation: a study with a purified heterodimer assembled into lipid discs. J Biol Chem 2013; 288:24656-65. [PMID: 23839942 DOI: 10.1074/jbc.m113.453423] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Heterodimerization of G protein-coupled receptors has an impact on their signaling properties, but the molecular mechanisms underlying heteromer-directed selectivity remain elusive. Using purified monomers and dimers reconstituted into lipid discs, we explored how dimerization impacts the functional and structural behavior of the ghrelin receptor. In particular, we investigated how a naturally occurring truncated splice variant of the ghrelin receptor exerts a dominant negative effect on ghrelin signaling upon dimerization with the full-length receptor. We provide direct evidence that this dominant negative effect is due to the ability of the non-signaling truncated receptor to restrict the conformational landscape of the full-length protein. Indeed, associating both proteins within the same disc blocks all agonist- and signaling protein-induced changes in ghrelin receptor conformation, thus preventing it from activating its cognate G protein and triggering arrestin 2 recruitment. This is an unambiguous demonstration that allosteric conformational events within dimeric assemblies can be directly responsible for modulation of signaling mediated by G protein-coupled receptors.
Collapse
Affiliation(s)
- Sophie Mary
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR 5247, Université Montpellier 1, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Oberg K, Casanovas O, Castaño JP, Chung D, Delle Fave G, Denèfle P, Harris P, Khan MS, Kulke MH, Scarpa A, Tang LH, Wiedenmann B. Molecular pathogenesis of neuroendocrine tumors: implications for current and future therapeutic approaches. Clin Cancer Res 2013; 19:2842-9. [PMID: 23459719 DOI: 10.1158/1078-0432.ccr-12-3458] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The treatment landscape and biologic understanding of neuroendocrine tumors (NET) has shifted dramatically in recent years. Recent studies have shown that somatostatin analogues have the potential not only to control symptoms of hormone hypersecretion but also have the ability to slow tumor growth in patients with advanced carcinoid. The results of clinical trials have further shown that the VEGF pathway inhibitor sunitinib and the mTOR inhibitor everolimus have efficacy in patients with advanced pancreatic NETs. The efficacy of these targeted therapies in NET suggests that the molecular characterization of NETs may provide an avenue to predict both which patients may benefit most from the treatment and to overcome potential drug resistance. Recent genomic studies of NETs have further suggested that pathways regulating chromatin remodeling and epigenetic modification may play a key role in regulating NET growth. These observations offer the potential for new therapeutic and diagnostic advances for patients with NET.
Collapse
Affiliation(s)
- Kjell Oberg
- Department of Endocrine Oncology, University Hospital, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Beckers A, Aaltonen LA, Daly AF, Karhu A. Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev 2013; 34:239-77. [PMID: 23371967 PMCID: PMC3610678 DOI: 10.1210/er.2012-1013] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pituitary adenomas are one of the most frequent intracranial tumors and occur with a prevalence of approximately 1:1000 in the developed world. Pituitary adenomas have a serious disease burden, and their management involves neurosurgery, biological therapies, and radiotherapy. Early diagnosis of pituitary tumors while they are smaller may help increase cure rates. Few genetic predictors of pituitary adenoma development exist. Recent years have seen two separate, complimentary advances in inherited pituitary tumor research. The clinical condition of familial isolated pituitary adenomas (FIPA) has been described, which encompasses the familial occurrence of isolated pituitary adenomas outside of the setting of syndromic conditions like multiple endocrine neoplasia type 1 and Carney complex. FIPA families comprise approximately 2% of pituitary adenomas and represent a clinical entity with homogeneous or heterogeneous pituitary adenoma types occurring within the same kindred. The aryl hydrocarbon receptor interacting protein (AIP) gene has been identified as causing a pituitary adenoma predisposition of variable penetrance that accounts for 20% of FIPA families. Germline AIP mutations have been shown to associate with the occurrence of large pituitary adenomas that occur at a young age, predominantly in children/adolescents and young adults. AIP mutations are usually associated with somatotropinomas, but prolactinomas, nonfunctioning pituitary adenomas, Cushing disease, and other infrequent clinical adenoma types can also occur. Gigantism is a particular feature of AIP mutations and occurs in more than one third of affected somatotropinoma patients. Study of pituitary adenoma patients with AIP mutations has demonstrated that these cases raise clinical challenges to successful treatment. Extensive research on the biology of AIP and new advances in mouse Aip knockout models demonstrate multiple pathways by which AIP may contribute to tumorigenesis. This review assesses the current clinical and therapeutic characteristics of more than 200 FIPA families and addresses research findings among AIP mutation-bearing patients in different populations with pituitary adenomas.
Collapse
Affiliation(s)
- Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, 4000 Liège, Belgium.
| | | | | | | |
Collapse
|
33
|
Stengel A, Rivier J, Taché Y. Modulation of the adaptive response to stress by brain activation of selective somatostatin receptor subtypes. Peptides 2013; 42:70-7. [PMID: 23287111 PMCID: PMC3633742 DOI: 10.1016/j.peptides.2012.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 01/06/2023]
Abstract
Somatostatin-14 was discovered in 1973 in the hypothalamus as a peptide inhibiting growth hormone release. Somatostatin interacts with five receptor subtypes (sst(1-5)) which are widely distributed in the brain with a distinct, but overlapping, expression pattern. During the last few years, the development of highly selective peptide agonists and antagonists provided new insight to characterize the role of somatostatin receptor subtypes in the pleiotropic actions of somatostatin. Recent evidence in rodents indicates that the activation of selective somatostatin receptor subtypes in the brain blunts stress-corticotropin-releasing factor (CRF) related ACTH release (sst2/5), sympathetic-adrenal activaton (sst5), stimulation of colonic motility (sst1), delayed gastric emptying (sst5), suppression of food intake (sst2) and the anxiogenic-like (sst2) response. These findings suggest that brain somatostatin signaling pathways may play an important role in dampening CRF-mediated endocrine, sympathetic, behavioral and visceral responses to stress.
Collapse
Affiliation(s)
- Andreas Stengel
- CURE: Digestive Diseases Research Center and Center for Neurovisceral Sciences & Women's Health, Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Division of Psychosomatic Medicine & Obesity Center Berlin, Department of Medicine, Charité Medical Center and University, Berlin, Germany
| | - Jean Rivier
- Peptide Biology Laboratories, Salk Institute, La Jolla, California, USA
| | - Yvette Taché
- CURE: Digestive Diseases Research Center and Center for Neurovisceral Sciences & Women's Health, Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Address: CURE: Digestive Diseases Research Center, Building 115, Room 117, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073, Phone: 310-312-9275, Fax: 1-310-268-4963,
| |
Collapse
|
34
|
Durán-Prado M, Gahete MD, Delgado-Niebla E, Martínez-Fuentes AJ, Vázquez-Martínez R, García-Navarro S, Gracia-Navarro F, Malagon MM, Luque RM, Castaño JP. Truncated variants of pig somatostatin receptor subtype 5 (sst5) act as dominant-negative modulators for sst2-mediated signaling. Am J Physiol Endocrinol Metab 2012; 303:E1325-34. [PMID: 23032684 DOI: 10.1152/ajpendo.00445.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Somatostatin (SST) and its related peptide cortistatin (CORT) exert their multiple actions through binding to the SST receptor (sst) family, generally considered to comprise five G protein-coupled receptors with seven transmembrane domains (TMD), named sst1-sst5, plus a splice sst2B variant. However, we recently discovered that human and rodent sst5 gene expression also generates, through noncanonical alternative splicing, novel truncated albeit functional sst5 variants with less than seven TMD. Here, we cloned and characterized for the first time the porcine wild-type sst5 (psst5, full-length) and identified two novel truncated psst5 variants with six and three TMD, thus termed psst5TMD6 and psst5TMD3, respectively. In line with that observed in human and rodent truncated sst5 variants, psst5TMD6 and psst5TMD3 are functional (e.g., activate calcium signaling), selectively respond to SST and CORT, respectively, and exhibit specific tissue expression profiles that differ from full-length psst5 and often overlaps with psst2 expression. Moreover, fluorescence resonance energy transfer analysis shows that psst5 truncated variants physically interact with psst2, thereby altering their localization at the plasma membrane and specifically disrupting the cellular response to SST and/or CORT. These results represent the first characterization of a key porcine SST receptor, psst5, and, together with our previous results, provide strong evidence that alternative splicing-derived, truncated sst5 variants with distinct functional capacities exist in the mammalian lineage, where they can act as dominant-negative receptors, by interacting directly with long, seven TMD variants, potentially contributing to modulate normal and pathological SST and CORT signaling.
Collapse
Affiliation(s)
- Mario Durán-Prado
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Reina Sofía University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba, and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ferone D. Italian Society of Endocrinology Career Award Lecture: from somatostatin to…somatomedin. J Endocrinol Invest 2012; 35:869-74. [PMID: 22932163 DOI: 10.3275/8583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Somatostatin plays different parts in hormonal regulation through 5 specific receptors in human body. It has two interesting actions such as an antisecretory activity, mostly on the gastrointestinal system and pituitary level, and an antiproliferative action on tumor cells. Many synthetic somatostatin analogues, more stable than the natural one, have been developed and two are already used in different clinical settings, including endocrine oncology. The inhibitory action on tumor growth may result from both indirect actions, namely the suppression of growth factors and growth-promoting hormones (e.g., GH/IGF-I axis) and inhibition of angiogenesis, as well as modulation of the immune system, and direct actions, such as activation of anti-growth activities (e.g., apoptosis). Recently, the development of specific polyclonal antibodies allowed the precise identification of the 5 specific somatostatin receptors and their localization in different cell species. Somatostatin receptor subtypes belong to the G protein-coupled receptor family, share a common molecular topology, and can traffic not only in vitro within different cell types but also in vivo. A picture of the pathways and proteins involved in these processes is beginning to emerge. Moreover, the process of homo- and/or heterodimerization of G-protein coupled receptors and receptor tyrosine kinase families are crucial for implicating the fundamental properties of receptor proteins including receptor expression, trafficking, and desensitization, as well as signal transduction. Furthermore, functional consequences of such an interaction in modulation of signaling pathways linked to pathological conditions specifically in cancer are discussed.
Collapse
Affiliation(s)
- D Ferone
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties & Center of Excellence for Biomedical Research, IRCCS AOU San Martino-IST, University of Genoa, Italy.
| |
Collapse
|
36
|
Tringali G, Greco MC, Lisi L, Pozzoli G, Navarra P. Cortistatin modulates the expression and release of corticotrophin releasing hormone in rat brain. Comparison with somatostatin and octreotide. Peptides 2012; 34:353-9. [PMID: 22342595 DOI: 10.1016/j.peptides.2012.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 12/19/2022]
Abstract
Cortistatin (CST) is an endogenous neuropeptide characterized by remarkable structural and functional resemblance to somatostatin (SST), both peptides sharing the ability to bind and activate all five SST receptor subtypes. Evidence is also available showing that CST exerts biological activities independently from SST, perhaps via the activation of specific receptors that remain to be fully characterized at present. Here we have investigated the effects of CST on the gene expression and release of corticotrophin releasing hormone (CRH) from rat hypothalamic and hippocampal explants; moreover, we compared the effects of CST with those of SST and octreotide (OCT) in these models. We found that: (i) CST inhibits the expression and release of CRH from rat hypothalamic and hippocampal explants under basal conditions as well as after CRH stimulation by well known secretagogues; (ii) SST does not modify basal CRH secretion from the hypothalamus or the hippocampus, while it is able to reduce KCl-stimulated CRH release from both brain areas; (iii) OCT inhibits both basal and KCl-induced CRH secretion from rat hypothalamic explants, while it has no effect on CRH release from the hippocampus, either under basal conditions or after stimulation by high K(+) concentrations; (iv) at variance with CST; SST and OCT have not effect whatsoever on veratridine-induced CRH release from the hypothalamus. In conclusion the present findings provide in vitro evidence in support of the hypothesis that CST plays a role in the regulation of endocrine adaptive responses to stress.
Collapse
Affiliation(s)
- Giuseppe Tringali
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy.
| | | | | | | | | |
Collapse
|
37
|
Martel G, Dutar P, Epelbaum J, Viollet C. Somatostatinergic systems: an update on brain functions in normal and pathological aging. Front Endocrinol (Lausanne) 2012; 3:154. [PMID: 23230430 PMCID: PMC3515867 DOI: 10.3389/fendo.2012.00154] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/20/2012] [Indexed: 11/29/2022] Open
Abstract
Somatostatin is highly expressed in mammalian brain and is involved in many brain functions such as motor activity, sleep, sensory, and cognitive processes. Five somatostatin receptors have been described: sst(1), sst(2) (A and B), sst(3), sst(4), and sst(5), all belonging to the G-protein-coupled receptor family. During the recent years, numerous studies contributed to clarify the role of somatostatin systems, especially long-range somatostatinergic interneurons, in several functions they have been previously involved in. New advances have also been made on the alterations of somatostatinergic systems in several brain diseases and on the potential therapeutic target they represent in these pathologies.
Collapse
Affiliation(s)
| | | | | | - Cécile Viollet
- *Correspondence: Cécile Viollet, Inserm UMR894 - Center for Psychiatry and Neuroscience, Université Paris Descartes, Sorbonne Paris Cité, 2 ter rue d’Alésia, 75014 Paris, France. e-mail:
| |
Collapse
|
38
|
Moncayo R. Reflections on the theory of "silver bullet" octreotide tracers: implications for ligand-receptor interactions in the age of peptides, heterodimers, receptor mosaics, truncated receptors, and multifractal analysis. EJNMMI Res 2011; 1:9. [PMID: 22214590 PMCID: PMC3251005 DOI: 10.1186/2191-219x-1-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/26/2011] [Indexed: 12/25/2022] Open
Abstract
The classical attitude of Nuclear Medicine practitioners on matters of peptide-receptor interactions has maintained an intrinsic monogamic character since many years. New advances in the field of biochemistry and even in clinical Nuclear Medicine have challenged this type of thinking, which prompted me to work on this review. The central issue of this paper will be the use of somatostatin analogs, i.e., octreotide, in clinical imaging procedures as well as in relation to neuroendocirne tumors. Newly described characteristics of G-protein coupled receptors such as the formation of receptor mosaics will be discussed. A small section will enumerate the regulatory processes found in the cell membrane. Possible new interpretations, other than tumor detection, based on imaging procedures with somatostatin analogs will be presented. The readers will be taken to situations such as inflammation, nociception, mechanosensing, chemosensing, fibrosis, taste, and vascularity where somatostatin is involved. Thyroid-associated orbitopathy will be used as a model for the development of multi-agent therapeutics. The final graphical summary depicts the multifactorial properties of ligand binding.
Collapse
Affiliation(s)
- Roy Moncayo
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
39
|
Abstract
A short historical review from the early days of neuroendocrinology is presented recognizing hormones secreted by the pituitary gland; control of its functions by nuclei of the hypothalamus through the release of unknown substances in special capillary vessels; characterization of these releasing factors as peptides; studies of their mode of action; their use in clinical medicine; new and still ongoing demonstration of their ubiquity though not random in the brain and peripheral organs; and recent implications in control of behavior in animals and humans.
Collapse
Affiliation(s)
- Roger Guillemin
- The Salk Institute for Biological Studies, La Jolla, California, USA.
| |
Collapse
|