1
|
Brüll M, Geese N, Celardo I, Laumann M, Leist M. Preparation of Viable Human Neurites for Neurobiological and Neurodegeneration Studies. Cells 2024; 13:242. [PMID: 38334634 PMCID: PMC10854604 DOI: 10.3390/cells13030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Few models allow the study of neurite damage in the human central nervous system. We used here dopaminergic LUHMES neurons to establish a culture system that allows for (i) the observation of highly enriched neurites, (ii) the preparation of the neurite fraction for biochemical studies, and (iii) the measurement of neurite markers and metabolites after axotomy. LUHMES-based spheroids, plated in culture dishes, extended neurites of several thousand µm length, while all somata remained aggregated. These cultures allowed an easy microscopic observation of live or fixed neurites. Neurite-only cultures (NOC) were produced by cutting out the still-aggregated somata. The potential application of such cultures was exemplified by determinations of their protein and RNA contents. For instance, the mitochondrial TOM20 protein was highly abundant, while nuclear histone H3 was absent. Similarly, mitochondrial-encoded RNAs were found at relatively high levels, while the mRNA for a histone or the neuronal nuclear marker NeuN (RBFOX3) were relatively depleted in NOC. Another potential use of NOC is the study of neurite degeneration. For this purpose, an algorithm to quantify neurite integrity was developed. Using this tool, we found that the addition of nicotinamide drastically reduced neurite degeneration. Also, the chelation of Ca2+ in NOC delayed the degeneration, while inhibitors of calpains had no effect. Thus, NOC proved to be suitable for biochemical analysis and for studying degeneration processes after a defined cut injury.
Collapse
Affiliation(s)
- Markus Brüll
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (M.B.); (N.G.); (I.C.)
| | - Nils Geese
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (M.B.); (N.G.); (I.C.)
| | - Ivana Celardo
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (M.B.); (N.G.); (I.C.)
| | - Michael Laumann
- Electron Microscopy Centre, University of Konstanz, 78457 Konstanz, Germany;
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (M.B.); (N.G.); (I.C.)
- Center for Alternatives to Animal Testing in Europe (CAAT-Europe), University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
2
|
Bagherzadeh M, Safarkhani M, Daneshgar H, Radmanesh F, Taghavimandi F, Ghadiri AM, Kiani M, Fatahi Y, Safari-Alighiarloo N, Ahmadi S, Rabiee N. Magnetic carbon–based nanocomposite decorated with palladium complex for co-delivery of DOX/pCRISPR. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Yang T, Guo R, Ofengeim D, Hwang JY, Zukin RS, Chen J, Zhang F. Molecular and Cellular Mechanisms of Ischemia-Induced Neuronal Death. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Liao S, Apaijai N, Luo Y, Wu J, Chunchai T, Singhanat K, Arunsak B, Benjanuwattra J, Chattipakorn N, Chattipakorn SC. Cell death inhibitors protect against brain damage caused by cardiac ischemia/reperfusion injury. Cell Death Dis 2021; 7:312. [PMID: 34689160 PMCID: PMC8542034 DOI: 10.1038/s41420-021-00698-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023]
Abstract
Cognitive impairment has been reported in patients with myocardial infarction despite a successful reperfusion therapy. Several modes of cell death are involved in brain damage during cardiac ischemia/reperfusion (I/R) injury. Although apoptosis, necroptosis, and ferroptosis inhibitors provided neuroprotection against cerebral I/R injury, the effects of these cell death inhibitors on the brain following cardiac I/R injury have never been investigated. We hypothesized that apoptosis, necroptosis, and ferroptosis inhibitors attenuate brain damage following cardiac I/R injury. One-hundred and twenty-six male rats were used: 6 rats were assigned to sham operation and 120 rats were subjected to 30-min regional cardiac ischemia and 120-min reperfusion. Rats in cardiac I/R group were pretreated with either vehicle (n = 12) or one of cell death inhibitors. Rats treated with apoptosis, necroptosis, or ferroptosis inhibitor were subdivided into three different doses including low (L), medium (M), and high (H) doses (n = 12/group). Z-VAD, necrostatin-1 (Nec-1), and ferrostatin-1 (Fer-1) were used as apoptosis, necroptosis, and ferroptosis inhibitor, respectively. Rats were sacrificed at the end of reperfusion, and the brain was used to analyze dendritic spine density, Alzheimer's disease (AD)-related proteins, blood-brain barrier (BBB) tight junction proteins, mitochondrial function, inflammation, and cell death. Our data showed that cardiac I/R led to brain damage and only apoptosis occurred in the hippocampus after cardiac I/R injury. In the cardiac I/R group, treatment with M-Z-VAD and all doses of Nec-1 decreased hippocampal apoptosis and amyloid beta aggregation, thereby reducing dendritic spine loss. M- and H-Fer-1 also reduced dendritic spine loss by suppressing ACSL4, TNF-α, amyloid beta, and tau hyperphosphorylation. Moreover, Bax/Bcl-2 was decreased in all treatment regimen except L-Z-VAD. Additionally, M-Z-VAD and M-Fer-1 partially attenuated mitochondrial dysfunction. Only L-Nec-1 preserved BBB proteins. In conclusion, cell death inhibitors prevented hippocampal dendritic spine loss caused by cardiac I/R injury through different mechanisms.
Collapse
Affiliation(s)
- Suchan Liao
- grid.7132.70000 0000 9039 7662Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nattayaporn Apaijai
- grid.7132.70000 0000 9039 7662Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Ying Luo
- grid.7132.70000 0000 9039 7662Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jun Wu
- grid.7132.70000 0000 9039 7662Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Titikorn Chunchai
- grid.7132.70000 0000 9039 7662Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Kodchanan Singhanat
- grid.7132.70000 0000 9039 7662Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Busarin Arunsak
- grid.7132.70000 0000 9039 7662Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Juthipong Benjanuwattra
- grid.7132.70000 0000 9039 7662Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nipon Chattipakorn
- grid.7132.70000 0000 9039 7662Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Siriporn C. Chattipakorn
- grid.7132.70000 0000 9039 7662Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
5
|
Ibrakaw AS, Omoruyi SI, Ekpo OE, Hussein AA. Neuroprotective Activities of Boophone haemanthoides (Amaryllidaceae) Extract and Its Chemical Constituents. Molecules 2020; 25:molecules25225376. [PMID: 33212961 PMCID: PMC7698425 DOI: 10.3390/molecules25225376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative condition that progresses as age increases, and some of its major symptoms include tremor and postural and movement-related difficulties. To date, the treatment of PD remains a challenge because available drugs only treat the symptoms of the disease or possess serious side effects. In light of this, new treatment options are needed; hence, this study investigates the neuroprotective effects of an organic Boophone haemanthoides extract (BHE) and its bioactive compounds using an in vitro model of PD involving the toxin 1-methyl-4-phenylpyridinium (MPP+) and SH-SY5Y neuroblastoma cells. A total of seven compounds were isolated from BHE, viz distichamine (1), 1α,3α-diacetylnerbowdine (2), hippadine (3), stigmast-4-ene-3,6-dione (4), cholest-4-en-3-one (5), tyrosol (6), and 3-hydroxy-1-(4′-hydroxyphenyl)-1-propanone (7). Six compounds (1, 2, 4, 5, 6 and 7) were investigated, and five showed neuroprotection alongside the BHE. This study gives insight into the bioactivity of the non-alkaloidal constituents of Amaryllidaceae, since the isolated compounds and the BHE showed improved cell viability, increased ATP generation in the cells as well as inhibition of MPP+-induced apoptosis. Together, these findings support the claim that the Amaryllidaceae plant family could be a potential reserve of bioactive compounds for the discovery of neuroprotective agents.
Collapse
Affiliation(s)
- Abobaker S. Ibrakaw
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Cape Town, Robert Sobukwe Road, Bellville 7535, South Africa;
| | - Sylvester I. Omoruyi
- Department of Chemistry, Cape Peninsula University of Technology, Symphony Road, Bellville 7535, South Africa;
| | - Okobi E. Ekpo
- Department of Medical Biosciences, University of the Western Cape, Cape Town, Robert Sobukwe Road, Bellville 7535, South Africa;
| | - Ahmed A. Hussein
- Department of Chemistry, Cape Peninsula University of Technology, Symphony Road, Bellville 7535, South Africa;
- Correspondence: ; Tel.: +27-21-959-6193; Fax: +27-21-959-3055
| |
Collapse
|
6
|
Zheng Z, Liu S, Wang C, Wang C, Tang D, Shi Y, Han X. Association of genetic polymorphisms in CASP7 with risk of ischaemic stroke. Sci Rep 2019; 9:18627. [PMID: 31819117 PMCID: PMC6901581 DOI: 10.1038/s41598-019-55201-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/19/2019] [Indexed: 01/05/2023] Open
Abstract
Caspase 7 (CASP7) is located on chromosome 10q25.3 that has been identified to be a susceptibility locus of ischaemic stroke (IS) by genome-wide association study. Elevated CASP7 was observed in IS, acting as a key apoptotic mediator in the development of IS. The aim of this study was to investigate the association between genetic polymorphisms in CASP7 and risk of IS. The CASP7 polymorphisms were genotyped using a TaqMan allelic discrimination assay. The expression levels of CASP7 mRNA were examined using quantitative polymerase chain reaction and luciferase activity was analyzed using the Dual Luciferase reporter assay. The rs12415607 in the promoter of CASP7 was associated with a reduced risk of IS (AA vs. CC: adjusted OR = 0.55, 95% CI: 0.38-0.80, P = 0.002; CA/AA vs. CC: adjusted OR = 0.70, 95% CI: 0.54-0.91, P = 0.007; AA vs. CC/CA: adjusted OR = 0.64, 95% CI: 0.46-0.90, P = 0.01; A vs. C: adjusted OR = 0.74, 95% CI: 0.62-0.89, P = 0.001). Moreover, the rs12415607 AA genotype carriers exhibited lower levels of CASP7 mRNA and the rs12415607 A allele decreased the promoter activity. These findings indicate that the rs12415607 A allele induces lower levels of transcriptional activity and CASP7 mRNA, and thus is associated with a reduced risk of IS.
Collapse
Affiliation(s)
- Zhaoshi Zheng
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, P.R. China
| | - Songyan Liu
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, P.R. China
| | - Chuheng Wang
- Department of Clinical Medicine (Grade 2017 Student), School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China
| | - Chunhui Wang
- Department of Neurosurgery, the Hospital of Jilin Province, Changchun, Jilin, 130031, P.R. China
| | - Dong Tang
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, P.R. China
| | - Yuqing Shi
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, P.R. China
| | - Xuemei Han
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, P.R. China.
| |
Collapse
|
7
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 711] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
8
|
Rehker J, Rodhe J, Nesbitt RR, Boyle EA, Martin BK, Lord J, Karaca I, Naj A, Jessen F, Helisalmi S, Soininen H, Hiltunen M, Ramirez A, Scherer M, Farrer LA, Haines JL, Pericak-Vance MA, Raskind WH, Cruchaga C, Schellenberg GD, Joseph B, Brkanac Z. Caspase-8, association with Alzheimer's Disease and functional analysis of rare variants. PLoS One 2017; 12:e0185777. [PMID: 28985224 PMCID: PMC5630132 DOI: 10.1371/journal.pone.0185777] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/19/2017] [Indexed: 12/30/2022] Open
Abstract
The accumulation of amyloid beta (Aβ) peptide (Amyloid cascade hypothesis), an APP protein cleavage product, is a leading hypothesis in the etiology of Alzheimer's disease (AD). In order to identify additional AD risk genes, we performed targeted sequencing and rare variant burden association study for nine candidate genes involved in the amyloid metabolism in 1886 AD cases and 1700 controls. We identified a significant variant burden association for the gene encoding caspase-8, CASP8 (p = 8.6x10-5). For two CASP8 variants, p.K148R and p.I298V, the association remained significant in a combined sample of 10,820 cases and 8,881 controls. For both variants we performed bioinformatics structural, expression and enzymatic activity studies and obtained evidence for loss of function effects. In addition to their role in amyloid processing, caspase-8 and its downstream effector caspase-3 are involved in synaptic plasticity, learning, memory and control of microglia pro-inflammatory activation and associated neurotoxicity, indicating additional mechanisms that might contribute to AD. As caspase inhibition has been proposed as a mechanism for AD treatment, our finding that AD-associated CASP8 variants reduce caspase function calls for caution and is an impetus for further studies on the role of caspases in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jan Rehker
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States of America
| | - Johanna Rodhe
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Ryan R. Nesbitt
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States of America
| | - Evan A. Boyle
- Department of Genetics, Stanford University, CA, United States of America
| | - Beth K. Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Jenny Lord
- Department of Psychiatry, Washington University, St. Louis, MO, United States of America
| | - Ilker Karaca
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Adam Naj
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Seppo Helisalmi
- Institute of Clinical Medicine–Neurology, University of Eastern Finland, Kuopio, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine–Neurology, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Mikko Hiltunen
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Alfredo Ramirez
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Martin Scherer
- Department of Primary Medical Care, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Lindsay A. Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Epidemiology, and Biostatistics, Boston University, Boston, MA, United States of America
| | - Jonathan L. Haines
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, United States of America
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Margaret A. Pericak-Vance
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States of America
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, United States of America
| | - Wendy H. Raskind
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States of America
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, MO, United States of America
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Bertrand Joseph
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Zoran Brkanac
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
9
|
Baust JM, Vogel MJ, Van Buskirk R, Baust JG. A Molecular Basis of Cryopreservation Failure and its Modulation to Improve Cell Survival. Cell Transplant 2017. [DOI: 10.3727/000000001783986413] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- John M. Baust
- Institute of Biomedical Technology, State University of New York, Binghamton, NY 13902
| | - Martin J. Vogel
- Institute of Biomedical Technology, State University of New York, Binghamton, NY 13902
| | - Robert Van Buskirk
- Institute of Biomedical Technology, State University of New York, Binghamton, NY 13902
| | - John G. Baust
- Institute of Biomedical Technology, State University of New York, Binghamton, NY 13902
| |
Collapse
|
10
|
Smiles WJ, Parr EB, Coffey VG, Lacham-Kaplan O, Hawley JA, Camera DM. Protein coingestion with alcohol following strenuous exercise attenuates alcohol-induced intramyocellular apoptosis and inhibition of autophagy. Am J Physiol Endocrinol Metab 2016; 311:E836-E849. [PMID: 27677502 DOI: 10.1152/ajpendo.00303.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/20/2016] [Indexed: 01/16/2023]
Abstract
Alcohol ingestion decreases postexercise rates of muscle protein synthesis, but the mechanism(s) (e.g., increased protein breakdown) underlying this observation is unknown. Autophagy is an intracellular "recycling" system required for homeostatic substrate and organelle turnover; its dysregulation may provoke apoptosis and lead to muscle atrophy. We investigated the acute effects of alcohol ingestion on autophagic cell signaling responses to a bout of concurrent (combined resistance- and endurance-based) exercise. In a randomized crossover design, eight physically active males completed three experimental trials of concurrent exercise with either postexercise ingestion of alcohol and carbohydrate (12 ± 2 standard drinks; ALC-CHO), energy-matched alcohol and protein (ALC-PRO), or protein (PRO) only. Muscle biopsies were taken at rest and 2 and 8 h postexercise. Select autophagy-related gene (Atg) proteins decreased compared with rest with ALC-CHO (P < 0.05) but not ALC-PRO. There were parallel increases (P < 0.05) in p62 and PINK1 commensurate with a reduction in BNIP3 content, indicating a diminished capacity for mitochondria-specific autophagy (mitophagy) when alcohol and carbohydrate were coingested. DNA fragmentation increased in both alcohol conditions (P < 0.05); however, nuclear AIF accumulation preceded this apoptotic response with ALC-CHO only (P < 0.05). In contrast, increases in the nuclear content of p53, TFEB, and PGC-1α in ALC-PRO were accompanied by markers of mitochondrial biogenesis at the transcriptional (Tfam, SCO2, and NRF-1) and translational (COX-IV, ATPAF1, and VDAC1) level (P < 0.05). We conclude that alcohol ingestion following exercise triggers apoptosis, whereas the anabolic properties of protein coingestion may stimulate mitochondrial biogenesis to protect cellular homeostasis.
Collapse
Affiliation(s)
- William J Smiles
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Melbourne, Victoria, Australia
| | - Evelyn B Parr
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Melbourne, Victoria, Australia
| | - Vernon G Coffey
- Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia; and
| | - Orly Lacham-Kaplan
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Melbourne, Victoria, Australia
| | - John A Hawley
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Melbourne, Victoria, Australia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Donny M Camera
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Melbourne, Victoria, Australia;
| |
Collapse
|
11
|
|
12
|
Tsai SR, Yin R, Huang YY, Sheu BC, Lee SC, Hamblin MR. Low-level light therapy potentiates NPe6-mediated photodynamic therapy in a human osteosarcoma cell line via increased ATP. Photodiagnosis Photodyn Ther 2014; 12:123-30. [PMID: 25462575 DOI: 10.1016/j.pdpdt.2014.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 10/22/2014] [Accepted: 10/29/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Low-level light therapy (LLLT) is used to stimulate healing, reduce pain and inflammation, and preserve tissue from dying. LLLT has been shown to protect cells in culture from dying after various cytotoxic insults, and LLLT is known to increase the cellular ATP content. Previous studies have demonstrated that maintaining a sufficiently high ATP level is necessary for the efficient induction and execution of apoptosis steps after photodynamic therapy (PDT). METHODS We asked whether LLLT would protect cells from cytotoxicity due to PDT, or conversely whether LLLT would enhance the efficacy of PDT mediated by mono-l-aspartyl chlorin(e6) (NPe6). Increased ATP could lead to enhanced cell uptake of NPe6 by the energy dependent process of endocytosis, and also to more efficient apoptosis. In this study, human osteosarcoma cell line MG-63 was subjected to 1.5J/cm(2) of 810nm near infrared radiation (NIR) followed by addition of 10μM NPe6 and after 2h incubation by 1.5J/cm(2) of 652nm red light for PDT. RESULTS PDT combined with LLLT led to higher cell death and increased intracellular reactive oxygen species compared to PDT alone. The uptake of NPe6 was moderately increased by LLLT, and cellular ATP was increased. The mitochondrial respiratory chain inhibitor antimycin A abrogated the LLLT-induced increase in cytotoxicity. CONCLUSIONS Taken together, these results demonstrate that LLLT potentiates NPe6-mediated PDT via increased ATP synthesis and is a potentially promising strategy that could be applied in clinical PDT.
Collapse
Affiliation(s)
- Shang-Ru Tsai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Rui Yin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Bor-Ching Sheu
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Si-Chen Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
13
|
Corwin WL, Baust JM, Baust JG, Van Buskirk RG. Characterization and modulation of human mesenchymal stem cell stress pathway response following hypothermic storage. Cryobiology 2014; 68:215-26. [PMID: 24508650 DOI: 10.1016/j.cryobiol.2014.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 02/04/2023]
Abstract
Human mesenchymal stem cell (hMSC) research has grown exponentially in the last decade. The ability to process and preserve these cells is vital to their use in stem cell therapy. As such, understanding the complex, molecular-based stress responses associated with biopreservation is necessary to improve outcomes and maintain the unique stem cell properties specific to hMSC. In this study hMSC were exposed to cold storage (4°C) for varying intervals in three different media. The addition of resveratrol or salubrinal was studied to determine if either could improve cell tolerance to cold. A rapid elevation in apoptosis at 1h post-storage as well as increased levels of necrosis through the 24h of recovery was noted in samples. The addition of resveratrol resulted in significant improvements to hMSC survival while the addition of salubrinal revealed a differential response based on the media utilized. Decreases in both apoptosis and necrosis together with decreased cell stress/death signaling protein levels were observed following modulation. Further, ER stress and subsequent unfolded protein response (UPR) stress pathway activation was implicated in response to hMSC hypothermic storage. This study is an important first step in understanding hMSC stress responses to cold exposure and demonstrates the impact of targeted molecular modulation of specific stress pathways on cold tolerance thereby yielding improved outcomes. Continued research is necessary to further elucidate the molecular mechanisms involved in hypothermic-induced hMSC cell death. This study has demonstrated the potential for improving hMSC processing and storage through targeting select cell stress pathways.
Collapse
Affiliation(s)
- William L Corwin
- CPSI Biotech, 2 Court St, Owego, NY 13827, United States; Institute of Biomedical Technology, Binghamton University, Binghamton, NY 13902, United States.
| | - John M Baust
- CPSI Biotech, 2 Court St, Owego, NY 13827, United States; Institute of Biomedical Technology, Binghamton University, Binghamton, NY 13902, United States
| | - John G Baust
- Institute of Biomedical Technology, Binghamton University, Binghamton, NY 13902, United States; Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, United States
| | - Robert G Van Buskirk
- CPSI Biotech, 2 Court St, Owego, NY 13827, United States; Institute of Biomedical Technology, Binghamton University, Binghamton, NY 13902, United States; Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, United States
| |
Collapse
|
14
|
Abstract
It is well known that the death of dopaminergic neurons of the substantia nigra pars compacta (SNc) is the pathological hallmark of Parkinson's disease (PD), the second most common and disabling condition in the expanding elderly population. Nevertheless, the intracellular cascade of events leading to dopamine cell death is still unknown and, consequently, treatment is largely symptomatic rather than preventive. Moreover, the mechanisms whereby nigral dopaminergic neurons may degenerate still remain controversial. Hitherto, several data have shown that the earlier cellular disturbances occurring in dopaminergic neurons include oxidative stress, excitotoxicity, inflammation, mitochondrial dysfunction and altered proteolysis. These alterations, rather than killing neurons, trigger subsequent death-related molecular pathways, including elements of apoptosis. In rare incidences, PD may be inherited; this evidence has opened a new and exciting area of research, attempting to shed light on the nature of the more common idiopathic PD form. In this review, the characteristics of the SNc dopaminergic neurons and their lifecycle from birth to death are reviewed. In addition, of the mechanisms by which the aforementioned alterations cause neuronal dopaminergic death, particular emphasis will be given to the role played by inflammation, and the relevance of the possible use of anti-inflammatory drugs in the treatment of PD. Finally, new evidence of a possible de novo neurogenesis in the SNc of adult animals and in PD patients will also be examined.
Collapse
Affiliation(s)
- Ennio Esposito
- Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, Via Nazionale 8, 66030 Santa Maria Imbaro (Chieti), Italy.
| | | | | |
Collapse
|
15
|
Kiesslich T, Tortik N, Pichler M, Neureiter D, Plaetzer K. Apoptosis in cancer cells induced by photodynamic treatment – a methodological approach. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424613300036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is approved for clinical indications including several (pre-) cancers of the skin and solid tumors of the brain and the gastrointestinal tract. It operates by an acute cellular response caused by oxidation of cell components following light-induced and photosensitizer-mediated generation of reactive oxygen species. By this, PDT is capable of inducing the major types of cytotoxic responses: autophagy, apoptosis, and necrosis. As excited photosensitizer molecules react rather non-specifically with neighboring molecules, we suggest that with PDT and most (if not any) cell-localizing photosensitizers, all kinds of cellular responses can be provoked — following a strict dose-dependency, i.e. a transition from survival, over apoptosis to necrosis depending on the applied photosensitizer concentration or light dose. In this review, we briefly discuss (i) the types of cell death induced by PDT focusing on apoptosis induction, (ii) a simple experimental approach to quickly assess the dose-dependent phototoxic responses based on viability assays, and (iii) an overview of in vitro apoptosis detection methods for further in depth analyses. With this conceptual framework, we attempt to provide a rational experimental approach for initial in vitro, cell-based characterization of newly synthesized photosensitizers or formulations thereof — thus to plug the gap between subsequent in vivo evaluation and the preceding fundamental (physico-)chemical work devoted to the improvement of photosensitizing drugs based on mainly porphyrins, phthalocyanines and their derivatives.
Collapse
Affiliation(s)
- Tobias Kiesslich
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Muellner Haupstrasse 48, 5020 Salzburg, Austria
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Nicole Tortik
- Laboratory of Photodynamic Inactivation of Microorganisms (PDI-PLUS), Division of Physics and Biophysics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Auenbruggerplatz 15, 8036 Graz, Austria
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Muellner Haupstrasse 48, 5020 Salzburg, Austria
| | - Kristjan Plaetzer
- Laboratory of Photodynamic Inactivation of Microorganisms (PDI-PLUS), Division of Physics and Biophysics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| |
Collapse
|
16
|
Yessotoxin as a tool to study induction of multiple cell death pathways. Toxins (Basel) 2012; 4:568-79. [PMID: 22852069 PMCID: PMC3407893 DOI: 10.3390/toxins4070568] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/14/2012] [Accepted: 07/21/2012] [Indexed: 12/11/2022] Open
Abstract
This work proposes to use the marine algal toxin yessotoxin (YTX) to establish reference model experiments to explore medically valuable effects from induction of multiple cell death pathways. YTX is one of few toxins reported to make such induction. It is a small molecule compound which at low concentrations can induce apoptosis in primary cultures, many types of cells and cell lines. It can also induce a non-apoptotic form of programmed cell death in BC3H1 myoblast cell lines. The present contribution reviews arguments that this type of induction may have principal interest outside this particular example. One principal effect of medical interest may be that cancer cells will not so easily adapt to the synergistic effects from induction of more than one death pathway as compared to induction of only apoptosis.
Collapse
|
17
|
Imaging of stroke: Part 2, Pathophysiology at the molecular and cellular levels and corresponding imaging changes. AJR Am J Roentgenol 2012; 198:63-74. [PMID: 22194480 DOI: 10.2214/ajr.10.7312] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Stroke is the third leading cause of death and the leading cause of severe disability. During the "decade of the brain" in the 1990s, the most promising development was the treatment of acute ischemic stroke. It is thought to result from a cascade of events from energy depletion to cell death. In the initial minutes to hour, clinical deficit does not necessarily reflect irreversible damage. The final outcome and residual deficit will be decided by how fast reperfusion is achieved, which in turn depends on how early the diagnosis is made. This article explains the pathophysiology of stroke at the molecular and cellular levels with corresponding changes on various imaging techniques. CONCLUSION The pathophysiology of stroke has several complex mechanisms. Understanding these mechanisms is essential to derive neuroprotective agents that limit neuronal damage after ischemia. Imaging and clinical strategies aimed at extending the therapeutic window for reperfusion treatment with mechanical and pharmacologic thrombolysis will add value to existing treatment strategies. Acute ischemic stroke is defined as abrupt neurologic dysfunction due to focal brain ischemia resulting in persistent neurologic deficit accompanied by characteristic abnormalities on brain imaging. Knowledge of the pathophysiologic mechanisms of neuronal injury in stroke is essential to target treatment. Neuroprotective and thrombolytic agents have been shown to improve clinical outcome. Physiologic imaging with diffusion-weighted imaging (DWI) and perfusion CT and MRI provide a pathophysiologic substrate of evolving ischemic stroke.
Collapse
|
18
|
Liang C, Li H, Zhou H, Zhang S, Liu Z, Zhou Q, Sun F. Recombinant Lz-8 from Ganoderma lucidum induces endoplasmic reticulum stress-mediated autophagic cell death in SGC-7901 human gastric cancer cells. Oncol Rep 2011; 27:1079-89. [PMID: 22179718 PMCID: PMC3583434 DOI: 10.3892/or.2011.1593] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 11/15/2011] [Indexed: 12/11/2022] Open
Abstract
In Asia, the mushroom of the fungus Ganoderma lucidum has been widely used as a traditional medicine for the past two millennia. The aim of this study was to investigate the anticancer activity of recombinant Lz-8 (rLz-8), a protein belonging to a family of fungal immunomodulatory proteins. We report that rLz-8 induces endoplasmic reticulum (ER) stress-mediated autophagic cell death in the human gastric cancer cell line SGC-7901. Our results show that rLz-8 induces autophagic cell death by aggregating in the ER, triggering ER stress and the ATF4-CHOP pathway. A foreign protein, in the ER rLz-8 causes the activation of the ubiquitine/proteasome ER-associated degradation (ERAD) system. The autophagic arm of this system is then overstimulated by an excessive abundance of rLz-8 and causes the cell’s death through an over-autophagic response. We also found that caspase inhibitors do not prevent rLz-8-induced cell death, and therefore the autophagic response induced by rLz-8 is independent of caspase activation.
Collapse
Affiliation(s)
- Chongyang Liang
- Institute of Frontier Medical Science of Jilin University, Changchun 130021, PR China
| | | | | | | | | | | | | |
Collapse
|
19
|
Death in pain: peripheral nerve injury and spinal neurodegenerative mechanisms. Curr Opin Pharmacol 2011; 12:49-54. [PMID: 22088890 DOI: 10.1016/j.coph.2011.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 12/23/2022]
Abstract
A complex network operates in the spinal dorsal horn to integrate peripheral nociceptive inputs with local and descending control mechanisms, and to cross-talk with higher brain areas. Injury to peripheral sensory nerves can trigger a cascade of events within this relay which, in some cases, may turn into abnormal responses outlasting the initial detrimental stimulus and leading to chronic pain. In the spinal dorsal horn, evidence has been provided both in support and against the occurrence of neuronal loss following peripheral nerve injury, leaving this issue still unresolved. Only new conceptual and technical approaches will determine the relevance of spinal neurodegenerative mechanisms to chronic pain states and allow translation into novel therapeutic targets.
Collapse
|
20
|
Wang HW, Liou KT, Wang YH, Lu CK, Lin YL, Lee IJ, Huang ST, Tsai YH, Cheng YC, Lin HJ, Shen YC. Deciphering the neuroprotective mechanisms of Bu-yang Huan-wu decoction by an integrative neurofunctional and genomic approach in ischemic stroke mice. JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:22-33. [PMID: 21784143 DOI: 10.1016/j.jep.2011.06.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 06/03/2011] [Accepted: 06/21/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bu-yang Huan-wu decoction (BHD) is a famous traditional Chinese medicine formula that has been used clinically in Asia to treat stroke-induced disability for centuries, but the underlying neuroprotective mechanisms are not fully understood. AIM OF THE STUDY In this study, we aim to investigate the mechanisms of action using an integrative neurofunctional and broad genomics approach. MATERIALS AND METHODS Male ICR mice were subjected to an acute ischemic stroke by inducing a middle cerebral ischemic/reperfusion (CI/R) injury. To examine whether BHD could extend the lifespan of mice with a stroke, we used oral administration of BHD (0.5 and 1.0g/kg) twice daily starting from 2h after ischemia and compared this with vehicle control treatments, recombinant tissue-type plasminogen activator (rt-PA, 10mg/kg, i.v.), and MK-801 (0.2mg/kg, i.p.). An integrative neurofunctional and genomic approach was performed to elucidate the underlying molecular mechanisms of BHD. RESULTS More than 80% of the mice died within 2 days after stroke induction in the vehicle control treatment group. However, the survival rates and life-spans of mice treated with BHD, rt-PA and MK-801 were significantly enhanced as compared to the vehicle-treated CI/R group in all three cases. Mice treated with BHD (1.0g/kg) showed the greatest protective effect across all groups. BHD successfully restored brain function, ameliorated the cerebral infarction, and significantly improved the neurological deficits of the mice with a stroke. BHD also reduced inflammation, oxidative stress, and apoptosis, as well as improved neurogenesis. The molecular impacts of BHD were assessed by genome-wide transcriptome analysis using brains from the CI/R mice. The results showed a total of 377 ischemia-induced probe-sets that were significantly influenced by BHD including 93 probe-sets that were commonly more abundant in BHD-treated and sham mice, and another 284 ischemia-induced probe sets that were suppressed by BHD. Mining the functional modules and genetic networks of these 377 genes revealed a significant upregulation of neuroprotective genes associated with neurogenesis (6 genes) and nervous system development (9 genes), and a significant down-regulation of destructive genes associated with the induction of inflammation (14 genes), apoptosis (15 genes), angiogenesis (11 genes) and blood coagulation (7 genes) by BHD. CONCLUSIONS Our results suggested that BHD is able to protect mice against stroke and extend lifespan primarily through a significant down-regulation of genes involved in inflammation, apoptosis, angiogenesis and blood coagulation, as well as an up-regulation of genes mediating neurogenesis and nervous system development. The changes in expression after treatment with BHD are beneficial after ischemic stroke.
Collapse
Affiliation(s)
- Hsei-Wei Wang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mitochondrial Unselective Channels throughout the eukaryotic domain. Mitochondrion 2011; 11:382-90. [DOI: 10.1016/j.mito.2011.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/16/2011] [Accepted: 02/25/2011] [Indexed: 02/03/2023]
|
22
|
Ofengeim D, Miyawaki T, Suzanne zukin R. Molecular and Cellular Mechanisms of Ischemia-Induced Neuronal Death. Stroke 2011. [DOI: 10.1016/b978-1-4160-5478-8.10006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Combination of intracortically administered VEGF and environmental enrichment enhances brain protection in developing rats. J Neural Transm (Vienna) 2010; 118:135-44. [DOI: 10.1007/s00702-010-0496-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 09/24/2010] [Indexed: 01/07/2023]
|
24
|
Lee HZ, Yang WH, Bao BY, Lo PL. Proteomic analysis reveals ATP-dependent steps and chaperones involvement in luteolin-induced lung cancer CH27 cell apoptosis. Eur J Pharmacol 2010; 642:19-27. [PMID: 20553912 DOI: 10.1016/j.ejphar.2010.05.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 04/20/2010] [Accepted: 05/22/2010] [Indexed: 11/25/2022]
Abstract
The present study applied 2D electrophoresis to analyze the proteins involved in luteolin (50 microM)-induced CH27 cell apoptosis. We found 7 proteins to be markedly changed. According to the data of analysis of these protein spots, we hypothesized that ATP synthetic pathway and heat shock proteins were involved in luteolin-induced CH27 cell apoptosis. In this study, luteolin induced a significant change in intracellular ATP levels and mitochondrial activity of CH27 cells. Further experiments demonstrated that pretreatment with forskolin blocked the luteolin-induced cell death. P38 and heat shock protein 27 may be important participants in the luteolin-induced changes in organization of actin microfilaments in this study. In addition, endoplasmic reticulum stress is also important in the luteolin-induced CH27 cell apoptosis. Our findings suggested that the function of mitochondria and endoplasmic reticulum is the integral factor in luteolin-induced CH27 cell apoptosis.
Collapse
Affiliation(s)
- Hong-Zin Lee
- School of Pharmacy, China Medical University, Taichung, 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.
| | | | | | | |
Collapse
|
25
|
Adenovirus-mediated brain-derived neurotrophic factor expression regulated by hypoxia response element protects brain from injury of transient middle cerebral artery occlusion in mice. Neurosci Lett 2009; 465:220-5. [PMID: 19703519 DOI: 10.1016/j.neulet.2009.08.049] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 08/16/2009] [Accepted: 08/18/2009] [Indexed: 12/16/2022]
Abstract
Some gene expression may be regulated by hypoxia-responsive element (HRE) that is bound by hypoxia-inducible factor-1 (HIF-1) which is up-regulated during cerebral ischemia. To explore ischemia/hypoxia-controlled expression and the neuroprotective effects of brain-derived neurotrophic factor (BDNF) after ischemic brain injury, an adenoviral vector using five copies of hypoxia response element (HRE) in the vascular endothelial growth factor gene to regulate the expression of BDNF gene (Ad5HRE:BDNF) was constructed, and its efficacy was verified for driving BDNF expression in cultured Hela cells under hypoxic condition by ELISA. We found that the concentration of BDNF in the Ad5HRE:BDNF-transfected culture media was 28-fold greater in a hypoxic condition than under normoxia. To examine the effect of Ad5HRE:BDNF on ischemic brain injury in vivo, Ad5HRE:BDNF was injected into right caudate putamen of adult mice 7 days prior to 60 min transient middle cerebral artery occlusion (MCAO). It was found that exogenous BDNF expression was increased in the Ad5HRE-BDNF-treated group and infarct volume of the Ad5HRE:BDNF-treated group at 3 days after MCAO was significantly smaller than that of vehicle- or AdNull-treated groups. Moreover, Ad5HRE:BDNF injection resulted in significantly improved sensorimotor scores 7 days after MCAO and induced a reduction in the number of Fluoro-Jade B-positive neurons and TUNEL-positive cells, compared with vehicle- or AdNull-injection. Our findings suggest that BDNF expression could be regulated in hypoxia/ischemia condition with five copies of HRE and ameliorates ischemic brain injury in a mouse focal cerebral ischemia model.
Collapse
|
26
|
Morrison JP, Ton TV, Collins JB, Switzer RC, Little PB, Morgan DL, Sills RC. Gene Expression Studies Reveal That DNA Damage, Vascular Perturbation, and Inflammation Contribute to the Pathogenesis of Carbonyl Sulfide Neurotoxicity. Toxicol Pathol 2009; 37:502-11. [DOI: 10.1177/0192623309335631] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carbonyl sulfide (COS) is an odorless gas that produces highly reproducible lesions in the central nervous system. In the present study, the time course for the development of the neurotoxicological lesions was defined and the gene expression changes occurring in the posterior colliculus upon exposure to COS were characterized. Fischer 344 rats were exposed to 0 or 500 ppm COS for one, two, three, four, five, eight, or ten days, six hours per day. On days 1 and 2, no morphological changes were detected; on day 3, 10/10 (100%) rats had necrosis in the posterior colliculi; and on day 4 and later, necrosis was observed in numerous areas of the brain. Important gene expression changes occurring in the posterior colliculi after one or two days of COS exposure that were predictive of the subsequent morphological findings included up-regulation of genes associated with DNA damage and G1/S checkpoint regulation (KLF4, BTG2, GADD45g), apoptosis (TGM2, GADD45g, RIPK3), and vascular mediators (ADAMTS, CTGF, CYR61, VEGFC). Proinflammatory mediators (CCL2, CEBPD) were up-regulated prior to increases in expression of the astrocytic marker GFAP and macrophage marker CSF2rb1. These gene expression findings were predictive of later CNS lesions caused by COS exposure and serve as a model for future investigations into the mechanisms of disease in the central nervous system.
Collapse
Affiliation(s)
- James P. Morrison
- Charles River Laboratories, Pathology Associates, Durham, NC 27703, USA
| | - Thai-Vu Ton
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Jennifer B. Collins
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | | | - Peter B. Little
- Charles River Laboratories, Pathology Associates, Durham, NC 27703, USA
| | - Daniel L. Morgan
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Robert C. Sills
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| |
Collapse
|
27
|
Baust JM, Snyder KK, VanBuskirk RG, Baust JG. Changing Paradigms in Biopreservation. Biopreserv Biobank 2009; 7:3-12. [DOI: 10.1089/bio.2009.0701.jmb] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- John M. Baust
- Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, New York
- Department of Biological Sciences, Binghamton University, Binghamton, New York
- Cell Preservation Services, Inc., Owego, New York
| | - Kristi K. Snyder
- Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, New York
- Department of Biological Sciences, Binghamton University, Binghamton, New York
- Cell Preservation Services, Inc., Owego, New York
| | - Robert G. VanBuskirk
- Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, New York
- Department of Biological Sciences, Binghamton University, Binghamton, New York
- Cell Preservation Services, Inc., Owego, New York
| | - John G. Baust
- Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, New York
- Department of Biological Sciences, Binghamton University, Binghamton, New York
| |
Collapse
|
28
|
Copen WA, Rezai Gharai L, Barak ER, Schwamm LH, Wu O, Kamalian S, Gonzalez RG, Schaefer PW. Existence of the Diffusion-Perfusion Mismatch within 24 Hours after Onset of Acute Stroke: Dependence on Proximal Arterial Occlusion. Radiology 2009; 250:878-86. [DOI: 10.1148/radiol.2503080811] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Hoa N, Myers MP, Douglass TG, Zhang JG, Delgado C, Driggers L, Callahan LL, VanDeusen G, Pham JTH, Bhakta N, Ge L, Jadus MR. Molecular mechanisms of paraptosis induction: implications for a non-genetically modified tumor vaccine. PLoS One 2009; 4:e4631. [PMID: 19247476 PMCID: PMC2645013 DOI: 10.1371/journal.pone.0004631] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Accepted: 01/02/2009] [Indexed: 01/07/2023] Open
Abstract
Paraptosis is the programmed cell death pathway that leads to cellular necrosis. Previously, rodent and human monocytes/macrophages killed glioma cells bearing the membrane macrophage colony stimulating factor (mM-CSF) through paraptosis, but the molecular mechanism of this killing process was never identified. We have demonstrated that paraptosis of rat T9 glioma cells can be initiated through a large potassium channel (BK)-dependent process initiated by reactive oxygen species. Macrophage mediated cytotoxicity upon the mM-CSF expressing T9-C2 cells was not prevented by the addition of the caspase inhibitor, zVAD-fmk. By a combination of fluorescent confocal and electron microscopy, flow cytometry, electrophysiology, pharmacology, and genetic knock-down approaches, we demonstrated that these ion channels control cellular swelling and vacuolization of rat T9 glioma cells. Cell lysis is preceded by a depletion of intracellular ATP. Six-hour exposure to BK channel activation caused T9 cells to over express heat shock proteins (Hsp 60, 70, 90 and gp96). This same treatment forced HMGB1 translocation from the nuclear region to the periphery. These last molecules are "danger signals" that can stimulate immune responses. Similar inductions of mitochondrial swelling and increased Hsp70 and 90 expressions by BK channel activation were observed with the non-immunogenic F98 glioma cells. Rats injected with T9 cells which were killed by prolonged BK channel activation developed immunity against the T9 cells, while the injection of x-irradiated apoptotic T9 cells failed to produce the vaccinating effect. These results are the first to show that glioma cellular death induced by prolonged BK channel activation improves tumor immunogenicity; this treatment reproduces the vaccinating effects of mM-CSF transduced cells. Elucidation of strategies as described in this study may prove quite valuable in the development of clinical immunotherapy against cancer.
Collapse
Affiliation(s)
- Neil Hoa
- Diagnostic and Molecular Medicine Healthcare Group, Veterans Affairs Medical Center, Long Beach, California, United States of America
| | - Michael P. Myers
- Chemistry and Biochemistry Department, California State University Long Beach, Long Beach, California, United States of America
| | - Thomas G. Douglass
- Biology Department, California State University Long Beach, Long Beach, California, United States of America
| | - Jian Gang Zhang
- Diagnostic and Molecular Medicine Healthcare Group, Veterans Affairs Medical Center, Long Beach, California, United States of America
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
| | - Christina Delgado
- Diagnostic and Molecular Medicine Healthcare Group, Veterans Affairs Medical Center, Long Beach, California, United States of America
| | - Lara Driggers
- Diagnostic and Molecular Medicine Healthcare Group, Veterans Affairs Medical Center, Long Beach, California, United States of America
| | - Linda L. Callahan
- Nursing Department, California State University Long Beach, Long Beach, California, United States of America
| | - Gerald VanDeusen
- Chemistry and Biochemistry Department, California State University Long Beach, Long Beach, California, United States of America
| | - Jimmy T. H. Pham
- Chemistry and Biochemistry Department, California State University Long Beach, Long Beach, California, United States of America
| | - Nirav Bhakta
- Chemistry and Biochemistry Department, California State University Long Beach, Long Beach, California, United States of America
| | - Lisheng Ge
- Diagnostic and Molecular Medicine Healthcare Group, Veterans Affairs Medical Center, Long Beach, California, United States of America
| | - Martin R. Jadus
- Diagnostic and Molecular Medicine Healthcare Group, Veterans Affairs Medical Center, Long Beach, California, United States of America
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
- Neuro-Oncology Program, Chao Comprehensive Cancer Center, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
30
|
Vaidyanathan R, Fleisher AE, Minnick SL, Simmons KA, Scott TW. Nutritional stress affects mosquito survival and vector competence for West Nile virus. Vector Borne Zoonotic Dis 2009; 8:727-32. [PMID: 18620513 DOI: 10.1089/vbz.2007.0189] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most anautogenous female mosquitoes ingest plant carbohydrates for flight energy and survival, and they imbibe vertebrate blood for egg development. We evaluated the effect of different sucrose meals following a blood meal containing West Nile virus (WNV) on Culex pipiens pipiens survival, nutritional status, and susceptibility to viral infection and transmission. Ten days after blood feeding, no mosquitoes survived on distilled water, 55% survived on 2% sucrose, 61% on 10 and 20% sucrose meals, and over 70% survived on 40% sucrose. There was a positive correlation between sucrose meal concentration and detectable sugars, glycogen, and lipid in whole-body homogenates. Average sugar values increased from 0 microg per starved mosquito (range 0-1.0 microg) to an average of 392 microg per mosquito fed on 40% sucrose (85-1088 microg). Average glycogen values increased from 0 microg (0-5.7 microg) to an average of 620 microg (118-1421 microg). Average lipid values were identical for mosquitoes in the starved and 2% sucrose series (38 microg) and increased to 172 microg per mosquito fed on 40% sucrose (92-266 microg). Mosquitoes in all sucrose series were equally susceptible to WNV infection (p > 0.5), but mosquitoes with lower nutrient reserves as a result of lower sucrose meals were more likely to orally transmit virus (p < 0.05). We discuss how mosquito nutritional status influences probability of daily survival, susceptibility to infection, and vectorial capacity. We conclude that maintaining C. p. pipiens on standard 10% sucrose is justified in light of these results.
Collapse
|
31
|
Hand SC, Menze MA. Mitochondria in energy-limited states: mechanisms that blunt the signaling of cell death. ACTA ACUST UNITED AC 2008; 211:1829-40. [PMID: 18515712 DOI: 10.1242/jeb.000299] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cellular conditions experienced during energy-limited states--elevated calcium, shifts in cellular adenylate status, compromised mitochondrial membrane potential--are precisely those that trigger, at least in mammals, the mitochondrion to initiate opening of the permeability transition pore, to assemble additional protein release channels, and to release pro-apoptotic factors. These pro-apototic factors in turn activate initiator and executer caspases. How is activation of mitochondria-based pathways for the signaling of apoptotic and necrotic cell death avoided under conditions of hypoxia, anoxia, diapause, estivation and anhydrobiosis? Functional trade-offs in environmental tolerance may have occurred in parallel with the evolution of diversified pathways for the signaling of cell death in eukaryotic organisms. Embryos of the brine shrimp, Artemia franciscana, survive extended periods of anoxia and diapause, and evidence indicates that opening of the mitochondrial permeability transition pore and release of cytochrome c (cyt-c) do not occur. Further, caspase activation in this crustacean is not dependent on cyt-c. Its caspases display regulation by nucleotides that is consistent with ;applying the brakes' to cell death during energy limitation. Unraveling the mechanisms by which organisms in extreme environments avoid cell death may suggest possible interventions during disease states and biostabilization of mammalian cells.
Collapse
Affiliation(s)
- Steven C Hand
- Division of Cellular, Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
32
|
Douglass TG, Driggers L, Zhang JG, Hoa N, Delgado C, Williams CC, Dan Q, Sanchez R, Jeffes EWB, Wepsic HT, Myers MP, Koths K, Jadus MR. Macrophage colony stimulating factor: not just for macrophages anymore! A gateway into complex biologies. Int Immunopharmacol 2008; 8:1354-76. [PMID: 18687298 DOI: 10.1016/j.intimp.2008.04.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Accepted: 04/21/2008] [Indexed: 12/21/2022]
Abstract
Macrophage colony stimulating factor (M-CSF, also called colony stimulating factor-1) has traditionally been viewed as a growth/differentiation factor for monocytes, macrophages, and some female-specific tumors. As a result of alternative mRNA splicing and post-translational processing, several forms of M-CSF protein are produced: a secreted glycoprotein, a longer secreted form containing proteoglycan, and a short membrane-bound isoform. These different forms of M-CSF all initiate cell signaling in cells bearing the M-CSF receptor, called c-fms. Here we review the biology of M-CSF, which has important roles in bone physiology, the intestinal tract, cancer metastases to the bone, macrophage-mediated tumor cell killing and tumor immunity. Although this review concentrates mostly on the membrane form of human M-CSF (mM-CSF), the biology of the soluble forms and the M-CSF receptor will also be discussed for comparative purposes. The mechanisms of the biological effects of the membrane-bound M-CSF reveal that this cytokine is unexpectedly involved in many complex molecular events. Recent experiments suggest that a tumor vaccine based on membrane-bound M-CSF-transduced tumor cells, combined with anti-angiogenic therapy, should be evaluated further for use in clinical trials.
Collapse
Affiliation(s)
- Thomas G Douglass
- Biology Department, California State University Long Beach, 1250 Bellflower Blvd, Long Beach CA 90840, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Irwin RW, Yao J, Hamilton RT, Cadenas E, Brinton RD, Nilsen J. Progesterone and estrogen regulate oxidative metabolism in brain mitochondria. Endocrinology 2008; 149:3167-75. [PMID: 18292191 PMCID: PMC2408802 DOI: 10.1210/en.2007-1227] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ovarian hormones progesterone and estrogen have well-established neurotrophic and neuroprotective effects supporting both reproductive function and cognitive health. More recently, it has been recognized that these steroids also regulate metabolic functions sustaining the energetic demands of this neuronal activation. Underlying this metabolic control is an interpretation of signals from diverse environmental sources integrated by receptor-mediated responses converging upon mitochondrial function. In this study, to determine the effects of progesterone (P4) and 17beta-estradiol (E2) on metabolic control via mitochondrial function, ovariectomized rats were treated with P4, E2, or E2 plus P4, and whole-brain mitochondria were isolated for functional assessment. Brain mitochondria from hormone-treated rats displayed enhanced functional efficiency and increased metabolic rates. The hormone-treated mitochondria exhibited increased respiratory function coupled to increased expression and activity of the electron transport chain complex IV (cytochrome c oxidase). This increased respiratory activity was coupled with a decreased rate of reactive oxygen leak and reduced lipid peroxidation representing a systematic enhancement of brain mitochondrial efficiency. As such, ovarian hormone replacement induces mitochondrial alterations in the central nervous system supporting efficient and balanced bioenergetics reducing oxidative stress and attenuating endogenous oxidative damage.
Collapse
Affiliation(s)
- Ronald W Irwin
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, 1985 Zonal Avenue, Los Angeles, California 90089, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Cell death has historically been subdivided into regulated and unregulated mechanisms. Apoptosis, a form of regulated cell death, reflects a cell's decision to die in response to cues and is executed by intrinsic cellular machinery. Unregulated cell death (often called necrosis) is caused by overwhelming stress that is incompatible with cell survival. Emerging evidence, however, suggests that these two processes do not adequately explain the various cell death mechanisms. Recent data point to the existence of multiple non-apoptotic, regulated cell death mechanisms, some of which overlap or are mutually exclusive with apoptosis. Here we examine how and why these different cell death programmes have evolved, with an eye towards new cytoprotective therapeutic opportunities.
Collapse
|
35
|
Secondary necrosis in multicellular animals: an outcome of apoptosis with pathogenic implications. Apoptosis 2008; 13:463-82. [PMID: 18322800 PMCID: PMC7102248 DOI: 10.1007/s10495-008-0187-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 02/14/2008] [Indexed: 01/11/2023]
Abstract
In metazoans apoptosis is a major physiological process of cell elimination during development and in tissue homeostasis and can be involved in pathological situations. In vitro, apoptosis proceeds through an execution phase during which cell dismantling is initiated, with or without fragmentation into apoptotic bodies, but with maintenance of a near-to-intact cytoplasmic membrane, followed by a transition to a necrotic cell elimination traditionally called “secondary necrosis”. Secondary necrosis involves activation of self-hydrolytic enzymes, and swelling of the cell or of the apoptotic bodies, generalized and irreparable damage to the cytoplasmic membrane, and culminates with cell disruption. In vivo, under normal conditions, the elimination of apoptosing cells or apoptotic bodies is by removal through engulfment by scavengers prompted by the exposure of engulfment signals during the execution phase of apoptosis; if this removal fails progression to secondary necrosis ensues as in the in vitro situation. In vivo secondary necrosis occurs when massive apoptosis overwhelms the available scavenging capacity, or when the scavenger mechanism is directly impaired, and may result in leakage of the cell contents with induction of tissue injury and inflammatory and autoimmune responses. Several disorders where secondary necrosis has been implicated as a pathogenic mechanism will be reviewed.
Collapse
|
36
|
Obrenovitch TP. Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 2008; 88:211-47. [PMID: 18195087 DOI: 10.1152/physrev.00039.2006] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ischemic tolerance describes the adaptive biological response of cells and organs that is initiated by preconditioning (i.e., exposure to stressor of mild severity) and the associated period during which their resistance to ischemia is markedly increased. This topic is attracting much attention because preconditioning-induced ischemic tolerance is an effective experimental probe to understand how the brain protects itself. This review is focused on the molecular and related functional changes that are associated with, and may contribute to, brain ischemic tolerance. When the tolerant brain is subjected to ischemia, the resulting insult severity (i.e., residual blood flow, disruption of cellular transmembrane gradients) appears to be the same as in the naive brain, but the ensuing lesion is substantially reduced. This suggests that the adaptive changes in the tolerant brain may be primarily directed against postischemic and delayed processes that contribute to ischemic damage, but adaptive changes that are beneficial during the subsequent test insult cannot be ruled out. It has become clear that multiple effectors contribute to ischemic tolerance, including: 1) activation of fundamental cellular defense mechanisms such as antioxidant systems, heat shock proteins, and cell death/survival determinants; 2) responses at tissue level, especially reduced inflammatory responsiveness; and 3) a shift of the neuronal excitatory/inhibitory balance toward inhibition. Accordingly, an improved knowledge of preconditioning/ischemic tolerance should help us to identify neuroprotective strategies that are similar in nature to combination therapy, hence potentially capable of suppressing the multiple, parallel pathophysiological events that cause ischemic brain damage.
Collapse
Affiliation(s)
- Tihomir Paul Obrenovitch
- Division of Pharmacology, School of Life Sciences, University of Bradford, Bradford, United Kingdom.
| |
Collapse
|
37
|
Shen YC, Wang YH, Chou YC, Liou KT, Yen JC, Wang WY, Liao JF. Dimemorfan protects rats against ischemic stroke through activation of sigma-1 receptor-mediated mechanisms by decreasing glutamate accumulation. J Neurochem 2008; 104:558-72. [PMID: 18173806 DOI: 10.1111/j.1471-4159.2007.05058.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dimemorfan, an antitussive and a sigma-1 (sigma(1)) receptor agonist, has been reported to display neuroprotective properties. We set up an animal model of ischemic stroke injury by inducing cerebral ischemia (for 1 h) followed by reperfusion (for 24 h) (CI/R) in rats to examine the protective effects and action mechanisms of dimemorfan against stroke-induced damage. Treatment with dimemorfan (1.0 microg/kg and 10 microg/kg, i.v.) either 15 min before ischemia or at the time of reperfusion, like the putative sigma(1) receptor agonist, PRE084 (10 microg/kg, i.v.), ameliorated the size of the infarct zone by 67-72% or 51-52%, respectively, which was reversed by pre-treatment with the selective sigma(1) receptor antagonist, BD1047 (20 microg/kg, i.v.). Major pathological mechanisms leading to CI/R injury including excitotoxicity, oxidative/nitrosative stress, inflammation, and apoptosis are all downstream events initiated by excessive accumulation of extracellular glutamate. Dimemorfan treatment (10 microg/kg, i.v., at the time of reperfusion) inhibited the expressions of monocyte chemoattractant protein-1 and interleukin-1beta, which occurred in parallel with decreases in neutrophil infiltration, activation of inflammation-related signals (p38 mitogen-activated protein kinase, nuclear factor-kappaB, and signal transducer and activator of transcription-1), expression of neuronal and inducible nitric oxide synthase, oxidative/nitrosative tissue damage (lipid peroxidation, protein nitrosylation, and 8-hydroxy-guanine formation), and apoptosis in the ipsilateral cortex after CI/R injury. Dimemorfan treatment at the time of reperfusion, although did not prevent an early rise of glutamate level, significantly prevented subsequent glutamate accumulation after reperfusion. This inhibitory effect was lasted for more than 4 h and was reversed by pre-treatment with BD1047. These results suggest that dimemorfan activates the sigma(1) receptor to reduce glutamate accumulation and then suppresses initiation of inflammation-related events and signals as well as induction of oxidative and nitrosative stresses, leading to reductions in tissue damage and cell death. In conclusion, our results demonstrate for the first time that dimemorfan exhibits protective effects against ischemic stroke in CI/R rats probably through modulation of sigma(1) receptor-dependent signals to prevent subsequent glutamate accumulation and its downstream pathologic events.
Collapse
Affiliation(s)
- Yuh-Chiang Shen
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
38
|
Endres M, Dirnagl U, Moskowitz MA. The ischemic cascade and mediators of ischemic injury. HANDBOOK OF CLINICAL NEUROLOGY 2008; 92:31-41. [PMID: 18790268 DOI: 10.1016/s0072-9752(08)01902-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Herzog EL, Van Arnam J, Hu B, Krause DS. Threshold of lung injury required for the appearance of marrow-derived lung epithelia. Stem Cells 2007; 24:1986-92. [PMID: 16868209 DOI: 10.1634/stemcells.2005-0579] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bone marrow-derived cells (BMDCs) can adopt an epithelial phenotype in the lung following bone marrow transplantation (BMT). This phenomenon has been assumed to result from the lung injury that occurs with myeloablative radiation. To date, no study has related the degree of epithelial chimerism following bone marrow transplantation to the lung damage induced by preconditioning for BMT. Such a goal is crucial to understanding the local host factors that promote the engraftment of BMDCs as lung epithelia. We undertook this aim by performing sex-mismatched bone marrow transplantation using a variety of preconditioning regimens and comparing measurements of lung injury (bronchoalveolar lavage [BAL] cell count, alveolar-capillary leak assayed by BAL protein levels, and terminal deoxynucleotidyl transferase dUTP nick-end labeling analysis on epithelial cells) with rigorous methods to quantify bone marrow-derived lung epithelia (costaining for epithelial and donor markers on tissue sections and isolated lung epithelia in recipient mice). We found that only at doses that induced lung injury could marrow derived lung epithelium be identified following BMT. With irradiation doses less than 1,000 centigray (cGy), there was little to no apparent injury to the lung, and there were no marrow-derived pneumocytes despite high levels of hematopoietic chimerism. In contrast, 4 days after either split or single-dose 1,000 cGy irradiation, nearly 15% of lung epithelia were apoptotic, and with this dose, marrow-derived type II pneumocytes (0.2%) were present at 28 days. These data indicate a critical relationship between lung injury and the phenotypic change from BMDCs to lung epithelial cells.
Collapse
Affiliation(s)
- Erica L Herzog
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | |
Collapse
|
40
|
Lai MY, Hour MJ, Wing-Cheung Leung H, Yang WH, Lee HZ. Chaperones are the target in aloe-emodin-induced human lung nonsmall carcinoma H460 cell apoptosis. Eur J Pharmacol 2007; 573:1-10. [PMID: 17643413 DOI: 10.1016/j.ejphar.2007.06.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 06/15/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
Our previous study has demonstrated that aloe-emodin induced a significant change in the expression of apoptosis-related proteins in H460 cells. However, the molecular mechanisms underlying the biological effects of aloe-emodin still remain unknown. The present study applied 2D electrophoresis (pH range 4-7) to the proteins involved in aloe-emodin (40 muM)-induced H460 cell apoptosis. Eleven proteins were found to markedly change. These altered proteins were identified as ATP synthase, vimentin, HSP60, HSP70 and protein disulfide isomerase. Aloe-emodin caused a time-dependent decrease in intracellular ATP levels, which might be related to direct inhibition of ATP synthase. We also observed that the activity of mitochondria was injured by aloe-emodin. These data clearly demonstrated that mitochondria may play a critical role in aloe-emodin-induced H460 cell death. Many reports emphasize that chaperones have a complex role in apoptosis. The present study suggested that the increasing protein expression of HSP60, HSP70, 150 kDa oxygen-regulated protein and protein disulfide isomerase is involved in aloe-emodin-induced H460 cell apoptosis. HSP70, 150 kDa oxygen-regulated protein and protein disulfide isomerase are endoplasmic reticulum chaperone. Therefore, we hypothesized that the increasing endoplasmic reticulum stress serves to promote H460 cell apoptosis after treatment with aloe-emodin. We also demonstrated aloe-emodin-induced H460 cell death through caspase-3 apoptotic pathway, but not apoptosis-inducing factor apoptotic pathway.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Anthraquinones/chemistry
- Anthraquinones/pharmacology
- Apoptosis/drug effects
- Apoptosis Inducing Factor/genetics
- Apoptosis Inducing Factor/metabolism
- Blotting, Western
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Chaperonin 60/genetics
- Chaperonin 60/metabolism
- Dose-Response Relationship, Drug
- Electrophoresis, Gel, Two-Dimensional/methods
- Fluorescent Antibody Technique/methods
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Humans
- Intracellular Fluid/chemistry
- Intracellular Fluid/drug effects
- Intracellular Fluid/metabolism
- L-Lactate Dehydrogenase/metabolism
- Mitochondria/drug effects
- Mitochondria/enzymology
- Mitochondria/metabolism
- Molecular Chaperones/genetics
- Molecular Chaperones/metabolism
- Protein Disulfide-Isomerases/genetics
- Protein Disulfide-Isomerases/metabolism
- Proteomics/methods
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Miao-Ying Lai
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
41
|
Lim MLR, Mercer LD, Nagley P, Beart PM. Rotenone and MPP+ preferentially redistribute apoptosis-inducing factor in apoptotic dopamine neurons. Neuroreport 2007; 18:307-12. [PMID: 17435593 DOI: 10.1097/wnr.0b013e32801b3ca6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rotenone and 1-methyl-4-phenylpyridinium produce parkinsonian models and we determined whether their mitochondrially mediated actions differentially redistributed the apoptogenic proteins, apoptosis-inducing factor and cytochrome c. Cultured rat mesencephalic dopamine neurons were exposed to rotenone (30 nM) and 1-methyl-4-phenylpyridinium (300 muM, 24 and 48 h) and apoptosis and mitochondrial redistribution of cytochrome c or apoptosis-inducing factor were quantified. Tyrosine hydroxylase-positive dopamine neurons underwent apoptosis (shrinkage, less neurites) and 40% released apoptosis-inducing factor with rotenone (24 h), whereas cytochrome c release reached this value at 48 h when 70% of cells had released apoptosis-inducing factor-positive. 1-Methyl-4-phenylpyridinium produced similar redistribution patterns for both proteins. Preferential redistribution of apoptosis-inducing factor before cytochrome c in dopamine neurons indicates caspase-independent mitochondrial proapoptotic signalling predominates in these parkinsonian models.
Collapse
Affiliation(s)
- Maria L R Lim
- Department of Biochemistry and Molecular Biology, Monash University, Australia
| | | | | | | |
Collapse
|
42
|
Rodríguez-Hernández A, Brea-Calvo G, Fernández-Ayala DJM, Cordero M, Navas P, Sánchez-Alcázar JA. Nuclear caspase-3 and caspase-7 activation, and poly(ADP-ribose) polymerase cleavage are early events in camptothecin-induced apoptosis. Apoptosis 2007; 11:131-9. [PMID: 16374543 DOI: 10.1007/s10495-005-3276-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Chemotherapy-induced apoptosis by DNA-damaging drugs is thought to be generally dependent on the release of cytochrome c and the subsequent activation of caspase-9 and -3. However, the molecular mechanism of how damaged DNA triggers the apoptotic process is not clear. To better understand the mechanisms underlying this process, we examined drug-induced apoptosis in cultured H-460 cells. Using cell fractionation, western blotting, and immunofluorescence assays, we show that the activation of nuclear caspases-7 and -3, and poly(ADP-ribose) polymerase (PARP) cleavage, are early events in camptothecin-induced apoptosis. Moreover, we demonstrate that these events precede the release of cytochrome c and apoptotic inducing factor, and the activation of caspases 2, 8, 9 and 12. Together our results suggest that drugs acting at the DNA level can initiate apoptosis via nuclear caspase activation.
Collapse
Affiliation(s)
- A Rodríguez-Hernández
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Leung HWC, Lin CJ, Hour MJ, Yang WH, Wang MY, Lee HZ. Kaempferol induces apoptosis in human lung non-small carcinoma cells accompanied by an induction of antioxidant enzymes. Food Chem Toxicol 2007; 45:2005-13. [PMID: 17583406 DOI: 10.1016/j.fct.2007.04.023] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 04/17/2007] [Accepted: 04/26/2007] [Indexed: 11/25/2022]
Abstract
Kaempferol (3, 4',5,7-tetrahydroxyflavone) is one of the most commonly found dietary flavonols. The biological and pharmacological effects of kaempferol may depend upon its behavior as either an antioxidant or a prooxidant. However, the clear biological effects of prooxidant or antioxidant character of kaempferol has not been clarified yet. The overall objective of the present study is to explore the role of prooxidant or antioxidant in kaempferol-induced cell toxicity. In this paper, we have proved that antioxidant pathway may be involved in kaempferol induces H460 cell apoptosis. Kaempferol-induced H460 cell apoptosis is a typical apoptosis that was accompanied by a significant DNA condensation and increasing intracellular ATP levels. Kaempferol-induced apoptosis is related to its ability to change the expression of apoptotic markers, such as caspase-3 (caspase-dependent) and AIF (caspase-independent). The overexpression of antioxidant enzyme Mn SOD protein levels, which was promoted to a new type tumor suppressor gene in several human cancer cells recently, may be an important role in kaempferol-induced H460 cell apoptosis.
Collapse
Affiliation(s)
- Henry W-C Leung
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
44
|
Lafuente JV, Mitre B, Argandoña EG. Spatio-temporal distribution of apoptosis and the modulators thereof following a cortical microinfarct in rat brain. Neurosci Res 2007; 57:354-61. [PMID: 17161879 DOI: 10.1016/j.neures.2006.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 10/04/2006] [Accepted: 11/02/2006] [Indexed: 11/27/2022]
Abstract
Two mechanisms of brain cell death coexist, necrosis and apoptosis. We investigated the correlation between the apoptotic index and the expression of apoptosis modulators and stress response in an ultraviolet-induced cortical microinfarct. Adult rat neocortex was exposed to an ultraviolet beam and brains removed at different intervals after injury were paraffin-embedded and processed for TUNEL assay and immunohistochemistry against apoptotic modulators Bax and Bcl-2, and stress protein HSP70. During the 12-72h postirradiation period, apoptotic nuclei decreased from 11% to 4% in the infarcted area whereas only 1.2% of such nuclei was seen in the perilesional area. While Bcl-2 was always negative in the lesion focus, Bax was positive at all survival times, mainly in glial cells. HSP70 was expressed over a broad area of the ipsilateral hemisphere from 3h after brain injury, firstly in neurons and progressively in glial cells and finally in endothelium. At longer survival times, positive cells could be also seen in the contralateral hemisphere. Apoptosis seems to play only a quantitatively modest role in the progression of brain damage in penumbra areas despite the wide expression of pro-apoptotic factors. On the other hand HSP70 appears to be one of the main protective responses to injury stress.
Collapse
Affiliation(s)
- José V Lafuente
- Laboratory of Clinical and Experimental Neuroscience (LaNCE), Department of Neuroscience, University of the Basque Country, Leioa, Spain.
| | | | | |
Collapse
|
45
|
Müller GJ, Lassmann H, Johansen FF. Anti-apoptotic signaling and failure of apoptosis in the ischemic rat hippocampus. Neurobiol Dis 2007; 25:582-93. [PMID: 17207631 DOI: 10.1016/j.nbd.2006.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 10/03/2006] [Accepted: 11/03/2006] [Indexed: 11/18/2022] Open
Abstract
Several anti-apoptotic proteins are induced in CA1 neurons after transient forebrain ischemia (TFI), but fail to protect the majority of these cells from demise. Correlating cell death morphologies (apoptosis-like and necrosis-like death) with immunohistochemistry (IHC), we investigated whether anti-apoptosis contributes to survival, compromises apoptosis effector functions and/or delays death in CA1 neurons 1-7 days after TFI. As surrogate markers for bioenergetic failure, the IHC of respiratory chain complex (RCC) subunits was investigated. Dentate granule cell (DGC) apoptosis following colchicine injection severed as a reference for classical apoptosis. Heat shock protein 70 (Hsp70), neuronal apoptosis inhibitory protein (NAIP) and manganese superoxide dismutase (MnSOD) were upregulated in the majority of intact CA1 neurons paralleling the occurrence of CA1 neuronal death (days 3-7) as well as in a proportion of apoptosis-(<50%) and necrosis-like (<30%) CA1 neurons. Colchicine did not provoke an anti-apoptotic response in DGC at all. In addition, more than 70% of apoptosis- and necrosis-like CA1 neurons had completely lost their RCC subunits suggesting bioenergetic failure; by contrast, following colchicine injection, 88% of all apoptotic DGC presented RCC subunits. Thus, anti-apoptotic proteins may, in a subset of ischemic CA1 neurons, prevent cell death, while in others, affected by pronounced energy failure, they may cause secondary necrosis.
Collapse
Affiliation(s)
- Georg Johannes Müller
- Molecular Neuropathology Group, University of Copenhagen, 11, Frederik V's vej, 2100-Copenhagen-O, Denmark
| | | | | |
Collapse
|
46
|
Hoa NT, Zhang JG, Delgado CL, Myers MP, Callahan LL, Vandeusen G, Schiltz PM, Wepsic HT, Jadus MR. Human monocytes kill M-CSF-expressing glioma cells by BK channel activation. J Transl Med 2007; 87:115-29. [PMID: 17318194 DOI: 10.1038/labinvest.3700506] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In this study, human monocytes/macrophages were observed to kill human U251 glioma cells expressing membrane macrophage colony-stimulating factor (mM-CSF) via a swelling and vacuolization process called paraptosis. Human monocytes responded to the mM-CSF-transduced U251 glioma cells, but not to viral vector control U251 glioma cells (U251-VV), by producing a respiratory burst within 20 min. Using patch clamp techniques, functional big potassium (BK) channels were observed on the membrane of the U251 glioma cell. It has been previously reported that oxygen indirectly regulates BK channel function. In this study, it was demonstrated that prolonged BK channel activation in response to the respiratory burst induced by monocytes initiates paraptosis in selected glioma cells. Forced BK channel opening within the glioma cells by BK channel activators (phloretin or pimaric acid) induced U251 glioma cell swelling and vacuolization occurred within 30 min. U251 glioma cell cytotoxicity, induced by using BK channel activators, required between 8 and 12 h. Swelling and vacuolization induced by phloretin and pimaric acid was prevented by iberiotoxin, a specific BK channel inhibitor. Confocal fluorescence microscopy demonstrated BK channels co-localized with the endoplasmic reticulum and mitochondria, the two targeted organelles affected in paraptosis. Iberiotoxin prevented monocytes from producing death in mM-CSF-expressing U251glioma cells in a 24 h assay. This study demonstrates a novel mechanism whereby monocytes can induce paraptosis via the disruption of internal potassium ion homeostasis.
Collapse
Affiliation(s)
- Neil T Hoa
- Department of Diagnostic and Molecular Medicine, Veterans Affairs Medical Center, Long Beach, CA 90822, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Krantic S, Mechawar N, Reix S, Quirion R. Apoptosis-inducing factor: A matter of neuron life and death. Prog Neurobiol 2007; 81:179-96. [PMID: 17267093 DOI: 10.1016/j.pneurobio.2006.12.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2006] [Revised: 10/29/2006] [Accepted: 12/07/2006] [Indexed: 01/17/2023]
Abstract
The mitochondrial flavoprotein apoptosis-inducing factor (AIF) is the main mediator of caspase-independent apoptosis-like programmed cell death. Upon pathological permeabilization of the outer mitochondrial membrane, AIF is translocated to the nucleus, where it participates in chromatin condensation and is associated to large-scale DNA fragmentation. Heavy down-regulation of AIF expression in mutant mice or reduced AIF expression achieved with small interfering RNA (siRNA) provides neuroprotection against acute neurodegenerative insults. Paradoxically, in addition to its pro-apoptotic function, AIF likely plays an anti-apoptotic role by regulating the production of reactive oxygen species (ROS) via its putative oxidoreductase and peroxide scavenging activities. In this review, we discuss accumulating evidence linking AIF to both acute and chronic neurodegenerative processes by emphasising mechanisms underlying the dual roles apparently played by AIF in these processes.
Collapse
Affiliation(s)
- Slavica Krantic
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale, Parc Scientifique Luminy, BP13, 13 273 Marseille, France
| | | | | | | |
Collapse
|
48
|
Abstract
In this review I summarize interrelations between bioenergetic processes and such programmed death phenomena as cell suicide (apoptosis and necrosis) and mitochondrial suicide (mitoptosis). The following conclusions are made. (I) ATP and rather often mitochondrial hyperpolarization (i.e. an increase in membrane potential, delta psi) are required for certain steps of apoptosis and necrosis. (II) Apoptosis, even if it is accompanied by delta psi and [ATP] increases at its early stage, finally results in a delta psi collapse and ATP decrease. (III) Moderate (about three-fold) lowering of [ATP] for short and long periods of time induces apoptosis and necrosis, respectively. In some types of apoptosis and necrosis, the cell death is mediated by a delta psi-dependent overproduction of ROS by the initial (Complex I) and the middle (Complex III) spans of the respiratory chain. ROS initiate mitoptosis which is postulated to rid the intracellular population of mitochondria from those that are ROS overproducing. Massive mitoptosis can result in cell death due to release to cytosol of the cell death proteins normally hidden in the mitochondrial intermembrane space.
Collapse
Affiliation(s)
- V P Skulachev
- Department of Bioenergetics, Belozersky Institute of Physico-Chemical Biology and School of Bioengineering and Bioinformatics, Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
49
|
Graeber MB, Moran LB. Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts. Brain Pathol 2006; 12:385-90. [PMID: 12146806 PMCID: PMC8095773 DOI: 10.1111/j.1750-3639.2002.tb00452.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Apoptosis has become a most popular concept of cell death. However, the term is now so widely used and employed in such general terms in relation to neurological diseases that its application is very problematic. In addition, with the exception of developmental conditions, there is essentially no evidence of apoptosis fulfilling the criteria of its classical definition in any of the important human neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's, Amyotrophic Lateral Sclerosis, and Creutzfeldt-Jakob disease. Importantly, a number of new cell death forms have been described in the literature and there is good reason to pay attention to these emerging concepts as they may provide a rationale for the development of disease-specific therapies.
Collapse
Affiliation(s)
- Manuel B Graeber
- Department of Neuropathology, Faculty of Medicine, Imperial College, London, United Kingdom
| | | |
Collapse
|
50
|
Schulz JB, Nicotera P. Introduction: Targeted modulation of neuronal apoptosis: a double-edged sword? Brain Pathol 2006; 10:273-5. [PMID: 10764046 PMCID: PMC8098519 DOI: 10.1111/j.1750-3639.2000.tb00260.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- J B Schulz
- Department of Neurology and Medical School, University of Tübingen, Germany.
| | | |
Collapse
|