1
|
Wedderburn CJ, Sevenoaks T, Fouche JP, Phillips NJ, Lawn SD, Stein DJ, Hoare J. Motivation levels and white matter microstructure in children living with HIV. Sci Rep 2024; 14:4425. [PMID: 38396081 PMCID: PMC10891087 DOI: 10.1038/s41598-024-54411-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Central nervous system involvement in HIV infection leads to neurobehavioural sequelae. Although apathy is a well-recognised symptom in adults living with HIV linked to alterations in brain structure, there is scarce research examining motivation in children living with HIV (CLWH). We used the Children's Motivation Scale (CMS; normative mean = 50, SD = 10) to assess motivation levels in 76 CLWH aged 6-16 years (63 on antiretroviral therapy [ART]; 13 ART-naïve slow progressors) in South Africa. Overall, CLWH scored low on the CMS (mean = 35.70 [SD = 5.87]). Motivation levels were significantly reduced in children taking ART compared to ART-naïve slow progressors (p = 0.02), but were not correlated with markers of HIV disease (CD4 + cell count or viral load), or neurocognitive function (p > 0.05). CMS scores were correlated with diffusion tensor imaging metrics of white matter microstructure in specific frontostriatal brain regions (p < 0.05). On multiple regression, associations with the anterior limb of the internal capsule, a subcortical white matter region, remained significant after adjusting for potential confounders. These findings suggest that reduced motivation may be an important neurobehavioural symptom in CLWH and may reflect changes in white matter microstructure of frontostriatal brain regions.
Collapse
Affiliation(s)
- Catherine J Wedderburn
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa.
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK.
| | - Tatum Sevenoaks
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Jean-Paul Fouche
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Nicole J Phillips
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Stephen D Lawn
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- SA MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Jacqueline Hoare
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Zhang C, Su H, Waight E, Poluektova LY, Gorantla S, Gendelman HE, Dash PK. Accelerated Neuroimmune Dysfunction in Aged HIV-1-Infected Humanized Mice. Pharmaceuticals (Basel) 2024; 17:149. [PMID: 38399364 PMCID: PMC10892358 DOI: 10.3390/ph17020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Disordered immunity, aging, human immunodeficiency virus type one (HIV-1) infection, and responses to antiretroviral therapy are linked. However, how each factor is linked with the other(s) remains incompletely understood. It has been reported that accelerated aging, advanced HIV-1 infection, inflammation, and host genetic factors are associated with host cellular, mitochondrial, and metabolic alterations. However, the underlying mechanism remains elusive. With these questions in mind, we used chronically HIV-1-infected CD34-NSG humanized mice (hu-mice) to model older people living with HIV and uncover associations between HIV-1 infection and aging. Adult humanized mice were infected with HIV-1 at the age of 20 weeks and maintained for another 40 weeks before sacrifice. Animal brains were collected and subjected to transcriptomics, qPCR, and immunofluorescence assays to uncover immune disease-based biomarkers. CD4+ T cell decline was associated with viral level and age. Upregulated C1QA, CD163, and CXCL16 and downregulated LMNA and CLU were identified as age-associated genes tied to HIV-1 infection. Ingenuity pathway analysis affirmed links to innate immune activation, pyroptosis signaling, neuroinflammation, mitochondrial dysfunction, cellular senescence, and neuronal dysfunction. In summary, CD34-NSG humanized mice are identified as a valuable model for studying HIV-1-associated aging. Biomarkers of immune senescence and neuronal signaling are both age- and virus-associated. By exploring the underlying biological mechanisms that are linked to these biomarkers, interventions for next generation HIV-1-infected patients can be realized.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Prasanta K. Dash
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
3
|
Zaongo SD, Harypursat V, Rashid F, Dahourou DL, Ouedraogo AS, Chen Y. Influence of HIV infection on cognition and overall intelligence in HIV-infected individuals: advances and perspectives. Front Behav Neurosci 2023; 17:1261784. [PMID: 37953826 PMCID: PMC10637382 DOI: 10.3389/fnbeh.2023.1261784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
It is now well understood that HIV-positive individuals, even those under effective ART, tend to develop a spectrum of cognitive, motor, and/or mood conditions which are contemporarily referred to as HIV-associated neurocognitive disorder (HAND), and which is directly related to HIV-1 infection and HIV-1 replication in the central nervous system (CNS). As HAND is known to induce difficulties associated with attention, concentration, and memory, it is thus legitimate and pertinent to speculate upon the possibility that HIV infection may well influence human cognition and intelligence. We therefore propose herein to review the concept of intelligence, the concept of cells of intelligence, the influence of HIV on these particular cells, and the evidence pointing to differences in observed intelligence quotient (IQ) scores between HIV-positive and HIV-negative individuals. Additionally, cumulative research evidence continues to draw attention to the influence of the gut on human intelligence. Up to now, although it is known that HIV infection profoundly alters both the composition and diversity of the gut microbiota and the structural integrity of the gut, the influence of the gut on intelligence in the context of HIV infection remains poorly described. As such, we also provide herein a review of the different ways in which HIV may influence human intelligence via the gut-brain axis. Finally, we provide a discourse on perspectives related to HIV and human intelligence which may assist in generating more robust evidence with respect to this issue in future studies. Our aim is to provide insightful knowledge for the identification of novel areas of investigation, in order to reveal and explain some of the enigmas related to HIV infection.
Collapse
Affiliation(s)
- Silvere D. Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Désiré Lucien Dahourou
- Département Biomédical/Santé Publique, Institut de Recherche en Sciences de la Santé/CNRST, Ouagadougou, Burkina Faso
| | - Abdoul-Salam Ouedraogo
- Centre Muraz, Bobo-Dioulasso, Burkina Faso
- Department of Bacteriology and Virology, Souro Sanou University Hospital, Bobo-Dioulasso, Burkina Faso
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
4
|
Hu Y, Liu J, Zhuang R, Zhang C, Lin F, Wang J, Peng S, Zhang W. Progress in Pathological and Therapeutic Research of HIV-Related Neuropathic Pain. Cell Mol Neurobiol 2023; 43:3343-3373. [PMID: 37470889 DOI: 10.1007/s10571-023-01389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
HIV-related neuropathic pain (HRNP) is a neurodegeneration that gradually develops during the long-term course of acquired immune deficiency syndrome (AIDS) and manifests as abnormal sock/sleeve-like symmetrical pain and nociceptive hyperalgesia in the extremities, which seriously reduces patient quality of life. To date, the pathogenesis of HRNP is not completely clear. There is a lack of effective clinical treatment for HRNP and it is becoming a challenge and hot spot for medical research. In this study, we conducted a systematic review of the progress of HRNP research in recent years including (1) the etiology, classification and clinical symptoms of HRNP, (2) the establishment of HRNP pathological models, (3) the pathological mechanisms underlying HRNP from three aspects: molecules, signaling pathways and cells, (4) the therapeutic strategies for HRNP, and (5) the limitations of recent HRNP research and the future research directions and prospects of HRNP. This detailed review provides new and systematic insight into the pathological mechanism of HRNP, which establishes a theoretical basis for the future exploitation of novel target drugs. HIV infection, antiretroviral therapy and opioid abuse contribute to the etiology of HRNP with symmetrical pain in both hands and feet, allodynia and hyperalgesia. The pathogenesis involves changes in cytokine expression, activation of signaling pathways and neuronal cell states. The therapy for HRNP should be patient-centered, integrating pharmacologic and nonpharmacologic treatments into multimodal intervention.
Collapse
Affiliation(s)
- YanLing Hu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - JinHong Liu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Renjie Zhuang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Chen Zhang
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Fei Lin
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Jun Wang
- Department of Orthopedics, Rongjun Hospital, Jiaxing, Zhejiang, China
| | - Sha Peng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Rodriguez NR, Fortune T, Vuong T, Swartz TH. The role of extracellular ATP and P2X receptors in the pathogenesis of HIV-1. Curr Opin Pharmacol 2023; 69:102358. [PMID: 36848824 PMCID: PMC10023410 DOI: 10.1016/j.coph.2023.102358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 03/01/2023]
Abstract
Human Immunodeficiency Virus Type 1 (HIV-1) causes a chronic, incurable infection associated with chronic inflammation despite virologic suppression on antiretroviral therapy (ART). This chronic inflammation underlies significant comorbidities, including cardiovascular disease, neurocognition decline, and malignancies. The mechanisms of chronic inflammation have been attributed, in part, to the role of extracellular ATP and P2X-type purinergic receptors that sense damaged or dying cells and undergo signaling responses to activate inflammation and immunomodulation. This review describes the current literature on the role of extracellular ATP and P2X receptors in HIV-1 pathogenesis, describing the known intersection with the HIV-1 life cycle in mediating immunopathogenesis and neuronal disease. The literature supports key roles for this signaling mechanism in cell-to-cell communication and in activating transcriptional changes that impact the inflammatory state leading to disease progression. Future studies must characterize the numerous functions of ATP and P2X receptors in HIV-1 pathogenesis to inform future therapeutic targeting.
Collapse
Affiliation(s)
- Natalia R Rodriguez
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Trinisia Fortune
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thien Vuong
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Viengkhou B, Hofer MJ. Breaking down the cellular responses to type I interferon neurotoxicity in the brain. Front Immunol 2023; 14:1110593. [PMID: 36817430 PMCID: PMC9936317 DOI: 10.3389/fimmu.2023.1110593] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Since their original discovery, type I interferons (IFN-Is) have been closely associated with antiviral immune responses. However, their biological functions go far beyond this role, with balanced IFN-I activity being critical to maintain cellular and tissue homeostasis. Recent findings have uncovered a darker side of IFN-Is whereby chronically elevated levels induce devastating neuroinflammatory and neurodegenerative pathologies. The underlying causes of these 'interferonopathies' are diverse and include monogenetic syndromes, autoimmune disorders, as well as chronic infections. The prominent involvement of the CNS in these disorders indicates a particular susceptibility of brain cells to IFN-I toxicity. Here we will discuss the current knowledge of how IFN-Is mediate neurotoxicity in the brain by analyzing the cell-type specific responses to IFN-Is in the CNS, and secondly, by exploring the spectrum of neurological disorders arising from increased IFN-Is. Understanding the nature of IFN-I neurotoxicity is a crucial and fundamental step towards development of new therapeutic strategies for interferonopathies.
Collapse
Affiliation(s)
- Barney Viengkhou
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
7
|
Historical and current issues in HIV encephalitis, and the role of neuropathology in HIV disease: a pathological perspective. J Neurol 2023; 270:1337-1345. [PMID: 36459221 PMCID: PMC9971134 DOI: 10.1007/s00415-022-11503-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
In the 1980s, after the HIV pandemic was recognised, neuropathology identified cerebral white matter lesions that were found in the brains of infected persons with a severe irreversible dementia syndrome, this became known as 'HIV encephalitis'. Subsequent work in Europe and north America found subtle morphological abnormalities in cerebral neurones and their connections. With the advent of effective anti-retroviral therapies after 1996, the incidence of severe HIV-related dementia declined, as did investigative tissue pathology into this HIV brain disease. Currently, the intense interest over HIV neurocognitive impairment focuses on neuroimaging, comparative blood and cerebrospinal fluid analysis, viral subtype analysis, and the search for biomarkers that correlate with brain function. Tissue neuropathology in HIV is more restricted to the diagnosis of acute disease such as opportunistic infections and tumours, and confirmation of the acute CD8 + T-cell encephalitis syndrome. But correlative tissue pathology will still be needed as newer therapeutic measures are developed to prevent and manage chronic HIV brain impairment.
Collapse
|
8
|
Han S, Aili X, Ma J, Liu J, Wang W, Yang X, Wang X, Sun L, Li H. Altered regional homogeneity and functional connectivity of brain activity in young HIV-infected patients with asymptomatic neurocognitive impairment. Front Neurol 2022; 13:982520. [PMID: 36303561 PMCID: PMC9593212 DOI: 10.3389/fneur.2022.982520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023] Open
Abstract
Objective Asymptomatic neurocognitive impairment (ANI) is a predominant form of cognitive impairment in young HIV-infected patients. However, the neurophysiological mechanisms underlying this disorder have not been clarified. We aimed to evaluate the altered patterns of functional brain activity in young HIV-infected patients with ANI by quantifying regional homogeneity (ReHo) and region of interest (ROI)-based functional connectivity (FC). Methods The experiment involved 44 young HIV-infected patients with ANI and 47 well-matched healthy controls (HCs) undergoing resting-state functional magnetic resonance imaging (rs-fMRI) and neurocognitive tests. Reho alterations were first explored between the ANI group and HC groups. Subsequently, regions showing differences in ReHo were defined as ROIs for FC analysis. Finally, the correlation of ReHo and FC with cognitive function and clinical variables was assessed. Results Compared with HCs, ANI patients had a significant ReHo decrease in the right lingual gyrus (LING. R), right superior occipital gyrus (SOG. R), left superior occipital gyrus (SOG. L), left middle occipital gyrus (MOG. L), right middle frontal gyrus (MFG. R), cerebellar vermis, ReHo enhancement in the left middle frontal gyrus (MFG. L), and left insula (INS L). The ANI patients showed increased FC between the LING. R and MOG. L compared to HC. For ANI patients, verbal and language scores were negatively correlated with increased mean ReHo values in the MFG.L. Increased mean ReHo values in the INS. L was positively correlated with disease duration—the mean ReHo values in the LING. R was positively correlated with the abstraction and executive function scores. Increased FC between the LING. R and MOG. L was positively correlated with verbal and language performance. Conclusion The results suggest that the visual network might be the most vulnerable area of brain function in young HIV-infected patients with ANI. The middle frontal gyrus, cerebellar vermis, and insula also play an important role in asymptomatic neurocognitive impairment. The regional homogeneity and functional connectivity of these regions have compound alterations, which may be related to the course of the disease and neurocognitive function. These neuroimaging findings will help us understand the characteristics of brain network modifications in young HIV-infected patients with ANI.
Collapse
Affiliation(s)
- Shuai Han
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xire Aili
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Juming Ma
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jiaojiao Liu
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xue Yang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xi Wang
- STD & AIDS Clinic, Department of Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lijun Sun
- STD & AIDS Clinic, Department of Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Lijun Sun
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
- *Correspondence: Hongjun Li
| |
Collapse
|
9
|
Kaddour H, McDew-White M, Madeira MM, Tranquille MA, Tsirka SE, Mohan M, Okeoma CM. Chronic delta-9-tetrahydrocannabinol (THC) treatment counteracts SIV-induced modulation of proinflammatory microRNA cargo in basal ganglia-derived extracellular vesicles. J Neuroinflammation 2022; 19:225. [PMID: 36096938 PMCID: PMC9469539 DOI: 10.1186/s12974-022-02586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early invasion of the central nervous system (CNS) by human immunodeficiency virus (HIV) (Gray et al. in Brain Pathol 6:1-15, 1996; An et al. in Ann Neurol 40:611-6172, 1996), results in neuroinflammation, potentially through extracellular vesicles (EVs) and their micro RNAs (miRNA) cargoes (Sharma et al. in FASEB J 32:5174-5185, 2018; Hu et al. in Cell Death Dis 3:e381, 2012). Although the basal ganglia (BG) is a major target and reservoir of HIV in the CNS (Chaganti et al. in Aids 33:1843-1852, 2019; Mintzopoulos et al. in Magn Reson Med 81:2896-2904, 2019), whether BG produces EVs and the effect of HIV and/or the phytocannabinoid-delta-9-tetrahydrocannabinol (THC) on BG-EVs and HIV neuropathogenesis remain unknown. METHODS We used the simian immunodeficiency virus (SIV) model of HIV and THC treatment in rhesus macaques (Molina et al. in AIDS Res Hum Retroviruses 27:585-592, 2011) to demonstrate for the first time that BG contains EVs (BG-EVs), and that BG-EVs cargo and function are modulated by SIV and THC. We also used primary astrocytes from the brains of wild type (WT) and CX3CR1+/GFP mice to investigate the significance of BG-EVs in CNS cells. RESULTS Significant changes in BG-EV-associated miRNA specific to SIV infection and THC treatment were observed. BG-EVs from SIV-infected rhesus macaques (SIV EVs) contained 11 significantly downregulated miRNAs. Remarkably, intervention with THC led to significant upregulation of 37 miRNAs in BG-EVs (SIV-THC EVs). Most of these miRNAs are predicted to regulate pathways related to inflammation/immune regulation, TLR signaling, Neurotrophin TRK receptor signaling, and cell death/response. BG-EVs activated WT and CX3CR1+/GFP astrocytes and altered the expression of CD40, TNFα, MMP-2, and MMP-2 gene products in primary mouse astrocytes in an EV and CX3CR1 dependent manners. CONCLUSIONS Our findings reveal a role for BG-EVs as a vehicle with potential to disseminate HIV- and THC-induced changes within the CNS.
Collapse
Affiliation(s)
- Hussein Kaddour
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
- Present Address: Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591 USA
| | - Marina McDew-White
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302 USA
| | - Miguel M. Madeira
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Malik A. Tranquille
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Stella E. Tsirka
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Mahesh Mohan
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302 USA
| | - Chioma M. Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524 USA
| |
Collapse
|
10
|
The Resting State Central Auditory Network: a Potential Marker of HIV-Related Central Nervous System Alterations. Ear Hear 2022; 43:1222-1227. [PMID: 35044995 PMCID: PMC9232992 DOI: 10.1097/aud.0000000000001186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE HIV positive (HIV+) individuals with otherwise normal hearing ability show central auditory processing deficits as evidenced by worse performance in speech-in-noise perception compared with HIV negative (HIV-) controls. HIV infection and treatment are also associated with lower neurocognitive screening test scores, suggesting underlying central nervous system damage. To determine how central auditory processing deficits in HIV+ individuals relate to brain alterations in the cortex involved with auditory processing, we compared auditory network (AN) functional connectivity between HIV+ adults with or without speech-in-noise perception difficulties and age-matched HIV- controls using resting-state fMRI. DESIGN Based on the speech recognition threshold of the hearing-in-noise test, twenty-seven HIV+ individuals were divided into a group with speech-in-noise perception abnormalities (HIV+SPabnl, 38.2 ± 6.8 years; 11 males and 2 females) and one without (HIV+SPnl 34.4 ± 8.8 years; 14 males). An HIV- group with normal speech-in-noise perception (HIV-, 31.3 ± 5.2 years; 9 males and 3 females) was also enrolled. All of these younger and middle-aged adults had normal peripheral hearing determined by audiometry. Participants were studied using resting-state fMRI. Independent component analysis was applied to identify the AN. Group differences in the AN were identified using statistical parametric mapping. RESULTS Both HIV+ groups had increased functional connectivity (FC) in parts of the AN including the superior temporal gyrus, middle temporal gyrus, supramarginal gyrus, and Rolandic operculum compared to the HIV- group. Compared with the HIV+SPnl group, the HIV+SPabnl group showed greater FC in parts of the AN including the middle frontal and inferior frontal gyri. CONCLUSIONS The classical auditory areas in the temporal lobe are affected by HIV regardless of speech perception ability. Increased temporal FC in HIV+ individuals might reflect functional compensation to achieve normal primary auditory perception. Furthermore, increased frontal FC in the HIV+SPabnl group compared with the HIV+SPnl group suggest that speech-in-noise perception difficulties in HIV-infected adults also affect areas involved in higher-level cognition, providing imaging evidence consistent with the hypothesis that HIV-related neurocognitive deficits can include central auditory processing deficits.
Collapse
|
11
|
Magaki SD, Vinters HV, Williams CK, Mareninov S, Khanlou N, Said J, Nemanim N, Gonzalez J, Morales JG, Singer EJ, Yong WH. Neuropathologic Findings in Elderly HIV-Positive Individuals. J Neuropathol Exp Neurol 2022; 81:565-576. [PMID: 35656871 DOI: 10.1093/jnen/nlac040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The elderly HIV-positive population is growing due to the widespread use of combination antiretroviral therapy (cART), but the effects of longstanding HIV infection on brain aging are unknown. A significant proportion of HIV-positive individuals develop HIV-associated neurocognitive disorder (HAND) even on cART, but the pathogenesis of HAND is unknown. Although neuroinflammation is postulated to play an important role in aging and neurodegenerative diseases such as Alzheimer disease (AD), it is unclear whether HIV accelerates aging or increases the risk for AD. We examined the brains of 9 elderly HIV-positive subjects on cART without co-infection by hepatitis C virus compared to 7 elderly HIV-negative subjects. Microglial and astrocyte activation and AD pathologic change in association with systemic comorbidities and neurocognitive assessment were evaluated. There was no difference in microglial or astrocyte activation between our HIV-positive and HIV-negative cohorts. One HIV-positive subject and 2 HIV-negative subjects demonstrated significant amyloid deposition, predominantly in the form of diffuse senile plaques, but these individuals were cognitively normal. Neurofibrillary tangles were sparse in the HIV-positive cohort. There was a high prevalence of cardiovascular comorbidities in all subjects. These findings suggest that multiple factors likely contribute to aging and cognitive impairment in elderly HIV-positive individuals on cART.
Collapse
Affiliation(s)
- Shino D Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Harry V Vinters
- Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Christopher K Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Sergey Mareninov
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Negar Khanlou
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jonathan Said
- Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Natasha Nemanim
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jessica Gonzalez
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jose G Morales
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Elyse J Singer
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - William H Yong
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
12
|
Lucas SB, Wong KT, Nightingale S, Miller RF. HIV-Associated CD8 Encephalitis: A UK Case Series and Review of Histopathologically Confirmed Cases. Front Neurol 2021; 12:628296. [PMID: 33868143 PMCID: PMC8047670 DOI: 10.3389/fneur.2021.628296] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/11/2021] [Indexed: 11/30/2022] Open
Abstract
HIV-associated CD8-encephalitis (HIV-CD8E) is a severe inflammatory disorder dominated by infiltration of the brain by CD8+ T-lymphocytes. It occurs in people with HIV, typically when the virus is apparently well-controlled by antiretroviral treatment (ART). HIV-CD8E presents with symptoms and signs related to marked cerebral inflammation and swelling, and can lead to coma and death unless treated promptly with corticosteroids. Risk events such as intercurrent infection, antiretroviral therapy interruption, immune reconstitution inflammatory syndrome (IRIS) after starting ART, and concomitant associations such as cerebrospinal fluid (CSF) HIV viral escape have been identified, but the pathogenesis of the disorder is not known. We present the largest case series of HIV-CD8E to date (n = 23), representing histopathologically confirmed cases in the UK. We also summarize the global literature representing all previously published cases with histopathological confirmation (n = 30). A new variant of HIV-CD8E is described, occurring on a background of HIV encephalitis (HIVE).Together these series, totalling 53 patients, provide new insights. CSF HIV viral escape was a frequent finding in HIV-CD8E occurring in 68% of those with CSF available and tested; ART interruption and IRIS were important, both occurring in 27%. Black ethnicity appeared to be a key risk factor; all but two UK cases were African, as were the majority of the previously published cases in which ethnicity was stated. We discuss potential pathogenic mechanisms, but there is no unifying explanation over all the HIV-CD8E scenarios.
Collapse
Affiliation(s)
- Sebastian B. Lucas
- Department of Cellular Pathology, Guys and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Kum T. Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sam Nightingale
- Department of Neurology, University of Cape Town, Cape Town, South Africa
| | - Robert F. Miller
- Centre for Clinical Research in Infection and Sexual Health, Institute for Global Health, University College London, London, United Kingdom
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Mortimer Market Centre, Central and North West London NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
13
|
Yang HS, Onos KD, Choi K, Keezer KJ, Skelly DA, Carter GW, Howell GR. Natural genetic variation determines microglia heterogeneity in wild-derived mouse models of Alzheimer's disease. Cell Rep 2021; 34:108739. [PMID: 33567283 PMCID: PMC7937391 DOI: 10.1016/j.celrep.2021.108739] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/09/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Genetic and genome-wide association studies suggest a central role for microglia in Alzheimer’s disease (AD). However, single-cell RNA sequencing (scRNA-seq) of microglia in mice, a key preclinical model, has shown mixed results regarding translatability to human studies. To address this, scRNA-seq of microglia from C57BL/6J (B6) and wild-derived strains (WSB/EiJ, CAST/EiJ, and PWK/PhJ) with and without APP/PS1 demonstrates that genetic diversity significantly alters features and dynamics of microglia in baseline neuroimmune functions and in response to amyloidosis. Results show significant variation in the abundance of microglial subtypes or states, including numbers of previously identified disease-associated and interferon-responding microglia, across the strains. For each subtype, significant differences in the expression of many genes are observed in wild-derived strains relative to B6, including 19 genes previously associated with human AD including Apoe, Trem2, and Sorl1. This resource is critical in the development of appropriately targeted therapeutics for AD and other neurological diseases. Neuroinflammation is a key component of Alzheimer’s disease. Yang et al. perform single-cell sequencing of microglia in wild-derived mouse strains that carry amyloid and show that these strains differ from the commonly used strains, exhibiting significant variation in abundance of microglial subtypes, including numbers of disease-associated and interferon-responding microglia.
Collapse
Affiliation(s)
| | | | | | | | | | - Gregory W Carter
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
14
|
Fitting S, McRae M, Hauser KF. Opioid and neuroHIV Comorbidity - Current and Future Perspectives. J Neuroimmune Pharmacol 2020; 15:584-627. [PMID: 32876803 PMCID: PMC7463108 DOI: 10.1007/s11481-020-09941-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
With the current national opioid crisis, it is critical to examine the mechanisms underlying pathophysiologic interactions between human immunodeficiency virus (HIV) and opioids in the central nervous system (CNS). Recent advances in experimental models, methodology, and our understanding of disease processes at the molecular and cellular levels reveal opioid-HIV interactions with increasing clarity. However, despite the substantial new insight, the unique impact of opioids on the severity, progression, and prognosis of neuroHIV and HIV-associated neurocognitive disorders (HAND) are not fully understood. In this review, we explore, in detail, what is currently known about mechanisms underlying opioid interactions with HIV, with emphasis on individual HIV-1-expressed gene products at the molecular, cellular and systems levels. Furthermore, we review preclinical and clinical studies with a focus on key considerations when addressing questions of whether opioid-HIV interactive pathogenesis results in unique structural or functional deficits not seen with either disease alone. These considerations include, understanding the combined consequences of HIV-1 genetic variants, host variants, and μ-opioid receptor (MOR) and HIV chemokine co-receptor interactions on the comorbidity. Lastly, we present topics that need to be considered in the future to better understand the unique contributions of opioids to the pathophysiology of neuroHIV. Graphical Abstract Blood-brain barrier and the neurovascular unit. With HIV and opiate co-exposure (represented below the dotted line), there is breakdown of tight junction proteins and increased leakage of paracellular compounds into the brain. Despite this, opiate exposure selectively increases the expression of some efflux transporters, thereby restricting brain penetration of specific drugs.
Collapse
Affiliation(s)
- Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3270, USA
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA.
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0709, USA.
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, VA, 23298-0059, USA.
| |
Collapse
|
15
|
Roy ER, Cao W. Antiviral Immune Response in Alzheimer's Disease: Connecting the Dots. Front Neurosci 2020; 14:577744. [PMID: 33132831 PMCID: PMC7561672 DOI: 10.3389/fnins.2020.577744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/08/2020] [Indexed: 11/15/2022] Open
Abstract
Alzheimer’s disease (AD) represents an enormous public health challenge currently and with increasing urgency in the coming decades. Our understanding of the etiology and pathogenesis of AD is rather incomplete, which is manifested in stagnated therapeutic developments. Apart from the well-established Amyloid Hypothesis of AD, gaining traction in recent years is the Pathogen Hypothesis, which postulates a causal role of infectious agents in the development of AD. Particularly, infection by viruses, among a diverse range of microorganisms, has been implicated. Recently, we described a prominent antiviral immune response in human AD brains as well as murine amyloid beta models, which has consequential effects on neuropathology. Such findings expectedly allude to the question about viral infections and AD. In this Perspective, we would like to discuss the molecular mechanism underlying the antiviral immune response, highlight how such pathway directly promotes AD pathogenesis, and depict a multilayered connection between antiviral immune response and other agents and factors relevant to AD. By tying together these threads of evidence, we provide a cohesive perspective on the uprising of antiviral immune response in AD.
Collapse
Affiliation(s)
- Ethan R Roy
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Wei Cao
- Huffington Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
16
|
Roy ER, Wang B, Wan YW, Chiu G, Cole A, Yin Z, Propson NE, Xu Y, Jankowsky JL, Liu Z, Lee VMY, Trojanowski JQ, Ginsberg SD, Butovsky O, Zheng H, Cao W. Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease. J Clin Invest 2020; 130:1912-1930. [PMID: 31917687 PMCID: PMC7108898 DOI: 10.1172/jci133737] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
Type I interferon (IFN) is a key cytokine that curbs viral infection and cell malignancy. Previously, we demonstrated a potent IFN immunogenicity of nucleic acid-containing (NA-containing) amyloid fibrils in the periphery. Here, we investigated whether IFN is associated with β-amyloidosis inside the brain and contributes to neuropathology. An IFN-stimulated gene (ISG) signature was detected in the brains of multiple murine Alzheimer disease (AD) models, a phenomenon also observed in WT mouse brain challenged with generic NA-containing amyloid fibrils. In vitro, microglia innately responded to NA-containing amyloid fibrils. In AD models, activated ISG-expressing microglia exclusively surrounded NA+ amyloid β plaques, which accumulated in an age-dependent manner. Brain administration of rIFN-β resulted in microglial activation and complement C3-dependent synapse elimination in vivo. Conversely, selective IFN receptor blockade effectively diminished the ongoing microgliosis and synapse loss in AD models. Moreover, we detected activated ISG-expressing microglia enveloping NA-containing neuritic plaques in postmortem brains of patients with AD. Gene expression interrogation revealed that IFN pathway was grossly upregulated in clinical AD and significantly correlated with disease severity and complement activation. Therefore, IFN constitutes a pivotal element within the neuroinflammatory network of AD and critically contributes to neuropathogenic processes.
Collapse
Affiliation(s)
- Ethan R. Roy
- Huffington Center on Aging
- Translational Biology & Molecular Medicine Program, and
| | | | - Ying-wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | - Zhuoran Yin
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas E. Propson
- Huffington Center on Aging
- Molecular and Cellular Biology Program, Department of Molecular and Cellular Biology
| | - Yin Xu
- Huffington Center on Aging
| | | | - Zhandong Liu
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Virginia M.-Y. Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA
- Departments of Psychiatry, Neuroscience & Physiology and the NYU Neuroscience Institute, New York University Langone Medical Center, New York, New York, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hui Zheng
- Huffington Center on Aging
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Cao
- Huffington Center on Aging
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
17
|
Zhou X, Tao L, Zhao M, Wu S, Obeng E, Wang D, Zhang W. Wnt/ β-catenin signaling regulates brain-derived neurotrophic factor release from spinal microglia to mediate HIV 1 gp120-induced neuropathic pain. Mol Pain 2020; 16:1744806920922100. [PMID: 32354292 PMCID: PMC7227158 DOI: 10.1177/1744806920922100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/13/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
HIV-associated neuropathic pain (HNP) is a common complication for AIDS patients. The pathological mechanism governing HNP has not been elucidated, and HNP has no effective analgesic treatment. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family related to the plasticity of the central nervous system. BDNF dysregulation is involved in many neurological diseases, including neuropathic pain. However, to the best of our knowledge, the role and mechanism of BDNF in HNP have not been elucidated. In this study, we explored this condition in an HNP mouse model induced by intrathecal injection of gp120. We found that Wnt3a and β-catenin expression levels increased in the spinal cord of HNP mice, consequently regulating the expression of BDNF and affecting hypersensitivity. In addition, the blockade of Wing-Int/β-catenin signaling, BDNF/TrkB or the BDNF/p75NTR pathway alleviated mechanical allodynia. BDNF immunoreactivity was colocalized with spinal microglial cells, which were activated in HNP mice. Inhibition of spinal microglial cell activation by minocycline relieved mechanical allodynia in HNP mice. This study helped to elucidate the role of the Wing-Int/β-catenin/BDNF signaling axis in HNP and may establish a foundation for further research investigating the Wing-Int/β-catenin/BDNF signaling axis as a target for HNP treatment.
Collapse
Affiliation(s)
- Xinxin Zhou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lei Tao
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Mengru Zhao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shengjun Wu
- Clinical Laboratory of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Enoch Obeng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Dan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
18
|
West PK, Viengkhou B, Campbell IL, Hofer MJ. Microglia responses to interleukin-6 and type I interferons in neuroinflammatory disease. Glia 2019; 67:1821-1841. [PMID: 31033014 DOI: 10.1002/glia.23634] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 01/03/2025]
Abstract
Microglia are the resident macrophages of the central nervous system (CNS). They are a heterogenous, exquisitely responsive, and highly plastic cell population, which enables them to perform diverse roles. They sense and respond to the local production of many different signals, including an assorted range of cytokines. Microglia respond strongly to interleukin-6 (IL-6) and members of the type I interferon (IFN-I) family, IFN-alpha (IFN-α), and IFN-beta (IFN-β). Although these cytokines are essential in maintaining homeostasis and for activating and regulating immune responses, their chronic production has been linked to the development of distinct human neurological diseases, termed "cerebral cytokinopathies." IL-6 and IFN-α have been identified as key mediators in the pathogenesis of neuroinflammatory disorders including neuromyelitis optica and Aicardi-Goutières syndrome, respectively, whereas IFN-β has an emerging role as a causal factor in age-associated cognitive decline. One of the key features that unites these diseases is the presence of highly reactive microglia. The current understanding is that microglia contribute to the development of cerebral cytokinopathies and represent an important therapeutic target. However, it remains to be resolved whether microglia have beneficial or detrimental effects. Here we review and discuss what is currently known about the microglial response to IL-6 and IFN-I, based on both animal models and clinical studies. Foundational knowledge regarding the microglial response to IL-6 and IFN-I is now being used to devise therapeutic strategies to ameliorate neuroinflammation and promote repair: either through targeting microglia, or by targeting the reduction of CNS levels or downstream biological pathways of IL-6 or IFN-I.
Collapse
Affiliation(s)
- Phillip K West
- School of Life and Environmental Sciences, The Marie Bashir Institute for Infectious Diseases and Biosecurity, The Charles Perkins Centre, and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Barney Viengkhou
- School of Life and Environmental Sciences, The Marie Bashir Institute for Infectious Diseases and Biosecurity, The Charles Perkins Centre, and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Iain L Campbell
- School of Life and Environmental Sciences, The Marie Bashir Institute for Infectious Diseases and Biosecurity, The Charles Perkins Centre, and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Markus J Hofer
- School of Life and Environmental Sciences, The Marie Bashir Institute for Infectious Diseases and Biosecurity, The Charles Perkins Centre, and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Dalpiaz A, Fogagnolo M, Ferraro L, Beggiato S, Hanuskova M, Maretti E, Sacchetti F, Leo E, Pavan B. Bile salt-coating modulates the macrophage uptake of nanocores constituted by a zidovudine prodrug and enhances its nose-to-brain delivery. Eur J Pharm Biopharm 2019; 144:91-100. [PMID: 31521715 DOI: 10.1016/j.ejpb.2019.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/26/2019] [Accepted: 09/08/2019] [Indexed: 02/07/2023]
Abstract
We have previously demonstrated that the ester conjugation of zidovudine (AZT) with ursodeoxycholic acid (UDCA) allows to obtain a prodrug (U-AZT) which eludes the active efflux transporters (AET). This allows the prodrug to more efficiently permeates and remains in murine macrophages than the parent compound. Here we demonstrate that U-AZT can be formulated, by a nanoprecipitation method, as nanoparticle cores coated by bile acid salt (taurocholate or ursodeoxycholate) corona, without any other excipients. The U-AZT nanoparticles appeared spherical with a mean diameter of ∼200 nm and a zeta potential of ∼-55 mV. During the incubation (5 h) in fetal bovine serum, the ursodeoxycholate-coated nanoparticle size did not change. Differently, taurocholate-coated particle size was firstly reduced and then increased up to 800 µm, thus suggesting the high aptitude of these nanoparticles to interact with serum proteins. The in vitro uptake of taurocholate coated particles by murine macrophages was strongly higher than that of ursodeoxycholate-coated particles or free U-AZT (∼500% and ∼7000%, respectively). AZT was also detected in macrophages following the prodrug uptake, with the greatest amounts observed after the taurocholate-coated nanoparticle incubation. As macrophages in the subarachnoid spaces of cerebrospinal fluid (CSF) constitute one of the most unreachable HIV sanctuaries in the body, we also tested the ability of taurocholate-coated nanoparticles (i.e., nanoparticles highly internalized by macrophages) to reach them after their nasal administration in the presence or absence of chitosan. The results indicate that chitosan allowed to obtain a relatively high uptake (up to 4 µg/ml) of U-AZT in CSF. Taking into account that chitosan may promote the direct brain nanoparticle uptake, these findings can be considered an initial step toward the in vivo targeting of the subarachnoid macrophages by U-AZT prodrug.
Collapse
Affiliation(s)
- Alessandro Dalpiaz
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy.
| | - Marco Fogagnolo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy.
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA Center, Via L. Borsari 46, I-44121 Ferrara, Italy.
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA Center, Via L. Borsari 46, I-44121 Ferrara, Italy.
| | - Miriam Hanuskova
- "Enzo Ferrari" Engineering Department, University of Modena and Reggio Emilia, Via Pietro Vivarelli 10, I-41125 Modena, Italy.
| | - Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy.
| | - Francesca Sacchetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy.
| | - Eliana Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy.
| | - Barbara Pavan
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
20
|
Jensen BK, Roth LM, Grinspan JB, Jordan-Sciutto KL. White matter loss and oligodendrocyte dysfunction in HIV: A consequence of the infection, the antiretroviral therapy or both? Brain Res 2019; 1724:146397. [PMID: 31442414 DOI: 10.1016/j.brainres.2019.146397] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 01/13/2023]
Abstract
While the severe cognitive effects of HIV-associated dementia have been reduced by combined antiretroviral therapy (cART), nearly half of HIV-positive (HIV+) patients still suffer from some form of HIV-Associated Neurocognitive Disorders (HAND). While frank neuronal loss has been dramatically reduced in HAND patients, white matter loss, including dramatic thinning of the corpus callosum, and loss of volume and structural integrity of myelin persists despite viral control by cART. It remains unclear whether changes in white matter underlie the clinical manifestation seen in patients or whether they are the result of persistent viral reservoirs, remnant damage from the acute infection, the antiretroviral compounds used to treat HIV, secondary effects due to peripheral toxicities or other associated comorbid conditions. Both HIV infection itself and its treatment with antiretroviral drugs can induce metabolic syndrome, lipodystrophy, atherosclerosis and peripheral neuropathies by increased oxidative stress, induction of the unfolded protein response and dysregulation of lipid metabolism. These virally and/or cART-induced processes can also cause myelin loss in the CNS. This review aims to highlight existing data on the contribution of white matter damage to HAND and explore the mechanisms by which HIV infection and its treatment contribute to persistence of white matter changes in people living with HIV currently on cART.
Collapse
Affiliation(s)
- Brigid K Jensen
- Vickie and Jack Farber Institute for Neuroscience, Jefferson Weinberg ALS Center, Thomas Jefferson University, United States; Department of Neurology, The Children's Hospital of Philadelphia, United States; Department of Pathology, School of Dental Medicine, University of Pennsylvania, United States
| | - Lindsay M Roth
- Department of Neurology, The Children's Hospital of Philadelphia, United States; Department of Pathology, School of Dental Medicine, University of Pennsylvania, United States
| | - Judith B Grinspan
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, United States
| | | |
Collapse
|
21
|
Yu X, Gao L, Wang H, Yin Z, Fang J, Chen J, Li Q, Xu H, Gui X. Neuroanatomical Changes Underlying Vertical HIV Infection in Adolescents. Front Immunol 2019; 10:814. [PMID: 31110499 PMCID: PMC6499204 DOI: 10.3389/fimmu.2019.00814] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/27/2019] [Indexed: 11/13/2022] Open
Abstract
Purpose: The aim of this study was to investigate how human immunodeficiency virus (HIV) affects brain development in adolescents, what are susceptible brain regions, and how these brain structural changes correlate with cognitive abilities. Methods: We used structural magnetic resonance imaging to examine gray matter volume and cortical thickness in 16 HIV-infected children (mean age = 13.63 years) and 25 HIV-exposed uninfected children (mean age = 13.32 years), 12 of them were subjected to a 1-year repetitive magnetic resonance scan of the brain. Five neurocognitive tests were performed on each subject to assess cognitive performance in different areas. Results: Cross-sectional studies showed that the gray matter volume of HIV-infected children was widely reduced (mainly in the bilateral frontal, temporal, and insular regions, and cerebellum). The changes in cortical thickness were mainly due to thinning of the right temporal lobe and thickening of the left occipital lobe. Longitudinal studies showed that the gray matter volume reduction of HIV-infected children after 1 year mainly occurs in the advanced functional area of the right prefrontal, parietal lobe and the motor area, cortical thinning of brain regions were sensorimotor cortex and the limbic system. The gray matter volume of the bilateral cerebellum was positively correlated with the performance of the Wisconsin Card Sorting Test, while the cortical thickness of the right dorsolateral prefrontal cortex was negatively correlated with this test. Conclusion: This study found that HIV-infected pubertal children showed a delayed cortical maturation with atrophy. This abnormal pattern of cortical development may be the structural basis for cognitive impairment in HIV-infected children.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Haha Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhuang Yin
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jian Fang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jing Chen
- Publicity Department, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Qiang Li
- Training Centre of AIDS Prevention and Cure of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xien Gui
- Training Centre of AIDS Prevention and Cure of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Fulop T, Witkowski JM, Larbi A, Khalil A, Herbein G, Frost EH. Does HIV infection contribute to increased beta-amyloid synthesis and plaque formation leading to neurodegeneration and Alzheimer's disease? J Neurovirol 2019; 25:634-647. [PMID: 30868421 DOI: 10.1007/s13365-019-00732-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
HIV infection in the combination antiretroviral therapy (cART) era has become a chronic disease with a life expectancy almost identical to those free from this infection. Concomitantly, chronic diseases such as neurodegenerative diseases have emerged as serious clinical problems. HIV-induced cognitive changes, although clinically very diverse are collectively called HIV-associated neurocognitive disorder (HAND). HAND, which until the introduction of cART manifested clinically as a subcortical disorder, is now considered primarily cognitive disorder, which makes it similar to diseases like Alzheimer's (AD) and Parkinson's disease (PD). The pathogenesis involves either the direct effects of the virus or the effect of viral proteins such as Tat, Ggp120, and Nef. These proteins are either capable of destroying neurons directly by inducing neurotoxic mediators or by initiating neuroinflammation by microglia and astrocytes. Recently, it has become recognized that HIV infection is associated with increased production of the beta-amyloid peptide (Aβ) which is a characteristic of AD. Moreover, amyloid plaques have also been demonstrated in the brains of patients suffering from HAND. Thus, the question arises whether this production of Aβ indicates that HAND may lead to AD or it is a form of AD or this increase in Aβ production is only a bystander effect. It has also been discovered that APP in HIV and its metabolic product Aβ in AD manifest antiviral innate immune peptide characteristics. This review attempts to bring together studies linking amyloid precursor protein (APP) and Aβ production in HIV infection and their possible impact on the course of HAND and AD. These data indicate that human defense mechanisms in HAND and AD are trying to contain microorganisms by antimicrobial peptides, however by employing different means. Future studies will, no doubt, uncover the relationship between HAND and AD and, hopefully, reveal novel treatment possibilities.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada.
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, Singapore.,Department of Biology, Faculty of Science, University Tunis El Manar, Tunis, Tunisia
| | - Abdelouahed Khalil
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, Université of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030, Besançon, France.,Department of Virology, CHRU Besancon, F-25030, Besancon, France
| | - Eric H Frost
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
23
|
Abstract
OBJECTIVES Human immunodeficiency virus positive (HIV+) individuals report hearing difficulties, but standard audiological tests show no, or small, changes in peripheral hearing ability. The hearing complaints may reflect central nervous system (CNS) auditory processing deficits, rather than middle or inner ear problems, and may result from CNS damage due to HIV infection or treatment. If central auditory task performance and cognitive deficits in HIV+ individuals are shown to be related, then central auditory tests might serve as a "window" into CNS function in these patients. DESIGN We measured cognitive performance (Mandarin Montreal Cognitive Assessment [MoCA]) and speech in noise perception (Mandarin hearing-in-noise test [HINT]) in 166 normal-hearing HIV+ individuals (158 men, 8 women, average age 36 years) at the Shanghai Public Health Clinical Center in Shanghai, China. Data collection included audiometry, tympanometry, and the Amsterdam Inventory of Auditory Handicap (AIAH), which assesses the subjective ability to understand speech and localize sound. RESULTS Subjects had no middle ear disease and met criteria for normal-hearing sensitivity (all thresholds 20 dB HL or less). A significant negative relationship between speech reception thresholds (SRT) and MoCA scores (r = 0.15, F = 28.2, p < 0.001) existed. Stepwise linear regression showed that when the factors of age, MoCA scores, hearing thresholds, and education level were considered, only age and MoCA scores contributed independently to the SRT results (overall model r = 0.30, F = 38.8, p < 0.001). Subjective hearing complaints from the AIAH supported the HINT results. AIAH and MoCA scores were also related (r = 0.05, F = 8.5, p = 0.004), with those with worse MoCA scores having more problems on the AIAH. When the cohort was divided into those with normal and abnormal performance on the MoCA, those with abnormal performance on the MoCA had significantly higher average SRTs (p < 0.001). CONCLUSIONS Understanding speech in noise measured both objectively with the HINT and subjectively with the AIAH was inversely related to cognitive abilities despite a normal ability to hear soft sounds determined by audiometry. Although age was also an important independent factor affecting speech perception, the age relationship within the speech findings in this study may represent more than just age-related declines in speech in noise understanding. Although reliable data on disease duration are not available, the older members of this cohort likely had HIV longer and probably had more severe symptoms at presentation than the younger members because early detection and treatment of HIV in Shanghai has improved over time. Therefore, the age relationship may also include elements of disease duration and severity. Speech perception, especially in challenging listening conditions, involves cortical and subcortical centers and is a demanding neurological task. The problems interpreting speech in noise HIV+ individuals have may reflect HIV-related or HIV treatment-related, central nervous damage, suggesting that CNS complications in HIV+ individuals could potentially be diagnosed and monitored using central auditory tests.
Collapse
|
24
|
Cao W, Zheng H. Peripheral immune system in aging and Alzheimer's disease. Mol Neurodegener 2018; 13:51. [PMID: 30285785 PMCID: PMC6169078 DOI: 10.1186/s13024-018-0284-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) represents an urgent public health mandate. AD is no longer considered a neural-centric disease; rather, a plethora of recent studies strongly implicate a critical role played by neuroinflammation in the pathogeneses of AD and other neurodegenerative conditions. A close functional connection between the immune system and central nervous system is increasingly recognized. In late-onset AD, aging represents the most significant risk factor. Here, from an immunological perspective, we summarize the prominent molecular and cellular changes in the periphery of aging individuals and AD patients. Moreover, we review the knowledge gained in the past several years that implicate specific arms of the peripheral immune system and other types of immune responses in modulating AD progression. Taken together, these findings collectively emphasize a dynamic role of a concert of brain-extrinsic, peripheral signals in the aging and degenerative processes in the CNS. We believe that a systematic view synthesizing the vast amounts of existing results will help guide the development of next-generation therapeutics and inform future directions of AD investigation.
Collapse
Affiliation(s)
- Wei Cao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Huffington Center on Aging, Houston, TX, 77030, USA.
| | - Hui Zheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Huffington Center on Aging, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Dalpiaz A, Pavan B. Nose-to-Brain Delivery of Antiviral Drugs: A Way to Overcome Their Active Efflux? Pharmaceutics 2018; 10:pharmaceutics10020039. [PMID: 29587409 PMCID: PMC6027266 DOI: 10.3390/pharmaceutics10020039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023] Open
Abstract
Although several viruses can easily infect the central nervous system (CNS), antiviral drugs often show dramatic difficulties in penetrating the brain from the bloodstream since they are substrates of active efflux transporters (AETs). These transporters, located in the physiological barriers between blood and the CNS and in macrophage membranes, are able to recognize their substrates and actively efflux them into the bloodstream. The active transporters currently known to efflux antiviral drugs are P-glycoprotein (ABCB1 or P-gp or MDR1), multidrug resistance-associated proteins (ABCC1 or MRP1, ABCC4 or MRP4, ABCC5 or MRP5), and breast cancer resistance protein (ABCG2 or BCRP). Inhibitors of AETs may be considered, but their co-administration causes serious unwanted effects. Nasal administration of antiviral drugs is therefore proposed in order to overcome the aforementioned problems, but innovative devices, formulations (thermoreversible gels, polymeric micro- and nano-particles, solid lipid microparticles, nanoemulsions), absorption enhancers (chitosan, papaverine), and mucoadhesive agents (chitosan, polyvinilpyrrolidone) are required in order to selectively target the antiviral drugs and, possibly, the AET inhibitors in the CNS. Moreover, several prodrugs of antiretroviral agents can inhibit or elude the AET systems, appearing as interesting substrates for innovative nasal formulations able to target anti-Human Immunodeficiency Virus (HIV) agents into macrophages of the CNS, which are one of the most important HIV Sanctuaries of the body.
Collapse
Affiliation(s)
- Alessandro Dalpiaz
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | - Barbara Pavan
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
26
|
Abstract
Primary human immunodeficiency virus (HIV) neuropathologies can affect all levels of the neuraxis and occur in all stages of natural history disease. Some, like HIV encephalitis, HIV myelitis, and diffuse infiltrative lymphocytosis of peripheral nerve, reflect productive infection of the nervous system; others, like vacuolar myelopathy, distal symmetric polyneuropathy, and central and peripheral nervous system demyelination, are not clearly related to regional viral replication, and reflect more complex cascades of dysregulated host immunity and metabolic dysfunction. In pediatric patients, the spectrum of neuropathology is altered by the impacts of HIV on a developing nervous system, with microcephaly, abundant brain mineralization, and corticospinal tract degeneration as examples of this unique interaction. With efficacious therapies, CD8 T-cell encephalitis is emerging as a significant entity; often this is clinically recognized as immune reconstitution inflammatory syndrome, but has also been described in the context of viral escape and treatment interruption. The relationship of HIV neuropathology to clinical symptoms is sometimes straightforward, and sometimes mysterious, as individuals can manifest significant deficits in the absence of discrete lesions. However, at all stages of the natural history disease, neuroinflammation is abundant, and critical to the generation of clinical abnormality. Neuropathologic and neurobiologic investigations will be central to understanding HIV nervous system disorders in the era of efficacious therapies.
Collapse
Affiliation(s)
- Susan Morgello
- Departments of Neurology, Neuroscience, and Pathology, Mount Sinai Medical Center, New York, NY, United States.
| |
Collapse
|
27
|
Abstract
Human immunodeficiency virus (HIV) infection induces neuronal injuries, with almost 50% of infected individuals developing HIV-associated neurocognitive disorders (HAND). Although highly activate antiretroviral therapy (HAART) has significantly reduced the incidence of severe dementia, the overall prevalence of HAND remains high. Synaptic degeneration is emerging as one of the most relevant neuropathologies associate with HAND. Previous studies have reported critical roles of viral proteins and inflammatory responses in this pathogenesis. Infected cells, including macrophages, microglia and astrocytes, may release viral proteins and other neurotoxins to stimulate neurons and cause excessive calcium influx, overproduction of free radicals and disruption of neurotransmitter hemostasis. The dysregulation of neural circuits likely leads to synaptic damage and loss. Identification of the specific mechanism of the synaptic degeneration may facilitate the development of effective therapeutic approaches to treat HAND.
Collapse
Affiliation(s)
- Wenjuan Ru
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
28
|
Sagar V, Pilakka-Kanthikeel S, Martinez PC, Atluri VSR, Nair M. Common gene-network signature of different neurological disorders and their potential implications to neuroAIDS. PLoS One 2017; 12:e0181642. [PMID: 28792504 PMCID: PMC5549695 DOI: 10.1371/journal.pone.0181642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 07/05/2017] [Indexed: 12/22/2022] Open
Abstract
The neurological complications of AIDS (neuroAIDS) during the infection of human immunodeficiency virus (HIV) are symptomized by non-specific, multifaceted neurological conditions and therefore, defining a specific diagnosis/treatment mechanism(s) for this neuro-complexity at the molecular level remains elusive. Using an in silico based integrated gene network analysis we discovered that HIV infection shares convergent gene networks with each of twelve neurological disorders selected in this study. Importantly, a common gene network was identified among HIV infection, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and age macular degeneration. An mRNA microarray analysis in HIV-infected monocytes showed significant changes in the expression of several genes of this in silico derived common pathway which suggests the possible physiological relevance of this gene-circuit in driving neuroAIDS condition. Further, this unique gene network was compared with another in silico derived novel, convergent gene network which is shared by seven major neurological disorders (Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, Age Macular Degeneration, Amyotrophic Lateral Sclerosis, Vascular Dementia, and Restless Leg Syndrome). These networks differed in their gene circuits; however, in large, they involved innate immunity signaling pathways, which suggests commonalities in the immunological basis of different neuropathogenesis. The common gene circuits reported here can provide a prospective platform to understand how gene-circuits belonging to other neuro-disorders may be convoluted during real-time neuroAIDS condition and it may elucidate the underlying-and so far unknown-genetic overlap between HIV infection and neuroAIDS risk. Also, it may lead to a new paradigm in understanding disease progression, identifying biomarkers, and developing therapies.
Collapse
Affiliation(s)
- Vidya Sagar
- Institute of Neuroimmune Pharmacology/Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - S. Pilakka-Kanthikeel
- Institute of Neuroimmune Pharmacology/Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Paola C. Martinez
- Institute of Neuroimmune Pharmacology/Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - V. S. R. Atluri
- Institute of Neuroimmune Pharmacology/Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - M. Nair
- Institute of Neuroimmune Pharmacology/Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
29
|
Eggers C, Arendt G, Hahn K, Husstedt IW, Maschke M, Neuen-Jacob E, Obermann M, Rosenkranz T, Schielke E, Straube E. HIV-1-associated neurocognitive disorder: epidemiology, pathogenesis, diagnosis, and treatment. J Neurol 2017; 264:1715-1727. [PMID: 28567537 PMCID: PMC5533849 DOI: 10.1007/s00415-017-8503-2] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 01/05/2023]
Abstract
The modern antiretroviral treatment of human immunodeficiency virus (HIV-1) infection has considerably lowered the incidence of opportunistic infections. With the exception of the most severe dementia manifestations, the incidence and prevalence of HIV-associated neurocognitive disorders (HAND) have not decreased, and HAND continues to be relevant in daily clinical practice. Now, HAND occurs in earlier stages of HIV infection, and the clinical course differs from that before the widespread use of combination antiretroviral treatment (cART). The predominant clinical feature is a subcortical dementia with deficits in the domains concentration, attention, and memory. Motor signs such as gait disturbance and impaired manual dexterity have become less prominent. Prior to the advent of cART, the cerebral dysfunction could at least partially be explained by the viral load and by virus-associated histopathological findings. In subjects where cART has led to undetectable or at least very low viral load, the pathogenic virus-brain interaction is less direct, and an array of poorly understood immunological and probably toxic phenomena are discussed. This paper gives an overview of the current concepts in the field of HAND and provides suggestions for the diagnostic and therapeutic management.
Collapse
Affiliation(s)
- Christian Eggers
- Department of Neurology, Krankenhaus Barmherzige Brüder, Seilerstätte 2, 4021, Linz, Austria.
| | - Gabriele Arendt
- Neurologische Klinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Katrin Hahn
- Neurologische Klinik, Charité, Berlin, Germany
| | - Ingo W Husstedt
- Klinik für Neurologie, Universitätsklinikum Münster, Münster, Germany
| | - Matthias Maschke
- Neurologische Abteilung, Brüderkrankenhaus Trier, Trier, Germany
| | - Eva Neuen-Jacob
- Institut für Neuropathologie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Mark Obermann
- Direktor des Zentrums für Neurologie, Asklepios Kliniken Schildautal, Seesen, Germany
| | - Thorsten Rosenkranz
- Neurologische Abteilung, Asklepios-Klinik Hamburg-St. Georg, Hamburg, Germany
| | - Eva Schielke
- Praxis für Neurologie Berlin-Mitte, 10117, Berlin, Germany
| | - Elmar Straube
- HIV-Schwerpunktpraxis, 30890, Barsinghausen, Germany
| |
Collapse
|
30
|
Zhan Y, Buckey JC, Fellows AM, Shi Y. Magnetic Resonance Imaging Evidence for Human Immunodeficiency Virus Effects on Central Auditory Processing: A Review. ACTA ACUST UNITED AC 2017; 8. [PMID: 28890843 PMCID: PMC5589342 DOI: 10.4172/2155-6113.1000708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
New research suggests that individuals with human immunodeficiency virus (HIV) have central auditory processing deficits. To review the evidence for HIV affecting parts of the central nervous system involved in central auditory processing, we performed a systematic review of the literature. The objective was to determine whether existing studies show evidence for damage to structures associated with central auditory pathways in HIV. We searched PubMed for papers that used structural magnetic resonance imaging (MRI), diffusion tensor imaging, magnetic resonance spectroscopy or functional MRI in individuals infected with HIV. The review showed that HIV affects several areas involved in central auditory processing particularly the thalamus, internal capsule and temporal cortex. These findings support the idea that HIV can affect central auditory pathways and support the potential use of central auditory tests as a way to assess central nervous system effects of HIV.
Collapse
Affiliation(s)
- Yi Zhan
- Department of Radiology, Shanghai Public Health Clinic Center, Fudan University, Shanghai, China
| | - Jay C Buckey
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | - Yuxin Shi
- Department of Radiology, Shanghai Public Health Clinic Center, Fudan University, Shanghai, China
| |
Collapse
|
31
|
O'Connor EE, Jaillard A, Renard F, Zeffiro TA. Reliability of White Matter Microstructural Changes in HIV Infection: Meta-Analysis and Confirmation. AJNR Am J Neuroradiol 2017; 38:1510-1519. [PMID: 28596189 DOI: 10.3174/ajnr.a5229] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/18/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Diffusion tensor imaging has been widely used to measure HIV effects on white matter microarchitecture. While many authors have reported reduced fractional anisotropy and increased mean diffusivity in HIV, quantitative inconsistencies across studies are numerous. PURPOSE Our aim was to evaluate the consistency across studies of HIV effects on DTI measures and then examine the DTI reliability in a longitudinal seropositive cohort. DATA SOURCES Published studies and investigators. STUDY SELECTION The meta-analysis included 16 cross-sectional studies reporting fractional anisotropy and 12 studies reporting mean diffusivity in the corpus callosum. DATA ANALYSIS Random-effects meta-analysis was used to estimate study standardized mean differences and heterogeneity. DTI longitudinal reliability was estimated in seropositive participants studied before and 3 and 6 months after beginning treatment. DATA SYNTHESIS Meta-analysis revealed lower fractional anisotropy (standardized mean difference, -0.43; P < .001) and higher mean diffusivity (standardized mean difference, 0.44; P < .003) in seropositive participants. Nevertheless, between-study heterogeneity accounted for 58% and 66% of the observed variance (P < .01). In contrast, the longitudinal cohort fractional anisotropy was higher and mean diffusivity was lower in seropositive participants (both, P < .001), and fractional anisotropy and mean diffusivity measures were very stable during 6 months, with intraclass correlation coefficients all >0.96. LIMITATIONS Many studies pooled participants with varying treatments, ages, and disease durations. CONCLUSIONS HIV effects on WM microstructure had substantial variations that could result from acquisition, processing, or cohort-selection differences. When acquisition parameters and processing were carefully controlled, the resulting DTI measures did not show high temporal variation. HIV effects on WM microstructure may be age-dependent. The high longitudinal reliability of DTI WM microstructure measures makes them promising disease-activity markers.
Collapse
Affiliation(s)
- E E O'Connor
- From the Department of Radiology and Nuclear Medicine (E.E.O.), University of Maryland Medical System, Baltimore, Maryland
| | - A Jaillard
- Unité IRM 3T-Recherche-IRMaGe-Inserm US 17/CNRS UMS 3552 (A.J., F.R.).,Laboratoire MATICE-Pôle Recherche (A.J., F.R.), Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - F Renard
- Unité IRM 3T-Recherche-IRMaGe-Inserm US 17/CNRS UMS 3552 (A.J., F.R.).,Laboratoire MATICE-Pôle Recherche (A.J., F.R.), Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - T A Zeffiro
- Neurometrika (T.A.Z.), Potomac, Maryland.,Department of Human Development (T.A.Z.), University of Maryland College Park, Maryland
| |
Collapse
|
32
|
Cocaine dependence does not contribute substantially to white matter abnormalities in HIV infection. J Neurovirol 2017; 23:441-450. [PMID: 28251596 DOI: 10.1007/s13365-017-0512-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/10/2017] [Indexed: 01/11/2023]
Abstract
This study investigated the association of HIV infection and cocaine dependence with cerebral white matter integrity using diffusion tensor imaging (DTI). One hundred thirty-five participants stratified by HIV and cocaine status (26 HIV+/COC+, 37 HIV+/COC-, 37 HIV-/COC+, and 35 HIV-/COC-) completed a comprehensive substance abuse assessment, neuropsychological testing, and MRI with DTI. Among HIV+ participants, all were receiving HIV care and 46% had an AIDS diagnosis. All COC+ participants were current users and met criteria for cocaine use disorder. We used tract-based spatial statistics (TBSS) to assess the relation of HIV and cocaine to fractional anisotropy (FA) and mean diffusivity (MD). In whole-brain analyses, HIV+ participants had significantly reduced FA and increased MD compared to HIV- participants. The relation of HIV and FA was widespread throughout the brain, whereas the HIV-related MD effects were restricted to the corpus callosum and thalamus. There were no significant cocaine or HIV-by-cocaine effects. These DTI metrics correlated significantly with duration of HIV disease, nadir CD4+ cell count, and AIDS diagnosis, as well as some measures of neuropsychological functioning. These results suggest that HIV is related to white matter integrity throughout the brain, and that HIV-related effects are more pronounced with increasing duration of infection and greater immune compromise. We found no evidence for independent effects of cocaine dependence on white matter integrity, and cocaine dependence did not appear to exacerbate the effects of HIV.
Collapse
|
33
|
Sun L, Wang X, Zhou Y, Zhou RH, Ho WZ, Li JL. Exosomes contribute to the transmission of anti-HIV activity from TLR3-activated brain microvascular endothelial cells to macrophages. Antiviral Res 2016; 134:167-171. [PMID: 27496004 DOI: 10.1016/j.antiviral.2016.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/01/2016] [Indexed: 12/17/2022]
Abstract
Human brain microvascular endothelial cells (HBMECs), the major cell type in the blood-brain barrier (BBB), play a key role in maintaining brain homeostasis. However, their role in the BBB innate immunity against HIV invasion of the central nervous system (CNS) remains to be determined. Our early work showed that TLR3 signaling of HBMECs could produce the antiviral factors that inhibit HIV replication in macrophages. The present study examined whether exosomes from TLR3-activated HBMECs mediate the intercellular transfer of antiviral factors to macrophages. Primary human macrophages could take up exosomes from TLR3-activated HBMECs. HBMECs-derived exosomes contained multiple antiviral factors, including several key IFN-stimulated genes (ISGs; ISG15, ISG56, and Mx2) at mRNA and protein levels. The depletion of exosomes from TLR3-activated HBMECs culture supernatant diminished HBMECs-mediated anti-HIV activity in macrophages. In conclusion, we demonstrate that exosomes shed by HBMECs are able to transport the antiviral molecules to macrophages. This finding suggests the possibility that HIV nonpermissive BBB cells (HBMECs) can help to restore the antiviral state in HIV-infected macrophages, which may be a defense mechanism against HIV neuroinvasion.
Collapse
Affiliation(s)
- Li Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xu Wang
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430071, China; Department of Pathology and Laboratory Medicine, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Yu Zhou
- Department of Pathology and Laboratory Medicine, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Run-Hong Zhou
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wen-Zhe Ho
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan University, Wuhan, 430071, China; Department of Pathology and Laboratory Medicine, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| | - Jie-Liang Li
- Department of Pathology and Laboratory Medicine, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
34
|
Reid WC, Ibrahim WG, Kim SJ, Denaro F, Casas R, Lee DE, Maric D, Hammoud DA. Characterization of neuropathology in the HIV-1 transgenic rat at different ages. J Neuroimmunol 2016; 292:116-25. [PMID: 26943969 DOI: 10.1016/j.jneuroim.2016.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/27/2016] [Accepted: 01/31/2016] [Indexed: 02/08/2023]
Abstract
The transgenic HIV-1 rat (Tg) is a commonly used neuroHIV model with documented neurologic/behavioral deficits. Using immunofluorescent staining of the Tg brain, we found astrocytic dysfunction/damage, as well as dopaminergic neuronal loss/dysfunction, both of which worsening significantly in the striatum with age. We saw mild microglial activation in young Tg brains, but this decreased with age. There were no differences in neurogenesis potential suggesting a neurodegenerative rather than a neurodevelopmental process. Gp120 CSF levels exceeded serum gp120 levels in some animals, suggesting local viral protein production in the brain. Further probing of the pathophysiology underlying astrocytic injury in this model is warranted.
Collapse
Affiliation(s)
- William C Reid
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Wael G Ibrahim
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Saejeong J Kim
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Frank Denaro
- Department of Biology, Morgan State University, Baltimore, MD, USA
| | - Rafael Casas
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Dianne E Lee
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Dragan Maric
- Division of Intermural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Hofer MJ, Campbell IL. Immunoinflammatory diseases of the central nervous system - the tale of two cytokines. Br J Pharmacol 2016; 173:716-28. [PMID: 25917268 PMCID: PMC4742300 DOI: 10.1111/bph.13175] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/23/2022] Open
Abstract
Cytokines are potent mediators of cellular communication that have crucial roles in the regulation of innate and adaptive immunoinflammatory responses. Clear evidence has emerged in recent years that the dysregulated production of cytokines may in itself be causative in the pathogenesis of certain immunoinflammatory disorders. Here we review current evidence for the involvement of two different cytokines, IFN-α and IL-6, as principal mediators of specific immunoinflammatory disorders of the CNS. IFN-α belongs to the type I IFN family and is causally linked to the development of inflammatory encephalopathy exemplified by the genetic disorder, Aicardi-Goutières syndrome. IL-6 belongs to the gp130 family of cytokines and is causally linked to a number of immunoinflammatory disorders of the CNS including neuromyelitis optica, idiopathic transverse myelitis and genetically linked autoinflammatory neurological disease. In addition to clinical evidence, experimental studies, particularly in genetically engineered mouse models with astrocyte-targeted, CNS-restricted production of IFN-α or IL-6 replicate many of the cardinal neuropathological features of these human cytokine-linked immunoinflammatory neurological disorders giving crucial evidence for a direct causative role of these cytokines and providing further rationale for the therapeutic targeting of these cytokines in neurological diseases where indicated.
Collapse
Affiliation(s)
- M J Hofer
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - I L Campbell
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| |
Collapse
|
36
|
Dalpiaz A, Fogagnolo M, Ferraro L, Capuzzo A, Pavan B, Rassu G, Salis A, Giunchedi P, Gavini E. Nasal chitosan microparticles target a zidovudine prodrug to brain HIV sanctuaries. Antiviral Res 2015; 123:146-57. [DOI: 10.1016/j.antiviral.2015.09.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/18/2015] [Accepted: 09/28/2015] [Indexed: 01/23/2023]
|
37
|
Goldmann T, Blank T, Prinz M. Fine-tuning of type I IFN-signaling in microglia--implications for homeostasis, CNS autoimmunity and interferonopathies. Curr Opin Neurobiol 2015; 36:38-42. [PMID: 26397019 PMCID: PMC7126514 DOI: 10.1016/j.conb.2015.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/04/2015] [Accepted: 09/06/2015] [Indexed: 12/31/2022]
Abstract
Type I interferons (IFN) are pleiotropic cytokines originally described as molecules used for communication between cells to trigger the protective defenses against viral infections. Upon activation, type I IFN can be produced locally in the central nervous system (CNS) from a number of different cell types including microglia, the CNS-resident macrophages. Increased type I IFN production and signaling in microglia are critically important to limit viral infection and disease progression in multiple sclerosis. However, recent findings suggest that even baseline levels of constitutive IFN expression and secretion are important for homeostasis of the CNS. In fact, in the absence of viral particles chronic elevation of IFN I may be tremendously harmful for the CNS, as assumed for patients suffering from Aicardi-Goutières syndrome, Cree encephalitis or other type I interferonopathies. The highly diverse nature of type I IFN for brain homeostasis during health and disease will be discussed in this report.
Collapse
Affiliation(s)
- Tobias Goldmann
- Institute of Neuropathology, University of Freiburg, Germany
| | - Thomas Blank
- Institute of Neuropathology, University of Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany.
| |
Collapse
|
38
|
Tauber SC, Staszewski O, Prinz M, Weis J, Nolte K, Bunkowski S, Brück W, Nau R. HIV encephalopathy: glial activation and hippocampal neuronal apoptosis, but limited neural repair. HIV Med 2015; 17:143-51. [PMID: 26176591 DOI: 10.1111/hiv.12288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES HIV infection affects the central nervous system (CNS), frequently causing cognitive impairment. Hippocampal injury impedes the ability to transfer information into memory. Therefore, we aimed to examine neuronal injury and repair in the hippocampal formation in HIV encephalopathy. METHODS We compared neuropathological findings in 14 autopsy cases after death from systemic complications of HIV infection and in 15 age-matched HIV-negative control cases after sudden death from nonneurological causes using immunohistochemistry. RESULTS The density of apoptotic granule cells in the dentate gyrus was higher in HIV-infected than in control cases (P = 0.048). Proliferation of neural progenitor cells in the dentate gyrus was increased in HIV infection (P = 0.028), whereas the density of recently generated TUC-4 [TOAD (turned on after division)/Ulip/CRMP family 4]-expressing neurons in this region was not significantly elevated in HIV-infected cases (P = 0.13). HIV infection caused microglial activation and astrocytosis in the neocortex and hippocampal formation. Conversely, we were unable to detect more pronounced axonal injury in HIV-infected than in control cases. CONCLUSIONS As in other infections involving the CNS, apoptosis of hippocampal neurons accompanied by microglial activation and astrocytosis is a prominent feature of HIV encephalopathy. The regenerative potential, assessed using the density of young neurons in the hippocampal dentate gyrus, in HIV infection appears to be lower than in acute bacterial meningitis and septic encephalitis.
Collapse
Affiliation(s)
- S C Tauber
- Department of Neurology, RWTH University Hospital, Aachen, Germany
| | - O Staszewski
- Institute of Neuropathology, University Medical Center & BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - M Prinz
- Institute of Neuropathology, University Medical Center & BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - J Weis
- Institute of Neuropathology, RWTH University Hospital, Aachen, Germany
| | - K Nolte
- Institute of Neuropathology, RWTH University Hospital, Aachen, Germany
| | - S Bunkowski
- Institute of Neuropathology, Georg-August University, Göttingen, Germany
| | - W Brück
- Institute of Neuropathology, Georg-August University, Göttingen, Germany
| | - R Nau
- Institute of Neuropathology, Georg-August University, Göttingen, Germany.,Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| |
Collapse
|
39
|
[HIV 1-associated neurocognitive disorder: current epidemiology, pathogenesis, diagnosis and management]. DER NERVENARZT 2015; 85:1280-90. [PMID: 25292163 DOI: 10.1007/s00115-014-4082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
By restoring the immunological function the modern antiretroviral treatment of human immunodeficiency virus (HIV-1) infection has considerably lowered the incidence of opportunistic infections. As opposed to the classical manifestations of HIV-induced immunosuppression the incidence and prevalence of HIV-associated neurocognitive disorders (HAND) has not noticeably decreased and HAND continues to be relevant in daily clinical practice. At present, HAND occurs in earlier stages of HIV infection, and the clinical course differs from that before the introduction of combination antiretroviral treatment (cART). The predominant clinical manifestation is a subcortical dementia with deficits in the domains attention, concentration and memory. Signs of central motor pathway lesions have become less frequent and less prominent. Prior to the advent of cART the cerebral dysfunction could at least partially be explained by the viral load and by virus-associated histopathological findings. In patients with at least partially successfully treated infections, this relationship no longer exists, but a plethora of poorly understood immunological and probably toxic phenomena are under discussion.This consensus paper summarizes the progress made in the last 12 years in the field of HAND and provides suggestions for the diagnostic and therapeutic management.
Collapse
|
40
|
Abstract
HIV infects the central nervous system (CNS) during primary infection and persists in resident macrophages. CNS infection initiates a strong local immune response that fails to control the virus but is responsible for by-stander lesions involved in neurocognitive disorders. Although highly active anti-retroviral therapy now offers an almost complete control of CNS viral proliferation, low-grade CNS inflammation persists. This review focuses on HIV-induced intrathecal immunoglobulin (Ig) synthesis. Intrathecal Ig synthesis early occurs in more than three-quarters of patients in response to viral infection of the CNS and persists throughout the course of the disease. Viral antigens are targeted but this specific response accounts for <5% of the whole intrathecal synthesis. Although the nature and mechanisms leading to non-specific synthesis are unknown, this prominent proportion is comparable to that observed in various CNS viral infections. Cerebrospinal fluid-floating antibody-secreting cells account for a minority of the whole synthesis, which mainly takes place in perivascular inflammatory infiltrates of the CNS parenchyma. B-cell traffic and lineage across the blood-brain-barrier have not yet been described. We review common technical pitfalls and update the pending questions in the field. Moreover, since HIV infection is associated with an intrathecal chronic oligoclonal (and mostly non-specific) Ig synthesis and associates with low-grade axonal lesions, this could be an interesting model of the chronic intrathecal synthesis occurring during multiple sclerosis.
Collapse
|
41
|
Nowlin BT, Burdo TH, Midkiff CC, Salemi M, Alvarez X, Williams KC. SIV encephalitis lesions are composed of CD163(+) macrophages present in the central nervous system during early SIV infection and SIV-positive macrophages recruited terminally with AIDS. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1649-65. [PMID: 25963554 DOI: 10.1016/j.ajpath.2015.01.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/16/2015] [Accepted: 01/30/2015] [Indexed: 10/23/2022]
Abstract
Macrophage recruitment to the central nervous system (CNS) during AIDS pathogenesis is poorly understood. We measured the accumulation of brain perivascular (CD163(+)) and inflammatory (MAC387(+)) macrophages in SIV-infected monkeys. Monocyte progenitors were 5-bromo-2'-deoxyuridine (BrdU) labeled in bone marrow, and CNS macrophages were labeled serially with fluorescent dextrans injected into the cisterna magna. MAC387(+) macrophages accumulated in the meninges and choroid plexus in early inflammation and in the perivascular space and SIV encephalitis (SIVE) lesions late. CD163(+) macrophages accumulated in the perivascular space and SIVE lesions with late inflammation. Most of the BrdU(+) cells were MAC387(+); however, CD163(+)BrdU(+) macrophages were present in the meninges and choroid plexus with AIDS. Most (81.6% ± 1.8%) of macrophages in SIVE lesions were present in the CNS before SIVE lesion formation. There was a 2.9-fold increase in SIVp28(+) macrophages entering the CNS late compared with those entering early (P < 0.05). The rate of CD163(+) macrophage recruitment to the CNS inversely correlated with time to death (P < 0.03) and increased with SIVE. In SIVE animals, soluble CD163 correlated with CD163(+) macrophage recruitment (P = 0.02). Most perivascular macrophages that comprise SIVE lesions and multinucleated giant cells are present in the CNS early, before SIVE lesions are formed. Most SIV-infected macrophages traffic to the CNS terminally with AIDS.
Collapse
Affiliation(s)
- Brian T Nowlin
- Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Tricia H Burdo
- Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Cecily C Midkiff
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University Health Science Center, Covington, Louisiana
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University Health Science Center, Covington, Louisiana
| | | |
Collapse
|
42
|
Li CX, Zhang X, Komery A, Li Y, Mao H, Herndon JG, Novembre FJ. Longitudinal cerebral metabolic changes in pig-tailed macaques infected with the neurovirulent virus SIVsmmFGb. J Neurovirol 2014; 20:612-9. [PMID: 25377443 DOI: 10.1007/s13365-014-0286-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/20/2014] [Accepted: 08/27/2014] [Indexed: 11/26/2022]
Abstract
Longitudinal cerebral metabolite changes in pig-tailed macaques inoculated with the simian immunodeficiency virus SIVsmmFGb were evaluated with in vivo proton MRS at 3 T. Blood sample collection, and MRS were carried out before and 2, 4, 8, 12, 16, 20, and 24 weeks after SIV inoculation. Significant reduction of N-acetylaspartate (NAA)/creatine (Cr) and choline (Cho)/Cr ratios in prefrontal gray matter (PGM) and glutamate/glutamine(Glx)/Cr ratio in striatum, and increase of myo-inositol (mI)/Cr in striatum were observed during acute SIV infection. The metabolite alterations during the SIVsmmFGb infection are largely in agreement with previous findings in other non-human primate models and HIV patients. Also, NAA/Cr in PGM and striatum and Glx/Cr in striatum are negatively correlated with the percentage of CD8+ T cells after the SIV infection, suggesting the interaction between brain metabolite and immune dysfunction. The present study complements previous studies by describing the time course of alterations of brain metabolites during SIVsmmFGb infection. The findings further demonstrate the efficacy of the SIVsmmFGb-infected macaque as a model to characterize central nervous system infection using novel neuroimaging approaches and also as a tool for exploration of novel and advanced neuroimaging techniques in HIV/AIDS studies.
Collapse
Affiliation(s)
- Chun-Xia Li
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd, Atlanta, GA, 30329, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Gaskill PJ, Yano HH, Kalpana GV, Javitch JA, Berman JW. Dopamine receptor activation increases HIV entry into primary human macrophages. PLoS One 2014; 9:e108232. [PMID: 25268786 PMCID: PMC4182469 DOI: 10.1371/journal.pone.0108232] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/25/2014] [Indexed: 01/11/2023] Open
Abstract
Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers.
Collapse
Affiliation(s)
- Peter J. Gaskill
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| | - Hideaki H. Yano
- Department of Psychiatry and Pharmacology, Columbia University, New York, New York, United States of America
| | - Ganjam V. Kalpana
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jonathan A. Javitch
- Department of Psychiatry and Pharmacology, Columbia University, New York, New York, United States of America
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
44
|
Jansen AHP, Reits EAJ, Hol EM. The ubiquitin proteasome system in glia and its role in neurodegenerative diseases. Front Mol Neurosci 2014; 7:73. [PMID: 25152710 PMCID: PMC4126450 DOI: 10.3389/fnmol.2014.00073] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin proteasome system (UPS) is crucial for intracellular protein homeostasis and for degradation of aberrant and damaged proteins. The accumulation of ubiquitinated proteins is a hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s, and Huntington’s disease, leading to the hypothesis that proteasomal impairment is contributing to these diseases. So far, most research related to the UPS in neurodegenerative diseases has been focused on neurons, while glial cells have been largely disregarded in this respect. However, glial cells are essential for proper neuronal function and adopt a reactive phenotype in neurodegenerative diseases, thereby contributing to an inflammatory response. This process is called reactive gliosis, which in turn affects UPS function in glial cells. In many neurodegenerative diseases, mostly neurons show accumulation and aggregation of ubiquitinated proteins, suggesting that glial cells may be better equipped to maintain proper protein homeostasis. During an inflammatory reaction, the immunoproteasome is induced in glia, which may contribute to a more efficient degradation of disease-related proteins. Here we review the role of the UPS in glial cells in various neurodegenerative diseases, and we discuss how studying glial cell function might provide essential information in unraveling mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anne H P Jansen
- Department of Cell Biology and Histology, Academic Medical Center Amsterdam, Netherlands
| | - Eric A J Reits
- Department of Cell Biology and Histology, Academic Medical Center Amsterdam, Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands ; Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands ; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam Netherlands
| |
Collapse
|
45
|
White matter signal abnormalities in children with suspected HIV-related neurologic disease on early combination antiretroviral therapy. Pediatr Infect Dis J 2014; 33:e207-12. [PMID: 24595047 PMCID: PMC4153800 DOI: 10.1097/inf.0000000000000288] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND The natural history and manifestation of HIV-related neurologic disease have been ameliorated by combination antiretroviral therapy (ART). We describe the characteristics of white matter signal abnormalities (WMSA) on magnetic resonance imaging in children with HIV-related neurologic disease. METHODS We reviewed magnetic resonance imaging scans of children with suspected HIV-related neurologic disease despite early ART and correlated with clinical, neurodevelopmental data, virologic markers and time on ART. These children were also on the Children with HIV Early Antiretroviral (CHER) trial. RESULTS Magnetic resonance imaging scans were performed at a mean age 31.9 months (range 8-54) on 44 children: 10 on deferred and 34 on early treatment arms, commencing ART at mean age of 18.5 and 8 weeks, respectively. Multiple high signal intensity lesions on T2/fluid attenuated inversion recovery were documented in 22 patients (50%), predominantly in frontal (91%) and parietal (82%) white matter. No differences in neurodevelopmental scores comparing children with and without WMSA were found. Neither lesion load nor distribution showed significant correlation with neurodevelopmental scores or neurologic examination. Normal head growth was more common in the WMSA group (P = 0.01). There was a trend for association of WMSA and longer time on ART (P = 0.13) and nadir CD4% (P = 0.08). CONCLUSIONS Half of children referred with HIV-related brain disease had WMSA on T2/fluid attenuated inversion recovery. Our findings of the association with normal head growth and duration of ART require further study. We suspect that WMSA can occur early and that initiating ART by 8 weeks of life may be too late to prevent HIV from entering the central nervous system.
Collapse
|
46
|
Role of HIV in amyloid metabolism. J Neuroimmune Pharmacol 2014; 9:483-91. [PMID: 24816714 DOI: 10.1007/s11481-014-9546-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
HIV infection has changed from an acute devastating disease to a more chronic illness due to combination anti-retroviral treatment (cART). In the cART era, the life expectancy of HIV-infected (HIV+) individuals has increased. More HIV + individuals are aging with current projections suggesting that 50% of HIV + individuals will be over 50 years old by 2015. With advancing age, HIV + individuals may be at increased risk of developing other potential neurodegenerative disorders [especially Alzheimer's disease (AD)]. Pathology studies have shown that HIV increases intra and possibly extracellular amyloid beta (Aβ42), a hallmark of AD. We review the synthesis and clearance of Aβ42; the effects of HIV on the amyloid pathway; and contrast the impact of AD and HIV on Aβ42 metabolism. Biomarker studies (cerebrospinal fluid AB and amyloid imaging) in HIV + participants have shown mixed results. CSF Aβ42 has been shown to be either normal or diminished in with HIV associated neurocognitive disorders (HAND). Amyloid imaging using [(11)C] PiB has also not demonstrated increased extracellular amyloid fibrillar deposits in HAND. We further demonstrate that Aβ42 deposition is not increased in older HIV + participants using [(11)C] PiB amyloid imaging. Together, these results suggest that HIV and aging each independently affect Aβ42 deposition with no significant interaction present. Older HIV + individuals are probably not at increased risk for developing AD. However, future longitudinal studies of older HIV + individuals using multiple modalities (including the combination of CSF markers and amyloid imaging) are necessary for investigating the effects of HIV on Aβ42 metabolism.
Collapse
|
47
|
Dalpiaz A, Ferraro L, Perrone D, Leo E, Iannuccelli V, Pavan B, Paganetto G, Beggiato S, Scalia S. Brain uptake of a Zidovudine prodrug after nasal administration of solid lipid microparticles. Mol Pharm 2014; 11:1550-61. [PMID: 24717116 DOI: 10.1021/mp400735c] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Our previous results demonstrated that a prodrug obtained by the conjugation of the antiretroviral drug zidovudine (AZT) with ursodeoxycholic acid (UDCA) represents a potential carrier for AZT in the central nervous system, thus possibly increasing AZT efficiency as an anti-HIV drug. Based on these results and in order to enhance AZT brain targeting, the present study focuses on solid lipid microparticles (SLMs) as a carrier system for the nasal administration of UDCA-AZT prodrug. SLMs were produced by the hot emulsion technique, using tristearin and stearic acid as lipidic carriers, whose mean diameters were 16 and 7 μm, respectively. SLMs were of spherical shape, and their prodrug loading was 0.57 ± 0.03% (w/w, tristearin based) and 1.84 ± 0.02% (w/w, stearic acid based). The tristearin SLMs were able to control the prodrug release, whereas the stearic acid SLMs induced a significant increase of the dissolution rate of the free prodrug. The free prodrug was rapidly hydrolyzed in rat liver homogenates with a half-life of 2.7 ± 0.14 min (process completed within 30 min). The tristearin SLMs markedly enhanced the stability of the prodrug (75% of the prodrug still present after 30 min), whereas the stabilization effect of the stearic acid SLMs was lower (14% of the prodrug still present after 30 min). No AZT and UDCA-AZT were detected in the rat cerebrospinal fluid (CSF) after an intravenous prodrug administration (200 μg). Conversely, the nasal administration of stearic acid based SLMs induced the uptake of the prodrug in the CSF, demonstrating the existence of a direct nose-CNS pathway. In the presence of chitosan, the CSF prodrug uptake increased six times, up to 1.5 μg/mL within 150 min after nasal administration. The loaded SLMs appear therefore as a promising nasal formulation for selective zidovudine brain uptake.
Collapse
Affiliation(s)
- Alessandro Dalpiaz
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara , Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sagar V, Pilakka-Kanthikeel S, Pottathil R, Saxena SK, Nair M. Towards nanomedicines for neuroAIDS. Rev Med Virol 2014; 24:103-24. [PMID: 24395761 DOI: 10.1002/rmv.1778] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 11/13/2013] [Accepted: 11/13/2013] [Indexed: 12/16/2022]
Abstract
Although highly active antiretroviral therapy (HAART) has resulted in remarkable decline in the morbidity and mortality in AIDS patients, controlling HIV infections still remain a global health priority. HIV access to the CNS serves as the natural viral preserve because most antiretroviral (ARV) drugs possess inadequate or zero delivery across the brain barriers. Thus, development of target-specific, effective, safe, and controllable drug-delivery approach is an important health priority for global elimination of AIDS progression. Emergence of nanotechnology in medicine has shown exciting prospect for development of novel drug delivery systems to administer the desired therapeutic levels of ARV drugs in the CNS. Neuron-resuscitating and/or antidependence agents may also be delivered in the brain through nanocarriers to countercheck the rate of neuronal degradation during HIV infection. Several nanovehicles such as liposomes, dendrimers, polymeric nanoparticles, micelles, and solid lipid nanoparticles have been intensively explored. Recently, magnetic nanoparticles and monocytes/macrophages have also been used as carrier to improve the delivery of nanoformulated ARV drugs across the blood-brain barrier. Nevertheless, more rigorous research homework has to be elucidated to sort out the shortcomings that affect the target specificity, delivery, release, and/or bioavailability of desired amount of drugs for treatment of neuroAIDS.
Collapse
Affiliation(s)
- Vidya Sagar
- Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA; Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | | | | | | | | |
Collapse
|
49
|
Dalpiaz A, Contado C, Mari L, Perrone D, Pavan B, Paganetto G, Hanuskovà M, Vighi E, Leo E. Development and characterization of PLGA nanoparticles as delivery systems of a prodrug of zidovudine obtained by its conjugation with ursodeoxycholic acid. Drug Deliv 2013; 21:221-32. [PMID: 24134683 DOI: 10.3109/10717544.2013.844744] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT Zidovudine (AZT) is employed against AIDS and hepatitis; its use is limited by active efflux transporters (AETs) that induce multidrug resistance for intracellular therapies and hamper AZT to reach the brain. Ursodeoxycholic acid (UDCA) conjugation with AZT (prodrug UDCA-AZT) allows to elude the AET systems. OBJECTIVE To investigate the effect of the Pluronic F68 coating on the loading, release and stability of poly(D,L lactide-co-glicolide) nanoparticles (NPs) embedded with UDCA-AZT. MATERIALS AND METHODS The mean diameter of the NP prepared by nanoprecipitation or emulsion/solvent evaporation methods was determined using both photon correlation spectroscopy and sedimentation field-flow fractionation; particle morphology was detected by scanning electron microscope. The stability of the free and encapsulated UDCA-AZT was evaluated in rat liver homogenates by high-performance liquid chromatography analysis. RESULTS AND DISCUSSION The mean diameter of the NPs was found to be ∼ 600 nm with a relatively high polydispersity. The NPs obtained by emulsion/solvent evaporation were not able to control the prodrug release, differently from NPs obtained by nanoprecipitation. The presence of the Pluronic coating did not substantially modify the kinetics of the drug release, or the extent of the burst effect that were instead only influenced by the preparation parameters. UDCA-AZT incorporated in the NPs was more stable in the rat liver homogenates than the free prodrug and no influence of the Pluronic coating was observed. CONCLUSIONS Considering the different potential applications of nanoparticles coated and uncoated with Pluronic (brain and macrophage targeting, respectively), both of these nanoparticle systems could be useful in the therapies against HIV.
Collapse
|
50
|
Manji H, Jäger HR, Winston A. HIV, dementia and antiretroviral drugs: 30 years of an epidemic. J Neurol Neurosurg Psychiatry 2013; 84:1126-37. [PMID: 23378642 DOI: 10.1136/jnnp-2012-304022] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurological complications due to the HIV itself became apparent early on in the course of the AIDS epidemic. The most feared were the cognitive and motor complications termed AIDS dementia complex or HIV-associated dementia. With the introduction of combination antiretroviral therapy, the incidence of HIV-associated dementia has been dramatically reduced. However, the prevalence of less severe forms of the disorder remains around 20%. There is controversy about whether some patients may continue with progressive cognitive decline despite adequate suppression of the HIV. The salient issues are those of cerebrospinal fluid (CSF) drug penetration, drug neurotoxicity and persistent immune activation and inflammation. This review will also discuss other newly encountered complications, including the compartmentalisation (or CSF escape) and immune reconstitution inflammatory syndromes.
Collapse
Affiliation(s)
- Hadi Manji
- MRC Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, USA.
| | | | | |
Collapse
|