1
|
VanderGiessen M, de Jager C, Leighton J, Xie H, Theus M, Johnson E, Kehn-Hall K. Neurological manifestations of encephalitic alphaviruses, traumatic brain injuries, and organophosphorus nerve agent exposure. Front Neurosci 2024; 18:1514940. [PMID: 39734493 PMCID: PMC11671522 DOI: 10.3389/fnins.2024.1514940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Encephalitic alphaviruses (EEVs), Traumatic Brain Injuries (TBI), and organophosphorus nerve agents (NAs) are three diverse biological, physical, and chemical injuries that can lead to long-term neurological deficits in humans. EEVs include Venezuelan, eastern, and western equine encephalitis viruses. This review describes the current understanding of neurological pathology during these three conditions, provides a comparative review of case studies vs. animal models, and summarizes current therapeutics. While epidemiological data on clinical and pathological manifestations of these conditions are known in humans, much of our current mechanistic understanding relies upon animal models. Here we review the animal models findings for EEVs, TBIs, and NAs and compare these with what is known from human case studies. Additionally, research on NAs and EEVs is limited due to their classification as high-risk pathogens (BSL-3) and/or select agents; therefore, we leverage commonalities with TBI to develop a further understanding of the mechanisms of neurological damage. Furthermore, we discuss overlapping neurological damage mechanisms between TBI, NAs, and EEVs that highlight novel medical countermeasure opportunities. We describe current treatment methods for reducing neurological damage induced by individual conditions and general neuroprotective treatment options. Finally, we discuss perspectives on the future of neuroprotective drug development against long-term neurological sequelae of EEVs, TBIs, and NAs.
Collapse
Affiliation(s)
- Morgen VanderGiessen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Julia Leighton
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Erik Johnson
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
2
|
Gholami M, Klionsky DJ, Motaghinejad M. Preventive Effects of Crocin, a Key Carotenoid Component in Saffron, Against Nicotine-Triggered Neurodegeneration in Rat Hippocampus: Possible Role of Autophagy and Apoptosis. Int J Prev Med 2024; 15:46. [PMID: 39539579 PMCID: PMC11559686 DOI: 10.4103/ijpvm.ijpvm_41_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/20/2024] [Indexed: 11/16/2024] Open
Abstract
Background Nicotine is a behavioral stimulant that in high doses, through the neuro-inflammatory and oxidative stress pathway, can induce apoptosis and autophagy leading to cell death. Previous data indicate that crocin has neuroprotective properties. The aim of the current study is to investigate crocin's neuroprotective effects against nicotine-triggered neuro-inflammation, apoptosis, and autophagy in rat hippocampus. Methods Seventy adult male Wistar rats were divided into the following seven groups: Group one received normal saline (0.2 ml/rat), group two was treated with nicotine 10 mg/kg intraperitoneally, groups 3 to 6 were treated simultaneously with nicotine and crocin (10, 20, 40, and 80 mg/kg, intraperitoneally), group 7 was treated with crocin-alone (80 mg/kg, intraperitoneally). The period of the mentioned agent administration was 21 days. On the 22nd day, an open field test (OFT) was used for evaluation of anxiety and motor activity changes. Inflammatory and oxidative stress factors and also apoptosis and autophagy biomarkers were evaluated. Results All mentioned doses of crocin could decrease the nicotine-induced OFT behavioral changes. Crocin also could decrease levels of hippocampal TNF/TNF-α (tumor necrosis factor), IL1B/IL-1β (interleukin 1 beta), oxidized glutathione (GSSG), unphosphorylated and phosphorylated forms of JNK, BECN1 (beclin 1), BAX (BCL2 associated X, apoptosis regulator), and phosphorylated/inactive forms of BCL2 (BCL2 apoptosis regulator) in nicotine-dependent rats. Crocin treatments also caused increases in the reduced form of glutathione (GSH) content and activity of CAT (catalase) and mitochondrial complex enzymes in nicotine-addicted subjects. Conclusions Crocin can modulate JNK-BCL2-BECN1 or JNK-BCL2-BAX signaling pathways and reduce neuronal oxidative stress, neuro-inflammation, and mitochondrial respiratory chain enzymes and exert neuroprotective effects against nicotine-induced neurodegeneration.
Collapse
Affiliation(s)
- Mina Gholami
- College of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Guo D, Liu Z, Zhou J, Ke C, Li D. Significance of Programmed Cell Death Pathways in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9947. [PMID: 39337436 PMCID: PMC11432010 DOI: 10.3390/ijms25189947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Programmed cell death (PCD) is a form of cell death distinct from accidental cell death (ACD) and is also referred to as regulated cell death (RCD). Typically, PCD signaling events are precisely regulated by various biomolecules in both spatial and temporal contexts to promote neuronal development, establish neural architecture, and shape the central nervous system (CNS), although the role of PCD extends beyond the CNS. Abnormalities in PCD signaling cascades contribute to the irreversible loss of neuronal cells and function, leading to the onset and progression of neurodegenerative diseases. In this review, we summarize the molecular processes and features of different modalities of PCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and other novel forms of PCD, and their effects on the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. Additionally, we examine the key factors involved in these PCD signaling pathways and discuss the potential for their development as therapeutic targets and strategies. Therefore, therapeutic strategies targeting the inhibition or facilitation of PCD signaling pathways offer a promising approach for clinical applications in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Guo
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhihao Liu
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Jinglin Zhou
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Chongrong Ke
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Daliang Li
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
4
|
Li W, Wan P, Qiao J, Liu Y, Peng Q, Zhang Z, Shu X, Xia Y, Sun B. Current and further outlook on the protective potential of Antrodia camphorata against neurological disorders. Front Pharmacol 2024; 15:1372110. [PMID: 38694913 PMCID: PMC11061445 DOI: 10.3389/fphar.2024.1372110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Prevalent neurological disorders such as Alzheimer's disease, Parkinson's disease, and stroke are increasingly becoming a global burden as society ages. It is well-known that degeneration and loss of neurons are the fundamental underlying processes, but there are still no effective therapies for these neurological diseases. In recent years, plenty of studies have focused on the pharmacology and feasibility of natural products as new strategies for the development of drugs that target neurological disorders. Antrodia camphorata has become one of the most promising candidates, and the crude extracts and some active metabolites of it have been reported to play various pharmacological activities to alleviate neurological symptoms at cellular and molecular levels. This review highlights the current evidence of Antrodia camphorata against neurological disorders, including safety evaluation, metabolism, blood-brain barrier penetration, neuroprotective activities, and the potential on regulating the gut-microbiome-brain axis. Furthermore, potential strategies to resolve problematic issues identified in previous studies are also discussed. We aim to provide an overview for the ongoing development and utilization of Antrodia camphorata in cerebral neuropathology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yiyuan Xia
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
5
|
Ji R, Hao Z, Wang H, Li X, Duan L, Guan F, Ma S. Application of Injectable Hydrogels as Delivery Systems in Spinal Cord Injury. Gels 2023; 9:907. [PMID: 37998998 PMCID: PMC10670785 DOI: 10.3390/gels9110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Spinal cord injury (SCI) is a severe neurological injury caused by traffic accidents, trauma, or falls, which leads to significant loss of sensory, motor, and autonomous functions and seriously affects the patient's life quality. Although considerable progress has been made in mitigating secondary injury and promoting the regeneration/repair of SCI, the therapeutic effects need to be improved due to drug availability. Given their good biocompatibility, biodegradability, and low immunogenicity, injectable hydrogels can be used as delivery systems to achieve controlled release of drugs and other substances (cells and proteins, etc.), offering new hope for SCI repair. In this article, we summarized the types of injectable hydrogels, analyzed their application as delivery systems in SCI, and further discussed the mechanisms of hydrogels in the treatment of SCI, such as anti-inflammatory, antioxidant, anti-apoptosis, and pro-neurogenesis. Moreover, we highlighted the potential benefits of hydrogels in the treatment of SCI in combination with therapies, including the recent advances and achievements of these promising tools. Our review may offer new strategies for the development of SCI treatments based on injectable hydrogels as delivery systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.J.); (Z.H.); (H.W.); (X.L.); (L.D.)
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (R.J.); (Z.H.); (H.W.); (X.L.); (L.D.)
| |
Collapse
|
6
|
Jiang S, Borjigin G, Sun J, Li Q, Wang Q, Mu Y, Shi X, Li Q, Wang X, Song X, Wang Z, Yang C. Identification of Uncaria rhynchophylla in the Potential Treatment of Alzheimer's Disease by Integrating Virtual Screening and In Vitro Validation. Int J Mol Sci 2023; 24:15457. [PMID: 37895137 PMCID: PMC10607254 DOI: 10.3390/ijms242015457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Uncaria rhynchophylla (Gouteng in Chinese, GT) is the main medicine in many traditional recipes in China. It is commonly used to alleviate central nervous system (CNS) disorders, although its mechanism in Alzheimer's disease is still unknown. This study was designed to predict and validate the underlying mechanism in AD treatment, thus illustrating the biological mechanisms of GT in treating AD. In this study, a PPI network was constructed, KEGG analysis and GO analysis were performed, and an "active ingredient-target-pathway" network for the treatment of Alzheimer's disease was constructed. The active ingredients of GT were screened out, and the key targets were performed by molecular docking. UHPLC-Q-Exactive Orbitrap MS was used to screen the main active ingredients and was compared with the network pharmacology results, which verified that GT did contain the above ingredients. A total of targets were found to be significantly bound up with tau, Aβ, or Aβ and tau through the network pharmacology study. Three SH-SY5Y cell models induced by okadaic acid (OA), Na2S2O4, and H2O2 were established for in vitro validation. We first found that GT can reverse the increase in the hyperphosphorylation of tau induced by OA to some extent, protecting against ROS damage. Moreover, the results also indicated that GT has significant neuroprotective effects. This study provides a basis for studying the potential mechanisms of GT in the treatment of AD.
Collapse
Affiliation(s)
- Shuang Jiang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
| | - Gilwa Borjigin
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
| | - Jiahui Sun
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
| | - Qi Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
| | - Qianbo Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
| | - Yuanqiu Mu
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
| | - Xuepeng Shi
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
| | - Qian Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
| | - Xiaotong Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
| | - Xiaodan Song
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
| | - Zhibin Wang
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Chunjuan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
- Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
7
|
Nan Y, Zhu W, Zhu B, Wang S. Gastrodin facilitates recovery of neurological function of MCAO rats through upregulating miR-20a-5p/XIAP pathway via exosome. Neuroreport 2023; 34:685-692. [PMID: 37556588 PMCID: PMC10470439 DOI: 10.1097/wnr.0000000000001942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023]
Abstract
Cerebral infarction (CI) is characterised by high morbidity, mortality, and disability rates. Recently, Chinese medicine has been widely used and has gained satisfactory results in the treatment of CI. Our previous study showed that gastrodin could facilitate the recovery of neurological function in middle cerebral artery occlusion (MCAO) rats. This study explores this mechanism. SD rats were separated into control, sham, model, and gastrodin groups. After MCAO surgery, the gastrodin group was administered gastrodin (100 mg/kg), and after 1/3/7 days, the ischaemic hemisphere and serum was collected, and then we extracted the circulating exosomes from the serum. We then tested the levels of XIAP (x-linked inhibitor of apoptosis protein), IAP binding proteins (SMAC, HtrA2, ARTs), and miR-20a-5p (a gastrodin potential effect target) in the brain tissues, circulating exosomes, and serum using various methods. Our results showed that circulating exosomes can penetrate the blood-brain barrier (BBB) and that gastrodin can upregulate the amount of miR-20a-5p in circulating exosomes. The circulating exosomes penetrate the BBB and upregulate the expression of XIAP in the ischaemic hemisphere. Gastrodin can also decrease the amount of IAP binding proteins (SMAC, HtrA2, ARTs). Gastrodin can increase the amount of miR-20a-5p in circulating exosomes, which penetrates the BBB and upregulates XIAP expression in the ischaemic hemisphere. By inhibiting apoptosis of neurones, it can facilitate the recovery of neurological function in MCAO rats.
Collapse
Affiliation(s)
- Yinan Nan
- International Department, China-Japan Friendship Hospital, Beijing
| | - Wenhao Zhu
- Department of Encephalopathy, Zibo Hospital of Traditional Chinese Medicine, Zibo, Shandong
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University
| | - Shaoqing Wang
- Traditional Chinese Medicine Department, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Unnisa A, Greig NH, Kamal MA. Inhibition of Caspase 3 and Caspase 9 Mediated Apoptosis: A Multimodal Therapeutic Target in Traumatic Brain Injury. Curr Neuropharmacol 2023; 21:1001-1012. [PMID: 35339178 PMCID: PMC10227914 DOI: 10.2174/1570159x20666220327222921] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/17/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the significant causes of death and morbidity, and it is hence a focus of translational research. Apoptosis plays an essential part in the pathophysiology of TBI, and its inhibition may help overcome TBI's negative consequences and improve functional recovery. Although physiological neuronal death is necessary for appropriate embryologic development and adult cell turnover, it can also drive neurodegeneration. Caspases are principal mediators of cell death due to apoptosis and are critical for the required cleavage of intracellular proteins of cells committed to die. Caspase-3 is the major executioner Caspase of apoptosis and is regulated by a range of cellular components during physiological and pathological conditions. Activation of Caspase-3 causes proteolyzation of DNA repair proteins, cytoskeletal proteins, and the inhibitor of Caspase-activated DNase (ICAD) during programmed cell death, resulting in morphological alterations and DNA damage that define apoptosis. Caspase-9 is an additional crucial part of the intrinsic pathway, activated in response to several stimuli. Caspases can be altered post-translationally or by modulatory elements interacting with the zymogenic or active form of a Caspase, preventing their activation. The necessity of Caspase-9 and -3 in diverse apoptotic situations suggests that mammalian cells have at least four distinct apoptotic pathways. Continued investigation of these processes is anticipated to disclose new Caspase regulatory mechanisms with consequences far beyond apoptotic cell death control. The present review discusses various Caspase-dependent apoptotic pathways and the treatment strategies to inhibit the Caspases potentially.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail, KSA;
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, NSW, Australia
| |
Collapse
|
9
|
Liu A, Hu J, Yeh TS, Wang C, Tang J, Huang X, Chen B, Huangfu L, Yu W, Zhang L. Neuroprotective Strategies for Stroke by Natural Products: Advances and Perspectives. Curr Neuropharmacol 2023; 21:2283-2309. [PMID: 37458258 PMCID: PMC10556387 DOI: 10.2174/1570159x21666230717144752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 09/09/2023] Open
Abstract
Cerebral ischemic stroke is a disease with high prevalence and incidence. Its management focuses on rapid reperfusion with intravenous thrombolysis and endovascular thrombectomy. Both therapeutic strategies reduce disability, but the therapy time window is short, and the risk of bleeding is high. Natural products (NPs) have played a key role in drug discovery, especially for cancer and infectious diseases. However, they have made little progress in clinical translation and pose challenges to the treatment of stroke. Recently, with the investigation of precise mechanisms in cerebral ischemic stroke and the technological development of NP-based drug discovery, NPs are addressing these challenges and opening up new opportunities in cerebral stroke. Thus, in this review, we first summarize the structure and function of diverse NPs, including flavonoids, phenols, terpenes, lactones, quinones, alkaloids, and glycosides. Then we propose the comprehensive neuroprotective mechanism of NPs in cerebral ischemic stroke, which involves complex cascade processes of oxidative stress, mitochondrial damage, apoptosis or ferroptosis-related cell death, inflammatory response, and disruption of the blood-brain barrier (BBB). Overall, we stress the neuroprotective effect of NPs and their mechanism on cerebral ischemic stroke for a better understanding of the advances and perspective in NPs application that may provide a rationale for the development of innovative therapeutic regimens in ischemic stroke.
Collapse
Affiliation(s)
- Aifen Liu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Jingyan Hu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Tzu-Shao Yeh
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Chengniu Wang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Jilong Tang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaohong Huang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Bin Chen
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Liexiang Huangfu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Weili Yu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Lei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
10
|
Wu Q, Lin M, Wu P, Zhao C, Yang S, Yu H, Xian W, Song J. TPPU Downregulates Oxidative Stress Damage and Induces BDNF Expression in PC-12 Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7083022. [PMID: 35872930 PMCID: PMC9300306 DOI: 10.1155/2022/7083022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
Abstract
Objective Ischemia-reperfusion is an ongoing clinical challenge that can lead to a series of pathological changes including oxidative stress. The inhibition of soluble epoxide hydrolase inhibitor (sEH) by 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea (TPPU) results in an anti-inflammatory, cardioprotective, and blood vessel growth-promoting effects. Therefore, this study focused on the protective effect of TPPU on a rat pheochromocytoma (PC-12) cell oxidative stress model induced by H2O2. Methods CCK-8 and Hoechst 33342 were used to evaluate cell apoptosis and western blot to detect the apoptotic proteins and brain-derived neurotrophic factor (BDNF) expression. Result The incubation with 100 μM, 50 μM, and 25 μM TPPU significantly increased PC-12 cell viability. Epoxyeicosatrienoic acid (EET) pretreatment also protected PC-12 cells from oxidative stress. In addition, TPPU reduced caspase-3 and Bax expression and induced Bcl-2 expression, and EETs exerted the same effect on caspase-3 expression as TPPU. A positive relationship was found between TPPU or EET incubation and BDNF expression. Conclusion These results revealed that TPPU reduced PC-12 cell oxidative stress injury induced by H2O2 and promoted BDNF expression.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Basic Medicine, Guangdong Jiangmen Chinese Medicine College, Jiangmen, Guangdong Province, China 529000
| | - Minlin Lin
- Department of Basic Medicine, Guangdong Jiangmen Chinese Medicine College, Jiangmen, Guangdong Province, China 529000
| | - Peng Wu
- Department of General Surgery, Jiangmen Wuyi Hospital of TCM, Jiangmen, Guangdong Province, China 529000
| | - Chongyan Zhao
- Department of Basic Medicine, Guangdong Jiangmen Chinese Medicine College, Jiangmen, Guangdong Province, China 529000
| | - Shuang Yang
- Department of General Surgery, Jiangmen Wuyi Hospital of TCM, Jiangmen, Guangdong Province, China 529000
| | - Haiying Yu
- Department of Basic Medicine, Guangdong Jiangmen Chinese Medicine College, Jiangmen, Guangdong Province, China 529000
| | - Wenjiao Xian
- Department of Basic Medicine, Guangdong Jiangmen Chinese Medicine College, Jiangmen, Guangdong Province, China 529000
| | - Jingfang Song
- Department of General Surgery, Jiangmen Wuyi Hospital of TCM, Jiangmen, Guangdong Province, China 529000
| |
Collapse
|
11
|
Lin CY, Huang CY, Chen CM, Liu HL. Focused Ultrasound-Induced Blood–Brain Barrier Opening Enhanced α-Synuclein Expression in Mice for Modeling Parkinson’s Disease. Pharmaceutics 2022; 14:pharmaceutics14020444. [PMID: 35214176 PMCID: PMC8876143 DOI: 10.3390/pharmaceutics14020444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by α-synuclein (αSNCA) aggregation in dopaminergic neurons. Gradual accumulation of αSNCA aggregates in substantia nigra (SN) diminishes the normal functioning of soluble αSNCA, leading to a loss of dopamine (DA) neurons. In this study, we developed focused ultrasound-targeted microbubble destruction (UTMD)-mediated PD model that could generate the disease phenotype via αSNCA CNS gene delivery. The formation of neuronal aggregates was analyzed with immunostaining. To evaluate the DA cell loss, we used tyrosine hydroxylase immunostaining and HPLC analysis on DA and its two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). This loss of DA was associated with a dose-dependent impairment in motor function, as assessed by the rotarod motor assessment. We demonstrate that UTMD-induced SNCA expression initiates αSNCA aggregation and results in a 50% loss of DA in SN. UTMD-related dose-dependent neuronal loss was identified, and it correlates with the degree of impairment of motor function. In comparison to chemical neurotoxin 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated and conventional intracerebral (IC)-injected animal models of PD, the UTMD-mediated αSNCA-based mouse model offers the advantage of mimicking the rapid development of the PD phenotype. The PD models that we created using UTMD also prove valuable in assessing specific aspects of PD pathogenesis and can serve as a useful PD model for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.L.); (C.-Y.H.)
- Department of Nephrology and Clinical Position Center, Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Ching-Yun Huang
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.L.); (C.-Y.H.)
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (C.-M.C.); (H.-L.L.); Tel.: +886-3-3281200 (ext. 8729) (C.-M.C.); +886-2-33665416 (H.-L.L.)
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: (C.-M.C.); (H.-L.L.); Tel.: +886-3-3281200 (ext. 8729) (C.-M.C.); +886-2-33665416 (H.-L.L.)
| |
Collapse
|
12
|
Gonzales NR, Grotta JC. Pharmacologic Modification of Acute Cerebral Ischemia. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Shahsavani N, Alizadeh A, Kataria H, Karimi-Abdolrezaee S. Availability of neuregulin-1beta1 protects neurons in spinal cord injury and against glutamate toxicity through caspase dependent and independent mechanisms. Exp Neurol 2021; 345:113817. [PMID: 34314724 DOI: 10.1016/j.expneurol.2021.113817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/06/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022]
Abstract
Spinal cord injury (SCI) causes sensorimotor and autonomic impairment that partly reflects extensive, permanent loss of neurons at the epicenter and penumbra of the injury. Strategies aimed at enhancing neuronal protection are critical to attenuate neurodegeneration and improve neurological recovery after SCI. In rat SCI, we previously uncovered that the tissue levels of neuregulin-1beta 1 (Nrg-1β1) are acutely and persistently downregulated in the injured spinal cord. Nrg-1β1 is well-known for its critical roles in the development, maintenance and physiology of neurons and glia in the developing and adult spinal cord. However, despite this pivotal role, Nrg-1β1 specific effects and mechanisms of action on neuronal injury remain largely unknown in SCI. In the present study, using a clinically-relevant model of compressive/contusive SCI in rats and an in vitro model of glutamate toxicity in primary neurons, we demonstrate Nrg-1β1 provides early neuroprotection through attenuation of reactive oxygen species, lipid peroxidation, necrosis and apoptosis in acute and subacute stages of SCI. Mechanistically, availability of Nrg-1β1 following glutamate challenge protects neurons from caspase-dependent and independent cell death that is mediated by modulation of mitochondria associated apoptotic cascades and MAP kinase and AKT signaling pathways. Altogether, our work provides novel insights into the role and mechanisms of Nrg-1β1 in neuronal injury after SCI and introduces its potential as a new neuroprotective target for this debilitating neurological condition.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
14
|
Scholl HPN, Boyer D, Giani A, Chong V. The use of neuroprotective agents in treating geographic atrophy. Ophthalmic Res 2021; 64:888-902. [PMID: 34153966 DOI: 10.1159/000517794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/12/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - David Boyer
- Retina-Vitreous Associates Medical Group, Los Angeles, California, USA
| | - Andrea Giani
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Victor Chong
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| |
Collapse
|
15
|
Neuroprotective effects of Senkyunolide I against glutamate-induced cells death by attenuating JNK/caspase-3 activation and apoptosis. Biomed Pharmacother 2021; 140:111696. [PMID: 34044281 DOI: 10.1016/j.biopha.2021.111696] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
Glutamate-induced neurotoxicity is one of the most important pathogenic mechanisms in neurological diseases and is widely used as an in vitro model for ischemic stroke. Senkyunolide I (SEI), an active constituent derived from traditional Chinese medicine Ligusticum chuanxiong Hort. and Angelica sinensis (Oliv.) Diels, has been shown to have beneficial effects against focal cerebral ischemia-reperfusion in rats. However, the mechanisms underlying SEI-mediated neuroprotection remain not well understood. Thus, we explored the influence of SEI in glutamate-mediated injury to mouse neuroblastoma (Neuro2a) cells and determined the mechanisms involved. Neuro2a cells were treated with SEI under exposure to glutamate for 24 h. Cell viability was assessed by using WST-1 reagents, and apoptosis was evaluated using Annexin V-FITC and a PI double staining kit. The protein expression levels of p-AKT, AKT, p-GSK3β, GSK3β, p-p38, p38, p-ERK, ERK, p-JNK, JNK, Bcl-2, Bax, Bcl-xl, p-Bad, Bad, p53, and cleaved caspase-3 were determined by Western blot analysis. Glutamate significantly decreased cell viability and elevated the level of apoptosis. Treatment with SEI reversed those effects. Furthermore, the expression of p-JNK/JNK and cleaved caspase-3 were also reduced after treatment with SEI. Our findings demonstrate that SEI protected Neuro2a cells against glutamate toxicity by regulating JNK/caspase-3 pathway and apoptosis. Thus, SEI maybe a promising candidate for neuroprotection.
Collapse
|
16
|
Sangaran PG, Ibrahim ZA, Chik Z, Mohamed Z, Ahmadiani A. LPS Preconditioning Attenuates Apoptosis Mechanism by Inhibiting NF-κB and Caspase-3 Activity: TLR4 Pre-activation in the Signaling Pathway of LPS-Induced Neuroprotection. Mol Neurobiol 2021; 58:2407-2422. [PMID: 33421016 DOI: 10.1007/s12035-020-02227-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Neuroinflammation, an inflammatory response within the nervous system, has been shown to be implicated in the progression of various neurodegenerative diseases. Recent in vivo studies showed that lipopolysaccharide (LPS) preconditioning provides neuroprotection by activating Toll-like receptor 4 (TLR4), one of the members for pattern recognition receptor (PRR) family that play critical role in host response to tissue injury, infection, and inflammation. Pre-exposure to low dose of LPS could confer a protective state against cellular apoptosis following subsequent stimulation with LPS at higher concentration, suggesting a role for TLR4 pre-activation in the signaling pathway of LPS-induced neuroprotection. However, the precise molecular mechanism associated with this protective effect is not well understood. In this article, we provide an overall review of the current state of our knowledge about LPS preconditioning in attenuating apoptosis mechanism and conferring neuroprotection via TLR4 signaling pathway.
Collapse
Affiliation(s)
- Pushpa Gandi Sangaran
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zaridatul Aini Ibrahim
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zamri Chik
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Abolhassan Ahmadiani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Evin, PO Box 19839-63113, Tehran, Iran.
| |
Collapse
|
17
|
Al-Rawaf HA, Alghadir AH, Gabr SA. Molecular Changes in Circulating microRNAs' Expression and Oxidative Stress in Adults with Mild Cognitive Impairment: A Biochemical and Molecular Study. Clin Interv Aging 2021; 16:57-70. [PMID: 33447019 PMCID: PMC7802783 DOI: 10.2147/cia.s285689] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The release of miRNAs in tissue fluids significantly recommends its use as non-invasive diagnostic biomarkers for the progression and pathogenesis of mild cognitive impairment (MCI) in aged patients. OBJECTIVE The potential role of circulated miRNAs in the pathogenesis of MCI and its association with cellular oxidative stress, apoptosis, and circulated BDNF, Sirtuin 1 (SIRT1), and dipeptidyl peptidase-4 (DPP4) were evaluated in older adults with MCI. METHODS A total of 150 subjects aged 65.4±3.7 years were recruited in this study. The participants were classified into two groups: healthy normal (n=80) and MCI (n=70). Real-time PCR analysis was performed to estimate the relative expression of miRNAs; miR-124a, miR-483-5p, miR-142-3p, and miR-125b, and apoptotic-related genes Bax, Bcl-2, and caspase-3 in the sera of MCI and control subjects. In addition, oxidative stress parameters; MDA, NO, SOD, and CAT; as well as plasma DPP4 activity, BDNF, SIRT1 levels were colorimetrically estimated. RESULTS The levels of miR-124a and miR-483-5p significantly increased and miR-142-3p and miR-125b significantly reduced in the serum of MCI patients compared to controls. The expressed miRNAs significantly correlated with severe cognitive decline, measured by MMSE, MoCA, ADL, and memory scores. The expression of Bax, and caspase-3 apoptotic inducing genes significantly increased and Bcl-2 antiapoptotic gene significantly reduced in MCI subjects compared to controls. In addition, the plasma levels of MDA, NO, and DPP4 activity significantly increased, and the levels of SOD, CAT, BDNF, and SIRT1 significantly reduced in MCI subjects compared to controls. The expressed miRNAs correlated positively with NO, MDA, DPP4 activity, BDNF, and SIRT-1, and negatively with the levels of CAT, SOD, Bcl-2, Bax, and caspase-3 genes. CONCLUSION Circulating miR-124a, miR-483-5p, miR-142-3p, and miR-125b significantly associated with severe cognitive decline, cellular oxidative stress, and apoptosis in patients with MCI. Thus, it could be potential non-invasive biomarkers for the diagnosis of MCI with high diagnostic performance.
Collapse
Affiliation(s)
- Hadeel A Al-Rawaf
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ahmad H Alghadir
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sami A Gabr
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
18
|
Quercetin, chrysin, caffeic acid and ferulic acid ameliorate cyclophosphamide-induced toxicities in SH-SY5Y cells. Mol Biol Rep 2020; 47:8535-8543. [DOI: 10.1007/s11033-020-05896-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/03/2020] [Indexed: 02/08/2023]
|
19
|
Erfani S, Valadbeigi T, Aboutaleb N, Karimi N, Moghimi A, Khaksari M. Usnic acid improves memory impairment after cerebral ischemia/reperfusion injuries by anti-neuroinflammatory, anti-oxidant, and anti-apoptotic properties. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1225-1231. [PMID: 32963745 PMCID: PMC7491502 DOI: 10.22038/ijbms.2020.43280.10165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective(s): Cerebral ischemia/reperfusion causes complex pathological mechanisms that lead to brain tissue damage. Usnic acid is a lichen secondary metabolite that has many different biological properties including anti-inflammatory and anti-oxidant activities. Therefore, the objective of the current study was to investigate the neuroprotective effects of usnic acid on apoptotic cell death, neuroinflammation, anti-oxidant enzyme activities, and oxidative stress levels after transient cerebral ischemia/reperfusion. Materials and Methods: Forty-two male Wistar rats were randomly assigned to three groups (sham, ischemia/reperfusion, and ischemia/reperfusion+usnic acid). Ischemia was induced by 20 min occlusion of common carotid arteries. Injection of usnic acid (25 mg/kg, intraperitoneally) and saline was done at the beginning of reperfusion time. Morris water maze was applied to assess spatial memory. The protein expression amount was measured using immunohistochemical and immunofluorescence staining. Spectrophotometric assay was performed to determine the levels of anti-oxidant enzymes. Results: Usnic acid significantly reduced caspase-3, glial fibrillary acidic protein- positive and ionized calcium-binding adaptor molecule 1-positive cells (P<0.001) and enhanced spatial memory disorders (P<0.05) due to brain ischemia. In addition, treatment with usnic acid improves effects in the antioxidant system following cerebral ischemia (P<0.05). Conclusion: Our findings indicate that usnic acid has neuroprotective properties, which possibly is applicable as a promising candidate for cerebral injuries caused by ischemia.
Collapse
Affiliation(s)
- Sohaila Erfani
- Department of Biology, Faculty of Science, Ilam University, Ilam, Iran
| | | | - Nahid Aboutaleb
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Naser Karimi
- Department of Biology, Faculty of Science, Razi University of Kermanshah, Kermanshah, Iran
| | - Ali Moghimi
- Rayan Center for Neuroscience and Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehdi Khaksari
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
20
|
Bos PH, Lowry ER, Costa J, Thams S, Garcia-Diaz A, Zask A, Wichterle H, Stockwell BR. Development of MAP4 Kinase Inhibitors as Motor Neuron-Protecting Agents. Cell Chem Biol 2019; 26:1703-1715.e37. [PMID: 31676236 DOI: 10.1016/j.chembiol.2019.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/14/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
Disease-causing mutations in many neurodegenerative disorders lead to proteinopathies that trigger endoplasmic reticulum (ER) stress. However, few therapeutic options exist for patients with these diseases. Using an in vitro screening platform to identify compounds that protect human motor neurons from ER stress-mediated degeneration, we discovered that compounds targeting the mitogen-activated protein kinase kinase kinase kinase (MAP4K) family are neuroprotective. The kinase inhibitor URMC-099 (compound 1) stood out as a promising lead compound for further optimization. We coupled structure-based compound design with functional activity testing in neurons subjected to ER stress to develop a series of analogs with improved MAP4K inhibition and concomitant increases in potency and efficacy. Further structural modifications were performed to enhance the pharmacokinetic profiles of the compound 1 derivatives. Prostetin/12k emerged as an exceptionally potent, metabolically stable, and blood-brain barrier-penetrant compound that is well suited for future testing in animal models of neurodegeneration.
Collapse
Affiliation(s)
- Pieter H Bos
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Emily R Lowry
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jonathon Costa
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sebastian Thams
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alejandro Garcia-Diaz
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Arie Zask
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neuroscience, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
21
|
Fabres RB, da Rosa LA, de Souza SK, Cecconello AL, Azambuja AS, Sanches EF, Ribeiro MFM, de Fraga LS. Effects of progesterone on the neonatal brain following hypoxia-ischemia. Metab Brain Dis 2018; 33:813-821. [PMID: 29363039 DOI: 10.1007/s11011-018-0193-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/17/2018] [Indexed: 11/25/2022]
Abstract
Progesterone displays a strong potential for the treatment of neonatal hypoxic-ischemic encephalopathy since it has been shown to be beneficial in the treatment of the central nervous system injuries in adult animals. Here, we evaluated the effects of the administration of progesterone (10 mg/kg) in seven-days-old male Wistar rats submitted to neonatal hypoxia-ischemia (HI). Progesterone was administered immediately before ischemia and/or 6 and 24 h after the onset of hypoxia. The body weight of the animals, the volume of brain lesion and the expression of p-Akt and procaspase-3 in the hippocampus were evaluated. All animals submitted to HI showed a reduction in the body weight. However, this reduction was more remarkable in those animals which received progesterone before surgery. Administration of progesterone was unable to reduce the volume of brain damage caused by HI. Moreover, no significant differences were observed in the expression of p-Akt and procaspase-3 in animals submitted to HI and treated with either progesterone or vehicle. In summary, progesterone did not show a neuroprotective effect on the volume of brain lesion in neonatal rats submitted to hypoxia-ischemia. Furthermore, progesterone was unable to modulate p-Akt and procaspase-3 signaling pathways, which may explain the absence of neuroprotection. On the other hand, it seems that administration of progesterone before ischemia exerts some systemic effect, leading to a remarkable reduction in the body weight.
Collapse
Affiliation(s)
- Rafael Bandeira Fabres
- Laboratory of Neurohumoral Interaction, Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
- Laboratory of Comparative Metabolism and Endocrinology, Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Luciana Abreu da Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
| | - Samir Khal de Souza
- Laboratory of Comparative Metabolism and Endocrinology, Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
| | - Ana Lucia Cecconello
- Laboratory of Neurohumoral Interaction, Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
| | - Amanda Stapenhorst Azambuja
- Laboratory of Neurohumoral Interaction, Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
| | - Eduardo Farias Sanches
- Laboratory of Cerebral Ischemia, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-000, Brazil
| | - Maria Flavia Marques Ribeiro
- Laboratory of Neurohumoral Interaction, Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
| | - Luciano Stürmer de Fraga
- Laboratory of Comparative Metabolism and Endocrinology, Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil.
- Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil.
| |
Collapse
|
22
|
Nichols M, Pavlov EV, Robertson GS. Tamoxifen-induced knockdown of the mitochondrial calcium uniporter in Thy1-expressing neurons protects mice from hypoxic/ischemic brain injury. Cell Death Dis 2018; 9:606. [PMID: 29789575 PMCID: PMC5964108 DOI: 10.1038/s41419-018-0607-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/14/2018] [Accepted: 03/29/2018] [Indexed: 12/24/2022]
Abstract
The mitochondrial calcium uniporter (MCU) mediates high-capacity mitochondrial calcium uptake that stimulates energy production. However, excessive MCU activity can cause ischemic heart injury. To examine if the MCU is also involved in hypoxic/ischemic (HI) brain injury, we have generated conditional MCU knockout mice by tamoxifen (TMX) administration to adult MCU-floxed (MCUfl/fl) mice expressing a construct encoding Thy1-cre/ERT2-eYFP. Relative to TMX/Thy1-cre/ERT2-eYFP controls, HI-induced sensorimotor deficits, forebrain neuron loss and mitochondrial damage were decreased for conditional MCU knockout mice. MCU knockdown by siRNA-induced silencing in cortical neuron cultures also reduced cell death and mitochondrial respiratory deficits following oxygen-glucose deprivation. Furthermore, MCU silencing did not produce metabolic abnormalities in cortical neurons observed previously for global MCU nulls that increased reliance on glycolysis for energy production. Based on these findings, we propose that brain-penetrant MCU inhibitors have strong potential to be well-tolerated and highly-efficacious neuroprotectants for the acute management of ischemic stroke.
Collapse
Affiliation(s)
- Matthew Nichols
- Department of Pharmacology, Brain Repair Centre, Faculty of Medicine, 2nd Floor, Life Sciences Research Institute, Dalhousie University, 1348 Summer Street, P.O. Box 15000, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Evgeny V Pavlov
- Department of Basic Sciences, College of Dentistry, New York University, 345 East 24th Street, New York, NY, 10010, USA
| | - George S Robertson
- Department of Pharmacology, Brain Repair Centre, Faculty of Medicine, 2nd Floor, Life Sciences Research Institute, Dalhousie University, 1348 Summer Street, P.O. Box 15000, Halifax, Nova Scotia, Canada, B3H 4R2. .,Department of Psychiatry, QEII Health Sciences Centre, 5909 Veterans' Memorial Lane, 8th floor, Abbie J. Lane Memorial Building, Halifax, NS, B3H 2E2, Canada.
| |
Collapse
|
23
|
Jahanbazi Jahan-Abad A, Alizadeh L, Sahab Negah S, Barati P, Khaleghi Ghadiri M, Meuth SG, Kovac S, Gorji A. Apoptosis Following Cortical Spreading Depression in Juvenile Rats. Mol Neurobiol 2018; 55:4225-4239. [PMID: 28612259 DOI: 10.1007/s12035-017-0642-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 05/29/2017] [Indexed: 12/27/2022]
Abstract
Repetitive cortical spreading depression (CSD) can lead to cell death in immature brain tissue. Caspases are involved in neuronal cell death in several CSD-related neurological disorders, such as stroke and epilepsy. Yet, whether repetitive CSD itself can induce caspase activation in adult or juvenile tissue remains unknown. Inducing repetitive CSD in somatosensory cortices of juvenile and adult rats in vivo, we thus aimed to investigate the effect of repetitive CSD on the expression caspase-3, caspase-8, caspase-9, and caspase-12 in different brain regions using immunohistochemistry and western blotting techniques. Higher numbers of dark neurons and TUNEL-positive cells were observed in the hippocampal CA1 and CA3 regions as well as in the entorhinal and somatosensory cortices after CSD in juvenile rats. This was accompanied by higher expressions of caspase-3, caspase-8, and caspase-9. Caspase-12 levels remained unchanged after CSD, suggesting that endoplasmic reticulum stress is not involved in CSD-triggered apoptosis. Changes in caspase expression were paralleled by a decrease of procaspase-3, procaspase-8, and procaspase-9 in juvenile rat brain tissue subjected to CSD. In contrast, repetitive CSD in adult rats did not result in the upregulation of caspase signaling. Our data points to a maturation-dependent vulnerability of brain tissue to repetitive CSD with a higher degree of apoptotic damage and caspase upregulation observed in juvenile tissue. Findings suggest a key role of caspase signaling in CSD-induced cell death in the immature brain. This implies that anti-apoptotic treatment may prevent CSD-related functional deficits in the immature brain.
Collapse
Affiliation(s)
| | - Leila Alizadeh
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Sajad Sahab Negah
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parastoo Barati
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | | | - Sven G Meuth
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Robert-Koch-Straße 45, 48149, Münster, Germany.
| |
Collapse
|
24
|
Behroozeh A, Mazloumi Tabrizi M, Kazemi SM, Choupani E, Kabiri N, Ilbeigi D, Heidari Nasab A, Akbarzadeh Khiyavi A, Seif Kurdi A. Evaluation the Anti-Cancer Effect of PEGylated Nano-Niosomal Gingerol, on Breast Cancer Cell lines (T47D), In-Vitro. Asian Pac J Cancer Prev 2018; 19:645-648. [PMID: 29580033 PMCID: PMC5980835 DOI: 10.22034/apjcp.2018.19.3.645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background: Cancer is a significant problem in modern medicine, also is the most common cause of death after
cardiovascular diseases, and in need of targeted drug release. Although, chemotherapy is an important candidate in
cancer treatment, but it has many side effects on healthy tissues of the body. Therefore, Nano technology is used
for specific function, by the least side effects and damage to normal cells. Materials and method: In this study, the
pharmacological properties of PEGylated Nano-niosomal Gingerol was examined. Noisome were prepared using reverse
phase evaporation method, which contains specific proportion of cholesterol, span60 and polyethylene glycol. Then,
PEGylated the prepared formulation by PEG6600. The amount of release and encapsulation of the drug was investigated.
The percentage of remains of cancer cell line T47D treated with PEGylated niosomal Gingerol. Results: The average
diameter of the nanoparticles, size distribution and zeta potential were reported for PEGylated niosomal sample 35.65
nm, 0.17 and 21 mv, and for PEGylated niosomal drug sample 256.9 nm, 0.23 and 28 mv, respectively. The amount
of OD for encapsulated drug was 0.198, also the amount of concentration of the drug which is not encapsulated, was
0.77947 μl of the drug per ml. This value of encapsulated drug was 76.38 percent. Conclusion: The results showed that
IC50 of the formulation of PEGylated nanoniosomal Gingerol is less than the standard drug. It seems, the cause of this
phenomenon is due to the effect of Polyethylene glycol, in more stability and slower drug release, in the formulation
of PEGylated niosome. Also, Polyethylene glycol makes increase in the drug dealing and its greater influence with the
target cell. In this study, more than 76% of the Gingerol drug in PEGylated nanoniosomal formulation were enclose.
Also, we could reduce the amount of drug release, as much as possible.
Collapse
Affiliation(s)
- Aras Behroozeh
- Department of Chemical Engineering, Science and Research Brach, Islamic Azad University, Tehran, Iran. ,
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Moore IMK, Koerner KM, Gundy PM, Montgomery DW, Insel KC, Harris LL, Taylor OA, Hockenberry MJ. Changes in Oxidant Defense, Apoptosis, and Cognitive Abilities During Treatment for Childhood Leukemia. Biol Res Nurs 2018. [PMID: 29514461 DOI: 10.1177/1099800418763124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aggressive central nervous system (CNS)-directed treatment for acute lymphoblastic leukemia (ALL), the most prevalent cancer among children and adolescents, prevents metastasis of leukemia cells into the brain. Up to 60% of survivors experience cognitive problems, but knowledge about risk factors for and mechanisms of neurologic injury is lacking. Objectives of the present study were to (1) quantify changes in oxidant defense and apoptosis over the course of ALL therapy and (2) elucidate risk factors for long-term cognitive problems. The sample included 71 children with ALL. Cerebrospinal fluid (CSF) samples were collected at diagnosis and during intrathecal chemotherapy administration. Oxidant defense was measured by reduced glutathione (GSH), oxidized glutathione (GSSG), and the ratio of GSH:GSSG. Apoptosis was measured by activity of several cysteine-dependent aspartate-specific protease (abbreviated as caspase) enzymes that initiate (caspases 8 and 9) or execute (caspases 3/7) apoptosis. Cognitive abilities were assessed by standardized measures of short-term memory, visual-motor integration, and attention 3 years after ALL diagnosis. GSH and GSSG concentration increased significantly during ALL therapy, and a low GSH:GSSG ratio was indicative of an oxidized extracellular environment. Caspase enzyme activity increased significantly, and caspases 3/7 activity was significantly and negatively associated with performance on measures of cognitive abilities. Younger age at time of ALL diagnosis was associated with some measures of attention. Efflux of glutathione into CSF maintains oxidant defense by scavenging free radicals and other reactive oxygen species and is an early event in apoptosis. These mechanisms may be involved in neurologic injury associated with CNS-directed treatment and subsequent cognitive problems.
Collapse
Affiliation(s)
- Ida M Ki Moore
- 1 College of Nursing, The University of Arizona, Tucson, AZ, USA
| | - Kari M Koerner
- 1 College of Nursing, The University of Arizona, Tucson, AZ, USA
| | | | | | - Kathleen C Insel
- 1 College of Nursing, The University of Arizona, Tucson, AZ, USA
| | | | | | | |
Collapse
|
26
|
Qu Y, Liu Y, Zhu Y, Chen L, Sun W, Zhu Y. Epoxyeicosatrienoic Acid Inhibits the Apoptosis of Cerebral Microvascular Smooth Muscle Cells by Oxygen Glucose Deprivation via Targeting the JNK/c-Jun and mTOR Signaling Pathways. Mol Cells 2017; 40:837-846. [PMID: 29081082 PMCID: PMC5712513 DOI: 10.14348/molcells.2017.0084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/25/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023] Open
Abstract
As a component of the neurovascular unit, cerebral smooth muscle cells (CSMCs) are an important mediator in the development of cerebral vascular diseases such as stroke. Epoxyeicosatrienoic acids (EETs) are the products of arachidonic acid catalyzed by cytochrome P450 epoxygenase. EETs are shown to exert neuroprotective effects. In this article, the role of EET in the growth and apoptosis of CSMCs and the underlying mechanisms under oxygen glucose deprivation (OGD) conditions were addressed. The viability of CMSCs was decreased significantly in the OGD group, while different subtypes of EETs, especially 14,15-EET, could increase the viability of CSMCs under OGD conditions. RAPA (serine/threonine kinase Mammalian Target of Rapamycin), a specific mTOR inhibitor, could elevate the level of oxygen free radicals in CSMCs as well as the anti-apoptotic effects of 14,15-EET under OGD conditions. However, SP600125, a specific JNK (c-Jun N-terminal protein kinase) pathway inhibitor, could attenuate oxygen free radicals levels in CSMCs as well as the anti-apoptotic effects of 14,15-EET under OGD conditions. These results strongly suggest that EETs exert protective functions during the growth and apoptosis of CSMCs, via the JNK/c-Jun and mTOR signaling pathways in vitro. We are the first to disclose the beneficial roles and underlying mechanism of 14,15-EET in CSMC under OGD conditions.
Collapse
Affiliation(s)
- Youyang Qu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P. R.
China
| | - Yu Liu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P. R.
China
| | - Yanmei Zhu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P. R.
China
| | - Li Chen
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P. R.
China
| | - Wei Sun
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P. R.
China
| | - Yulan Zhu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, P. R.
China
| |
Collapse
|
27
|
Nichols M, Elustondo PA, Warford J, Thirumaran A, Pavlov EV, Robertson GS. Global ablation of the mitochondrial calcium uniporter increases glycolysis in cortical neurons subjected to energetic stressors. J Cereb Blood Flow Metab 2017; 37:3027-3041. [PMID: 27909264 PMCID: PMC5536808 DOI: 10.1177/0271678x16682250] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effects of global mitochondrial calcium (Ca2+) uniporter (MCU) deficiency on hypoxic-ischemic (HI) brain injury, neuronal Ca2+ handling, bioenergetics and hypoxic preconditioning (HPC) were examined. Forebrain mitochondria isolated from global MCU nulls displayed markedly reduced Ca2+ uptake and Ca2+-induced opening of the membrane permeability transition pore. Despite evidence that these effects should be neuroprotective, global MCU nulls and wild-type (WT) mice suffered comparable HI brain damage. Energetic stress enhanced glycolysis and depressed Complex I activity in global MCU null, relative to WT, cortical neurons. HI reduced forebrain NADH levels more in global MCU nulls than WT mice suggesting that increased glycolytic consumption of NADH suppressed Complex I activity. Compared to WT neurons, pyruvate dehydrogenase (PDH) was hyper-phosphorylated in MCU nulls at several sites that lower the supply of substrates for the tricarboxylic acid cycle. Elevation of cytosolic Ca2+ with glutamate or ionomycin decreased PDH phosphorylation in MCU null neurons suggesting the use of alternative mitochondrial Ca2+ transport. Under basal conditions, global MCU nulls showed similar increases of Ca2+ handling genes in the hippocampus as WT mice subjected to HPC. We propose that long-term adaptations, common to HPC, in global MCU nulls compromise resistance to HI brain injury and disrupt HPC.
Collapse
Affiliation(s)
- Matthew Nichols
- 1 Faculty of Medicine, Department of Pharmacology, Brain Repair Centre, Life Sciences Research Institute, Dalhousie University, Halifax, Canada
| | - Pia A Elustondo
- 2 Faculty of Medicine, Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Jordan Warford
- 3 Faculty of Medicine, Department of Pathology, Dalhousie University, Halifax, Canada
| | - Aruloli Thirumaran
- 1 Faculty of Medicine, Department of Pharmacology, Brain Repair Centre, Life Sciences Research Institute, Dalhousie University, Halifax, Canada
| | - Evgeny V Pavlov
- 4 Department of Basic Sciences, College of Dentistry, New York University, New York, NY, USA
| | - George S Robertson
- 1 Faculty of Medicine, Department of Pharmacology, Brain Repair Centre, Life Sciences Research Institute, Dalhousie University, Halifax, Canada.,5 Department of Psychiatry, QEII Health Sciences Centre, Halifax, Canada
| |
Collapse
|
28
|
Mohamadi N, Kazemi SM, Mohammadian M, Toofani Milani A, Moradi Y, Yasemi M, Ebrahimi far M, Mazloumi Tabrizi M, Ebrahimi Shahmabadi H, Akbarzadeh Khiyavi A. Toxicity of Cisplatin-Loaded Poly Butyl Cyanoacrylate Nanoparticles in a Brain Cancer Cell Line: Anionic Polymerization Results. Asian Pac J Cancer Prev 2017; 18:629-632. [PMID: 28440967 PMCID: PMC5464476 DOI: 10.22034/apjcp.2017.18.3.629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cancer is one of the most important issues in modern medicine and the most common cause of death after cardiovascular diseases in many countries. Brain cancer is one of the most common causes of cancer death among men and women, ranking third. Chemotherapeutic drugs that aim to prevent uncontrolled proliferation of cells in tissues of the body and induce apoptosis of tumor cells are prominent candidates for development. Since cisplatin has an apoptosis-inducing role, it is widely used as an anticancer agent. In this research, toxicity of cisplatin was studied with the C6 rat glioma cell lined using the MTT method. In addition, nanoparticles underwent SEM microscopic imaging. Particle average size, size distribution, polydispersity index (PDI) and zeta potential of poly butyl cyanoacrylate nanoparticles were found to be 222 nm, 0.470 ± 0.04 and 5.1 ± 0.2 mV, respectively. The results showed that nanoconjugates of cisplatin have more cytotoxic effects on C6 cells than the free drug (P<0.05), pointing to an enhanced potential of the synthesized nano-particles as a new nanocarrier for chemotherapy.
Collapse
Affiliation(s)
- Nejad Mohamadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hameed A, Al-Rashida M, Uroos M, Abid Ali S, Khan KM. Schiff bases in medicinal chemistry: a patent review (2010-2015). Expert Opin Ther Pat 2016; 27:63-79. [PMID: 27774821 DOI: 10.1080/13543776.2017.1252752] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Schiff bases are synthetically accessible and structurally diverse compounds, typically obtained by facile condensation between an aldehyde, or a ketone with primary amines. Schiff bases contain an azomethine (-C = N-) linkage that stitches together two or more biologically active aromatic/heterocyclic scaffolds to form various molecular hybrids with interesting biological properties. Schiff bases are versatile metal complexing agents and have been known to coordinate all metals to form stable metal complexes with vast therapeutic applications. Areas covered: This review aims to provide a comprehensive overview of the various patented therapeutic applications of Schiff bases and their metal complexes from 2010 to 2015. Expert opinion: Schiff bases are a popular class of compounds with interesting biological properties. Schiff bases are also versatile metal complexing ligands and have been used to coordinate almost all d-block metals as well as lanthanides. Therapeutically, Schiff bases and their metal complexes have been reported to exhibit a wide range of biological activities such as antibacterial including antimycobacterial, antifungal, antiviral, antimalarial, antiinflammatory, antioxidant, pesticidal, cytotoxic, enzyme inhibitory, and anticancer including DNA damage.
Collapse
Affiliation(s)
- Abdul Hameed
- a H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences , University of Karachi , Karachi , Pakistan
| | - Mariya Al-Rashida
- b Department of Chemistry , Forman Christian College (A Chartered University) , Lahore , Pakistan
| | - Maliha Uroos
- c Institute of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Syed Abid Ali
- a H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences , University of Karachi , Karachi , Pakistan
| | - Khalid Mohammed Khan
- a H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences , University of Karachi , Karachi , Pakistan
| |
Collapse
|
30
|
SINGH ANILK, BHARDWAJ JITENDERK, OLIVAL ANA, KUMAR YOGESH, PODDER AVIJIT, MAHESHWARI ANKUR, AGRAWAL RENUKA, LATHA N, SINGH BRAJENDRAK, TOMÁS HELENA, RODRIGUES JOÃO, KISHAN RAM, RUPINI B, RATHI BRIJESH. Design, synthesis and biological evaluation of Arylpiperazine-based novel Phthalimides: Active inducers of testicular germ cell apoptosis. J CHEM SCI 2016. [DOI: 10.1007/s12039-016-1122-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Gonzales NR, Grotta JC. Pharmacologic Modification of Acute Cerebral Ischemia. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Hasegawa M, Hara-Miyauchi C, Ohta H, Sakimura K, Okano H, Okano HJ. Analysis of RNA metabolism in peripheral WBCs of TDP-43 KI mice identifies novel biomarkers of ALS. Neurosci Res 2015; 106:12-22. [PMID: 26672899 DOI: 10.1016/j.neures.2015.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 12/11/2022]
Abstract
Diagnostic biomarkers for amyotrophic lateral sclerosis (ALS) have yet to be identified. One of the causes of neuronal cell death in neurodegenerative diseases is abnormal RNA metabolism, although the mechanisms by which this occurs are unclear. Detection of abnormal RNA metabolism in white blood cells (WBCs) could lead to a new biomarker of ALS onset. TAR DNA-binding protein 43kDa (TDP-43) is an RNA-binding protein that regulates RNA metabolism. We previously developed a mouse model of ALS that exhibits adult-onset motor dysfunction; these mutant TDP-43 knock in (KI) mice heterozygously express mutant human TDP-43 (A382T or G348C). In the present study, we examined TDP-43 mRNA levels in WBCs of KI mice and found that A382T mutant mRNA is significantly higher than G348C. Our results suggest that each mutant TDP-43 induces distinct RNA metabolism, and that the expression of total TDP-43 alone in WBC is not suitable as an ALS biomarker. To identify additional candidates, we focused on survival and apoptosis-related factors and examined their mRNA metabolism in WBCs. mRNA levels of both Smn1 and Naip5 correlated with TDP-43 levels and also differed between A382T and G348C. Together, TDP-43 and these factors may enable detection of abnormalities in individual ALS pathologies.
Collapse
Affiliation(s)
- Minami Hasegawa
- Division of Regenerative Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 1058461, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Chikako Hara-Miyauchi
- Division of Regenerative Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 1058461, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroki Ohta
- Division of Regenerative Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 1058461, Japan; Vascular Surgery, Department of Surgery, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 1058461, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, 1-757 Asahimachidori Niigata Chuo-ku, Niigata 951-8585, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Hirotaka James Okano
- Division of Regenerative Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 1058461, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
33
|
Bora-Tatar G, Yesbek-Kaymaz A, Bekircan-Kurt CE, Erdem-Özdamar S, Erdem-Yurter H. Spinal muscular atrophy type III: Molecular genetic characterization of Turkish patients. Eur J Med Genet 2015; 58:654-8. [PMID: 26548498 DOI: 10.1016/j.ejmg.2015.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/21/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
Spinal Muscular Atrophy (SMA) is a neurodegenerative disease with autosomal recessive inheritance. Homozygous loss of exon 7 of the Survival of motor neuron 1 (SMN1) gene is the main cause of SMA. Although progressive muscle weakness and atrophy are common symptoms, disease severity varies from severe to mild. Type III is one of the milder and less frequent forms of SMA. In this study, we report molecular genetic characteristics of 24 Turkish type III SMA patients. Homozygous loss of SMN1 exon 7 and 8 was analysed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and multiplex ligation dependent probe amplification (MLPA). SMN2, homologue of SMN1, and Neuronal apoptosis inhibitory protein (NAIP) genes were also evaluated considering their influence on disease severity. We determined that male patients who were born in consanguineous families were predominant in our cohort and these patients mostly carry the homozygous loss of SMN1 exon 7 and 8 and four copies of SMN2 gene without NAIP deletions.
Collapse
Affiliation(s)
- Gamze Bora-Tatar
- Hacettepe University, Faculty of Medicine, Department of Medical Biology, 06100, Sıhhiye, Ankara, Turkey.
| | - Ayse Yesbek-Kaymaz
- Hacettepe University, Faculty of Medicine, Department of Medical Biology, 06100, Sıhhiye, Ankara, Turkey
| | - Can Ebru Bekircan-Kurt
- Hacettepe University, Faculty of Medicine, Department of Neurology, 06100, Sıhhiye, Ankara, Turkey
| | - Sevim Erdem-Özdamar
- Hacettepe University, Faculty of Medicine, Department of Neurology, 06100, Sıhhiye, Ankara, Turkey
| | - Hayat Erdem-Yurter
- Hacettepe University, Faculty of Medicine, Department of Medical Biology, 06100, Sıhhiye, Ankara, Turkey
| |
Collapse
|
34
|
Xu W, Kong X, Jiang C, Liu X, Xu L. The anti-tumor effect of a polypeptide extracted from Tegillarca granosa Linnaeus on renal metastatic tumor OS-RC-2 cells. Arch Med Sci 2015; 11:849-55. [PMID: 26322097 PMCID: PMC4548037 DOI: 10.5114/aoms.2015.53305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/26/2013] [Accepted: 08/16/2013] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Renal cell carcinoma is a type of malignant tumor often diagnosed in the urinary system. The aim of this study is to evaluate the anti-tumor effects and mechanisms of a polypeptide, Haishengsu (TG-1), with different concentrations (125, 250, 500 mg/kg) on renal metastatic tumor OS-RC-2 cells. MATERIAL AND METHODS We first established the renal metastatic tumor model. After being administered with TG-1, the weight of tumors was measured and the microstructural changes of renal carcinoma OS-RC-2 cells were compared using transmission electron microscopy before and after the therapy. The Ki67 expression in renal carcinoma OS-RC-2 cells was analyzed by RT-PCR and downstream signal molecule caspase-3 was measured by Western blot assay. RESULTS After treatment with different doses of TG-1, the tumor weights in the positive control group and experimental groups were smaller than those in the untreated control group, suggesting that TG-1 could effectively inhibit tumor growth in mice. The transmission electron microscopy and flow cytometry results indicated that TG-1 induces tumor cell apoptosis (p < 0.05). The tumor cells exhibited polymorphism changes and chromatin edge clustering. TG-1 also inhibited Ki67 expression and promoted caspase-3 expression in the tumor significantly (p < 0.05). CONCLUSIONS TG-1 inhibits the growth of the tumor and induces apoptosis of the tumor cells by inducing caspase-3 expression. The results provide a basis for clinical application of TG-1 in the future.
Collapse
Affiliation(s)
- Wenhua Xu
- The Medical College of Qingdao University, Qingdao, China
| | | | - Changqing Jiang
- Department of Pathology, Municipal Hospital of Qingdao, Qingdao, China
| | - Xiaoyan Liu
- The Garrison Command Hospital of Qingdao, Qindao, China
| | - Luo Xu
- The Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
35
|
Saffari Z, Zarabi MF, Aryapour H, Foroumadi A, Farhangi A, Ghassemi S, Akbarzadeh A. Cytotoxicity and Apoptosis Inducing Activities of 2-Amino-4H-chromene-3-carbonitrile Derivatives Loaded on Gold Nanoparticles Against Human Breast Cancer Cell Line T47D. Indian J Clin Biochem 2015; 30:140-9. [PMID: 25883420 DOI: 10.1007/s12291-014-0417-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 01/15/2014] [Indexed: 11/25/2022]
Abstract
Chemotherapy drugs, used for prevention of uncontrolled cell proliferation in certain tissues as well as inducing apoptosis in tumor cells, are important candidates for treatment of cancer. The synthesized 2-amino-4H-chromene-3-carbonitrile derivatives effective on cancerous cells resistant to other drugs such as Paclitaxel were used due to their ability in induction of apoptosis. The growth inhibitory and inducing apoptosis activities were determined. In order to make it target-oriented, the best compound was conjugated with gold nanoparticles (NPs) by aspartic acid with chemical reduction method. Cytotoxicity effect of 2-amino-4H-chromene-3-carbonitrile derivatives against the T47D breast cancer cell line was determined by MTT assay. The synthesis of gold NPs was confirmed by transmission electron microscopy, UV-Vis and dynamic light scattering. To assess the effects of compounds on the process of apoptosis, staining methods with acridine orange-ethidium bromide and Hoechst staining by fluorescence microscopy and DNA fragmentation by the diphenylamine method were used. The synthesized compounds containing two NH2 groups on benzene rings, demonstrated more cytotoxicity effect. The effect of conjugation with gold NPs and the induction of apoptosis were studied with the best compound. The cytotoxicity effects of the synthesized 2-amino-4H-chromene-3-carbonitrile compounds were changed by replacement of NO2 group on thiol ring with different chemical groups on the benzene ring. Analyses of treated cell lines by conjugated and non-conjugated forms of compounds verified their ability in inducing apoptosis while conjugated form demonstrated higher apoptosis.
Collapse
Affiliation(s)
- Zahra Saffari
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Kordestan, Iran
| | - Maryam Farahnak Zarabi
- Department of Chemistry, Zanjan University, Zanjan, Iran ; Department of Pilot NanoBiotechnology, Pasteur Institute of Iran, No. 69, 12 Farvardin Street, Jomhoori Avenue, 13169-43551 Tehran, Iran
| | - Hasan Aryapour
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Farhangi
- Department of Pilot NanoBiotechnology, Pasteur Institute of Iran, No. 69, 12 Farvardin Street, Jomhoori Avenue, 13169-43551 Tehran, Iran
| | - Soheil Ghassemi
- Department of Pilot NanoBiotechnology, Pasteur Institute of Iran, No. 69, 12 Farvardin Street, Jomhoori Avenue, 13169-43551 Tehran, Iran
| | - Azim Akbarzadeh
- Department of Pilot NanoBiotechnology, Pasteur Institute of Iran, No. 69, 12 Farvardin Street, Jomhoori Avenue, 13169-43551 Tehran, Iran
| |
Collapse
|
36
|
Sun K, Fan J, Han J. Ameliorating effects of traditional Chinese medicine preparation, Chinese materia medica and active compounds on ischemia/reperfusion-induced cerebral microcirculatory disturbances and neuron damage. Acta Pharm Sin B 2015; 5:8-24. [PMID: 26579420 PMCID: PMC4629119 DOI: 10.1016/j.apsb.2014.11.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 01/22/2023] Open
Abstract
Ischemic stroke and ischemia/reperfusion (I/R) injury induced by thrombolytic therapy are conditions with high mortality and serious long-term physical and cognitive disabilities. They have a major impact on global public health. These disorders are associated with multiple insults to the cerebral microcirculation, including reactive oxygen species (ROS) overproduction, leukocyte adhesion and infiltration, brain blood barrier (BBB) disruption, and capillary hypoperfusion, ultimately resulting in tissue edema, hemorrhage, brain injury and delayed neuron damage. Traditional Chinese medicine (TCM) has been used in China, Korea, Japan and other Asian countries for treatment of a wide range of diseases. In China, the usage of compound TCM preparation to treat cerebrovascular diseases dates back to the Han Dynasty. Even thousands of years earlier, the medical formulary recorded many classical prescriptions for treating cerebral I/R-related diseases. This review summarizes current information and underlying mechanisms regarding the ameliorating effects of compound TCM preparation, Chinese materia medica, and active components on I/R-induced cerebral microcirculatory disturbances, brain injury and neuron damage.
Collapse
Key Words
- 8-OHdG, 8-hydroxydeoxyguanosine
- AIF, apoptosis inducing factor
- AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
- AP-1, activator protein-1
- Antioxidant
- Asp, aspartate
- BBB, brain blood barrier
- BMEC, brain microvascular endothelial cell
- BNDF, brain-derived neurotrophic factor
- Brain blood barrier
- CAT, catalase
- CBF, cerebral blood flow
- COX-2, cyclooxygenase-2
- Cav-1, caveolin-1
- DHR, dihydrorhodamine 123
- DPPH, 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl
- ERK, extracellular signal-regulated kinase
- GABA, γ-aminobutyric acid
- GRK2, G protein-coupled receptor kinase 2
- GSH, glutathione
- GSH-Px, glutathione peroxidase
- GSSH, glutathione disulfide
- Glu, glutamate
- Gly, glysine
- HE, hematoxylin and eosin
- HIF, hypoxia-inducible factor
- HPLC, high performance liquid chromatography
- Hyperpermeability
- I-κBα, Inhibitory κBα
- I/R, ischemia-reperfusion
- ICAM-1, intercellular adhesion molecule-1
- IL-10, interleukin-10
- IL-1β, interleukin-1β
- IL-8, interleukin-8
- Ischemia/reperfusion
- JAM-1, junctional adhesion molecule-1
- JNK, Jun N-terminal kinase
- LDH, lactate dehydrogenase
- Leukocyte adhesion
- MAPK, mitogen activated protein kinase
- MCAO, middle cerebral artery occlusion
- MDA, malondialdehyde
- MMPs, matrix metalloproteinases
- MPO, myeloperoxidase
- MRI, magnetic resonance imaging
- NADPH, nicotinamide adenine dinucleotide phosphate
- NF-κB, nuclear factor κ-B
- NGF, nerve growth factor
- NMDA, N-methyl-d-aspartic acid
- NO, nitric oxide
- NSC, neural stem cells
- Neuron
- OGD, oxygen-glucose deprivation
- PARP, poly-ADP-ribose polymerase
- PMN, polymorphonuclear
- RANTES, regulated upon activation normal T-cell expressed and secreted
- ROS, reactive oxygen species
- SFDA, state food and drug administration
- SOD, superoxide dismutase
- TBARS, thiobarbituric acid reactive substance
- TCM, traditional Chinese medicine
- TGF-β1, transforming growth factor β1
- TIMP-1, tissue inhibitor of metalloproteinase-1
- TNF-α, tissue necrosis factor-α
- TTC, 2,3,5-triphenyltetrazolium chloride
- TUNEL, terminal-deoxynucleoitidyl transferase mediated nick end labeling
- Tuj-1, class III β-tublin
- VCAM-1, vascular adhesion molecule-1
- VEGF, vascular endothelial growth factor
- ZO-1, zonula occludens-1
- bFGF, basic fibroblast growth factor
- cAMP, cyclic adenosine monophosphate
- hs-CRP, high-sensitivity C-reactive protein
- iNOS, inducible nitric oxide synthase
- rtPA, recombinant tissue plasminogen activator
Collapse
|
37
|
Bing L, Wu J, Zhang J, Chen Y, Hong Z, Zu H. DHT inhibits the Aβ25-35-induced apoptosis by regulation of seladin-1, survivin, XIAP, bax, and bcl-xl expression through a rapid PI3-K/Akt signaling in C6 glial cell lines. Neurochem Res 2014; 40:41-8. [PMID: 25347962 DOI: 10.1007/s11064-014-1463-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 10/15/2014] [Accepted: 10/23/2014] [Indexed: 11/28/2022]
Abstract
Previous evidences indicate that androgen is neuroprotective in the brain. However, the underling mechanisms remain to be fully elucidated. Moreover, it is controversial whether dihydrotestosterone (DHT) modulates the expression of apoptosis-related effectors, such as survivin, XIAP, bax, and bcl-xl proteins mediated by the PI3-K/Akt pathway, which contributes to androgen neuroprotection. In this study using a C6 glial cell model, apoptotic cells were detected by flow cytometry. Akt, seladin-1, survivin, XIAP, bcl-xl, and bax protein expression is investigated by Western blot. After amyloid β-protein fragment (Aβ25-35) treatment, apoptotic cells at early (annexin V+, PI-) and late (annexin V+, PI+) stages were significantly increased. Apoptosis at early and late was obviously inhibited in the presence of DHT. The effect of DHT was markedly blocked by PI3-K inhibitor LY294002.To elicit the mechanism of DHT protection, the expression of seladin-1, survivin, XIAP, bax, and bcl-xl protein was determined in C6 cells treated with Aβ25-35, DHT, or LY294002. Aβ25-35 significantly downregulated the expression of seladin-1, survivin, XIAP, bcl-xl protein and upregulated the expression of bax protein. DHT significantly inhibited the expression of bax, seladin-1, survivin, XIAP, and bcl-xl protein induced by Aβ25-35. Further, we found the effect of DHT was significantly inhibited by LY294002. Collectively, in a C6 glial cell model, we firstly found that DHT inhibits Aβ25-35-induced apoptosis by a rapid nongenic PI-3K/Akt activation as well as regulation of seladin-1, survivin, XIAP, bcl-xl, and bax proteins.
Collapse
Affiliation(s)
- Lelin Bing
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | | | | | | | | | | |
Collapse
|
38
|
Magalingam KB, Radhakrishnan A, Ramdas P, Haleagrahara N. Quercetin Glycosides Induced Neuroprotection by Changes in the Gene Expression in a Cellular Model of Parkinson’s Disease. J Mol Neurosci 2014; 55:609-17. [DOI: 10.1007/s12031-014-0400-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/06/2014] [Indexed: 11/29/2022]
|
39
|
Levkovitch-Verbin H, Makarovsky D, Vander S. Comparison between axonal and retinal ganglion cell gene expression in various optic nerve injuries including glaucoma. Mol Vis 2013; 19:2526-41. [PMID: 24357921 PMCID: PMC3867164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 12/12/2013] [Indexed: 10/31/2022] Open
Abstract
PURPOSE The pathogenesis of retinal ganglion cell loss in glaucoma remains incompletely understood. Current evidence suggests that the optic nerve (ON) head and axons are the main site of injury in glaucoma. This study compares changes in prosurvival and proapoptotic gene expression in ONs with those in retinas in three models of ocular injury, specifically ON transection (ONTX), N-methyl-D-aspartate (NMDA) retinal toxicity, and experimental glaucoma. METHODS Rats (n=240) were divided into three models (ONTX, NMDA retinal toxicity, and experimental glaucoma). The experimental model was induced unilaterally and the contralateral eye served as control. Rats were sacrificed at 4-5 different time points specific for each model. ONs and retinas were isolated for real-time PCR investigation of expression of selected genes. Immunohistochemistry localized changes in inhibitor of apoptosis (IAP)-1 and X-linked IAP (XIAP) proteins in retinas and ONs. Colocalization was measured using Imaris colocalization software (three-dimensional analysis). RESULTS The earliest changes in gene expression occurred in ONs in the ONTX model and in retinas in the NMDA model, as expected. However, some gene changes occurred first in ONs, while others occurred first in retinas in the glaucoma model. The expression patterns of the prosurvival genes IAP-1 and XIAP differed between retinas and ONs of glaucomatous eyes: Both were upregulated in the retinas, but XIAP was downregulated in the ONs, while IAP-1 stayed unchanged. Colocalization of IAP-1, XIAP, glial fibrillary acidic protein, and Thymus cell antigen-1 (Thy-1) suggested that IAP-1 was colocalized mostly with Thy-1 and XIAP with glial fibrillary acidic protein in the ONs. Members of the B-cell lymphoma 2 (BCL-2) family were similarly involved in the ONs and retinas of glaucomatous, transected, and NMDA-injected eyes. The expression of the prosurvival genes, Bcl-2 and Bcl-xl, decreased significantly in both the ONs and retinas of injured eyes. The proapoptotic genes, BCL2-associated X protein (BAX) and Bcl-2-associated death promoter (BAD), were significantly upregulated in both injured retinas and ONs. CONCLUSIONS The overexpression of XIAP and IAP-1 genes in the retinas was not associated with similar changes in the ONs of glaucomatous eyes. The lack of activation of these prosurvival genes in the ONs may explain the increased vulnerability of ONs to elevated intraocular pressure.
Collapse
|
40
|
Tang K, Zhang JT. (-)clausenamide improves long-term potentiation impairment and attenuates apoptosis after transient middle cerebral artery occlusion in rats. Neurol Res 2013; 25:713-7. [PMID: 14579788 DOI: 10.1179/016164103101202219] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The effects of (-)clausenamide (clau) on long-term potentiation (LTP) and neuronal DNA damage were investigated in a rat model of middle cerebral artery (MCA) occlusion. Four days after reperfusion, electrophysiology records revealed reduced LTP in the ipsilateral dentate gyrus of ischemic rats, while treatment with clau (10 mg kg-1 p.o. once daily) improved LTP impairment. The fractional increase of population spike amplitude 20-50 min after tetanus was significantly larger in ischemic rats treated with clau than vehicle treated animals. Terminal deoxynucleotidyltransferase mediated dUTP end labeling (TUNEL) assay revealed occurrence of apoptosis in the ipsilateral striatum. The numbers of TUNEL-positive particles were significantly reduced after treatment with clau compared with vehicle group (78.8 +/- 17.9 versus 105.8 +/- 27.2). Mitochondrial rhodamine 123 accumulation showed that clau treatment (55.0 +/- 8.5) elevated numbers of rhodamine 123-positive particles in the ipsilateral striatum compared with vehicle group (40.4 +/- 7.5) These results demonstrate that clau can improve LTP impairment in the ipsilateral dentate gyrus and enhance cell survival in the striatum compared to the vehicle-treated rats four days following ischemic damage and its protective effect on mitochondria may partially underlie its action.
Collapse
Affiliation(s)
- Kang Tang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | | |
Collapse
|
41
|
Turner RC, Dodson SC, Rosen CL, Huber JD. The science of cerebral ischemia and the quest for neuroprotection: navigating past failure to future success. J Neurosurg 2013; 118:1072-85. [PMID: 23331000 DOI: 10.3171/2012.11.jns12408] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ischemic stroke remains a leading cause of morbidity and death for which few therapeutic options are available. The development of neuroprotective agents, a once promising field of investigation, has failed to translate from bench to bedside successfully. This work reviews the ischemic cascade, agents targeting steps within the cascade, and potential reasons for lack of translation. Additional therapeutic targets are highlighted and areas requiring further investigation are discussed. It is clear that alternative targets need to be pursued, such as the role glia play in neurological injury and recovery, particularly the interactions between neurons, astrocytes, microglia, and the vasculature. Similarly, the biphasic nature of many signaling molecules such as matrix metalloproteinases and high-mobility group box 1 protein must be further investigated to elucidate periods of detrimental versus beneficial activity.
Collapse
Affiliation(s)
- Ryan C Turner
- Department of Neurosurgery, West Virginia University, Morgantown, West Virginia 26506-9183, USA
| | | | | | | |
Collapse
|
42
|
Vuojola J, Syrjänpää M, Lamminmäki U, Soukka T. Genetically Encoded Protease Substrate Based on Lanthanide-Binding Peptide for Time-Gated Fluorescence Detection. Anal Chem 2013; 85:1367-73. [DOI: 10.1021/ac302030q] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Johanna Vuojola
- Department of Biotechnology, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Markku Syrjänpää
- Department of Biotechnology, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Urpo Lamminmäki
- Department of Biotechnology, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Tero Soukka
- Department of Biotechnology, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland
| |
Collapse
|
43
|
Kanbak G, Kartkaya K, Ozcelik E, Guvenal AB, Kabay SC, Arslan G, Durmaz R. The neuroprotective effect of acute moderate alcohol consumption on caspase-3 mediated neuroapoptosis in traumatic brain injury: the role of lysosomal cathepsin L and nitric oxide. Gene 2012; 512:492-5. [PMID: 23099040 DOI: 10.1016/j.gene.2012.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 06/25/2012] [Accepted: 10/10/2012] [Indexed: 11/19/2022]
Abstract
Our aim in this study was to investigate the effect of moderate acute alcohol administration on cysteine protease mediated neuronal apoptosis and nitric oxide production in the traumatic brain injury. A total of 29 adult Sprague-Dawley male rats weighing 250-300 g were used. The rats were allocated into four groups. The first group was the control (sham-operated) group in which only a craniotomy was performed, the others were alcohol, trauma and trauma+alcohol groups. Caspase-3 enzyme activity in the trauma group increased significantly in comparison with the control group. The alcohol given group showed a decreased caspase-3 enzyme activity compared to the trauma group. The level of caspase-3 enzyme activity in the alcohol+trauma group decreased in comparison to the trauma group. SF/FEL ratio of cathepsin-L enzyme activity in the trauma group was significantly higher than in the control group. Our results indicate that moderate alcohol consumption may have protective effects on apoptotic cell death after traumatic brain injury. Protective effects of moderate ethanol consumption might be related to inhibition of lysosomal protease release and nitric oxide production.
Collapse
Affiliation(s)
- Gungor Kanbak
- Eskisehir Osmangazi University, The Medical School, Department of Biochemistry, Turkey
| | | | | | | | | | | | | |
Collapse
|
44
|
Vuojola J, Riuttamäki T, Kulta E, Arppe R, Soukka T. Fluorescence-quenching-based homogeneous caspase-3 activity assay using photon upconversion. Anal Chim Acta 2012; 725:67-73. [PMID: 22502613 DOI: 10.1016/j.aca.2012.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 12/28/2022]
Abstract
Caspase proteases are key mediators in apoptosis and thus of great interest in pharmaceutical industry. Enzyme-activity assays are commonly employed in the screening of protease inhibitors that are potential drug candidates. Conventional homogeneous fluorescence-based assays are susceptible to autofluorescence originating from biological material. This background autofluorescence can be eliminated by using upconverting phosphors (UCPs) that emit visible light upon excitation at near-infrared. In the assay energy was transferred from a UCP-donor to a conventional fluorophore acceptor that resided at one end of a caspase-3-specific substrate peptide. Attached to the other end was a quencher molecule that was used to attenuate the acceptor emission through intramolecular energy transfer in an intact peptide. In non-inhibitory conditions the enzyme reaction separated the fluorophore from the quencher and the emission of the fluorophore was recovered. The method was applied for the detection and characterization of a known caspase-3 inhibitor Z-DEVD-FMK, and the assay gave IC(50) values of approximately 13 nM for this inhibitor. We have demonstrated the applicability of UCPs on a fluorescence-quenching-based homogeneous enzyme-activity assay for the detection of caspase-3 inhibitors. The use of near-infrared excitable UCPs enables inexpensive instrumentation and total elimination of autofluorescence, while the use of an internally quenched substrate molecule diminishes the background resulting from radiatively excited acceptor molecules. The reduction of autofluorescence and radiative background result in high signal-to-background ratios (ratios of approximately 100 were obtained). By further utilizing assay miniaturization and signal enhancement in a white microtitration plate, a significant reduction in the reagent consumption can be achieved rendering the assay applicable for high-throughput screening.
Collapse
Affiliation(s)
- Johanna Vuojola
- Department of Biotechnology, University of Turku, Turku, Finland.
| | | | | | | | | |
Collapse
|
45
|
Hart MJ, Glicksman M, Liu M, Sharma MK, Cuny G, Galvan V. Development of a high-throughput screen targeting caspase-8-mediated cleavage of the amyloid precursor protein. Anal Biochem 2012; 421:467-76. [DOI: 10.1016/j.ab.2011.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/11/2011] [Accepted: 11/19/2011] [Indexed: 01/17/2023]
|
46
|
miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci U S A 2011; 108:11662-7. [PMID: 21709246 DOI: 10.1073/pnas.1102635108] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is increasingly recognized that the mechanisms underlying ischemic cell death are sexually dimorphic. Stroke-induced cell death in males is initiated by the mitochondrial release of apoptosis-inducing factor, resulting in caspase-independent cell death. In contrast, ischemic cell death in females is primarily triggered by mitochondrial cytochrome c release with subsequent caspase activation. Because X-linked inhibitor of apoptosis (XIAP) is the primary endogenous inhibitor of caspases, its regulation may play a unique role in the response to injury in females. XIAP mRNA levels were higher in females at baseline. Stroke induced a significant decrease in XIAP mRNA in females, whereas no changes were seen in the male brain. However, XIAP protein levels were decreased in both sexes after stroke. MicroRNAs (miRNAs) predominantly induce translational repression and are emerging as a major regulators of mRNA and subsequent protein expression after ischemia. The miRNA miR-23a was predicted to bind XIAP mRNA. miR-23a directly bound the 3' UTR of XIAP, and miR-23a inhibition led to an increase in XIAP mRNA in vitro, demonstrating that XIAP is a previously uncharacterized target for miR-23a. miR-23a levels differed in male and female ischemic brains, providing evidence for sex-specific miRNA expression in stroke. Embelin, a small-molecule inhibitor of XIAP, decreased the interaction between XIAP and caspase-3 and led to enhanced caspase activity. Embelin treatment significantly exacerbated stroke-induced injury in females but had no effect in males, demonstrating that XIAP is an important mediator of sex-specific responses after stroke.
Collapse
|
47
|
Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 2011; 6:11. [PMID: 21266064 PMCID: PMC3037909 DOI: 10.1186/1750-1326-6-11] [Citation(s) in RCA: 391] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 01/25/2011] [Indexed: 01/02/2023] Open
Abstract
Stroke is the world's second leading cause of mortality, with a high incidence of severe morbidity in surviving victims. There are currently relatively few treatment options available to minimize tissue death following a stroke. As such, there is a pressing need to explore, at a molecular, cellular, tissue, and whole body level, the mechanisms leading to damage and death of CNS tissue following an ischemic brain event. This review explores the etiology and pathogenesis of ischemic stroke, and provides a general model of such. The pathophysiology of cerebral ischemic injury is explained, and experimental animal models of global and focal ischemic stroke, and in vitro cellular stroke models, are described in detail along with experimental strategies to analyze the injuries. In particular, the technical aspects of these stroke models are assessed and critically evaluated, along with detailed descriptions of the current best-practice murine models of ischemic stroke. Finally, we review preclinical studies using different strategies in experimental models, followed by an evaluation of results of recent, and failed attempts of neuroprotection in human clinical trials. We also explore new and emerging approaches for the prevention and treatment of stroke. In this regard, we note that single-target drug therapies for stroke therapy, have thus far universally failed in clinical trials. The need to investigate new targets for stroke treatments, which have pleiotropic therapeutic effects in the brain, is explored as an alternate strategy, and some such possible targets are elaborated. Developing therapeutic treatments for ischemic stroke is an intrinsically difficult endeavour. The heterogeneity of the causes, the anatomical complexity of the brain, and the practicalities of the victim receiving both timely and effective treatment, conspire against developing effective drug therapies. This should in no way be a disincentive to research, but instead, a clarion call to intensify efforts to ameliorate suffering and death from this common health catastrophe. This review aims to summarize both the present experimental and clinical state-of-the art, and to guide future research directions.
Collapse
Affiliation(s)
- Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | |
Collapse
|
48
|
Tiwari M, Lopez-Cruzan M, Morgan WW, Herman B. Loss of caspase-2-dependent apoptosis induces autophagy after mitochondrial oxidative stress in primary cultures of young adult cortical neurons. J Biol Chem 2011; 286:8493-8506. [PMID: 21216964 DOI: 10.1074/jbc.m110.163824] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial dysfunctions have been associated with neuronal apoptosis and are characteristic of neurodegenerative conditions. Caspases play a central role in apoptosis; however, their involvement in mitochondrial dysfunction-induced neuronal apoptosis remains elusive. In the present report using rotenone, a complex I inhibitor that causes mitochondrial dysfunction, we determined the initiator caspase and its role in cell death in primary cultures of cortical neurons from young adult mice (1-2 months old). By pretreating the cells with a cell-permeable, biotinylated pan-caspase inhibitor that irreversibly binds to and traps the active caspase, we identified caspase-2 as an initiator caspase activated in rotenone-treated primary neurons. Loss of caspase-2 inhibited rotenone-induced apoptosis; however, these neurons underwent a delayed cell death by necrosis. We further found that caspase-2 acts upstream of mitochondria to mediate rotenone-induced apoptosis in neurons. The loss of caspase-2 significantly inhibited rotenone-induced activation of Bid and Bax and the release of cytochrome c and apoptosis inducing factor from mitochondria. Rotenone-induced downstream activation of caspase-3 and caspase-9 were also inhibited in the neurons lacking caspase-2. Autophagy was enhanced in caspase-2 knock-out neurons after rotenone treatment, and this response was important in prolonging neuronal survival. In summary, the present study identifies a novel function of caspase-2 in mitochondrial oxidative stress-induced apoptosis in neurons cultured from young adult mice.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- From the Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Marisa Lopez-Cruzan
- From the Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229
| | - William W Morgan
- From the Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Brian Herman
- From the Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229.
| |
Collapse
|
49
|
Gonzales NR, Grotta JC. Pharmacologic Modification of Acute Cerebral Ischemia. Stroke 2011. [DOI: 10.1016/b978-1-4160-5478-8.10053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Sîrbulescu RF, Zupanc GKH. Inhibition of caspase-3-mediated apoptosis improves spinal cord repair in a regeneration-competent vertebrate system. Neuroscience 2010; 171:599-612. [PMID: 20837106 DOI: 10.1016/j.neuroscience.2010.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/19/2010] [Accepted: 09/02/2010] [Indexed: 01/06/2023]
Abstract
Teleost fish exhibit an excellent potential for structural and functional recovery after CNS lesions. The function of apoptosis in the process of regeneration remains controversial. While some studies have identified this type of cell death as essential for successful regeneration, other investigations have suggested some degree of functional improvement after inhibition of apoptosis. In the present study, we examined whether inhibition of apoptosis immediately after injury can improve spinal cord regeneration. As a model system, we used Apteronotus leptorhynchus, a regeneration-competent weakly electric fish. To inhibit apoptosis, we employed 2,2'-methylenebis (1,3-cyclohexanedione) (M50054), a compound that prevents caspase-3 activation. Administration of this apoptosis inhibitor led to a significant reduction in the numbers of apoptotic cells at 24 h, 5 days, and 30 days after the lesion. Using triple immunolabeling, we identified a significant reduction in the level of apoptosis at 5 and 30 days after the lesion among the following cellular categories: cells generated shortly after the lesion, existing neurons, and newly differentiated neurons. This reduced rate of apoptosis led to an increase in the relative number of differentiating and surviving neurons at both 5 and 30 days post-injury, compared to the control groups. Functional regeneration, as indicated by the recovery rate of the amplitude of the electric organ discharge (EOD), was significantly improved within the first 20 days after the lesion in the fish treated with M50054. Our data provide the first evidence that modulation of caspase-3 activation can significantly improve neuroregeneration and functional recovery in a regeneration-competent organism.
Collapse
Affiliation(s)
- R F Sîrbulescu
- School of Engineering and Science, Jacobs University Bremen, P.O. BOX 750 561, 28725 Bremen, Germany
| | | |
Collapse
|