1
|
Gurgul AA, Najjar Y, Chee A, An H, Che CT, Park TJ, Warpeha KM. Phenylpropanoid-enriched broccoli seedling extract can reduce inflammatory markers and pain behavior. J Transl Med 2023; 21:922. [PMID: 38115032 PMCID: PMC10731810 DOI: 10.1186/s12967-023-04777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Pain is a worldwide problem requiring an effective, affordable, non-addictive therapy. Using the edible plant broccoli, a growth protocol was developed to induce a concentrated combinatorial of potential anti-inflammatories in seedlings. METHODS A growth method was utilized to produce a phenylpropanoid-rich broccoli sprout extract, referred to as Original Extract (OE). OE was concentrated and then resuspended for study of the effects on inflammation events. A rabbit disc model of inflammation and degeneration, and, a mouse model of pain behavior were used for in vivo and in vitro tests. To address aspects of mammalian metabolic processing, the OE was treated with the S9 liver microsome fraction derived from mouse, for use in a mouse in vivo study. Analytical chemistry was performed to identify major chemical species. Continuous variables were analyzed with a number of methods including ANOVA, and two-tailed t tests, as appropriate. RESULTS In a rabbit spine (disc) injury model, inflammatory markers were reduced, and levels of regenerative markers were increased as a result of OE treatment, both in vivo and in vitro. In a mouse pain behavioral model, after treatment with S9 liver microsome fraction, the resultant extract significantly reduced early and late pain behavior in response to a pain stimulus. The OE itself reduced pain behavior in the mouse pain model, but did not achieve the level of significance observed for S9-treated extract. Analytical chemistry undertaken on the extract constituents revealed identities of the chemical species in OE, and how S9 liver microsome fraction treatment altered species identities and proportions. CONCLUSIONS In vitro and in vivo results indicate that the OE, and S9-treated OE broccoli extracts are worthwhile materials to develop a non-opiate inflammation and pain-reducing treatment.
Collapse
Affiliation(s)
- Aleksandra A Gurgul
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Yahya Najjar
- Department of Biological Sciences, University of Illinois Chicago, 900 S Ashland Ave, M/C 567, Chicago, IL, 60607, USA
| | - Ana Chee
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Howard An
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Chun-Tao Che
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Thomas J Park
- Department of Biological Sciences, University of Illinois Chicago, 900 S Ashland Ave, M/C 567, Chicago, IL, 60607, USA
| | - Katherine M Warpeha
- Department of Biological Sciences, University of Illinois Chicago, 900 S Ashland Ave, M/C 567, Chicago, IL, 60607, USA.
| |
Collapse
|
2
|
The 7-Hydroxyflavone attenuates chemotherapy-induced neuropathic pain by targeting inflammatory pathway. Int Immunopharmacol 2022; 107:108674. [PMID: 35276461 DOI: 10.1016/j.intimp.2022.108674] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 12/19/2022]
Abstract
Vincristine and paclitaxel are widely used chemotherapeutic drugs for the treatment of brain tumors, breast cancer, leukemia, lymphomas, and malignant solid tumors. Though, these drugs are associated with some severe adverse effects including peripheral neuropathic pain. The anti-nociceptive and anti-inflammatory properties of the 7-Hydroxyflavone (7HF) were evaluated in the mice using thermally- and chemically-induced nociception, naloxone antagonistic test, and carrageenan-induced paw edema models. Initially, the in-vitro cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitory assays were carried out. Peripheral neuropathic pain was induced in the Sprague Dawley (SD) rats by administration of paclitaxel (4 mg/kg) and vincristine (200 µg/kg) on days 1, 3, 5, 7, and 9, respectively. The protective effect of 7HF was assessed against the chemotherapy-induced peripheral neuropathy in the rats. Moreover, the expression of the inflammatory mediators in the spinal cord was investigated through RT-PCR. In addition, a computational study was performed to find the potential therapeutic targets and the binding mechanism of 7HF. The 7HF caused concentration-dependent inhibition of COX-2 and 5-LOX, it attenuated the nociceptive pain, carrageenan-induced paw edema, and the development of mechanical and cold allodynia, and hyperalgesia dose-dependently without causing motor coordination deficit. Likewise, the 7HF decreased the vincristine-induced increased expression of different inflammatory mediators including COX-2, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and nuclear factor-kappa B (NF-κB). The computational study showed the effective interactions of 7HF with the binding sites of NF-κB, COX-2, and 5-LOX, exert its inhibitory activities. These findings reveal that the 7HF has anti-nociceptive, anti-inflammatory, and anti-neuropathic potentials.
Collapse
|
3
|
Naveed M, Ullah R, Khan A, Shal B, Khan AU, Khan SZ, Rehman ZU, Khan S. Anti-neuropathic pain activity of a cationic palladium (II) dithiocarbamate by suppressing the inflammatory mediators in paclitaxel-induced neuropathic pain model. Mol Biol Rep 2021; 48:7647-7656. [PMID: 34734371 DOI: 10.1007/s11033-021-06754-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neuropathic pain is a chronic pain state that negatively impacts the quality of life. Currently, available therapies for the treatment of neuropathic pain often lack efficacy and tolerability. Therefore, the search for novel drugs is crucial to obtain treatments that effectively suppress neuropathic pain. OBJECTIVES The present study was undertaken to investigate the antinociceptive properties of (1,4-bis-(diphenylphosphino) butane) palladium (II) chloride monohydrate (Compound 1) in a paclitaxel (PTX)-induced neuropathic pain model. METHODS Initially, behavioral tests such as mechanical and cold allodynia as well as thermal and tail immersion hyperalgesia were performed to investigate the antinociceptive potential of Compound 1 (5 and 10 mg/kg, b.w). RT-PCR was performed to determine the effect of Compound 1 on the mRNA expression level of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and proinflammatory cytokines such as tumor necrosis factor-alpha (TNF)-α, interleukin (IL)-1β, and IL-6. In addition, antioxidant protein, nitric oxide (NO), and malondialdehyde (MDA) levels were also determined. RESULTS The results demonstrated that once-daily dosing of Compound 1 significantly suppressed the PTX-induced behavioral pain responses dose-dependently. The mRNA gene expressions of iNOS, COX-2, and inflammatory cytokines were markedly reduced by Compound 1. Furthermore, it enhanced the level of antioxidant enzymes and lowered the level of MDA and NO production. CONCLUSION These findings suggest that the antinociceptive potential of Compound 1 in the PTX-induced neuropathic pain model is via suppression of oxidative stress and inflammation. Thus, Compound 1 might be a potential candidate for the therapeutic management of PTX induced neuropathic pain.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Shahan Zeb Khan
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Chemistry, University of Science and Technology, KPK, Bannu, 28100, Pakistan
| | - Zia Ur Rehman
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| |
Collapse
|
4
|
Truffyn EE, Moayedi M, Brown SC, Ruskin D, Duerden EG. Sensory Function and Psychological Factors in Children With Complex Regional Pain Syndrome Type 1. J Child Neurol 2021; 36:823-830. [PMID: 33882728 PMCID: PMC8438776 DOI: 10.1177/08830738211007685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To assess thermal-sensory thresholds and psychosocial factors in children with Complex Regional Pain Syndrome Type 1 (CRPS-I) compared to healthy children. METHODS We conducted quantitative sensory testing on 34 children with CRPS-I and 56 pain-free children. Warm, cool, heat, and cold stimuli were applied to the forearm. Children with CRPS-I had the protocol administered to the pain site and the contralateral-pain site. Participants completed the self-report Behavior Assessment System for Children. RESULTS Longer pain durations (>5.1 months) were associated with decreased sensitivity to cold pain on the pain site (P = .04). Higher pain-intensity ratings were associated with elevated anxiety scores (P = .03). Anxiety and social stress were associated with warmth sensitivity (both P < .05) on the contralateral-pain site. CONCLUSIONS Pain duration is an important factor in assessing pediatric CRPS-I. Hyposensitivity in the affected limb may emerge due to degeneration of nociceptive nerves. Anxiety may contribute to thermal-sensory perception in childhood CRPS-I.
Collapse
Affiliation(s)
- Emma E. Truffyn
- Applied Psychology, Western University, London, Ontario, Canada
| | - Massieh Moayedi
- Centre for Multimodal Sensorimotor and Pain Research, University of Toronto, Toronto, Ontario, Canada
| | - Stephen C. Brown
- Department of Anaesthesia and Pain Medicine, The Hospital for Sick Children, and University of Toronto, Toronto, Ontario, Canada
| | - Danielle Ruskin
- Centre for Multimodal Sensorimotor and Pain Research, University of Toronto, Toronto, Ontario, Canada
| | - Emma G. Duerden
- Applied Psychology, Western University, London, Ontario, Canada
- Children’s Health Research Institute, London, Ontario, Canada
- Emma G. Duerden, PhD, Applied Psychology, Faculty of Education, 1137 Western Rd, London, Ontario, Canada N6G 1G7.
| |
Collapse
|
5
|
Abed AR, Abed A, Banafshe HR, Malekabad ES, Gorgani-Firuzjaee S, Dadashi AR. Effect of biotin supplementation on neuropathic pain induced by chronic constriction of the sciatic nerve in the rat. Res Pharm Sci 2021; 16:250-259. [PMID: 34221058 PMCID: PMC8216157 DOI: 10.4103/1735-5362.314823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 10/15/2020] [Accepted: 03/17/2021] [Indexed: 11/04/2022] Open
Abstract
Background and purpose Neuropathic pain is one of the most common types of chronic pain that is very difficult to treat. Numerous studies have shown the potential role of vitamins in relieving both hyperalgesia and allodynia. Based on the convincing evidence, this study was designed to evaluate the possible antinociceptive effect of biotin on neuropathic pain in rats. Experimental approach This study was performed on male Sprague Dawley rats weighing 200-300 g. Neuropathic pain was induced by tying the sciatic nerve. Chronic constriction injury (CCI) of the sciatic nerve resulted in hyperalgesia and allodynia. To measure the thermal hyperalgesia, the plantar test was used. Also to evaluate the cold and mechanical allodynia, acetone test and von Frey test were applied. Biotin (4, 8, and 16 mg/kg) was administered orally as two different treatment regimens, acute and chronic. Findings/Results Acute oral administration of biotin (4, 8, and 16 mg/kg p.o.) on the 7th, 14th, and 21st postoperative days couldn't reduce pain sensitivity compared to the CCI group. However, following the oral administration of biotin (8 and 16 mg/kg p.o.) from the first day after the surgery until day 21, mechanical allodynia (P < 0.001) and heat hyperalgesia (P < 0.05) significantly relieved. Conclusion and implications Our results suggest that biotin can be considered as a potential therapeutic for the treatment of neuropathic pain, and supplementation with this vitamin could reduce the required doses of analgesic drugs. However, further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Ali-Reza Abed
- Department of Clinical Biochemistry, Army University of Medical Sciences (AJA), Tehran, I.R. Iran
| | - Alireza Abed
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, I.R. Iran.,Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Hamid Reza Banafshe
- Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | | | - Sattar Gorgani-Firuzjaee
- Department of Clinical Biochemistry, Army University of Medical Sciences (AJA), Tehran, I.R. Iran
| | - Ali-Reza Dadashi
- Department of Infectious Diseases, Army University of Medical Sciences (AJA), Tehran, I.R. Iran
| |
Collapse
|
6
|
Ullah R, Ali G, Subhan F, Naveed M, Khan A, Khan J, Halim SA, Ahmad N, Zakiullah, Al-Harrasi A. Attenuation of nociceptive and paclitaxel-induced neuropathic pain by targeting inflammatory, CGRP and substance P signaling using 3-Hydroxyflavone. Neurochem Int 2021; 144:104981. [PMID: 33549629 DOI: 10.1016/j.neuint.2021.104981] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/13/2022]
Abstract
Paclitaxel is an anti-microtubule agent, most widely used chemotherapeutic agent for the treatment of malignant solid tumors. However, it is associated with some severe side effects including painful neurotoxicity with reporting of neuropathic pain and sensory abnormalities by patients during and after paclitaxel therapy. Peripheral neuropathy was induced by the administration of paclitaxel (4 mg/kg on days 1, 3, 5, and 7). In this study, the anti-nociceptive and anti-inflammatory propensity of 3-Hydroxyflavone (3HF) in mice and the preventive effect of 3HF against paclitaxel-induced peripheral neuropathy in Sprague Dawley (SD) rats were investigated. Moreover, tactile and cold allodynia, thermal and tail immersion hyperalgesia, and effects on motor-coordination were also evaluated. Furthermore, the expression of proinflammatory cytokines i.e. Calcitonin gene-related peptide (CGRP), and Substance P from the spinal cord was examined through RT-PCR. Additionally, a computational structural biology approach was applied to search the potential therapeutic targets and to predict the binding mechanism of 3HF. Treatment of 3HF alleviated the nociceptive pain, paw edema, development of tactile and cold allodynia, and hyperalgesia. Similarly, treatment with 3HF suppressed the paclitaxel-induced increase in mRNA expression of several inflammatory cytokines including tumor necrosis factor -α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), CGRP, and Substance P. However, the daily treatment of 3HF did not affect the motor behaviors of rats. The inhibitory mechanism of 3HF in neuropathic pain is predicted with extensive computational bioinformatics approach which indicates that the 3HF effectively interacts with the binding domains of Nuclear factor-kappa B (NF-κB), CGRP receptor and the receptor of Substance P to exert its inhibitory activities. However, the computationally predicted binding affinities revealed that the potential of binding of the compound with Substance P receptor (Neurokinin 1 receptor) is higher than the other receptors; there NK1R could be the most possible binding target of 3HF. These findings indicate that 3HF has anti-nociceptive, anti-inflammatory, and anti-neuropathic pain effects against paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Fazal Subhan
- Department of Pharmacy, Cecos University of Science and Technology, Peshawar, Pakistan.
| | - Muhammad Naveed
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Oman.
| | - Jawad Khan
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Oman.
| | - Nisar Ahmad
- Department of Pharmacy, National University of Pakistan, Pasrur Road, Sialkot, Punjab, Pakistan.
| | - Zakiullah
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Oman.
| |
Collapse
|
7
|
Martelli A, Citi V, Testai L, Brogi S, Calderone V. Organic Isothiocyanates as Hydrogen Sulfide Donors. Antioxid Redox Signal 2020; 32:110-144. [PMID: 31588780 DOI: 10.1089/ars.2019.7888] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Hydrogen sulfide (H2S), the "new entry" in the series of endogenous gasotransmitters, plays a fundamental role in regulating the biological functions of various organs and systems. Consequently, the lack of adequate levels of H2S may represent the etiopathogenetic factor of multiple pathological alterations. In these diseases, the use of H2S donors represents a precious and innovative opportunity. Recent Advances: Natural isothiocyanates (ITCs), sulfur compounds typical of some botanical species, have long been investigated because of their intriguing pharmacological profile. Recently, the ITC moiety has been proposed as a new H2S-donor chemotype (with a l-cysteine-mediated reaction). Based on this recent discovery, we can clearly observe that almost all the effects of natural ITCs can be explained by the H2S release. Consistently, the ITC function was also used as an original H2S-releasing moiety for the design of synthetic H2S donors and original "pharmacological hybrids." Very recently, the chemical mechanism of H2S release, resulting from the reaction between l-cysteine and some ITCs, has been elucidated. Critical Issues: Available literature gives convincing demonstration that H2S is the real player in ITC pharmacology. Further, countless studies have been carried out on natural ITCs, but this versatile moiety has been used only rarely for the design of synthetic H2S donors with optimal drug-like properties. Future Directions: The development of more ITC-based synthetic H2S donors with optimal drug-like properties and selectivity toward specific tissues/pathologies seem to represent a stimulating and indispensable prospect of future experimental activities.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Moore BR, Islam B, Ward S, Jackson O, Armitage R, Blackburn J, Haider S, McHugh PC. Repurposing of Tranilast for Potential Neuropathic Pain Treatment by Inhibition of Sepiapterin Reductase in the BH 4 Pathway. ACS OMEGA 2019; 4:11960-11972. [PMID: 31460307 PMCID: PMC6682008 DOI: 10.1021/acsomega.9b01228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/26/2019] [Indexed: 05/08/2023]
Abstract
Tetrahydrobiopterin (BH4) is a cofactor in the production of various signaling molecules including nitric oxide, dopamine, adrenaline, and noradrenaline. BH4 levels are critical for processes associated with cardiovascular function, inflammation, mood, pain, and neurotransmission. Increasing pieces of evidence suggest that BH4 is upregulated in chronic pain. Sepiapterin reductase (SPR) catalyzes both the reversible reduction of sepiapterin to dihydrobiopterin (BH2) and 6-pyruvoyl-tetrahydrobiopterin to BH4 within the BH4 pathway. Therefore, inhibition of SPR by small molecules can be used to control BH4 production and ultimately alleviate chronic pain. Here, we have used various in silico and in vitro experiments to show that tranilast, licensed for use in bronchial asthma, can inhibit sepiapterin reduction by SPR. Docking and molecular dynamics simulations suggest that tranilast can bind to human SPR (hSPR) at the same site as sepiapterin including S157, one of the catalytic triad residues of hSPR. Colorimetric assays revealed that tranilast was nearly twice as potent as the known hSPR inhibitor, N-acetyl serotonin. Tranilast was able to inhibit hSPR activity both intracellularly and extracellularly in live cells. Triple quad mass spectrophotometry of cell lysates showed a proportional decrease of BH4 in cells treated with tranilast. Our results suggest that tranilast can act as a potent hSPR inhibitor and therefore is a valid candidate for drug repurposing in the treatment of chronic pain.
Collapse
Affiliation(s)
- Benjamin
J. R. Moore
- Centre
for Biomarker Research, School of Applied Sciences, Department of Pharmacy,
School of Applied Sciences, Innovative Physical Organic Solutions (IPOS), Department
of Chemical and Biological Sciences, and Department of Chemical Sciences,
School of Applied Sciences, University of
Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
| | - Barira Islam
- Centre
for Biomarker Research, School of Applied Sciences, Department of Pharmacy,
School of Applied Sciences, Innovative Physical Organic Solutions (IPOS), Department
of Chemical and Biological Sciences, and Department of Chemical Sciences,
School of Applied Sciences, University of
Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
| | - Sean Ward
- Centre
for Biomarker Research, School of Applied Sciences, Department of Pharmacy,
School of Applied Sciences, Innovative Physical Organic Solutions (IPOS), Department
of Chemical and Biological Sciences, and Department of Chemical Sciences,
School of Applied Sciences, University of
Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
| | - Olivia Jackson
- Centre
for Biomarker Research, School of Applied Sciences, Department of Pharmacy,
School of Applied Sciences, Innovative Physical Organic Solutions (IPOS), Department
of Chemical and Biological Sciences, and Department of Chemical Sciences,
School of Applied Sciences, University of
Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
| | - Rebecca Armitage
- Centre
for Biomarker Research, School of Applied Sciences, Department of Pharmacy,
School of Applied Sciences, Innovative Physical Organic Solutions (IPOS), Department
of Chemical and Biological Sciences, and Department of Chemical Sciences,
School of Applied Sciences, University of
Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
| | - Jack Blackburn
- Centre
for Biomarker Research, School of Applied Sciences, Department of Pharmacy,
School of Applied Sciences, Innovative Physical Organic Solutions (IPOS), Department
of Chemical and Biological Sciences, and Department of Chemical Sciences,
School of Applied Sciences, University of
Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
| | - Shozeb Haider
- UCL
School of Pharmacy, 29−39 Brunswick Square, London WC1N 1AX, U.K.
| | - Patrick C. McHugh
- Centre
for Biomarker Research, School of Applied Sciences, Department of Pharmacy,
School of Applied Sciences, Innovative Physical Organic Solutions (IPOS), Department
of Chemical and Biological Sciences, and Department of Chemical Sciences,
School of Applied Sciences, University of
Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
- E-mail: . Phone: +(44) 1484 472074. Fax: +(44) 1484 472182
| |
Collapse
|
9
|
Liu MX, Zhong J, Xia L, Dou NN, Li ST. A correlative analysis between inflammatory cytokines and trigeminal neuralgia or hemifacial spasm. Neurol Res 2019; 41:335-340. [PMID: 30612530 DOI: 10.1080/01616412.2018.1564188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND It is necessary to understand the mechanism of trigeminal neuralgia (TN) and hemifacial spasm (HFS) in order to seek for an effective noninvasive remedy. As previous studies implied that inflammatory cytokines induced by demyelination following the nerve injury may be the initiated factor causing neuropathic pain, we attempt to analyze the correlation between cytokines and these hyperactive cranial nerve disorders. METHOD The consecutive patients whose diagnosis were confirmed by microvascular decompression surgery as primary TN or HFS caused by vascular compression and healthy volunteers between March and May 2018 in XinHua Hospital Shanghai JiaoTong University School of Medicine were recruited. Preoperatively, venous blood was collected and the protein concentrations of IL-1β, IL-2, IL-6, IL-8, IL-10, TNF-α and IFN-γ were determined with ELISA. Each cytokine was compared between the patients and healthy volunteers. RESULTS Ultimately, 28 healthy volunteers as well as 44 TN and 47 HFS patients were enrolled in this investigation. The serum levels of IL-1β, IL-6, IL-8 and TNF-α in either HFS or TN patients were significantly higher than that in healthy volunteers (p < 0.05), yet which were similar between TN and HFS patients (p > 0.05). Besides, there was a significantly correlation between IL-6 concentration and severity of HFS (r = 0.933, p < 0.05) or TN (r = 0.943, p < 0.05). DISCUSSION Vascular compression of trigeminal or facial nerve roots may induce a rise in variety of cytokines, and IL-6 may play an important role in the signaling pathways to generate ectopic impulses from these cranial nerves.
Collapse
Affiliation(s)
- Ming-Xing Liu
- a Department of Neurosurgery , XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Jun Zhong
- a Department of Neurosurgery , XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Lei Xia
- a Department of Neurosurgery , XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Ning-Ning Dou
- a Department of Neurosurgery , XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Shi-Ting Li
- a Department of Neurosurgery , XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| |
Collapse
|
10
|
Gada K, Plant LD. Two-pore domain potassium channels: emerging targets for novel analgesic drugs: IUPHAR Review 26. Br J Pharmacol 2018; 176:256-266. [PMID: 30325008 DOI: 10.1111/bph.14518] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/23/2018] [Accepted: 08/18/2018] [Indexed: 01/02/2023] Open
Abstract
Chronic pain is a debilitating and increasingly common medical problem with few effective treatments. In addition to the direct and indirect economic burden of pain syndromes, the concomitant increase in prescriptions for narcotics has contributed to a sharp rise in deaths associated with drug misuse - the 'opioid crisis'. Together, these issues highlight the unmet clinical and social need for a new generation of safe, efficacious analgesics. The detection and transmission of pain stimuli is largely mediated by somatosensory afferent fibres of the dorsal root ganglia. These nociceptive cells express an array of membrane proteins that have received significant attention as attractive targets for new pain medications. Among these, a growing body of evidence supports a role for the two-pore domain potassium (K2P) family of K+ channels. Here, we provide a concise review of the K2P channels, their role in pain biology and their potential as targets for novel analgesic agents.
Collapse
Affiliation(s)
- Kirin Gada
- Department of Pharmaceutical Sciences in the School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Leigh D Plant
- Department of Pharmaceutical Sciences in the School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
11
|
Yezierski RP, Hansson P. Inflammatory and Neuropathic Pain From Bench to Bedside: What Went Wrong? THE JOURNAL OF PAIN 2018; 19:571-588. [DOI: 10.1016/j.jpain.2017.12.261] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/29/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022]
|
12
|
Taneja A, Della Pasqua O, Danhof M. Challenges in translational drug research in neuropathic and inflammatory pain: the prerequisites for a new paradigm. Eur J Clin Pharmacol 2017; 73:1219-1236. [PMID: 28894907 PMCID: PMC5599481 DOI: 10.1007/s00228-017-2301-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/03/2017] [Indexed: 12/21/2022]
Abstract
AIM Despite an improved understanding of the molecular mechanisms of nociception, existing analgesic drugs remain limited in terms of efficacy in chronic conditions, such as neuropathic pain. Here, we explore the underlying pathophysiological mechanisms of neuropathic and inflammatory pain and discuss the prerequisites and opportunities to reduce attrition and high-failure rate in the development of analgesic drugs. METHODS A literature search was performed on preclinical and clinical publications aimed at the evaluation of analgesic compounds using MESH terms in PubMed. Publications were selected, which focused on (1) disease mechanisms leading to chronic/neuropathic pain and (2) druggable targets which are currently under evaluation in drug development. Attention was also given to the role of biomarkers and pharmacokinetic-pharmacodynamic modelling. RESULTS Multiple mechanisms act concurrently to produce pain, which is a non-specific manifestation of underlying nociceptive pathways. Whereas these manifestations can be divided into neuropathic and inflammatory pain, it is now clear that inflammatory mechanisms are a common trigger for both types of pain. This has implications for drug development, as the assessment of drug effects in experimental models of neuropathic and chronic pain is driven by overt behavioural measures. By contrast, the use of mechanistic biomarkers in inflammatory pain has provided the pharmacological basis for dose selection and evaluation of non-steroidal anti-inflammatory drugs (NSAIDs). CONCLUSION A different paradigm is required for the identification of relevant targets and candidate molecules whereby pain is coupled to the cause of sensorial signal processing dysfunction rather than clinical symptoms. Biomarkers which enable the characterisation of drug binding and target activity are needed for a more robust dose rationale in early clinical development. Such an approach may be facilitated by quantitative clinical pharmacology and evolving technologies in brain imaging, allowing accurate assessment of target engagement, and prediction of treatment effects before embarking on large clinical trials.
Collapse
Affiliation(s)
- A Taneja
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - O Della Pasqua
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, Uxbridge, UK.,Clinical Pharmacology & Therapeutics Group, University College London, London, UK
| | - M Danhof
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
13
|
Segal JP, Tresidder KA, Bhatt C, Gilron I, Ghasemlou N. Circadian control of pain and neuroinflammation. J Neurosci Res 2017; 96:1002-1020. [PMID: 28865126 DOI: 10.1002/jnr.24150] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/26/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
Abstract
The importance of a neuroinflammatory response to the development and maintenance of inflammatory and neuropathic pain have been highlighted in recent years. Inflammatory cells contributing to this response include circulating immune cells such as monocytes, T and B lymphocytes, and neutrophils, as well as microglia in the central nervous system. Pain signals are transmitted via sensory neurons in the peripheral nervous system, which express various receptors and channels that respond to mediators secreted from these inflammatory cells. Chronobiological rhythms, which include the 24-hr circadian cycle, have recently been shown to regulate both nervous and immune cell activity and function. This review examines the current literature on chronobiological control of neuroinflammatory processes, with a focus on inflammatory and neuropathic pain states. While the majority of this work has stemmed from observational studies in humans, recent advances in using animal models have highlighted distinct mechanisms underlying these interactions. Better understanding interactions between the circadian and neuroimmune systems can help guide the development of new treatments and provide improved care for patients suffering from acute and chronic pain.
Collapse
Affiliation(s)
- Julia P Segal
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kaitlyn A Tresidder
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Charvi Bhatt
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Ian Gilron
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Anesthesiology & Perioperative Medicine, Queen's University, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Anesthesiology & Perioperative Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
14
|
Calcineurin Dysregulation Underlies Spinal Cord Injury-Induced K + Channel Dysfunction in DRG Neurons. J Neurosci 2017; 37:8256-8272. [PMID: 28751455 DOI: 10.1523/jneurosci.0434-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/26/2022] Open
Abstract
Dysfunction of the fast-inactivating Kv3.4 potassium current in dorsal root ganglion (DRG) neurons contributes to the hyperexcitability associated with persistent pain induced by spinal cord injury (SCI). However, the underlying mechanism is not known. In light of our previous work demonstrating modulation of the Kv3.4 channel by phosphorylation, we investigated the role of the phosphatase calcineurin (CaN) using electrophysiological, molecular, and imaging approaches in adult female Sprague Dawley rats. Pharmacological inhibition of CaN in small-diameter DRG neurons slowed repolarization of the somatic action potential (AP) and attenuated the Kv3.4 current. Attenuated Kv3.4 currents also exhibited slowed inactivation. We observed similar effects on the recombinant Kv3.4 channel heterologously expressed in Chinese hamster ovary cells, supporting our findings in DRG neurons. Elucidating the molecular basis of these effects, mutation of four previously characterized serines within the Kv3.4 N-terminal inactivation domain eliminated the effects of CaN inhibition on the Kv3.4 current. SCI similarly induced concurrent Kv3.4 current attenuation and slowing of inactivation. Although there was little change in CaN expression and localization after injury, SCI induced upregulation of the native regulator of CaN 1 (RCAN1) in the DRG at the transcript and protein levels. Consistent with CaN inhibition resulting from RCAN1 upregulation, overexpression of RCAN1 in naive DRG neurons recapitulated the effects of pharmacological CaN inhibition on the Kv3.4 current and the AP. Overall, these results demonstrate a novel regulatory pathway that links CaN, RCAN1, and Kv3.4 in DRG neurons. Dysregulation of this pathway might underlie a peripheral mechanism of pain sensitization induced by SCI.SIGNIFICANCE STATEMENT Pain sensitization associated with spinal cord injury (SCI) involves poorly understood maladaptive modulation of neuronal excitability. Although central mechanisms have received significant attention, recent studies have identified peripheral nerve hyperexcitability as a driver of persistent pain signaling after SCI. However, the ion channels and signaling molecules responsible for this change in primary sensory neuron excitability are still not well defined. To address this problem, this study used complementary electrophysiological and molecular methods to determine how Kv3.4, a voltage-gated K+ channel robustly expressed in dorsal root ganglion neurons, becomes dysfunctional upon calcineurin (CaN) inhibition. The results strongly suggest that CaN inhibition underlies SCI-induced dysfunction of Kv3.4 and the associated excitability changes through upregulation of the native regulator of CaN 1 (RCAN1).
Collapse
|
15
|
Shih HC, Kuan YH, Shyu BC. Targeting brain-derived neurotrophic factor in the medial thalamus for the treatment of central poststroke pain in a rodent model. Pain 2017; 158:1302-1313. [PMID: 28394853 PMCID: PMC5472007 DOI: 10.1097/j.pain.0000000000000915] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/15/2017] [Accepted: 03/27/2017] [Indexed: 12/17/2022]
Abstract
Approximately 7% to 10% of patients develop a chronic pain syndrome after stroke. This chronic pain condition is called central poststroke pain (CPSP). Recent studies have observed an abnormal increase in the secretion of brain-derived neurotrophic factor (BDNF) in spinal cord tissue after spinal cord injury. An animal model of CPSP was established by an intrathalamus injection of collagenase. Mechanical and thermal allodynia was induced after lesions of the thalamic ventral basal complex in rats. Four weeks after the injection, the number of neurons decreased, the number of astrocytes, microglia, and P2X4 receptors increased, and BDNF mRNA expression increased in the brain lesion area. Nociceptive activity in the medial thalamus (MT) and the coherence coefficient of spontaneous field potential oscillations in the anterior cingulate cortex were enhanced in CPSP animals, and these enhancements were blocked by an acute injection of TrkB-Fc and TrkB antagonist Tat Cyclotraxin-B. Instead of being inhibited by the γ-aminobutyric acid (GABA) system in normal rats, multiunit activity in the MT was enhanced after a microinjection of muscimol, a GABAA receptor agonist, in CPSP animals. After CPSP, BDNF expression was enhanced in the MT, whereas the expression of GABAA channels and the cotransporter KCC2 decreased in the same area. These findings suggest that neuronal plasticity in the MT that was induced by BDNF overexpression after the thalamic lesion was a key factor in CPSP.
Collapse
Affiliation(s)
- Hsi-Chien Shih
- Neuroscience, Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Yung-Hui Kuan
- Neuroscience, Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Bai-Chung Shyu
- Neuroscience, Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
16
|
Anti-nociceptive and anti-inflammatory actions of sulforaphane in chronic constriction injury-induced neuropathic pain mice. Inflammopharmacology 2017; 25:99-106. [PMID: 28054242 DOI: 10.1007/s10787-016-0307-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/21/2016] [Indexed: 01/25/2023]
Abstract
Neuropathic pain is still considered as incurable disease as current therapies are not ideal in terms of efficacy and tolerability. It is imperative to search for novel drugs to obtain better treatments. Sulforaphane (SFN), a derivative of glucoraphanin present in cruciferous vegetables, exhibits therapeutic effects on inflammation-related diseases. Since inflammation plays an important role in regulating chronic pain, in the present study, we investigated anti-nociceptive effects of SFN and its underlying mechanisms in a neuropathic pain mouse model, sciatic nerve chronic constriction injury (CCI). SFN (0.1-100 mg/kg) was injected intraperitoneally for 7 days when pain behaviors, including mechanical allodynia and thermal hyperalgesia, reached to the maximum in CCI mice. We observed that SFN dose-dependently attenuated CCI-induced pain behavioral hypersensitivity, accompanied by reduction in pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and upregulation of an anti-inflammatory cytokine (IL-10). Moreover, SFN counteracted CCI enhancement of COX2 and iNOS in injured nerves, two key enzymes implicated in inflammation and neuropathic pain. Furthermore, pretreatment of naloxone, an antagonist of opioid receptors, significantly blocked SFN attenuation of behavioral hypersensitivity without affecting SFN modulation of inflammatory cytokines in CCI mice. Interestingly, CCI-induced increase in µ-opioid receptors in injured sciatic nerves was further increased by SFN treatment. Taken together, SFN has both anti-nociceptive and anti-inflammatory actions.
Collapse
|
17
|
Anti-hypersensitive effect of intramuscular administration of αO-conotoxin GeXIVA[1,2] and GeXIVA[1,4] in rats of neuropathic pain. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66:112-119. [PMID: 26706456 DOI: 10.1016/j.pnpbp.2015.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 11/23/2022]
Abstract
αO-conotoxin GeXIVA (GeXIVA) is a potent antagonist of α9α10 nicotinic acetylcholine receptors (nAChRs), which has four Cys residues and three disulfide isomers. Among the 3 isomers, both GeXIVA[1,2] (bead isomer) and GeXIVA[1,4] (ribbon isomer) showed potent block on α9α10 nAChRs with close low nanomolar IC50s. Here we report that anti-hypersensitive effects of the bead and ribbon isomers in the chronic constriction injury (CCI) model of neuropathic pain and acute pain model of tail flick test. Treatment was started and continued for 7 or 14days after the development of hyperalgesia which was induced by CCI surgery. GeXIVA[1,2] and GeXIVA[1,4] significantly reduced mechanical allodynia in CCI rats without tolerance, in which GeXIVA[1,2] remained up to two weeks after intramuscular administration of the toxins was ceased. The pain reliever effect of GeXIVA[1,2] on neuropathic rats was slightly better than GeXIVA[1,4]. The two isomers did not suppress the acute thermal pain behaviors significantly when they were tested in the tail flick model by intramuscular bolus injection. Both GeXIVA[1,2] and GeXIVA[1,4] had no significant effect on performance of rats in the accelerating rotarod test after intramuscular injections. This suggests that αO-conotoxin GeXIVA[1,2] and GeXIVA[1,4] may offer new strategies to the treatment of neuropathic pain.
Collapse
|
18
|
Differential transcriptional profiling of damaged and intact adjacent dorsal root ganglia neurons in neuropathic pain. PLoS One 2015; 10:e0123342. [PMID: 25880204 PMCID: PMC4400143 DOI: 10.1371/journal.pone.0123342] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 03/02/2015] [Indexed: 11/24/2022] Open
Abstract
Neuropathic pain, caused by a lesion in the somatosensory system, is a severely impairing mostly chronic disease. While its underlying molecular mechanisms are not thoroughly understood, neuroimmune interactions as well as changes in the pain pathway such as sensitization of nociceptors have been implicated. It has been shown that not only are different cell types involved in generation and maintenance of neuropathic pain, like neurons, immune and glial cells, but, also, intact adjacent neurons are relevant to the process. Here, we describe an experimental approach to discriminate damaged from intact adjacent neurons in the same dorsal root ganglion (DRG) using differential fluorescent neuronal labelling and fluorescence-activated cell sorting (FACS). Two fluorescent tracers, Fluoroemerald (FE) and 1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate (DiI), were used, whose properties allow us to distinguish between damaged and intact neurons. Subsequent sorting permitted transcriptional analysis of both groups. Results and qPCR validation show a strong regulation in damaged neurons versus contralateral controls as well as a moderate regulation in adjacent neurons. Data for damaged neurons reveal an mRNA expression pattern consistent with established upregulated genes like galanin, which supports our approach. Moreover, novel genes were found strongly regulated such as corticotropin-releasing hormone (CRH), providing novel targets for further research. Differential fluorescent neuronal labelling and sorting allows for a clear distinction between primarily damaged neuropathic neurons and “bystanders,” thereby facilitating a more detailed understanding of their respective roles in neuropathic processes in the DRG.
Collapse
|
19
|
Abstract
Spinal cord injury (SCI) patients develop chronic pain involving poorly understood central and peripheral mechanisms. Because dysregulation of the voltage-gated Kv3.4 channel has been implicated in the hyperexcitable state of dorsal root ganglion (DRG) neurons following direct injury of sensory nerves, we asked whether such a dysregulation also plays a role in SCI. Kv3.4 channels are expressed in DRG neurons, where they help regulate action potential (AP) repolarization in a manner that depends on the modulation of inactivation by protein kinase C (PKC)-dependent phosphorylation of the channel's inactivation domain. Here, we report that, 2 weeks after cervical hemicontusion SCI, injured rats exhibit contralateral hypersensitivity to stimuli accompanied by accentuated repetitive spiking in putative DRG nociceptors. Also in these neurons at 1 week after laminectomy and SCI, Kv3.4 channel inactivation is impaired compared with naive nonsurgical controls. At 2-6 weeks after laminectomy, however, Kv3.4 channel inactivation returns to naive levels. Conversely, Kv3.4 currents at 2-6 weeks post-SCI are downregulated and remain slow-inactivating. Immunohistochemistry indicated that downregulation mainly resulted from decreased surface expression of the Kv3.4 channel, as whole-DRG-protein and single-cell mRNA transcript levels did not change. Furthermore, consistent with Kv3.4 channel dysregulation, PKC activation failed to shorten the AP duration of small-diameter DRG neurons. Finally, re-expressing synthetic Kv3.4 currents under dynamic clamp conditions dampened repetitive spiking in the neurons from SCI rats. These results suggest a novel peripheral mechanism of post-SCI pain sensitization implicating Kv3.4 channel dysregulation and potential Kv3.4-based therapeutic interventions.
Collapse
|
20
|
Hsu E, Murphy S, Chang D, Cohen SP. Expert opinion on emerging drugs: chronic low back pain. Expert Opin Emerg Drugs 2014; 20:103-27. [DOI: 10.1517/14728214.2015.993379] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
|
22
|
Tosh DK, Paoletta S, Chen Z, Moss SM, Gao ZG, Salvemini D, Jacobson KA. Extended N(6) substitution of rigid C2-arylethynyl nucleosides for exploring the role of extracellular loops in ligand recognition at the A3 adenosine receptor. Bioorg Med Chem Lett 2014; 24:3302-6. [PMID: 24969016 DOI: 10.1016/j.bmcl.2014.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
2-Arylethynyl-(N)-methanocarba adenosine 5'-methyluronamides containing rigid N(6)-(trans-2-phenylcyclopropyl) and 2-phenylethynyl groups were synthesized as agonists for probing structural features of the A3 adenosine receptor (AR). Radioligand binding confirmed A3AR selectivity and N(6)-1S,2R stereoselectivity for one diastereomeric pair. The environment of receptor-bound, conformationally constrained N(6) groups was explored by docking to an A3AR homology model, indicating specific hydrophobic interactions with the second extracellular loop able to modulate the affinity profile. 2-Pyridylethynyl derivative 18 was administered orally in mice to reduce chronic neuropathic pain in the chronic constriction injury model.
Collapse
Affiliation(s)
- Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Silvia Paoletta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Zhoumou Chen
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Steven M Moss
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA.
| |
Collapse
|
23
|
McGarvey L. Update: the search for the human cough receptor. Lung 2014; 192:459-65. [PMID: 24770379 DOI: 10.1007/s00408-014-9581-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/29/2014] [Indexed: 10/25/2022]
Abstract
Despite the best efforts of basic and applied science, the identity of the human "cough receptor" remains elusive. The attraction of identifying a single "catch all" cough receptor is obvious, although such an objective is unlikely to be realised given the concept of "cough hypersensitivity," which is now considered the most clinically relevant description of what underlies problem coughing. One means of progressing this area is to join the thinking and experimental effort of basic science and clinical research in an effective manner. Some of the best examples of cooperative and translational research over the years together with an update on the most recent work will be discussed in this article.
Collapse
Affiliation(s)
- Lorcan McGarvey
- Centre for Infection and Immunity, Queens University Belfast, Health Sciences Building, Lisburn Road, Belfast, BT9 7BL, Northern Ireland,
| |
Collapse
|
24
|
Kou ZZ, Li CY, Hu JC, Yin JB, Zhang DL, Liao YH, Wu ZY, Ding T, Qu J, Li H, Li YQ. Alterations in the neural circuits from peripheral afferents to the spinal cord: possible implications for diabetic polyneuropathy in streptozotocin-induced type 1 diabetic rats. Front Neural Circuits 2014; 8:6. [PMID: 24523675 PMCID: PMC3905201 DOI: 10.3389/fncir.2014.00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/14/2013] [Indexed: 12/22/2022] Open
Abstract
Diabetic polyneuropathy (DPN) presents as a wide variety of sensorimotor symptoms and affects approximately 50% of diabetic patients. Changes in the neural circuits may occur in the early stages in diabetes and are implicated in the development of DPN. Therefore, we aimed to detect changes in the expression of isolectin B4 (IB4, the marker for nonpeptidergic unmyelinated fibers and their cell bodies) and calcitonin gene-related peptide (CGRP, the marker for peptidergic fibers and their cell bodies) in the dorsal root ganglion (DRG) and spinal cord of streptozotocin (STZ)-induced type 1 diabetic rats showing alterations in sensory and motor function. We also used cholera toxin B subunit (CTB) to show the morphological changes of the myelinated fibers and motor neurons. STZ-induced diabetic rats exhibited hyperglycemia, decreased body weight gain, mechanical allodynia and impaired locomotor activity. In the DRG and spinal dorsal horn, IB4-labeled structures decreased, but both CGRP immunostaining and CTB labeling increased from day 14 to day 28 in diabetic rats. In spinal ventral horn, CTB labeling decreased in motor neurons in diabetic rats. Treatment with intrathecal injection of insulin at the early stages of DPN could alleviate mechanical allodynia and impaired locomotor activity in diabetic rats. The results suggest that the alterations of the neural circuits between spinal nerve and spinal cord via the DRG and ventral root might be involved in DPN.
Collapse
Affiliation(s)
- Zhen-Zhen Kou
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Chun-Yu Li
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Jia-Chen Hu
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Jun-Bin Yin
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Dong-Liang Zhang
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Yong-Hui Liao
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Zhen-Yu Wu
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Tan Ding
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Juan Qu
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| |
Collapse
|
25
|
Cooper MS, Clark VP. Neuroinflammation, neuroautoimmunity, and the co-morbidities of complex regional pain syndrome. J Neuroimmune Pharmacol 2013; 8:452-69. [PMID: 22923151 PMCID: PMC3661922 DOI: 10.1007/s11481-012-9392-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 07/23/2012] [Indexed: 02/07/2023]
Abstract
Complex Regional Pain Syndrome (CRPS) is associated with non-dermatomal patterns of pain, unusual movement disorders, and somatovisceral dysfunctions. These symptoms are viewed by some neurologists and psychiatrists as being psychogenic in origin. Recent evidence, however, suggests that an autoimmune attack on self-antigens found in the peripheral and central nervous system may underlie a number of CRPS symptoms. From both animal and human studies, evidence is accumulating that neuroinflammation can spread, either anterograde or retrograde, via axonal projections in the CNS, thereby establishing neuroinflammatory tracks and secondary neuroinflammatory foci within the neuraxis. These findings suggest that neuroinflammatory lesions, as well as their associated functional consequences, should be evaluated during the differential diagnosis of non-dermatomal pain presentations, atypical movement disorders, as well as other "medically unexplained symptoms", which are often attributed to psychogenic illness.
Collapse
Affiliation(s)
- Mark S Cooper
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
| | | |
Collapse
|