1
|
Timofeeva AV, Akhmetzyanova ER, Rizvanov AA, Mukhamedshina YO. Interaction of microglia with the microenvironment in spinal cord injury. Neuroscience 2025; 565:594-603. [PMID: 39622381 DOI: 10.1016/j.neuroscience.2024.11.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
This article discusses the peculiarities of microglia behaviour and their interaction with other cells of the central nervous system (CNS) during neural tissue injury with a focus on spinal cord injury (SCI). Taking into account the plasticity of microglia, the influence of the microenvironment should be taken into account to establish the mechanisms determining the polarization pathways of these cells. Determination of the system of microglia interactions with other CNS cells during injury will reveal the patterns of post-traumatic microglia responses, in particular, determining both pro-inflammatory and anti-inflammatory responses. This review compiles information on changes in microglia activation, migration and phagocytosis, as well as their reciprocal effects on other CNS cells, such as neurons, astrocytes and oligodendrocytes, in the background of SCI. The information contained in this article may be of interest not only to scientists studying traumatic injuries of the central nervous system, but also to specialists in the field of studying and treating neurodegenerative diseases, since the mechanisms occurring in the injured spinal cord may also be characteristic of pathological events in degenerative processes.
Collapse
Affiliation(s)
- A V Timofeeva
- Kazan (Volga Region) Federal University, Kazan, Russia
| | | | - A A Rizvanov
- Kazan (Volga Region) Federal University, Kazan, Russia; Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Russia
| | - Y O Mukhamedshina
- Kazan (Volga Region) Federal University, Kazan, Russia; Kazan State Medical University, Kazan, Russia
| |
Collapse
|
2
|
Chen J, He Y, Zhong J, Fu Y, Yuan S, Hou L, Zhang X, Meng F, Lin WJ, Ji F, Wang Z. Transcranial near-infrared light promotes remyelination through AKT1/mTOR pathway to ameliorate postoperative neurocognitive disorder in aged mice. Neuroscience 2025; 565:358-368. [PMID: 39653248 DOI: 10.1016/j.neuroscience.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/10/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Postoperative neurocognitive disorder (PND) is a prevalent complication following surgery and anesthesia, characterized by progressive cognitive decline. The precise etiology of PND remains unknown, and effective targeted therapeutic strategies are lacking. Transcranial near-infrared light (tNIRL) has shown potential benefits for cognitive dysfunction diseases, but its effect on PND remains unclear. Our previous research indicated a close association between demyelination and PND. In other central nervous system (CNS) disorders, tNIRL has been demonstrated to facilitate remyelination in response to demyelination. In this study, we established the PND model in 18-month-old male C57BL/6 mice using isoflurane anesthesia combined with left common carotid artery exposure. Following surgery, PND-aged mice were subjected to daily 2.5-minute tNIRL treatment at 810 nm for three consecutive days. Subsequently, we observed that tNIRL significantly improved cognitive performance and reduced inflammatory cytokine levels in the hippocampus of PND mice. Furthermore, tNIRL increased the expression of oligodendrocyte transcription factor 2 (OLIG2) and myelin basic protein (MBP), promoting remyelination while enhancing synaptic function-associated proteins such as synaptophysin (SYP) and postsynaptic density protein 95 (PSD95). Further investigation revealed that tNIRL may activate the AKT1/mTOR pathway to facilitate remyelination in PND mice. These findings indicate that tNIRL is a novel non-invasive therapeutic approach for treating PND.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Anesthesiology, Meishan City People's Hospital, Meishan, Sichuan, China
| | - Yuqing He
- Department of Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Junying Zhong
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanni Fu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shangyan Yuan
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Longjie Hou
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaojun Zhang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fanqing Meng
- Department of Anesthesiology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, China
| | - Wei-Jye Lin
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fengtao Ji
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Shui X, Chen J, Fu Z, Zhu H, Tao H, Li Z. Microglia in Ischemic Stroke: Pathogenesis Insights and Therapeutic Challenges. J Inflamm Res 2024; 17:3335-3352. [PMID: 38800598 PMCID: PMC11128258 DOI: 10.2147/jir.s461795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Ischemic stroke is the most common type of stroke, which is the main cause of death and disability on a global scale. As the primary immune cells in the brain that are crucial for preserving homeostasis of the central nervous system microenvironment, microglia have been found to exhibit dual or even multiple effects at different stages of ischemic stroke. The anti-inflammatory polarization of microglia and release of neurotrophic factors may provide benefits by promoting neurological recovery at the lesion in the early phase after ischemic stroke. However, the pro-inflammatory polarization of microglia and secretion of inflammatory factors in the later phase of injury may exacerbate the ischemic lesion, suggesting the therapeutic potential of modulating the balance of microglial polarization to predispose them to anti-inflammatory transformation in ischemic stroke. Microglia-mediated signaling crosstalk with other cells may also be key to improving functional outcomes following ischemic stroke. Thus, this review provides an overview of microglial functions and responses under physiological and ischemic stroke conditions, including microglial activation, polarization, and interactions with other cells. We focus on approaches that promote anti-inflammatory polarization of microglia, inhibit microglial activation, and enhance beneficial cell-to-cell interactions. These targets may hold promise for the creation of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xinyao Shui
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jingsong Chen
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Ziyue Fu
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Haoyue Zhu
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Hualin Tao
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Zhaoyinqian Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| |
Collapse
|
4
|
Amankwa CE, Acha LG, Dibas A, Chavala SH, Roth S, Mathew B, Acharya S. Neuroprotective and Anti-Inflammatory Activities of Hybrid Small-Molecule SA-10 in Ischemia/Reperfusion-Induced Retinal Neuronal Injury Models. Cells 2024; 13:396. [PMID: 38474360 PMCID: PMC10931063 DOI: 10.3390/cells13050396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Embolism, hyperglycemia, high intraocular pressure-induced increased reactive oxygen species (ROS) production, and microglial activation result in endothelial/retinal ganglion cell death. Here, we conducted in vitro and in vivo ischemia/reperfusion (I/R) efficacy studies of a hybrid antioxidant-nitric oxide donor small molecule, SA-10, to assess its therapeutic potential for ocular stroke. METHODS To induce I/R injury and inflammation, we subjected R28 and primary microglial cells to oxygen glucose deprivation (OGD) for 6 h in vitro or treated these cells with a cocktail of TNF-α, IL-1β and IFN-γ for 1 h, followed by the addition of SA-10 (10 µM). Inhibition of microglial activation, ROS scavenging, cytoprotective and anti-inflammatory activities were measured. In vivo I/R-injured mouse retinas were treated with either PBS or SA-10 (2%) intravitreally, and pattern electroretinogram (ERG), spectral-domain optical coherence tomography, flash ERG and retinal immunocytochemistry were performed. RESULTS SA-10 significantly inhibited microglial activation and inflammation in vitro. Compared to the control, the compound SA-10 significantly attenuated cell death in both microglia (43% vs. 13%) and R28 cells (52% vs. 17%), decreased ROS (38% vs. 68%) production in retinal microglia cells, preserved neural retinal function and increased SOD1 in mouse eyes. CONCLUSION SA-10 is protective to retinal neurons by decreasing oxidative stress and inflammatory cytokines.
Collapse
Affiliation(s)
- Charles E. Amankwa
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (A.D.); (S.H.C.)
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Lorea Gamboa Acha
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (L.G.A.); (S.R.)
| | - Adnan Dibas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (A.D.); (S.H.C.)
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Sai H. Chavala
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (A.D.); (S.H.C.)
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Steven Roth
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (L.G.A.); (S.R.)
| | - Biji Mathew
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (L.G.A.); (S.R.)
| | - Suchismita Acharya
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (A.D.); (S.H.C.)
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
5
|
Zhao X, Wang Z, Wang J, Xu F, Zhang Y, Han D, Fang W. Mesencephalic astrocyte-derived neurotrophic factor (MANF) alleviates cerebral ischemia/reperfusion injury in mice by regulating microglia polarization via A20/NF-κB pathway. Int Immunopharmacol 2024; 127:111396. [PMID: 38134597 DOI: 10.1016/j.intimp.2023.111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/31/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Microglia, resident brain immune cells, is critical in inflammation, apoptosis, neurogenesis and neurological recovery during cerebral ischemia/reperfusion (I/R) injury. Mesencephalic astrocyte-derived neurotrophic factor (MANF), a novel identified endoplasmic reticulum stress-inducible neurotrophic factor, can alleviate I/R injury by reducing the inflammatory reaction, but its specific regulatory mechanism on microglia after ischemic stroke has not been fully clarified. To mimic the process of ischemia/reperfusion in vivo and in vitro, middle cerebral artery occlusion/reperfusion (MCAO/R) was induced in C57BL/6J mice and oxygen glucose deprivation/reoxygenation (OGD/R) model was established in BV-2 cells. Moreover, MANF small interfering RNA (siRNA) was used to silence the expression of endogenous MANF, while recombination human MANF protein (rhMANF) acted as an exogenous supplement. Seventy-two hours after MCAO/R, 2,3,5-triphenyltetrazolium staining, neurological scores, brain water content, immunohistochemical staining, immunofluorescent staining, flow cytometry, hematoxylin and eosin staining, quantitative real-time PCR and western blot are applied to evaluate the protective effect and possible mechanism of MANF on cerebral I/R injury. In vitro, cell viability, inflammatory cytokines and the expression of MANF, A20, NF-κB and the markers of microglia were analyzed. The results showed that MANF decreased brain infarct volume, neurological scores, and brain water content. In addition, MANF promoted the polarization of microglia to an anti-inflammatory phenotype both in vivo and in vitro, which are related to A20/NF-κB pathway. In summary, MANF may offer novel therapeutic approaches for ischemic stroke in the process of microglia polarization.
Collapse
Affiliation(s)
- Xueyan Zhao
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Ziyu Wang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Jiang Wang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Fenglian Xu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Yi Zhang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Dan Han
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China.
| | - Weirong Fang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Sivagurunathan N, Calivarathan L. SARS-CoV-2 Infection to Premature Neuronal Aging and Neurodegenerative Diseases: Is there any Connection with Hypoxia? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:431-448. [PMID: 37073650 DOI: 10.2174/1871527322666230418114446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 04/20/2023]
Abstract
The pandemic of coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, has become a global concern as it leads to a spectrum of mild to severe symptoms and increases death tolls around the world. Severe COVID-19 results in acute respiratory distress syndrome, hypoxia, and multi- organ dysfunction. However, the long-term effects of post-COVID-19 infection are still unknown. Based on the emerging evidence, there is a high possibility that COVID-19 infection accelerates premature neuronal aging and increases the risk of age-related neurodegenerative diseases in mild to severely infected patients during the post-COVID period. Several studies correlate COVID-19 infection with neuronal effects, though the mechanism through which they contribute to the aggravation of neuroinflammation and neurodegeneration is still under investigation. SARS-CoV-2 predominantly targets pulmonary tissues and interferes with gas exchange, leading to systemic hypoxia. The neurons in the brain require a constant supply of oxygen for their proper functioning, suggesting that they are more vulnerable to any alteration in oxygen saturation level that results in neuronal injury with or without neuroinflammation. We hypothesize that hypoxia is one of the major clinical manifestations of severe SARS-CoV-2 infection; it directly or indirectly contributes to premature neuronal aging, neuroinflammation, and neurodegeneration by altering the expression of various genes responsible for the survival of the cells. This review focuses on the interplay between COVID-19 infection, hypoxia, premature neuronal aging, and neurodegenerative diseases and provides a novel insight into the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| |
Collapse
|
7
|
Deng X, Hu Z, Zhou S, Wu Y, Fu M, Zhou C, Sun J, Gao X, Huang Y. Perspective from single-cell sequencing: Is inflammation in acute ischemic stroke beneficial or detrimental? CNS Neurosci Ther 2024; 30:e14510. [PMID: 37905592 PMCID: PMC10805403 DOI: 10.1111/cns.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Acute ischemic stroke (AIS) is a common cerebrovascular event associated with high incidence, disability, and poor prognosis. Studies have shown that various cell types, including microglia, astrocytes, oligodendrocytes, neurons, and neutrophils, play complex roles in the early stages of AIS and significantly affect its prognosis. Thus, a comprehensive understanding of the mechanisms of action of these cells will be beneficial for improving stroke prognosis. With the rapid development of single-cell sequencing technology, researchers have explored the pathophysiological mechanisms underlying AIS at the single-cell level. METHOD We systematically summarize the latest research on single-cell sequencing in AIS. RESULT In this review, we summarize the phenotypes and functions of microglia, astrocytes, oligodendrocytes, neurons, neutrophils, monocytes, and lymphocytes, as well as their respective subtypes, at different time points following AIS. In particular, we focused on the crosstalk between microglia and astrocytes, oligodendrocytes, and neurons. Our findings reveal diverse and sometimes opposing roles within the same cell type, with the possibility of interconversion between different subclusters. CONCLUSION This review offers a pioneering exploration of the functions of various glial cells and cell subclusters after AIS, shedding light on their regulatory mechanisms that facilitate the transformation of detrimental cell subclusters towards those that are beneficial for improving the prognosis of AIS. This approach has the potential to advance the discovery of new specific targets and the development of drugs, thus representing a significant breakthrough in addressing the challenges in AIS treatment.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Ziliang Hu
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Shengjun Zhou
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Yiwen Wu
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Menglin Fu
- School of Economics and ManagementChina University of GeosciencesWuhanChina
| | - Chenhui Zhou
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Jie Sun
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Xiang Gao
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Yi Huang
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| |
Collapse
|
8
|
Liu N, Zhou Q, Wang H, Li Q, Chen Z, Lin Y, Yi L, Jiang S, Chen C, Deng Y. MiRNA-338-3p Inhibits Neuroinflammation in the Corpus Callosum of LCV-LPS Rats Via STAT1 Signal Pathway. Cell Mol Neurobiol 2023; 43:3669-3692. [PMID: 37479855 PMCID: PMC11409982 DOI: 10.1007/s10571-023-01378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Neuroinflammation is a common characteristic of intracranial infection (ICI), which is associated with the activation of astrocytes and microglia. MiRNAs are involved in the process of neuroinflammation. This study aimed to investigate the potential mechanism by which miR-338-3p negatively modulate the occurrence of neuroinflammation. We here reported that the decreased levels of miR-338-3p were detected using qRT-PCR and the upregulated expression of TNF-α and IL-1β was measured by ELISA in the cerebrospinal fluid (CSF) in patients with ICI. A negative association between miR-338-3p and TNF-α or IL-1β was revealed by Pearson correlation analysis. Sprague-Dawley (SD) rats were injected with LPS (50 μg) into left cerebral ventricule (LCV), following which the increased expression of TNF-α and IL-1β and the reduction of miR-338-3p expression were observed in the corpus callosum (CC). Moreover, the expression of TNF-α and IL-1β in the astrocytes and microglia in the CC of LCV-LPS rats were saliently inhibited by the overexpression of miR-338-3p. In vitro, cultured astrocytes and BV2 cells transfected with mimic-miR-338-3p produced less TNF-α and IL-1β after LPS administration. Direct interaction between miR-338-3p and STAT1 mRNA was validated by biological information analysis and dual luciferase assay. Furthermore, STAT1 pathway was found to be implicated in inhibition of neuroinflammation induced by mimic miR-338-3p in the astrocytes and BV2 cells. Taken together, our results suggest that miR-338-3p suppress the generation of proinflammatory mediators in astrocyte and BV2 cells induced by LPS exposure through the STAT1 signal pathway. MiR-338-3p could act as a potential therapeutic strategy to reduce the neuroinflammatory response. Diagram describing the cellular and molecular mechanisms associated with LPS-induced neuroinflammation via the miR-338-3p/STAT1 pathway. LPS binds to TLRs on astrocytes or microglia to activate the STAT1 pathway and upregulate the production of pro-inflammatory cytokines. However, miR-338-3p inhibits the expression of STAT1 and reduces the production of inflammatory mediators.
Collapse
Affiliation(s)
- Nan Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou, 510080, China
| | - Qiuping Zhou
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou, 510080, China
| | - Huifang Wang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou, 510080, China
| | - Qian Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou, 510080, China
- Southern Medical University, Guangzhou, 510515, China
| | - Zhuo Chen
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou, 510080, China
| | - Yiyan Lin
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou, 510080, China
- Southern Medical University, Guangzhou, 510515, China
| | - Lingling Yi
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou, 510080, China
| | - Shuqi Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou, 510080, China
| | - Chunbo Chen
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou, 510080, China.
| | - Yiyu Deng
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Fabres RB, Cardoso DS, Aragón BA, Arruda BP, Martins PP, Ikebara JM, Drobyshevsky A, Kihara AH, de Fraga LS, Netto CA, Takada SH. Consequences of oxygen deprivation on myelination and sex-dependent alterations. Mol Cell Neurosci 2023; 126:103864. [PMID: 37268283 DOI: 10.1016/j.mcn.2023.103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/07/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
Oxygen deprivation is one of the main causes of morbidity and mortality in newborns, occurring with a higher prevalence in preterm infants, reaching 20 % to 50 % mortality in newborns in the perinatal period. When they survive, 25 % exhibit neuropsychological pathologies, such as learning difficulties, epilepsy, and cerebral palsy. White matter injury is one of the main features found in oxygen deprivation injury, which can lead to long-term functional impairments, including cognitive delay and motor deficits. The myelin sheath accounts for much of the white matter in the brain by surrounding axons and enabling the efficient conduction of action potentials. Mature oligodendrocytes, which synthesize and maintain myelination, also comprise a significant proportion of the brain's white matter. In recent years, oligodendrocytes and the myelination process have become potential therapeutic targets to minimize the effects of oxygen deprivation on the central nervous system. Moreover, evidence indicate that neuroinflammation and apoptotic pathways activated during oxygen deprivation may be influenced by sexual dimorphism. To summarize the most recent research about the impact of sexual dimorphism on the neuroinflammatory state and white matter injury after oxygen deprivation, this review presents an overview of the oligodendrocyte lineage development and myelination, the impact of oxygen deprivation and neuroinflammation on oligodendrocytes in neurodevelopmental disorders, and recent reports about sexual dimorphism regarding the neuroinflammation and white matter injury after neonatal oxygen deprivation.
Collapse
Affiliation(s)
- Rafael Bandeira Fabres
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Débora Sterzeck Cardoso
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | | | - Bruna Petrucelli Arruda
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | - Pamela Pinheiro Martins
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | - Juliane Midori Ikebara
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | | | - Alexandre Hiroaki Kihara
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | - Luciano Stürmer de Fraga
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre 90050-170, Brazil
| | - Carlos Alexandre Netto
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Silvia Honda Takada
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil.
| |
Collapse
|
10
|
Raghupathi R, Prasad R, Fox D, Huh JW. Repeated mild closed head injury in neonatal rats results in sustained cognitive deficits associated with chronic microglial activation and neurodegeneration. J Neuropathol Exp Neurol 2023; 82:707-721. [PMID: 37390808 PMCID: PMC10357947 DOI: 10.1093/jnen/nlad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023] Open
Abstract
Abusive head trauma in infants is a consequence of multiple episodes of abuse and results in axonal injury, brain atrophy, and chronic cognitive deficits. Anesthetized 11-day-old rats, neurologically equivalent to infants, were subjected to 1 impact/day to the intact skull for 3 successive days. Repeated, but not single impact(s) resulted in spatial learning deficits (p < 0.05 compared to sham-injured animals) up to 5 weeks postinjury. In the first week following single or repetitive brain injury, axonal and neuronal degeneration, and microglial activation were observed in the cortex, white matter, thalamus, and subiculum; the extent of the histopathologic damage was significantly greater in the repetitive-injured animals compared to single-injured animals. At 40 days postinjury, loss of cortical, white matter and hippocampal tissue was evident only in the repetitive-injured animals, along with evidence of microglial activation in the white matter tracts and thalamus. Axonal injury and neurodegeneration were evident in the thalamus up to 40 days postinjury in the repetitive-injured rats. These data demonstrate that while single closed head injury in the neonate rat is associated with pathologic alterations in the acute post-traumatic period, repetitive closed head injury results in sustained behavioral and pathologic deficits reminiscent of infants with abusive head trauma.
Collapse
Affiliation(s)
- Ramesh Raghupathi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Rupal Prasad
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Douglas Fox
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jimmy W Huh
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Modulation of the Microglial Nogo-A/NgR Signaling Pathway as a Therapeutic Target for Multiple Sclerosis. Cells 2022; 11:cells11233768. [PMID: 36497029 PMCID: PMC9737582 DOI: 10.3390/cells11233768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Current therapeutics targeting chronic phases of multiple sclerosis (MS) are considerably limited in reversing the neural damage resulting from repeated inflammation and demyelination insults in the multi-focal lesions. This inflammation is propagated by the activation of microglia, the endogenous immune cell aiding in the central nervous system homeostasis. Activated microglia may transition into polarized phenotypes; namely, the classically activated proinflammatory phenotype (previously categorized as M1) and the alternatively activated anti-inflammatory phenotype (previously, M2). These transitional microglial phenotypes are dynamic states, existing as a continuum. Shifting microglial polarization to an anti-inflammatory status may be a potential therapeutic strategy that can be harnessed to limit neuroinflammation and further neurodegeneration in MS. Our research has observed that the obstruction of signaling by inhibitory myelin proteins such as myelin-associated inhibitory factor, Nogo-A, with its receptor (NgR), can regulate microglial cell function and activity in pre-clinical animal studies. Our review explores the microglial role and polarization in MS pathology. Additionally, the potential therapeutics of targeting Nogo-A/NgR cellular mechanisms on microglia migration, polarization and phagocytosis for neurorepair in MS and other demyelination diseases will be discussed.
Collapse
|
12
|
Reactive Microgliosis in Sepsis-Associated and Acute Hepatic Encephalopathies: An Ultrastructural Study. Int J Mol Sci 2022; 23:ijms232214455. [PMID: 36430933 PMCID: PMC9696099 DOI: 10.3390/ijms232214455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Sepsis and acute liver failure are associated with severe endogenous intoxication. Microglia, which are the resident immune brain cells, play diverse roles in central nervous system development, surveillance, and defense, as well as contributing to neuroinflammatory reactions. In particular, microglia are fundamental to the pathophysiology of reactive toxic encephalopathies. We analyzed microglial ultrastructure, morphotypes, and phagocytosis in the sensorimotor cortex of cecal ligation and puncture (CLP) and acetaminophen-induced liver failure (AILF) Wistar rats. A CLP model induced a gradual shift of ~50% of surveillant microglia to amoeboid hypertrophic-like and gitter cell-like reactive phenotypes with active phagocytosis and frequent contacts with damaged neurons. In contrast, AILF microglia exhibited amoeboid, rod-like, and hypertrophic-like reactive morphotypes with minimal indications for efficient phagocytosis, and were mostly in contact with edematous astrocytes. Close interactions of reactive microglia with neurons, astrocytes, and blood-brain barrier components reflect an active contribution of these cells to the tissue adaptation and cellular remodeling to toxic brain damage. Partial disability of reactive microglia may affect the integrity and metabolism in all tissue compartments, leading to failure of the compensatory mechanisms in acute endogenous toxic encephalopathies.
Collapse
|
13
|
Gaire BP. Microglia as the Critical Regulators of Neuroprotection and Functional Recovery in Cerebral Ischemia. Cell Mol Neurobiol 2022; 42:2505-2525. [PMID: 34460037 PMCID: PMC11421653 DOI: 10.1007/s10571-021-01145-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
Microglial activation is considered as the critical pathogenic event in diverse central nervous system disorders including cerebral ischemia. Proinflammatory responses of activated microglia have been well reported in the ischemic brain and neuroinflammatory responses of activated microglia have been believed to be the potential therapeutic strategy. However, despite having proinflammatory roles, microglia can have significant anti-inflammatory roles and they are associated with the production of growth factors which are responsible for neuroprotection and recovery after ischemic injury. Microglia can directly promote neuroprotection by preventing ischemic infarct expansion and promoting functional outcomes. Indirectly, microglia are involved in promoting anti-inflammatory responses, neurogenesis, and angiogenesis in the ischemic brain which are crucial pathophysiological events for ischemic recovery. In fact, anti-inflammatory cytokines and growth factors produced by microglia can promote neuroprotection and attenuate neurobehavioral deficits. In addition, microglia regulate phagocytosis, axonal regeneration, blood-brain barrier protection, white matter integrity, and synaptic remodeling, which are essential for ischemic recovery. Microglia can also regulate crosstalk with neurons and other cell types to promote neuroprotection and ischemic recovery. This review mainly focuses on the roles of microglia in neuroprotection and recovery following ischemic injury. Furthermore, this review also sheds the light on the therapeutic potential of microglia in stroke patients.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Department of Neurology and Anesthesiology, Shock Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
14
|
Leng K, Rose IVL, Kim H, Xia W, Romero-Fernandez W, Rooney B, Koontz M, Li E, Ao Y, Wang S, Krawczyk M, Tcw J, Goate A, Zhang Y, Ullian EM, Sofroniew MV, Fancy SPJ, Schrag MS, Lippmann ES, Kampmann M. CRISPRi screens in human iPSC-derived astrocytes elucidate regulators of distinct inflammatory reactive states. Nat Neurosci 2022; 25:1528-1542. [PMID: 36303069 PMCID: PMC9633461 DOI: 10.1038/s41593-022-01180-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/07/2022] [Indexed: 01/30/2023]
Abstract
Astrocytes become reactive in response to insults to the central nervous system by adopting context-specific cellular signatures and outputs, but a systematic understanding of the underlying molecular mechanisms is lacking. In this study, we developed CRISPR interference screening in human induced pluripotent stem cell-derived astrocytes coupled to single-cell transcriptomics to systematically interrogate cytokine-induced inflammatory astrocyte reactivity. We found that autocrine-paracrine IL-6 and interferon signaling downstream of canonical NF-κB activation drove two distinct inflammatory reactive signatures, one promoted by STAT3 and the other inhibited by STAT3. These signatures overlapped with those observed in other experimental contexts, including mouse models, and their markers were upregulated in human brains in Alzheimer's disease and hypoxic-ischemic encephalopathy. Furthermore, we validated that markers of these signatures were regulated by STAT3 in vivo using a mouse model of neuroinflammation. These results and the platform that we established have the potential to guide the development of therapeutics to selectively modulate different aspects of inflammatory astrocyte reactivity.
Collapse
Affiliation(s)
- Kun Leng
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Indigo V L Rose
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Wenlong Xia
- Departments of Neurology and Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Brendan Rooney
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Mark Koontz
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Emmy Li
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Yan Ao
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shinong Wang
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mitchell Krawczyk
- Interdepartmental PhD Program in Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julia Tcw
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison Goate
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Erik M Ullian
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael V Sofroniew
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephen P J Fancy
- Departments of Neurology and Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew S Schrag
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Targeting Persistent Neuroinflammation after Hypoxic-Ischemic Encephalopathy-Is Exendin-4 the Answer? Int J Mol Sci 2022; 23:ijms231710191. [PMID: 36077587 PMCID: PMC9456443 DOI: 10.3390/ijms231710191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy is brain injury resulting from the loss of oxygen and blood supply around the time of birth. It is associated with a high risk of death or disability. The only approved treatment is therapeutic hypothermia. Therapeutic hypothermia has consistently been shown to significantly reduce the risk of death and disability in infants with hypoxic-ischemic encephalopathy. However, approximately 29% of infants treated with therapeutic hypothermia still develop disability. Recent preclinical and clinical studies have shown that there is still persistent neuroinflammation even after treating with therapeutic hypothermia, which may contribute to the deficits seen in infants despite treatment. This suggests that potentially targeting this persistent neuroinflammation would have an additive benefit in addition to therapeutic hypothermia. A potential additive treatment is Exendin-4, which is a glucagon-like peptide 1 receptor agonist. Preclinical data from various in vitro and in vivo disease models have shown that Exendin-4 has anti-inflammatory, mitochondrial protective, anti-apoptotic, anti-oxidative and neurotrophic effects. Although preclinical studies of the effect of Exendin-4 in perinatal hypoxic-ischemic brain injury are limited, a seminal study in neonatal mice showed that Exendin-4 had promising neuroprotective effects. Further studies on Exendin-4 neuroprotection for perinatal hypoxic-ischemic brain injury, including in large animal translational models are warranted to better understand its safety, window of opportunity and effectiveness as an adjunct with therapeutic hypothermia.
Collapse
|
16
|
Guo YS, Yuan M, Han Y, Shen XY, Gao ZK, Bi X. Effects of enriched environment on microglia and functional white matter recovery in rats with post stroke cognitive impairment. Neurochem Int 2022; 154:105295. [PMID: 35121010 DOI: 10.1016/j.neuint.2022.105295] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/11/2021] [Accepted: 01/27/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND White matter damage is an important contributor to cognitive impairment after stroke. This study was designed to explore the beneficial effects of enriched environment (EE) on white matter recovery and cognitive dysfunction after stroke, and further explore the potential mechanism of EE on white matter recovery from the perspective of microglia and microglia-mediated neuroinflammation. METHODS Male SD rats underwent middle cerebral artery occlusion(MCAO) or sham surgery. During the MCAO operation, a laser Doppler blood flow meter was used to monitor the blood flow to ensure the success of the model. At 72 hours after the operation, 3 rats were selected for TTC staining to identify the infarct size. One week after surgery, the rats were randomly assigned into four different groups-MCAO+standard environment (SE), MCAO+enriched environment(EE), Sham+SE and Sham+EE for 4 weeks. At four weeks after MCAO surgery, neurological function deficiency condition and cognitive function were assessed using Longa score and Morris Water Maze prior to euthanasia. The loss or regeneration of myelin was stained with LFB, the expression of myelin regeneration-related protein and microglia protein was quantified by western blot and immunofluorescence, and the level of inflammatory factors was measured by ELISA. RESULTS EE treatment remarkably decreased the neurological deficit score, ameliorated the cognitive functional deficit in MCAO rats. Furthermore, EE alleviated white matter lesions and demyelination, increased myelin basic protein expression and decreased the number of activated microglia in the hippocampus of MCAO rats. In addition, ELISA analysis indicated that EE decreased the level of IL-1β, IL-6, which further suggests that EE may reduce the level of pro-inflammatory factors by affecting the expression of microglia marker, IBA1, provide a benefit physiological environment for myelin recovery, and improve post stroke cognitive impairment. CONCLUSIONS Our results suggest that exposure to EE substantially reduced the damage to brain tissue caused by activation of microglia activation, decreased the level of pro-inflammatory cytokins, which may induced by microglia, protected and promote white matter recovery to improve cognitive function after stroke. Our findings also indicate exposure to EE is beneficial for patients with white matter impairment characterised by white matter disease-related inflammation.
Collapse
Affiliation(s)
- Yi-Sha Guo
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China; Shanghai University of Sport, Shanghai, 200438, China
| | - Mei Yuan
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China; Shanghai University of Sport, Shanghai, 200438, China
| | - Yu Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China; Shanghai University of Sport, Shanghai, 200438, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China; Shanghai University of Traditionary Chinese Medicine, Shanghai, 201203, China
| | - Zhen-Kun Gao
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China; Shanghai University of Traditionary Chinese Medicine, Shanghai, 201203, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China; Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
17
|
Yan F, Tian Y, Huang Y, Wang Q, Liu P, Wang N, Zhao F, Zhong L, Hui W, Luo Y. Xi-Xian-Tong-Shuan capsule alleviates vascular cognitive impairment in chronic cerebral hypoperfusion rats by promoting white matter repair, reducing neuronal loss, and inhibiting the expression of pro-inflammatory factors. Biomed Pharmacother 2021; 145:112453. [PMID: 34808554 DOI: 10.1016/j.biopha.2021.112453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND While the number of cases of vascular cognitive impairment caused by chronic cerebral hypoperfusion (CCH) has been increasing every year, there are currently no clinically effective treatment methods. At present, Xi-Xian-Tong-Shuan capsule is predominantly used in patients with acute cerebral ischemia; however, its protective effect on CCH has rarely been reported. OBJECTIVE To explore the underlying mechanisms by which Xi-Xian-Tong-Shuan capsule alleviates cognitive impairment caused by CCH. METHODS A model of CCH was established in specific-pathogen-free (SPF)-grade male Sprague-Dawley (SD) rats using bilateral common carotid artery occlusion (BCCAO). Xi-Xian-Tong-Shuan capsules were intragastrically administered for 42 days after the BCCAO surgery. We then assessed for changes in cognitive function, expression levels of pro-inflammatory factors, and coagulation function as well as for the presence of white matter lesions and neuronal loss. One-way ANOVA and Tukey's test were used to analyze the experimental data. RESULTS The rats showed significant cognitive dysfunction after the BCCAO surgery along with white matter lesions, a loss of neurons, and elevated levels of inflammatory factors, all of which were significantly reversed after intervention with Xi-Xian-Tong-Shuan capsules. CONCLUSION Xi-Xian-Tong-Shuan capsules can ameliorate vascular cognitive impairment in CCH rats by preventing damage of white matter, reducing neuronal loss, and inhibiting the expression of pro-inflammatory factors. Our study provides a new reference for the clinical treatment of chronic cerebral ischemia with Xi-Xian-Tong-Shuan capsules.
Collapse
Affiliation(s)
- Feng Yan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yue Tian
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuyou Huang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ping Liu
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ningqun Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Fangfang Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Liyuan Zhong
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wuhan Hui
- Department of Hematology, Xuanwu Hospital of Capital Medical University, Beijing, China.
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
18
|
Al-Griw MA, Shmela ME, Elhensheri MM, Bennour EM. HDAC2/3 inhibitor MI192 mitigates oligodendrocyte loss and reduces microglial activation upon injury: A potential role of epigenetics. Open Vet J 2021; 11:447-457. [PMID: 34722210 PMCID: PMC8541718 DOI: 10.5455/ovj.2021.v11.i3.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/04/2021] [Indexed: 12/03/2022] Open
Abstract
Background: During development, oligodendrocyte (OL) lineage cells are susceptible to injury, leading to life-long clinical neurodevelopmental deficits, which lack effective treatments. Drugs targeting epigenetic modifications that inhibit histone deacetylases (HDACs) protect from many clinical neurodegenerative disorders. Aim: This study aimed to investigate the therapeutic potential of histone deacetylase 2/3 (HDAC2/3) inhibitor MI192 on white matter (WM) pathology in a model of neonatal rat brain injury. Methods: Wistar rats (8.5-day-old, n = 32) were used to generate brain tissues. The tissues were cultured and then randomly divided into four groups and treated as following: group I (sham); the tissues were cultured under normoxia, group II (vehicle); DMSO only, group III (injury, INJ); the tissues were exposed to 20 minutes oxygen-glucose deprivation (OGD) insult, and group IV (INJ + MI192); the tissues were subjected to the OGD insult and then treated with the MI192 inhibitor. On culture day 10, the tissues were fixed for biochemical and histological examinations. Results: The results showed that inhibition of HDAC2/3 activity alleviated WM pathology. Specifically, MI192 treatment significantly reduced cell death, minimized apoptosis, and mitigates the loss of the MBP+ OLs and their precursors (NG2+ OPCs). Additionally, MI192 decreased the density of reactive microglia (OX−42+). These findings demonstrate that the inhibition of HDAC2/3 activity post-insult alleviates WM pathology through mechanism(s) including preserving OL lineage cells and suppressing microglial activation. Conclusion: The findings of this study suggest that HDAC2/3 inhibition is a rational strategy to preserve WM or reverse its pathology upon newborn brain injury.
Collapse
Affiliation(s)
- Mohamed A Al-Griw
- Department of Histology and Genetics, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Mansur E Shmela
- Department of Preventive Medicine, Genetics & Animal Breeding, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | | | - Emad M Bennour
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| |
Collapse
|
19
|
Qiu M, Xu E, Zhan L. Epigenetic Regulations of Microglia/Macrophage Polarization in Ischemic Stroke. Front Mol Neurosci 2021; 14:697416. [PMID: 34707480 PMCID: PMC8542724 DOI: 10.3389/fnmol.2021.697416] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. Microglia/macrophages (MMs)-mediated neuroinflammation contributes significantly to the pathological process of ischemic brain injury. Microglia, serving as resident innate immune cells in the central nervous system, undergo pro-inflammatory phenotype or anti-inflammatory phenotype in response to the microenvironmental changes after cerebral ischemia. Emerging evidence suggests that epigenetics modifications, reversible modifications of the phenotype without changing the DNA sequence, could play a pivotal role in regulation of MM polarization. However, the knowledge of the mechanism of epigenetic regulations of MM polarization after cerebral ischemia is still limited. In this review, we present the recent advances in the mechanisms of epigenetics involved in regulating MM polarization, including histone modification, non-coding RNA, and DNA methylation. In addition, we discuss the potential of epigenetic-mediated MM polarization as diagnostic and therapeutic targets for ischemic stroke. It is valuable to identify the underlying mechanisms between epigenetics and MM polarization, which may provide a promising treatment strategy for neuronal damage after cerebral ischemia.
Collapse
Affiliation(s)
- Meiqian Qiu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - En Xu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Lixuan Zhan
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
20
|
Ryan F, Khoshnam SE, Khodagholi F, Ashabi G, Ahmadiani A. How cytosolic compartments play safeguard functions against neuroinflammation and cell death in cerebral ischemia. Metab Brain Dis 2021; 36:1445-1467. [PMID: 34173922 DOI: 10.1007/s11011-021-00770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
Ischemic stroke is the second leading cause of mortality and disability globally. Neuronal damage following ischemic stroke is rapid and irreversible, and eventually results in neuronal death. In addition to activation of cell death signaling, neuroinflammation is also considered as another pathogenesis that can occur within hours after cerebral ischemia. Under physiological conditions, subcellular organelles play a substantial role in neuronal functionality and viability. However, their functions can be remarkably perturbed under neurological disorders, particularly cerebral ischemia. Therefore, their biochemical and structural response has a determining role in the sequel of neuronal cells and the progression of disease. However, their effects on cell death and neuroinflammation, as major underlying mechanisms of ischemic stroke, are still not understood. This review aims to provide a comprehensive overview of the contribution of each organelle on these pathological processes after ischemic stroke.
Collapse
Affiliation(s)
- Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Centre, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, PO Box: 1417613151, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Augusto-Oliveira M, Arrifano GP, Delage CI, Tremblay MÈ, Crespo-Lopez ME, Verkhratsky A. Plasticity of microglia. Biol Rev Camb Philos Soc 2021; 97:217-250. [PMID: 34549510 DOI: 10.1111/brv.12797] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023]
Abstract
Microglial cells are the scions of foetal macrophages which invade the neural tube early during embryogenesis. The nervous tissue environment instigates the phenotypic metamorphosis of foetal macrophages into idiosyncratic surveilling microglia, which are generally characterised by a small cell body and highly ramified motile processes that constantly scan the nervous tissue for signs of changes in homeostasis and allow microglia to perform crucial homeostatic functions. The surveilling microglial phenotype is evolutionarily conserved from early invertebrates to humans. Despite this evolutionary conservation, microglia show substantial heterogeneity in their gene and protein expression, as well as morphological appearance. These differences are age, region and context specific and reflect a high degree of plasticity underlying the life-long adaptation of microglia, supporting the exceptional adaptive capacity of the central nervous system. Microgliocytes are essential elements of cellular network formation and refinement in the developing nervous tissue. Several distinct patrolling modes of microglial processes contribute to the formation, modification, and pruning of synapses; to the support and protection of neurones through microglial-somatic junctions; and to the control of neuronal and axonal excitability by specific microglia-axonal contacts. In pathology, microglia undergo proliferation and reactive remodelling known as microgliosis, which is context dependent, yet represents an evolutionarily conserved defence response. Microgliosis results in the emergence of multiple disease and context-specific reactive states; in addition, neuropathology is associated with the appearance of specific protective or recovery microglial forms. In summary, the plasticity of microglia supports the development and functional activity of healthy nervous tissue and provides highly sophisticated defences against disease.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Charlotte Isabelle Delage
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, V8P 5C2, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec City, QC, G1V 4G2, Canada.,Neurology and Neurosurgery Department, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.,Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Bureau 4835, 1050 Avenue de la Médecine, Québec City, QC, G1V 0A6, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, U.K.,Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.,Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| |
Collapse
|
22
|
Lim J, Sohn H, Kwon MS, Kim B. White Matter Alterations Associated with Pro-inflammatory Cytokines in Patients with Major Depressive Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:449-458. [PMID: 34294614 PMCID: PMC8316659 DOI: 10.9758/cpn.2021.19.3.449] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/06/2020] [Accepted: 09/16/2020] [Indexed: 11/18/2022]
Abstract
Objective Regarding the neuroinflammatory theory of major depressive disorder (MDD), little is known about the effect of pro-inflammatory cytokines on white matter (WM) changes in MDD. We aimed to investigate the relationship between pro-inflammatory cytokines and WM alterations in patients with MDD. Methods Twenty-two patients with MDD and 22 healthy controls (HC) were evaluated for brain imaging and pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-8, interferon-γ and tumor necrosis factor (TNF)-α. Tract-based spatial statistics and FreeSurfer were used for brain image analysis. Results The levels of TNF-α and IL-8 were significantly higher in the MDD group than in HC. Compared to HC, lower fractional anisotropy (FA), and higher median diffusivity (MD) and radial diffusivity (RD) values were found in the MDD group for several WM regions. Voxel-wise correlation analysis showed that the level of TNF-α was negatively correlated with FA, and positively correlated with MD and RD in the left body and genu of the corpus callosum, left anterior corona radiata, and left superior corona radiata. Conclusion Our findings suggest that TNF-α may play an important role in the WM alterations in depression, possibly through demyelination.
Collapse
Affiliation(s)
- Jaehwa Lim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Hoyoung Sohn
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Min-Soo Kwon
- Department of Clinical Pharmacology and Therapeutics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Borah Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
23
|
Shcherbitskaia AD, Vasilev DS, Milyutina YP, Tumanova NL, Mikhel AV, Zalozniaia IV, Arutjunyan AV. Prenatal Hyperhomocysteinemia Induces Glial Activation and Alters Neuroinflammatory Marker Expression in Infant Rat Hippocampus. Cells 2021; 10:cells10061536. [PMID: 34207057 PMCID: PMC8234222 DOI: 10.3390/cells10061536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022] Open
Abstract
Maternal hyperhomocysteinemia is one of the common complications of pregnancy that causes offspring cognitive deficits during postnatal development. In this study, we investigated the effect of prenatal hyperhomocysteinemia (PHHC) on inflammatory, glial activation, and neuronal cell death markers in the hippocampus of infant rats. Female Wistar rats received L-methionine (0.6 g/kg b.w.) by oral administration during pregnancy. On postnatal days 5 and 20, the offspring’s hippocampus was removed to perform histological and biochemical studies. After PHHC, the offspring exhibited increased brain interleukin-1β and interleukin-6 levels and glial activation, as well as reduced anti-inflammatory interleukin-10 level in the hippocampus. Additionally, the activity of acetylcholinesterase was increased in the hippocampus of the pups. Exposure to PHHC also resulted in the reduced number of neurons and disrupted neuronal ultrastructure. At the same time, no changes in the content and activity of caspase-3 were found in the hippocampus of the pups. In conclusion, our findings support the hypothesis that neuroinflammation and glial activation could be involved in altering the hippocampus cellular composition following PHHC, and these alterations could be associated with cognitive disorders later in life.
Collapse
Affiliation(s)
- Anastasiia D. Shcherbitskaia
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Y.P.M.); (A.V.M.); (I.V.Z.); (A.V.A.)
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 St. Petersburg, Russia; (D.S.V.); (N.L.T.)
- Correspondence:
| | - Dmitrii S. Vasilev
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 St. Petersburg, Russia; (D.S.V.); (N.L.T.)
| | - Yulia P. Milyutina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Y.P.M.); (A.V.M.); (I.V.Z.); (A.V.A.)
| | - Natalia L. Tumanova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 St. Petersburg, Russia; (D.S.V.); (N.L.T.)
| | - Anastasiia V. Mikhel
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Y.P.M.); (A.V.M.); (I.V.Z.); (A.V.A.)
| | - Irina V. Zalozniaia
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Y.P.M.); (A.V.M.); (I.V.Z.); (A.V.A.)
| | - Alexander V. Arutjunyan
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (Y.P.M.); (A.V.M.); (I.V.Z.); (A.V.A.)
| |
Collapse
|
24
|
Tapia-Bustos A, Lespay-Rebolledo C, Vío V, Pérez-Lobos R, Casanova-Ortiz E, Ezquer F, Herrera-Marschitz M, Morales P. Neonatal Mesenchymal Stem Cell Treatment Improves Myelination Impaired by Global Perinatal Asphyxia in Rats. Int J Mol Sci 2021; 22:ijms22063275. [PMID: 33806988 PMCID: PMC8004671 DOI: 10.3390/ijms22063275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023] Open
Abstract
The effect of perinatal asphyxia (PA) on oligodendrocyte (OL), neuroinflammation, and cell viability was evaluated in telencephalon of rats at postnatal day (P)1, 7, and 14, a period characterized by a spur of neuronal networking, evaluating the effect of mesenchymal stem cell (MSCs)-treatment. The issue was investigated with a rat model of global PA, mimicking a clinical risk occurring under labor. PA was induced by immersing fetus-containing uterine horns into a water bath for 21 min (AS), using sibling-caesarean-delivered fetuses (CS) as controls. Two hours after delivery, AS and CS neonates were injected with either 5 μL of vehicle (10% plasma) or 5 × 104 MSCs into the lateral ventricle. Samples were assayed for myelin-basic protein (MBP) levels; Olig-1/Olig-2 transcriptional factors; Gglial phenotype; neuroinflammation, and delayed cell death. The main effects were observed at P7, including: (i) A decrease of MBP-immunoreactivity in external capsule, corpus callosum, cingulum, but not in fimbriae of hippocampus; (ii) an increase of Olig-1-mRNA levels; (iii) an increase of IL-6-mRNA, but not in protein levels; (iv) an increase in cell death, including OLs; and (v) MSCs treatment prevented the effect of PA on myelination, OLs number, and cell death. The present findings show that PA induces regional- and developmental-dependent changes on myelination and OLs maturation. Neonatal MSCs treatment improves survival of mature OLs and myelination in telencephalic white matter.
Collapse
Affiliation(s)
- Andrea Tapia-Bustos
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
- Faculty of Medicine, School of Pharmacy, Universidad Andres Bello, Santiago 8370149, Chile
| | - Carolyne Lespay-Rebolledo
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
| | - Valentina Vío
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
| | - Ronald Pérez-Lobos
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
| | - Emmanuel Casanova-Ortiz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago 7710162, Chile;
| | - Mario Herrera-Marschitz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
- Correspondence: (M.H.-M.); (P.M.); Tel.: +56-229786788 (M.H.-M. & P.M.)
| | - Paola Morales
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (A.T.-B.); (C.L.-R.); (V.V.); (R.P.-L.); (E.C.-O.)
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Correspondence: (M.H.-M.); (P.M.); Tel.: +56-229786788 (M.H.-M. & P.M.)
| |
Collapse
|
25
|
García-Bermúdez MY, Freude KK, Mouhammad ZA, van Wijngaarden P, Martin KK, Kolko M. Glial Cells in Glaucoma: Friends, Foes, and Potential Therapeutic Targets. Front Neurol 2021; 12:624983. [PMID: 33796062 PMCID: PMC8007906 DOI: 10.3389/fneur.2021.624983] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Glaucoma is the second leading cause of blindness worldwide, affecting ~80 million people by 2020 (1, 2). The condition is characterized by a progressive loss of retinal ganglion cells (RGCs) and their axons accompanied by visual field loss. The underlying pathophysiology of glaucoma remains elusive. Glaucoma is recognized as a multifactorial disease, and lowering intraocular pressure (IOP) is the only treatment that has been shown to slow the progression of the condition. However, a significant number of glaucoma patients continue to go blind despite intraocular pressure-lowering treatment (2). Thus, the need for alternative treatment strategies is indisputable. Accumulating evidence suggests that glial cells play a significant role in supporting RGC function and that glial dysfunction may contribute to optic nerve disease. Here, we review recent advances in understanding the role of glial cells in the pathophysiology of glaucoma. A particular focus is on the dynamic and essential interactions between glial cells and RGCs and potential therapeutic approaches to glaucoma by targeting glial cells.
Collapse
Affiliation(s)
| | - Kristine K Freude
- Department for Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Zaynab A Mouhammad
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Peter van Wijngaarden
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Keith K Martin
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| |
Collapse
|
26
|
Lyu J, Xie D, Bhatia TN, Leak RK, Hu X, Jiang X. Microglial/Macrophage polarization and function in brain injury and repair after stroke. CNS Neurosci Ther 2021; 27:515-527. [PMID: 33650313 PMCID: PMC8025652 DOI: 10.1111/cns.13620] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is a leading cause of disability and mortality, with limited treatment options. After stroke injury, microglia and CNS‐resident macrophages are rapidly activated and regulate neuropathological processes to steer the course of functional recovery. To accelerate this recovery, microglia can engulf dying cells and clear irreparably‐damaged tissues, thereby creating a microenvironment that is more suitable for the formation of new neural circuitry. In addition, monocyte‐derived macrophages cross the compromised blood‐brain barrier to infiltrate the injured brain. The specific functions of myeloid lineage cells in brain injury and repair are diverse and dependent on phenotypic polarization statuses. However, it remains to be determined to what degree the CNS‐invading macrophages occupy different functional niches from CNS‐resident microglia. In this review, we describe the physiological characteristics and functions of microglia in the developing and adult brain. We also review (a) the activation and phenotypic polarization of microglia and macrophages after stroke, (b) molecular mechanisms that control polarization status, and (c) the contribution of microglia to brain pathology versus repair. Finally, we summarize current breakthroughs in therapeutic strategies that calibrate microglia/macrophage responses after stroke. The present review summarizes recent advances in microglial research in relation to stroke with emphases on microglial/macrophage phenotypic polarization and function in brain injury and repair. It also reviews the physiological characteristics and functions of microglia in the developing and adult brain, and describes current breakthroughs in therapeutic strategies that calibrate microglia/macrophage responses after stroke.
![]()
Collapse
Affiliation(s)
- Junxuan Lyu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Di Xie
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Xiaoyan Jiang
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Huang P, Chen X, Hu X, Zhou Q, Lin L, Jiang S, Fu H, Xiong Y, Zeng H, Fang M, Chen C, Deng Y. Experimentally Induced Sepsis Causes Extensive Hypomyelination in the Prefrontal Cortex and Hippocampus in Neonatal Rats. Neuromolecular Med 2020; 22:420-436. [PMID: 32638208 DOI: 10.1007/s12017-020-08602-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 06/17/2020] [Indexed: 02/05/2023]
Abstract
Neonatal sepsis is associated with cognitive deficit in the later life. Axonal myelination plays a pivotal role in neurotransmission and formation of learning and memory. This study aimed to explore if systemic lipopolysaccharide (LPS) injection would induce hypomyelination in the prefrontal cortex and hippocampus in developing septic neonatal rats. Sprague-Dawley rats (1-day old) were injected with LPS (1 mg/kg) intraperitoneally. By electron microscopy, axonal hypomyelination was evident in the subcortical white matter and hippocampus. The expression of myelin proteins including CNPase, MBP, PLP and MAG was downregulated in both areas of the brain at 7, 14 and 28 days after LPS injection. The frequency of MBP and PLP-positive oligodendrocyte was significantly reduced using in situ hybridization in the cerebral cortex and hippocampus at the corresponding time points after LPS injection, whereas the expression of NG2 and PDGFRα was noticeably increased. In tandem with this was reduction of Olig1 and Olig2 expressions which are involved in differentiation/maturation of OPCs. Expression of NFL, NFM, and NFH was significantly downregulated, indicating that axon development was disrupted after LPS injection. Morris Water Maze behavioral test, Open field test, Rotarod test, and Pole test were used to evaluate neurological behaviors of 28 days rats. The rats in the LPS group showed the impairment of motor coordination, balance, memory, and learning ability and represented bradykinesia and anxiety-like behavior. The present results suggest that following systemic LPS injection, differentiation/maturation of OPCs was affected which may be attributed to the inhibition of transcription factors Olig1 and Olig2 expression resulting in impairment to axonal development. It is suggested that this would ultimately lead to axonal hypomyelination in the prefrontal cortex and hippocampus, which may be associated with neurological deficits in later life.
Collapse
Affiliation(s)
- Peixian Huang
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Xuan Chen
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Xiaoli Hu
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, China
| | - Qiuping Zhou
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- South China University of Technology, Guangzhou, 510641, Guangdong, China
| | - Lanfen Lin
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Shuqi Jiang
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- South China University of Technology, Guangzhou, 510641, Guangdong, China
| | - Hui Fu
- Wuhan University School of Basic Medical Sciences, Wuhan, 430072, Hubei, China
| | - Yajie Xiong
- Wuhan University School of Basic Medical Sciences, Wuhan, 430072, Hubei, China
| | - Hongke Zeng
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Ming Fang
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Chunbo Chen
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Yiyu Deng
- Department of Critical Care and Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
28
|
Fischer I, Barak B. Molecular and Therapeutic Aspects of Hyperbaric Oxygen Therapy in Neurological Conditions. Biomolecules 2020; 10:E1247. [PMID: 32867291 PMCID: PMC7564723 DOI: 10.3390/biom10091247] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
In hyperbaric oxygen therapy (HBOT), the subject is placed in a chamber containing 100% oxygen gas at a pressure of more than one atmosphere absolute. This treatment is used to hasten tissue recovery and improve its physiological aspects, by providing an increased supply of oxygen to the damaged tissue. In this review, we discuss the consequences of hypoxia, as well as the molecular and physiological processes that occur in subjects exposed to HBOT. We discuss the efficacy of HBOT in treating neurological conditions and neurodevelopmental disorders in both humans and animal models. We summarize by discussing the challenges in this field, and explore future directions that will allow the scientific community to better understand the molecular aspects and applications of HBOT for a wide variety of neurological conditions.
Collapse
Affiliation(s)
- Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel;
- The School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
29
|
Song MK, Kim YJ, Lee JM, Kim YJ. Neurovascular integrative effects of long-term environmental enrichment on chronic cerebral hypoperfusion rat model. Brain Res Bull 2020; 163:160-169. [PMID: 32711044 DOI: 10.1016/j.brainresbull.2020.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/02/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
Vascular dementia (VaD) is one of the most common types of dementia followed by Alzheimer's disease (AD). Recent studies showed that approximately 30 %-35 % of patients with AD at post-mortem exhibited vascular pathologies, which suggested that mixed dementia may be the most common type of dementia. Permanent bilateral common carotid artery occlusion (2VO) is a well-characterized method for investigating cognitive functions and the histopathological consequences of chronic cerebral hypoperfusion (CCH) in rats. In the present study, we investigated the effects of environmental enrichment (EE) on cognitive impairment after CCH, as well as the effects of CCH-induced neurovascular damage on cognitive function. Wistar rats were randomly allocated to a sham group, a 2VO group, and a 2VO + EE group. The 2VO procedure was performed at 12 weeks, while EE was performed for 8 weeks before and 6 weeks after 2VO. The effect of EE on cognitive functions in 2VO rats was investigated using the radial-arm maze and Morris Water Maze tests. Neurovascular integrity was assessed based on immunoreactivity for glial fibrillary acidic protein (GFAP), morphological changes in microvessels, and the expression of matrix metalloproteinase-9 (MMP-9) and zonula occludens-1 (ZO-1) in the motor cortex and hippocampus. EE ameliorated microvessel fragmentation by sustaining the tight junction through increases of ZO-1 expression after CCH, resulting in preserving the neurovascular unit. In summary, EE mitigated cognitive impairment by restoring neurovascular integrity. These findings suggest that EE can be a valuable and meaningful environmental intervention for patients with cognitive impairment.
Collapse
Affiliation(s)
- Min Kyung Song
- Department of Nursing, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yoon Ju Kim
- Department of Nursing, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae-Min Lee
- Department of Nursing, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Youn-Jung Kim
- College of Nursing Science, Kyung Hee University, East-west Nursing Research Institute, Seoul, 02447, Republic of Korea.
| |
Collapse
|
30
|
Merlo S, Luaces JP, Spampinato SF, Toro-Urrego N, Caruso GI, D’Amico F, Capani F, Sortino MA. SIRT1 Mediates Melatonin's Effects on Microglial Activation in Hypoxia: In Vitro and In Vivo Evidence. Biomolecules 2020; 10:biom10030364. [PMID: 32120833 PMCID: PMC7175216 DOI: 10.3390/biom10030364] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
Melatonin exerts direct neuroprotection against cerebral hypoxic damage, but the mechanisms of its action on microglia have been less characterized. Using both in vitro and in vivo models of hypoxia, we here focused on the role played by silent mating type information regulation 2 homolog 1 (SIRT1) in melatonin's effects on microglia. Viability of rat primary microglia or microglial BV2 cells and SH-SY5Y neurons was significantly reduced after chemical hypoxia with CoCl2 (250 μM for 24 h). Melatonin (1 μM) significantly attenuated CoCl2 toxicity on microglia, an effect prevented by selective SIRT1 inhibitor EX527 (5 μM) and AMP-activated protein kinase (AMPK) inhibitor BML-275 (2 μM). CoCl2 did not modify SIRT1 expression, but prevented nuclear localization, while melatonin appeared to restore it. CoCl2 induced nuclear localization of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-kappa B (NF-kB), an effect contrasted by melatonin in an EX527-dependent fashion. Treatment of microglia with melatonin attenuated potentiation of neurotoxicity. Common carotid occlusion was performed in p7 rats, followed by intraperitoneal injection of melatonin (10 mg/kg). After 24 h, the number of Iba1+ microglia in the hippocampus of hypoxic rats was significantly increased, an effect not prevented by melatonin. At this time, SIRT1 was only detectable in the amoeboid, Iba1+ microglial population selectively localized in the corpus callosum. In these cells, nuclear localization of SIRT1 was significantly lower in hypoxic animals, an effect prevented by melatonin. NF-kB showed an opposite expression pattern, where nuclear localization in Iba1+ cells was significantly higher in hypoxic, but not in melatonin-treated animals. Our findings provide new evidence for a direct effect of melatonin on hypoxic microglia through SIRT1, which appears as a potential pharmacological target against hypoxic-derived neuronal damage.
Collapse
Affiliation(s)
- Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (S.M.); (S.F.S.); (G.I.C.)
| | - Juan Pablo Luaces
- Laboratorio de Citoarquitectura y Plasticidad, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1122, Argentina; (J.P.L.); (N.T.-U.); (F.C.)
| | - Simona Federica Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (S.M.); (S.F.S.); (G.I.C.)
| | - Nicolas Toro-Urrego
- Laboratorio de Citoarquitectura y Plasticidad, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1122, Argentina; (J.P.L.); (N.T.-U.); (F.C.)
| | - Grazia Ilaria Caruso
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (S.M.); (S.F.S.); (G.I.C.)
| | - Fabio D’Amico
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Francisco Capani
- Laboratorio de Citoarquitectura y Plasticidad, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1122, Argentina; (J.P.L.); (N.T.-U.); (F.C.)
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (S.M.); (S.F.S.); (G.I.C.)
- Correspondence: ; Tel.: +39-095-4781192
| |
Collapse
|
31
|
Xu S, Lu J, Shao A, Zhang JH, Zhang J. Glial Cells: Role of the Immune Response in Ischemic Stroke. Front Immunol 2020; 11:294. [PMID: 32174916 PMCID: PMC7055422 DOI: 10.3389/fimmu.2020.00294] [Citation(s) in RCA: 369] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke, which accounts for 75-80% of all strokes, is the predominant cause of morbidity and mortality worldwide. The post-stroke immune response has recently emerged as a new breakthrough target in the treatment strategy for ischemic stroke. Glial cells, including microglia, astrocytes, and oligodendrocytes, are the primary components of the peri-infarct environment in the central nervous system (CNS) and have been implicated in post-stroke immune regulation. However, increasing evidence suggests that glial cells exert beneficial and detrimental effects during ischemic stroke. Microglia, which survey CNS homeostasis and regulate innate immune responses, are rapidly activated after ischemic stroke. Activated microglia release inflammatory cytokines that induce neuronal tissue injury. By contrast, anti-inflammatory cytokines and neurotrophic factors secreted by alternatively activated microglia are beneficial for recovery after ischemic stroke. Astrocyte activation and reactive gliosis in ischemic stroke contribute to limiting brain injury and re-establishing CNS homeostasis. However, glial scarring hinders neuronal reconnection and extension. Neuroinflammation affects the demyelination and remyelination of oligodendrocytes. Myelin-associated antigens released from oligodendrocytes activate peripheral T cells, thereby resulting in the autoimmune response. Oligodendrocyte precursor cells, which can differentiate into oligodendrocytes, follow an ischemic stroke and may result in functional recovery. Herein, we discuss the mechanisms of post-stroke immune regulation mediated by glial cells and the interaction between glial cells and neurons. In addition, we describe the potential roles of various glial cells at different stages of ischemic stroke and discuss future intervention targets.
Collapse
Affiliation(s)
- Shenbin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Yu Y, Luo X, Li C, Ding F, Wang M, Xie M, Yu Z, Ransom BR, Wang W. Microglial Hv1 proton channels promote white matter injuries after chronic hypoperfusion in mice. J Neurochem 2019; 152:350-367. [PMID: 31769505 DOI: 10.1111/jnc.14925] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022]
Abstract
Microglia are critical in damage/repair processes during ischemic white matter injury (WMI). Voltage-gated proton channel (Hv1) is expressed in microglia and contributes to nicotinamide adenine dinucleotide phosphate oxidase complex-dependent production of reactive oxygen species (ROS). Recent findings have shown that Hv1 is involved in regulating luminal pH of M1-polarized microglial phagosomes and inhibits endocytosis in microglia. We previously reported that Hv1 facilitated production of ROS and pro-inflammatory cytokines in microglia and enhanced damage to oligodendrocyte progenitor cells from oxygen and glucose deprivation. To investigate the role of Hv1 in hypoperfusion-induced WMI, we employed mice that were genetically devoid of Hv1 (Hv1-/- ), as well as a model of subcortical vascular dementia via bilateral common carotid artery stenosis. Integrity of myelin was assessed using immunofluorescent staining and transmission electron microscopy, while cognitive impairment was assessed using an eight-arm radial maze test. Hv1 deficiency was found to attenuate bilateral common carotid artery stenosis-induced disruption of white matter integrity and impairment of working memory. Immunofluorescent staining and western blotting were used to assay changes in oligodendrocytes, OPCs, and microglial polarization. Compared with that in wild-type (WT) mice, Hv1-/- mice exhibited reduced ROS generation, decreased pro-inflammatory cytokines production, and an M2-dominant rather than M1-dominant microglial polarization. Furthermore, Hv1-/- mice exhibited enhanced OPC proliferation and differentiation into oligodendrocytes. Results of mouse-derived microglia-OPC co-cultures suggested that PI3K/Akt signaling was involved in Hv1-deficiency-induced M2-type microglial polarization and concomitant OPC differentiation. These results suggest that microglial Hv1 is a promising therapeutic target for reducing ischemic WMI and cognitive impairment.
Collapse
Affiliation(s)
- Ying Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengfei Ding
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bruce R Ransom
- Department of Neurology, University of Washington School of Medicine HMC, Seattle, WA, USA
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Attia H, Fadda L, Al-Rasheed N, Al-Rasheed N, Maysarah N. Carnosine and L-arginine attenuate the downregulation of brain monoamines and gamma aminobutyric acid; reverse apoptosis and upregulate the expression of angiogenic factors in a model of hemic hypoxia in rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:381-394. [PMID: 31641819 DOI: 10.1007/s00210-019-01738-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/20/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE The purpose of the present study was to investigate the preventive effect of L-arginine (ARG) and carnosine (CAR) on hypoxia-induced neurotoxicity in rats. The impact on neuro-inflammation, apoptosis, angiogenesis, and the brain levels of monoamines and GABA were investigated. METHODS Rats were divided into the following: normal control, hypoxia model induced by sodium nitrite (75 mg/kg s.c), and hypoxic rats pre-treated with CAR (250 mg/kg), ARG (200 mg/kg), and their combination. RESULTS Data revealed that hypoxia induced significant elevation of hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and its receptor reflecting the stimulation of angiogenesis. Hypoxia also resulted in increased inflammatory mediators-including nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). In addition, hypoxia initiates cerebral apoptosis as revealed by increased caspase-3 and BAX with reduced Bcl-2. These changes were associated with reduced brain levels of GABA and monoamines including noradrenaline (NADR), dopamine (DOP), and serotonin (SER). Pre-treatment with ARG and/or CAR significantly mitigated the neural changes induced by hypoxia and attenuated the elevated levels of NF-κB, TNF-α, IL-6, caspase-3, and BAX, while ameliorated the reduced levels of Bcl-2, NADR, DOP, SER, and GABA, with the best improvement observed with the combination. Further elevation of the angiogenic markers was observed indicating their role in boosting oxygen delivery to brain. CONCLUSION CAR, ARG, and, importantly, their combination could effectively protect against hypoxia-induced neurotoxicity, via their angiogenic, anti-inflammatory, and anti-apoptotic properties in addition to reversing the effect on GABA and monoamines.
Collapse
Affiliation(s)
- Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11451, Saudi Arabia. .,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Laila Fadda
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11451, Saudi Arabia
| | - Nouf Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11451, Saudi Arabia
| | - Nawal Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11451, Saudi Arabia
| | - Nadia Maysarah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
34
|
Ceprián M, Vargas C, García-Toscano L, Penna F, Jiménez-Sánchez L, Achicallende S, Elezgarai I, Grandes P, Hind W, Pazos MR, Martínez-Orgado J. Cannabidiol Administration Prevents Hypoxia-Ischemia-Induced Hypomyelination in Newborn Rats. Front Pharmacol 2019; 10:1131. [PMID: 31611802 PMCID: PMC6775595 DOI: 10.3389/fphar.2019.01131] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/30/2019] [Indexed: 01/09/2023] Open
Abstract
Neonatal hypoxia-ischemia (HI) is a risk factor for myelination disturbances, a key factor for cerebral palsy. Cannabidiol (CBD) protects neurons and glial cells after HI insult in newborn animals. We hereby aimed to study CBD’s effects on long-lasting HI-induced myelination deficits in newborn rats. Thus, P7 Wistar rats received s.c. vehicle (HV) or cannabidiol (HC) after HI brain damage (left carotid artery electrocoagulation plus 10% O2 for 112 min). Controls were non-HI pups. At P37, neurobehavioral tests were performed and immunohistochemistry [quantifying mature oligodendrocyte (mOL) populations and myelin basic protein (MBP) density] and electron microscopy (determining axon number, size, and myelin thickness) studies were conducted in cortex (CX) and white matter (WM). Expression of brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF) were analyzed by western blot at P14. HI reduced mOL or MBP in CX but not in WM. In both CX and WM, axon density and myelin thickness were reduced. MBP impairment correlated with functional deficits. CBD administration resulted in normal function associated with normal mOL and MBP, as well as normal axon density and myelin thickness in all areas. CBD’s effects were not associated with increased BDNF or GDNF expression. In conclusion, HI injury in newborn rats resulted in long-lasting myelination disturbance, associated with functional impairment. CBD treatment preserved function and myelination, likely as a part of a general neuroprotective effect.
Collapse
Affiliation(s)
- María Ceprián
- Department of Experimental Medicine, Health Research Institute Puerta de Hierro Majadahonda, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain
| | - Carlos Vargas
- Division of Neonatology, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | - Laura García-Toscano
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain.,CIBER de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Federica Penna
- Department of DBSV, Laboratory of Neuropsychopharmacology, University of Insubria, Varese, Italy
| | - Laura Jiménez-Sánchez
- Department of Experimental Medicine, Health Research Institute Puerta de Hierro Majadahonda, Madrid, Spain
| | - Svein Achicallende
- School of Medicine and Nursery, Universidad del País Vasco, Bilbao, Spain
| | - Izaskun Elezgarai
- School of Medicine and Nursery, Universidad del País Vasco, Bilbao, Spain
| | - Pedro Grandes
- School of Medicine and Nursery, Universidad del País Vasco, Bilbao, Spain
| | | | - M Ruth Pazos
- Department of Experimental Medicine, Health Research Institute Puerta de Hierro Majadahonda, Madrid, Spain.,Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - José Martínez-Orgado
- Department of Experimental Medicine, Health Research Institute Puerta de Hierro Majadahonda, Madrid, Spain.,Division of Neonatology, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| |
Collapse
|
35
|
S1P 2 contributes to microglial activation and M1 polarization following cerebral ischemia through ERK1/2 and JNK. Sci Rep 2019; 9:12106. [PMID: 31431671 PMCID: PMC6702157 DOI: 10.1038/s41598-019-48609-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) signaling has emerged as a drug target in cerebral ischemia. Among S1P receptors, S1P2 was recently identified to mediate ischemic brain injury. But, pathogenic mechanisms are not fully identified, particularly in view of microglial activation, a core pathogenesis in cerebral ischemia. Here, we addressed whether microglial activation is the pathogenesis of S1P2-mediated brain injury in mice challenged with transient middle cerebral artery occlusion (tMCAO). To suppress S1P2 activity, its specific antagonist, JTE013 was given orally to mice immediately after reperfusion. JTE013 administration reduced the number of activated microglia and reversed their morphology from amoeboid to ramified microglia in post-ischemic brain after tMCAO challenge, along with attenuated microglial proliferation. Moreover, JTE013 administration attenuated M1 polarization in post-ischemic brain. This S1P2-directed M1 polarization appeared to occur in activated microglia, which was evidenced upon JTE013 exposure in vivo as suppressed M1-relevant NF-κB activation in activated microglia of post-ischemic brain. Moreover, JTE013 exposure or S1P2 knockdown reduced expression levels of M1 markers in vitro in lipopolysaccharide-driven M1 microglia. Additionally, suppressing S1P2 activity attenuated activation of M1-relevant ERK1/2 and JNK in post-ischemic brain or lipopolysaccharide-driven M1 microglia. Overall, our study demonstrated that S1P2 regulated microglial activation and M1 polarization in post-ischemic brain.
Collapse
|
36
|
Anti-Neuroinflammatory Effect of Alantolactone through the Suppression of the NF-κB and MAPK Signaling Pathways. Cells 2019; 8:cells8070739. [PMID: 31323885 PMCID: PMC6678480 DOI: 10.3390/cells8070739] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 01/06/2023] Open
Abstract
Neuroinflammation is a major cause of central nervous system (CNS) damage and can result in long-term disability and mortality. Therefore, the development of effective anti-neuroinflammatory agents for neuroprotection is vital. To our surprise, the naturally occurring molecule alantolactone (Ala) was reported to significantly inhibit tumor growth and metastasis as a result of its excellent anti-inflammatory effects. Thus, we proposed that it could also act as an anti-neuroinflammatory agent. Thus, in this study, a coculture system of BV2 cells and PC12 cells were used as an in vitro neuroinflammatory model to investigate the anti-neuroinflammatory mechanism of Ala. The results indicated that Ala downregulated the expression of proinflammatory factors by suppressing the nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Further evaluation using a middle cerebral artery occlusion and reperfusion (MCAO/R) rat model supported the conclusion that Ala could (1) alleviate cerebral ischemia-reperfusion injury; (2) reduce neurological deficits, cerebral infarct volume, and brain edema; and (3) attenuate the apoptosis and necrosis of neurons. In sum, Ala demonstrates anti-neuroinflammatory properties that contribute to the amelioration of CNS damage, and it could be a promising candidate for future applications in CNS injury treatment.
Collapse
|
37
|
Ceprian M, Fulton D. Glial Cell AMPA Receptors in Nervous System Health, Injury and Disease. Int J Mol Sci 2019; 20:E2450. [PMID: 31108947 PMCID: PMC6566241 DOI: 10.3390/ijms20102450] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022] Open
Abstract
Glia form a central component of the nervous system whose varied activities sustain an environment that is optimised for healthy development and neuronal function. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA)-type glutamate receptors (AMPAR) are a central mediator of glutamatergic excitatory synaptic transmission, yet they are also expressed in a wide range of glial cells where they influence a variety of important cellular functions. AMPAR enable glial cells to sense the activity of neighbouring axons and synapses, and as such many aspects of glial cell development and function are influenced by the activity of neural circuits. However, these AMPAR also render glia sensitive to elevations of the extracellular concentration of glutamate, which are associated with a broad range of pathological conditions. Excessive activation of AMPAR under these conditions may induce excitotoxic injury in glial cells, and trigger pathophysiological responses threatening other neural cells and amplifying ongoing disease processes. The aim of this review is to gather information on AMPAR function from across the broad diversity of glial cells, identify their contribution to pathophysiological processes, and highlight new areas of research whose progress may increase our understanding of nervous system dysfunction and disease.
Collapse
Affiliation(s)
- Maria Ceprian
- Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain.
- Departamento de Bioquímica y Biología Molecular, CIBERNED, IRICYS. Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Daniel Fulton
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
38
|
Lin Q, Shen F, Zhou Q, Huang P, Lin L, Chen M, Chen X, Jiang S, He S, Zeng H, Deng Y. Interleukin-1β Disturbs the Proliferation and Differentiation of Neural Precursor Cells in the Hippocampus via Activation of Notch Signaling in Postnatal Rats Exposed to Lipopolysaccharide. ACS Chem Neurosci 2019; 10:2560-2575. [PMID: 30817119 DOI: 10.1021/acschemneuro.9b00051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Infectious exposure during the perinatal period may predispose to permanent neurological disorders in later life. Here we investigated whether changes in interleukin-1β (IL-1β) are associated with cognitive dysfunction in later life of septic neonatal rats through suppression of neurogenesis in the hippocampus. Sprague-Dawley rats (1-day old) administered lipopolysaccharide (LPS) showed upregulated expression of IL-1β and IL-1 receptors in the hippocampus. At 28 days of age, rats showed longer escape latencies and decreased numbers of crossings after LPS administration. This was coupled with increased numbers of glial fibrillary acidic protein positive (GFAP+) astrocytes and decreased numbers of neuronal nuclei positive (NeuN+) cells. The numbers of sex-determining region Y-box 2 positive (SOX2+) and doublecortin positive (DCX+) cells were decreased at 1 and 3 days but was increased at 7 and 14 days. The proliferation of SOX2+ cells was inhibited at 1 and 3 days but increased at 7 and 14 days. In vitro IL-1β administration suppressed the proliferation of neural progenitor cells (NPCs) in neurospheres derived from the hippocampus. GFAP expression was upregulated in differentiated NPCs treated with IL-1β for 4 days, but expression of DCX and microtubule associated protein-2 (MAP2) was decreased. Remarkably, the Notch signaling pathway involved in antineurogenic and progliogenic differentiation of NPCs was activated after IL-1β administration. The results show that following LPS injection in neonatal rats, microglia were activated and generated excess amounts of IL-1β in the hippocampus. It is suggested that this might have contributed to inhibiting neurogenesis but promoting gliogenesis of NPCs via activation of the Notch signaling pathway and maybe one of the causes for cognitive dysfunction in septic neonatal rats in later life.
Collapse
Affiliation(s)
- Qiongyu Lin
- Department of Critical Care and Emergency, Guangdong Provincial People' Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510080 , China
- Jieyang People's Hospital, Jieyang Affiliated Hospital , Sun Yat-sen University , Jieyang 522000 , China
| | - Fengcai Shen
- Department of Critical Care and Emergency, Guangdong Provincial People' Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510080 , China
- Department of Rheumatology, the First Affiliated Hospital , Shantou University Medical College , Shantou 515063 , China
| | - Qiuping Zhou
- Department of Critical Care and Emergency, Guangdong Provincial People' Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510080 , China
| | - Peixian Huang
- Department of Critical Care and Emergency, Guangdong Provincial People' Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510080 , China
- Shantou University Medical College , Shantou 515063 , China
| | - Lanfen Lin
- Department of Critical Care and Emergency, Guangdong Provincial People' Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510080 , China
- Southern Medical University , Guangzhou 510515 , China
| | - Mengmeng Chen
- Department of Critical Care and Emergency, Guangdong Provincial People' Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510080 , China
- Shantou University Medical College , Shantou 515063 , China
| | - Xuan Chen
- Department of Critical Care and Emergency, Guangdong Provincial People' Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510080 , China
- Shantou University Medical College , Shantou 515063 , China
| | - Shuqi Jiang
- Department of Critical Care and Emergency, Guangdong Provincial People' Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510080 , China
- Southern Medical University , Guangzhou 510515 , China
| | - Shaoru He
- Department of Neonatology , Guangzhou General Hospital , Guangzhou 510080 , China
| | - Hongke Zeng
- Department of Critical Care and Emergency, Guangdong Provincial People' Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510080 , China
| | - Yiyu Deng
- Department of Critical Care and Emergency, Guangdong Provincial People' Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510080 , China
| |
Collapse
|
39
|
Lima-Silveira L, Accorsi-Mendonça D, Bonagamba LGH, Almado CEL, da Silva MP, Nedoboy PE, Pilowsky PM, Machado BH. Enhancement of excitatory transmission in NTS neurons projecting to ventral medulla of rats exposed to sustained hypoxia is blunted by minocycline. J Physiol 2019; 597:2903-2923. [PMID: 30993693 DOI: 10.1113/jp277532] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/16/2019] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Rats subjected to sustained hypoxia (SH) present increases in arterial pressure (AP) and in glutamatergic transmission in the nucleus tractus solitarius (NTS) neurons sending projections to ventrolateral medulla (VLM). Treatment with minocycline, a microglial inhibitor, attenuated the increase in AP in response to SH. The increase in the amplitude of glutamatergic postsynaptic currents in the NTS-VLM neurons, induced by postsynaptic mechanisms, was blunted by minocycline treatment. The number of microglial cells was increased in the NTS of vehicle-treated SH rats but not in the NTS of minocycline-treated rats. The data show that microglial recruitment/proliferation induced by SH is associated with the enhancement of excitatory neurotransmission in NTS-VLM neurons, which may contribute to the observed increase in AP. ABSTRACT Short-term sustained hypoxia (SH) produces significant autonomic and respiratory adjustments and triggers activation of microglia, the resident immune cells in the brain. SH also enhances glutamatergic neurotransmission in the NTS. Here we evaluated the role of microglial activation induced by SH on the cardiovascular changes and mainly on glutamatergic neurotransmission in NTS neurons sending projections to the ventrolateral medulla (NTS-VLM), using a microglia inhibitor (minocycline). Direct measurement of arterial pressure (AP) in freely moving rats showed that SH (24 h, fraction of inspired oxygen ( F I , O 2 ) 0.1) in vehicle and minocycline (30 mg/kg i.p. for 3 days)-treated groups produced a significant increase in AP in relation to control groups under normoxic conditions, but this increase was significantly lower in minocycline-treated rats. Whole-cell patch-clamp recordings revealed that the active properties of the membrane were comparable among the groups. Nevertheless, the amplitudes of glutamatergic postsynaptic currents, evoked by tractus solitarius stimulation, were increased in NTS-VLM neurons of SH rats. Changes in asynchronous glutamatergic currents indicated that the observed increase in amplitude was due to postsynaptic mechanisms. These changes were blunted in the SH group previously treated with minocycline. Using immunofluorescence, we found that the number of microglial cells was increased in the NTS of vehicle-treated SH rats but not in the NTS neurons of minocycline-treated rats. Our data support the concept that microglial activation induced by SH is associated with the enhancement of excitatory neurotransmission in NTS-VLM neurons, which may contribute to the increase in AP observed in this experimental model.
Collapse
Affiliation(s)
- Ludmila Lima-Silveira
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Daniela Accorsi-Mendonça
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Leni G H Bonagamba
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Carlos Eduardo L Almado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Polina E Nedoboy
- The Heart Research Institute, Sydney, New South Wales, 2042, Australia
| | - Paul M Pilowsky
- The Heart Research Institute, Sydney, New South Wales, 2042, Australia
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| |
Collapse
|
40
|
Peña-Ortega F. Clinical and experimental aspects of breathing modulation by inflammation. Auton Neurosci 2018; 216:72-86. [PMID: 30503161 DOI: 10.1016/j.autneu.2018.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is produced by local or systemic alterations and mediated mainly by glia, affecting the activity of various neural circuits including those involved in breathing rhythm generation and control. Several pathological conditions, such as sudden infant death syndrome, obstructive sleep apnea and asthma exert an inflammatory influence on breathing-related circuits. Consequently breathing (both resting and ventilatory responses to physiological challenges), is affected; e.g., responses to hypoxia and hypercapnia are compromised. Moreover, inflammation can induce long-lasting changes in breathing and affect adaptive plasticity; e.g., hypoxic acclimatization or long-term facilitation. Mediators of the influences of inflammation on breathing are most likely proinflammatory molecules such as cytokines and prostaglandins. The focus of this review is to summarize the available information concerning the modulation of the breathing function by inflammation and the cellular and molecular aspects of this process. I will consider: 1) some clinical and experimental conditions in which inflammation influences breathing; 2) the variety of experimental approaches used to understand this inflammatory modulation; 3) the likely cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México.
| |
Collapse
|
41
|
Tjaden J, Pieczora L, Wach F, Theiss C, Theis V. Cultivation of Purified Primary Purkinje Cells from Rat Cerebella. Cell Mol Neurobiol 2018; 38:1399-1412. [PMID: 30066224 PMCID: PMC11481939 DOI: 10.1007/s10571-018-0606-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
Primary neurons are difficult to cultivate because they are often part of a complex tissue, and synaptically connected to numerous other cell types. These circumstances often prevent us from unveiling molecular and metabolic mechanisms of distinct cells, as functional signals or assays cannot clearly be correlated with them due to interfering signals from other parts of the culture. We therefore present an up-to-date method for obtaining a highly purified neuronal culture of Purkinje cells. In the past, Purkinje cells were successfully isolated from young mouse cerebella, but this protocol was never adapted to other mammals. We therefore provide an updated and adjusted protocol for Purkinje cell isolation from rat instead of mouse cerebella. To purify Purkinje cells, we obtained perinatal rat cerebella, dissociated them and performed a Percoll gradient centrifugation to segregate the smaller and larger cell fractions. In a second step, we performed an immunopanning procedure to enrich only Purkinje cells from the large cell fraction. Based on former protocols, we used a different antibody for the immunopanning procedure and adjusted several aspects from the initial protocol to improve the yield and vitality of Purkinje cells. We provide RT-qPCR-based purity data obtained with this protocol and show the behaviour and the growth of these purified Purkinje cells. We provide a highly reproducible purification protocol for Purkinje cell cultures of high purity that allows functional analysis and downstream assays on living rat Purkinje cells and further morphological growth analysis in future.
Collapse
Affiliation(s)
- Jonas Tjaden
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Lukas Pieczora
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Frederique Wach
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
42
|
Pardo-Peña K, Lorea-Hernández JJ, Camacho-Hernández NP, Ordaz B, Villasana-Salazar B, Morales-Villagrán A, Peña-Ortega F. Hydrogen peroxide extracellular concentration in the ventrolateral medulla and its increase in response to hypoxia in vitro: Possible role of microglia. Brain Res 2018; 1692:87-99. [DOI: 10.1016/j.brainres.2018.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/31/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022]
|
43
|
Liu SJ, Liu XY, Li JH, Guo J, Li F, Gui Y, Li XH, Yang L, Wu CY, Yuan Y, Li JJ. Gastrodin attenuates microglia activation through renin-angiotensin system and Sirtuin3 pathway. Neurochem Int 2018; 120:49-63. [PMID: 30075231 DOI: 10.1016/j.neuint.2018.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 01/14/2023]
Abstract
Microglia activation and its mediated production of proinflammatory mediators play important roles in different neurodegenerative diseases; hence, modulation of microglia activation has been considered a potential therapeutic strategy to ameliorate neurodegeneration. This study was aimed to determine whether Gastrodin, a common herbal agent known to possess neuroprotective property, can attenuate production of proinflammatory mediators in activated microglia through the renin-angiotensin system (RAS) and Sirtuin3 (SIRT3). Expression of various members of the RAS including ACE, AT1, AT2, and SIRT3 in activated microglia was assessed by immunofluorescence and Western blot in hypoxic-ischemia brain damage (HIBD) in postnatal rats, and in BV-2 microglia in vitro challenged with lipopolysaccharide (LPS) with or without Gastrodin treatment. Expression of NOX-2, a subunit of NADPH oxidase, and proinflammatory mediators including iNOS and TNF-α, was also evaluated. The present results showed that expression of ACE, AT1, NOX-2, iNOS and TNF-α was markedly increased in activated microglia in the corpus callosum of HIBD rats, and in LPS stimulated BV-2 microglia. Remarkably, the expression was markedly attenuated following Gastrodin treatment. Conversely, Gastrodin enhanced AT2 and SIRT3 protein expression. In BV-2 microglia treated with Azilsartan, a specific inhibitor of AT1 (AT1I group), NOX-2 expression was decreased whereas that of SIRT3 in LPS + AT1I and LPS + Gastrodin group was increased when compared with the controls. In LPS + AT1I + Gastrodin group, SIRT3 expression was further augmented. More importantly, Gastrodin effectively reduced caspase 3 protein expression level in the HIBD rats coupled with a significant decrease in caspase 3 positive cells. We conclude that Gastrodin can exert its protective effects against the hypoxic-ischemia brain damage in the present experimental HIBD model. It is suggested that this is mainly through suppression of expression of RAS (except for AT2 and SIRT3) and proinflammatory mediators e.g. TNF-α in activated microglia.
Collapse
Affiliation(s)
- Shun-Jin Liu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Xiao-Yu Liu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Jing-Hui Li
- Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650500, PR China.
| | - Jing Guo
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Fan Li
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Yang Gui
- Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650500, PR China.
| | - Xiu-Hua Li
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Li Yang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Chun-Yun Wu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Yun Yuan
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Juan-Juan Li
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| |
Collapse
|
44
|
Singh DK, Ling EA, Kaur C. Hypoxia and myelination deficits in the developing brain. Int J Dev Neurosci 2018; 70:3-11. [PMID: 29964158 DOI: 10.1016/j.ijdevneu.2018.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/28/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
Myelination is a complex and orderly process during brain development that is essential for normal motor, cognitive and sensory functions. Cellular and molecular interactions between myelin-forming oligodendrocytes and axons are required for normal myelination in the developing brain. Oligodendrocyte progenitor cells (OPCs) proliferate and differentiate into mature myelin-forming oligodendrocytes. In this connection, astrocytes and microglia are also involved in survival and proliferation of OPCs. Hypoxic insults during the perinatal period affect the normal development, differentiation and maturation of the OPCs or cause their death resulting in impaired myelination. Several factors such as augmented release of proinflammatory cytokines by activated microglia and astrocytes, extracellular accumulation of excess glutamate and increased levels of nitric oxide are some of the underlying factors for hypoxia induced damage to the OPCs. Additionally, hypoxia also leads to down-regulation of several genes involved in oligodendrocyte differentiation encoding proteolipid protein, platelet-derived growth factor receptor and myelin-associated glycoprotein in the developing brain. Furthermore, oligodendrocytes may also accumulate increased amounts of iron in hypoxic conditions that triggers endoplasmic reticulum stress, misfolding of proteins and generation of reactive oxygen species that ultimately would lead to myelination deficits. More in-depth studies to elucidate the pathophysiological mechanisms underlying the inability of oligodendrocytes to myelinate the developing brain in hypoxic insults are desirable to develop new therapeutic options or strategies for myelination deficits.
Collapse
Affiliation(s)
- Dhiraj Kumar Singh
- Department of Anatomy, Yong Loo Lin School of Medicine, MD10, 4 Medical drive, National University of Singapore, 117597, Singapore
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, MD10, 4 Medical drive, National University of Singapore, 117597, Singapore
| | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, MD10, 4 Medical drive, National University of Singapore, 117597, Singapore.
| |
Collapse
|
45
|
Yang X, Zhang JD, Duan L, Xiong HG, Jiang YP, Liang HC. Microglia activation mediated by toll-like receptor-4 impairs brain white matter tracts in rats. J Biomed Res 2017; 32:136-144. [PMID: 29358565 PMCID: PMC5895568 DOI: 10.7555/jbr.32.20170033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Microglia activation and white matter injury coexist after repeated episodes of mild brain trauma and ischemic stroke. Axon degeneration and demyelination can activate microglia; however, it is unclear whether early microglia activation can impair the function of white matter tracts and lead to injury. Rat corpus callosum (CC) slices were treated with lipopolysaccharide (LPS) or LPS + Rhodobacter sphaeroides (RS)-LPS that is a toll-like receptor 4 (TLR-4) antagonist. Functional changes reflected by the change of axon compound action potentials (CAPs) and the accumulation of β-amyloid precursor protein (β-APP) in CC nerve fibers. Microglia activation was monitored by ionized calcium binding adaptor-1 immunofluorescent stain, based on well-established morphological criteria and paralleled proportional area measurement. Input-output (I/O) curves of CAPs in response to increased stimuli were significantly downshifted in a dose-dependent manner in LPS (0.2, 0.5 and 1.0 μg/mL)-treated slices, implying that axons neurophysiological function was undermined. LPS caused significant β-APP accumulation in CC tissues, reflecting the deterioration of fast axon transport. LPS-induced I/O curve downshift and β-APP accumulation were significantly reversed by the pre-treatment or co-incubation with RS-LPS. RS-LPS alone did not change the I/O curve. The degree of malfunction was correlated with microglia activation, as was shown by the measurements of proportional areas. Function of CC nerve fibers was evidently impaired by microglia activation and reversed by a TLP-4 antagonist, suggesting that the TLP-4 pathway lead to microglia activation.
Collapse
Affiliation(s)
- Xinglong Yang
- Department of Neurosurgery, Affiliated Hospital to Academy of Military Medicine Sciences, Beijing 100071, China
| | - Jing-Dong Zhang
- Department of Pharmacology & Experimental Neurosciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lian Duan
- Department of Neurosurgery, Affiliated Hospital to Academy of Military Medicine Sciences, Beijing 100071, China
| | - Huan-Gui Xiong
- Department of Pharmacology & Experimental Neurosciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yan-Ping Jiang
- Department of Otolaryngology, the 306th PLA Hospital, Beijing 100101, China
| | | |
Collapse
|
46
|
Pieczora L, Stracke L, Vorgerd M, Hahn S, Theiss C, Theis V. Unveiling of miRNA Expression Patterns in Purkinje Cells During Development. THE CEREBELLUM 2017; 16:376-387. [PMID: 27387430 DOI: 10.1007/s12311-016-0814-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs of 19-25 nucleotides in length that regulate gene expression at the post-transcriptional level. Dysregulation of miRNAs is associated with many disorders and neurodegenerative diseases affecting numerous different pathways and processes, of which many have not yet been completely explored. Recent studies even indicate a crucial role of miRNAs during brain development, with differential expression patterns of several miRNAs seen in both developing and mature cells. A miRNA profiling in brain tissue and the fundamental understanding of their effects might optimize the therapeutical treatment of various neurological disorders. In this study, we performed miRNA array analysis of enriched cerebellar Purkinje cell (PC) samples from both young and mature rat cerebella. We used laser microdissection (LMD) to enrich PC for a highly specific miRNA profiling. Altogether, we present the expression profile of at least 27 miRNAs expressed in rat cerebellar PC and disclose a different expression pattern of at least three of these miRNAs during development. These miRNAs are potential candidates for the regulation and control of cerebellar PC development, including neuritic and dendritic outgrowth as well as spine formation.
Collapse
Affiliation(s)
- Lukas Pieczora
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Lara Stracke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, Ruhr-University Bochum, Buerkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Stephan Hahn
- Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
47
|
Kaur C, Rathnasamy G, Ling EA. Biology of Microglia in the Developing Brain. J Neuropathol Exp Neurol 2017; 76:736-753. [PMID: 28859332 DOI: 10.1093/jnen/nlx056] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microglia exist in different morphological forms in the developing brain. They show a small cell body with scanty cytoplasm with many branching processes in the grey matter of the developing brain. However, in the white matter such as the corpus callosum where the unmyelinated axons are loosely organized, they appear in an amoeboid form having a round cell body endowed with copious cytoplasm rich in organelles. The amoeboid cells eventually transform into ramified microglia in the second postnatal week when the tissue becomes more compact with the onset of myelination. Microglia serve as immunocompetent macrophages that act as neuropathology sensors to detect and respond swiftly to subtle changes in the brain tissues in pathological conditions. Microglial functions are broadly considered as protective in the normal brain development as they phagocytose dead cells and sculpt neuronal connections by pruning excess axons and synapses. They also secrete a number of trophic factors such as insulin-like growth factor-1 and transforming growth factor-β among many others that are involved in neuronal and oligodendrocyte survival. On the other hand, microglial cells when activated produce a plethora of molecules such as proinflammatory cytokines, chemokines, reactive oxygen species, and nitric oxide that are implicated in the pathogenesis of many pathological conditions such as epilepsy, cerebral palsy, autism, and perinatal hypoxic-ischemic brain injury. Although many studies have investigated the origin and functions of the microglia in the developing brain, in-depth in vivo studies along with analysis of their transcriptome and epigenetic changes need to be undertaken to elucidate their full potential be it protective or neurotoxic. This would lead to a better understanding of their roles in the healthy and diseased developing brain and advancement of therapeutic strategies to target microglia-mediated neurotoxicity.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
48
|
Ziemka-Nalecz M, Jaworska J, Zalewska T. Insights Into the Neuroinflammatory Responses After Neonatal Hypoxia-Ischemia. J Neuropathol Exp Neurol 2017; 76:644-654. [DOI: 10.1093/jnen/nlx046] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
49
|
Braun M, Vaibhav K, Saad NM, Fatima S, Vender JR, Baban B, Hoda MN, Dhandapani KM. White matter damage after traumatic brain injury: A role for damage associated molecular patterns. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2614-2626. [PMID: 28533056 DOI: 10.1016/j.bbadis.2017.05.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and long-term morbidity worldwide. Despite decades of pre-clinical investigation, therapeutic strategies focused on acute neuroprotection failed to improve TBI outcomes. This lack of translational success has necessitated a reassessment of the optimal targets for intervention, including a heightened focus on secondary injury mechanisms. Chronic immune activation correlates with progressive neurodegeneration for decades after TBI; however, significant challenges remain in functionally and mechanistically defining immune activation after TBI. In this review, we explore the burgeoning evidence implicating the acute release of damage associated molecular patterns (DAMPs), such as adenosine 5'-triphosphate (ATP), high mobility group box protein 1 (HMGB1), S100 proteins, and hyaluronic acid in the initiation of progressive neurological injury, including white matter loss after TBI. The role that pattern recognition receptors, including toll-like receptor and purinergic receptors, play in progressive neurological injury after TBI is detailed. Finally, we provide support for the notion that resident and infiltrating macrophages are critical cellular targets linking acute DAMP release with adaptive immune responses and chronic injury after TBI. The therapeutic potential of targeting DAMPs and barriers to clinical translational, in the context of TBI patient management, are discussed.
Collapse
Affiliation(s)
- Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States; Department of Medical Laboratory, Imaging & Radiologic Sciences, College of Allied Health Science, Augusta University, Augusta, GA, United States
| | - Nancy M Saad
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | - Sumbul Fatima
- Department of Medical Laboratory, Imaging & Radiologic Sciences, College of Allied Health Science, Augusta University, Augusta, GA, United States
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Babak Baban
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, United States; Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Md Nasrul Hoda
- Department of Medical Laboratory, Imaging & Radiologic Sciences, College of Allied Health Science, Augusta University, Augusta, GA, United States; Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States.
| |
Collapse
|
50
|
Chen C, Xi C, Liang X, Ma J, Su D, Abel T, Liu R. The Role of κ Opioid Receptor in Brain Ischemia. Crit Care Med 2017; 44:e1219-e1225. [PMID: 27495821 DOI: 10.1097/ccm.0000000000001959] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Our previous studies indicated that highly selective κ opioid receptor agonists could protect the brain, indicating an important role of κ opioid receptor agonist in brain ischemia. In this study, we investigated the role and related mechanisms of κ opioid receptor agonists in brain ischemia in a middle cerebral artery occlusion mouse model. DESIGN Animal model. SETTING Laboratory. SUBJECTS The middle cerebral artery occlusion model was established by 120 minutes of ischemia followed by 24-hour reperfusion in male adult mice. INTERVENTIONS Various doses of salvinorin A, a highly selective and potent κ opioid receptor agonist, were administered intranasally 10 minutes after initiation of reperfusion. Norbinaltorphimine (2.5 mg/kg, IP) as a κ opioid receptor antagonist was administered in one group before administration of salvinorin A (50μg/kg) to investigate the specific role of κ opioid receptor. MEASUREMENTS AND MAIN RESULTS Infarct volume, κ opioid receptor expression, and Evans blue extravasation in the brain, and neurobehavioral outcome were determined. Immunohistochemistry and western blot were performed to detect the activated caspase-3, interleukin-10, and tumor necrosis factor-α levels to investigate the role of apoptosis and inflammation. κ opioid receptor expression was elevated significantly in the ischemic penumbral area compared with that in the nonischemic area. Salvinorin A reduced infarct volume and improved neurologic deficits dose-dependently. Salvinorin A at the dose of 50 μg/kg reduced Evans blue extravasation, suggesting reduced impairment of the blood-brain barrier and decreased the expression of cleaved caspase-3, interleukin-10, and tumor necrosis factor-α in the penumbral areas. All these changes were blocked or alleviated by norbinaltorphimine. CONCLUSIONS κ opioid receptors were up-regulated and played a critical role in brain ischemia and reperfusion. κ opioid receptor activation could potentially protect the brain and improve neurologic outcome via blood-brain barrier protection, apoptosis reduction, and inflammation inhibition.
Collapse
Affiliation(s)
- Chunhua Chen
- 1Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.2Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.3Department of Anesthesiology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China.4Department of Biology, University of Pennsylvania, Philadelphia, PA
| | | | | | | | | | | | | |
Collapse
|