1
|
Gray M, Rodriguez-Otero MR, Champion JA. Self-Assembled Recombinant Elastin and Globular Protein Vesicles with Tunable Properties for Diverse Applications. Acc Chem Res 2024; 57:1227-1237. [PMID: 38624000 PMCID: PMC11080046 DOI: 10.1021/acs.accounts.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/17/2024]
Abstract
Vesicles are self-assembled structures comprised of a membrane-like exterior surrounding a hollow lumen with applications in drug delivery, artificial cells, and micro-bioreactors. Lipid or polymer vesicles are the most common and are made of lipids or polymers, respectively. They are highly useful structures for many applications but it can be challenging to decorate them with proteins or encapsulate proteins in them, owing to the use of organic solvent in their formation and the large size of proteins relative to lipid or polymer molecules. By utilization of recombinant fusion proteins to make vesicles, specific protein domains can be directly incorporated while also imparting tunability and stability. Protein vesicle assembly relies on the design and use of self-assembling amphiphilic proteins. A specific protein vesicle platform made in purely aqueous conditions of a globular, functional protein fused to a glutamate-rich leucine zipper (ZE) and a thermoresponsive elastin-like polypeptide (ELP) fused to an arginine-rich leucine zipper (ZR) is discussed here. The hydrophobic conformational change of the ELP above its transition temperature drives assembly, and strong ZE/ZR binding enables incorporation of the desired functional protein. Mixing the soluble proteins on ice induces zipper binding, and then warming above the ELP transition temperature (Tt) triggers the transition to and growth of protein-rich coacervates and, finally, reorganization of proteins into vesicles. Vesicle size is tunable based on salt concentration, rate of heating, protein concentration, size of the globular protein, molar ratio of the proteins, and the ELP sequence. Increasing the salt concentration decreases vesicle size by decreasing the Tt, resulting in a shorter coacervation transition stage. Likewise, directly changing the heating rate also changes this time and increasing protein concentration increases coalescence. Increasing globular protein size decreases the size of the vesicle due to steric hindrance. By changing the ELP sequence, which consists of (VPGXG)n, through the guest residue (X) or number of repeats (n), Tt is changed, affecting size. Additionally, the chemical nature of X variation has endowed vesicles with stimuli responsiveness and stability at physiological conditions.Protein vesicles have been used for biocatalysis, biomacromolecular drug delivery, and vaccine applications. Photo-cross-linkable vesicles were used to deliver small molecule cargo to cancer cells in vitro and antigen to immune cells in vivo. pH-responsive vesicles effectively delivered functional protein cargo, including cytochrome C, to the cytosol of cancer cells in vitro, using hydrophobic ion pairing to improve cargo distribution in the vesicles and release. The globular protein used to make the vesicles can be varied to achieve different functions. For example, enzyme vesicles exhibit biocatalysis, and antigen vesicles induce antibody and cellular immune responses after vaccination in mice. Collectively, the development and engineering of the protein vesicle platform has employed amphiphilic self-assembly strategies and rational protein engineering to control physical, chemical, and biological properties for biotechnology and nanomedicine applications.
Collapse
Affiliation(s)
- Mikaela
A. Gray
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States
| | - Mariela R. Rodriguez-Otero
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States
- BioEngineering
Program, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States
- BioEngineering
Program, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Hu J, Pang J, Chen L, Li Y, Gan N, Pan Q, Wu D. Photoresponsive Azobenzene Nanocluster-Modified Liposomes: Mechanism Analysis Combining Experiments and Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9761-9774. [PMID: 38663878 DOI: 10.1021/acs.langmuir.4c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Stimuli-responsive behaviors and controlled release in liposomes are pivotal in nanomedicine. To this end, we present an approach using a photoresponsive azobenzene nanocluster (AzDmpNC), prepared from azobenzene compounds through melting and aggregation. When integrated with liposomes, they form photoresponsive vesicles. The morphology and association with liposomes were investigated by using transmission electron microscopy. Liposomes loaded with calcein exhibited a 9.58% increased release after UV exposure. To gain insights into the underlying processes and elucidate the mechanisms involved. The molecular dynamic simulations based on the reactive force field and all-atom force field were employed to analyze the aggregation of isomers into nanoclusters and their impacts on phospholipid membranes, respectively. The results indicate that the nanoclusters primarily aggregate through π-π and T-stacking forces. The force density inside the cis-isomer of AzDmpNC formed after photoisomerization is lower, leading to its easier dispersion, rapid diffusion, and penetration into the membrane, disrupting the densification.
Collapse
Affiliation(s)
- Jie Hu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Jingtao Pang
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lijuan Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yilin Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Na Gan
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | | |
Collapse
|
3
|
Pritzl SD, Morstein J, Kahler S, Konrad DB, Trauner D, Lohmüller T. Postsynthetic Photocontrol of Giant Liposomes via Fusion-Based Photolipid Doping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11941-11949. [PMID: 36130117 PMCID: PMC9536078 DOI: 10.1021/acs.langmuir.2c01685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/06/2022] [Indexed: 06/15/2023]
Abstract
We report on photolipid doping of giant unilamellar vesicles (GUVs) via vesicle fusion with small unilamellar photolipid vesicles (pSUVs), which enables retroactive optical control of the membrane properties. We observe that vesicle fusion is light-dependent, if the phospholipids are neutral. Charge-mediated fusion involving anionic and cationic lipid molecules augments the overall fusion performance and doping efficiency, even in the absence of light exposure. Using phosphatidylcholine analogs with one or two azobenzene photoswitches (azo-PC and dazo-PC) affects domain formation, bending stiffness, and shape of the resulting vesicles in response to irradiation. Moreover, we show that optical membrane control can be extended to long wavelengths using red-absorbing photolipids (red-azo-PC). Combined, our findings present an attractive and practical method for the precise delivery of photolipids, which offers new prospects for the optical control of membrane function.
Collapse
Affiliation(s)
- Stefanie D. Pritzl
- Chair
for Photonics and Optoelectronics, Nano-Institute Munich, Department
of Physics, Ludwig-Maximilians-Universität
(LMU), 80539 Munich, Germany
| | - Johannes Morstein
- Department
of Chemistry, New York University, Silver Center, New York 10003, United States
- Department
of Cellular and Molecular Pharmacology, UCSF, San Francisco, California 94143, United States
| | - Sophia Kahler
- Department
of Chemistry, New York University, Silver Center, New York 10003, United States
| | - David B. Konrad
- Department
of Pharmacy, Ludwig-Maximilians-Universität
(LMU), 81377 Munich, Germany
| | - Dirk Trauner
- Department
of Chemistry, New York University, Silver Center, New York 10003, United States
| | - Theobald Lohmüller
- Chair
for Photonics and Optoelectronics, Nano-Institute Munich, Department
of Physics, Ludwig-Maximilians-Universität
(LMU), 80539 Munich, Germany
| |
Collapse
|
4
|
Dautel DR, Heller WT, Champion JA. Protein Vesicles with pH-Responsive Disassembly. Biomacromolecules 2022; 23:3678-3687. [PMID: 35943848 DOI: 10.1021/acs.biomac.2c00562] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein biomaterials offer several advantages over those made from other components because their amino acid sequence can be precisely controlled with genetic engineering to produce a diverse set of material building blocks. In this work, three different elastin-like polypeptide (ELP) sequences were designed to synthesize pH-responsive protein vesicles. ELPs undergo a thermally induced hydrophobic transition that enables self-assembly of different kinds of protein biomaterials. The transition can be tuned by the composition of the guest residue, X, within the ELP pentapeptide repeat unit, VPGXG. When the guest residue is substituted with an ionizable amino acid, such as histidine, the ELP undergoes a pH-dependent hydrophobic phase transition. We used pH-responsive ELPs with different levels of histidine substitution, in combination with leucine zippers and globular, functional proteins, to fabricate protein vesicles. We demonstrate pH-dependent self-assembly, diameter, and disassembly of the vesicles using a combination of turbidimetry, dynamic light scattering, microscopy, and small angle X-ray scattering. As the ELP transition is dependent on the sequence, the vesicle properties also depend on the histidine content in the ELP building blocks. These results demonstrate the tunability of protein vesicles endowed with pH responsiveness, which expands their potential in drug-delivery applications.
Collapse
Affiliation(s)
- Dylan R Dautel
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - William T Heller
- Neutron Scattering, Oak Ridge National Laboratory, PO Box 2008, MS 6473, Oak Ridge, Tennessee 37831, United States
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Abstract
Glycerolipids, sphingolipids, and sterols are the three major classes of membrane lipids. Both glycerolipids and sphingolipids are comprised of combinations of polar headgroups and fatty acid tails. The fatty acid tail can be chemically modified with an azobenzene photoswitch giving rise to photoswitchable lipids. This approach has yielded a number of photopharmacological tools that allow for the control various of aspects of lipid assembly, metabolism, and physiology with light.
Collapse
|
6
|
Urban P, Pritzl SD, Konrad DB, Frank JA, Pernpeintner C, Roeske CR, Trauner D, Lohmüller T. Light-Controlled Lipid Interaction and Membrane Organization in Photolipid Bilayer Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13368-13374. [PMID: 30346771 DOI: 10.1021/acs.langmuir.8b03241] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Controlling lateral interactions between lipid molecules in a bilayer membrane to guide membrane organization and domain formation is a key factor for studying and emulating membrane functionality in synthetic biological systems. Here, we demonstrate an approach to reversibly control lipid organization, domain formation, and membrane stiffness of phospholipid bilayer membranes using the photoswitchable phospholipid azo-PC. azo-PC contains an azobenzene group in the sn2 acyl chain that undergoes reversible photoisomerization on illumination with UV-A and visible light. We demonstrate that the concentration of the photolipid molecules and also the assembly and disassembly of photolipids into lipid domains can be monitored by UV-vis spectroscopy because of a blue shift induced by photolipid aggregation.
Collapse
Affiliation(s)
- Patrick Urban
- Photonics and Optoelectronics Group, Department of Physics and CeNS , Ludwig-Maximilians-Universität München , Amalienstraße 54 , 80799 Munich , Germany
| | - Stefanie D Pritzl
- Photonics and Optoelectronics Group, Department of Physics and CeNS , Ludwig-Maximilians-Universität München , Amalienstraße 54 , 80799 Munich , Germany
| | - David B Konrad
- Department of Chemistry and Center for Integrated Protein Science , Ludwig-Maximilians-Universität München , Butenandtstraße 5-13 , 81377 Munich , Germany
| | - James A Frank
- Department of Chemistry and Center for Integrated Protein Science , Ludwig-Maximilians-Universität München , Butenandtstraße 5-13 , 81377 Munich , Germany
| | - Carla Pernpeintner
- Photonics and Optoelectronics Group, Department of Physics and CeNS , Ludwig-Maximilians-Universität München , Amalienstraße 54 , 80799 Munich , Germany
- Nanosystems Initiative Munich , Schellingstraße 4 , 80799 Munich , Germany
| | - Christian R Roeske
- Photonics and Optoelectronics Group, Department of Physics and CeNS , Ludwig-Maximilians-Universität München , Amalienstraße 54 , 80799 Munich , Germany
| | - Dirk Trauner
- Department of Chemistry and Center for Integrated Protein Science , Ludwig-Maximilians-Universität München , Butenandtstraße 5-13 , 81377 Munich , Germany
- Department of Chemistry , New York University , Silver Center, 100 Washington Square East, Room 712 , New York 10003 , United States
- Nanosystems Initiative Munich , Schellingstraße 4 , 80799 Munich , Germany
| | - Theobald Lohmüller
- Photonics and Optoelectronics Group, Department of Physics and CeNS , Ludwig-Maximilians-Universität München , Amalienstraße 54 , 80799 Munich , Germany
- Nanosystems Initiative Munich , Schellingstraße 4 , 80799 Munich , Germany
| |
Collapse
|
7
|
Martínez-Ballesta MC, Gil-Izquierdo Á, García-Viguera C, Domínguez-Perles R. Nanoparticles and Controlled Delivery for Bioactive Compounds: Outlining Challenges for New "Smart-Foods" for Health. Foods 2018; 7:E72. [PMID: 29735897 PMCID: PMC5977092 DOI: 10.3390/foods7050072] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 12/28/2022] Open
Abstract
Nanotechnology is a field of research that has been stressed as a very valuable approach for the prevention and treatment of different human health disorders. This has been stressed as a delivery system for the therapeutic fight against an array of pathophysiological situations. Actually, industry has applied this technology in the search for new oral delivery alternatives obtained upon the modification of the solubility properties of bioactive compounds. Significant works have been made in the last years for testing the input that nanomaterials and nanoparticles provide for an array of pathophysiological situations. In this frame, this review addresses general questions concerning the extent to which nanoparticles offer alternatives that improve therapeutic value, while avoid toxicity, by releasing bioactive compounds specifically to target tissues affected by specific chemical and pathophysiological settings. In this regard, to date, the contribution of nanoparticles to protect encapsulated bioactive compounds from degradation as a result of gastrointestinal digestion and cellular metabolism, to enable their release in a controlled manner, enhancing biodistribution of bioactive compounds, and to allow them to target those tissues affected by biological disturbances has been demonstrated.
Collapse
Affiliation(s)
- MCarment Martínez-Ballesta
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura-Spanish Council for Scientific Research (CEBAS-CSIC), Campus de Espinardo 25, 30100 Espinardo, Murcia, Spain.
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Spanish Council for Scientific Research (CEBAS-CSIC), Campus de Espinardo 25, 30100 Espinardo, Murcia, Spain.
| | - Cristina García-Viguera
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Spanish Council for Scientific Research (CEBAS-CSIC), Campus de Espinardo 25, 30100 Espinardo, Murcia, Spain.
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura-Spanish Council for Scientific Research (CEBAS-CSIC), Campus de Espinardo 25, 30100 Espinardo, Murcia, Spain.
| |
Collapse
|
8
|
Simeth NA, Kneuttinger AC, Sterner R, König B. Photochromic coenzyme Q derivatives: switching redox potentials with light. Chem Sci 2017; 8:6474-6483. [PMID: 28989672 PMCID: PMC5628583 DOI: 10.1039/c7sc00781g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/19/2017] [Indexed: 11/21/2022] Open
Abstract
Coenzyme Q is an important redox cofactor involved in a variety of cellular processes, and is thus found in several cell compartments. We report a photochromic derivative of coenzyme Q that combines the molecular structures of the redox active cofactor and a photochromic dye. Light irradiation triggers an electronic rearrangement reversibly changing the redox potential. We used this effect to control the intermolecular redox reaction of the photochromic coenzyme Q derivative with dihydropyridine in solution by light irradiation. On mitochondria, the altered redox properties showed an effect on the respiratory chain. The experiments demonstrate that the redox reactions can be initiated inside the system of interest through irradiation with light and the accompanied photoisomerization.
Collapse
Affiliation(s)
- Nadja A Simeth
- University of Regensburg , Faculty of Chemistry and Pharmacy , Institute of Organic Chemistry , Universitätsstraße 31 , 93053 Regensburg , Germany . ; Tel: +49-941-943-4575
| | - Andrea C Kneuttinger
- University of Regensburg , Faculty of Biology and Preclinical Medicine , Institute of Biophysics and Physical Biochemistry , Universitätsstraße 31 , 93053 Regensburg , Germany .
| | - Reinhard Sterner
- University of Regensburg , Faculty of Biology and Preclinical Medicine , Institute of Biophysics and Physical Biochemistry , Universitätsstraße 31 , 93053 Regensburg , Germany .
| | - Burkhard König
- University of Regensburg , Faculty of Chemistry and Pharmacy , Institute of Organic Chemistry , Universitätsstraße 31 , 93053 Regensburg , Germany . ; Tel: +49-941-943-4575
| |
Collapse
|
9
|
Liu D, Wang S, Xu S, Liu H. Photocontrollable Intermittent Release of Doxorubicin Hydrochloride from Liposomes Embedded by Azobenzene-Contained Glycolipid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1004-1012. [PMID: 27668306 DOI: 10.1021/acs.langmuir.6b03051] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Azobenzene-contained glycolipids GlyAzoCns, newly structured azobenzene derivatives, which have an azobenzene moiety between the galactosyl and carbon chains of various sizes, have been synthesized. The GlyAzoCns undergo reversible photoinduced isomerization in both ethanol solution (free state) and liposomal bilayer (restricted state) upon irradiation with UV and vis light alternately. The drug release of Liposome@Gly induced by isomerization was found to be an instantaneous behavior. The photoinduced control of DOX release from liposome was investigated in various modes. The Liposome@Glys have been found to keep the entrapped DOX stably in the dark with less than 10% leakage in 10 h but release nearly 100% of cargos instantaneously with UV irradiation. The molecular structure of GlyAzoCns and the property of the liposomal bilayer were considered as important factors influencing drug release. Among the synthesized GlyAzoCns, GlyAzoC7 was shown to be the most efficient photosensitive actuator for controlling drug release. A lower proportion of cholesterol in Liposome@Glys was conducive to promote the release amount. Results indicated that the synthesized GlyAzoCns could act as a role of smart actuators in the liposome bilayer and control the drug to release temporarily and quantitatively.
Collapse
Affiliation(s)
- Danyang Liu
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Sijia Wang
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Shouhong Xu
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Honglai Liu
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
10
|
Liposomal drug delivery systems for targeted cancer therapy: is active targeting the best choice? Future Med Chem 2016; 8:2091-2112. [PMID: 27774793 DOI: 10.4155/fmc-2016-0135] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liposomes are biodegradable and biocompatible self-forming spherical lipid bilayer vesicles. They can encapsulate and deliver one or more hydrophobic and hydrophilic therapeutic agents with poor therapeutic indices to tumor sites. Properties such as lipid bilayer fluidity, charge, size and surface hydration can be modified to extend liposome circulation time in the bloodstream and enhance efficacy. The focus of this review is on ligand-conjugated liposomes and their potential application in tumor-targeted delivery. Ligand-conjugated liposomes are designed to target receptors which are overexpressed on tumor cells to decrease drugs side effects by enhancing their selective delivery to tumor site. Despite the extensive research in this area, no small molecule ligand-conjugated liposome has been approved up to date for cancer therapy.
Collapse
|
11
|
Sun Y, Ji Y, Yu H, Wang D, Cao M, Wang J. Near-infrared light-sensitive liposomes for controlled release. RSC Adv 2016. [DOI: 10.1039/c6ra18702a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A 6-bromo-7-hydroxy-4-hydroxymethylcoumarin containing amphiphilic lipid was synthesized and applied as a near-infrared light triggered controlled release system.
Collapse
Affiliation(s)
- Yawei Sun
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- China
| | - Yanyun Ji
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- China
| | - Haiyan Yu
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- China
| | - Dong Wang
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- China
| | - Meiwen Cao
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- China
| | - Jiqian Wang
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- China
| |
Collapse
|
12
|
Cui ZK, Phoeung T, Rousseau PA, Rydzek G, Zhang Q, Bazuin CG, Lafleur M. Nonphospholipid fluid liposomes with switchable photocontrolled release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10818-10825. [PMID: 25149436 DOI: 10.1021/la502131h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We created novel nonphospholipid photosensitive liposomes from a mixture of a monoacylated azobenzene amphiphile (AzoC10N(+)) and cholesterol sulfate (Schol). This system belongs to the family of sterol-enriched nonphospholipid liposomes that were shown to form stable large unilamellar vesicles (LUVs) with enhanced impermeability. Fluid bilayers were successfully prepared from AzoC10N(+)/Schol (25/75 molar ratio) mixtures, and LUVs could be derived at room temperature using standard extrusion methods. The isomerization process of the bilayer-inserted AzoC10N(+) was characterized. Leakage from these liposomes could be induced by the photoconversion of AzoC10N(+) from its trans form to its cis form. This photocontrolled release from fluid liposomes contrasts with the case of phospholipid-based azo-containing liposomes, which are generally required to be in the gel phase to be photosensitive. It is proposed that the very high degree of conformational order of the monoalkylated amphiphile and the tight packing of the hydrophobic core of the AzoC10N(+)/Schol liposomes make them responsive to the presence of the bulky cis azo isomer. Interestingly, the liposome impermeability could be fully restored by the photoisomerization of the cis form back to the trans form, providing a sharp on-and-off control of payload release. In addition, these nonphospholipid liposomes display a very limited passive release. Therefore, it is shown that AzoC10N(+)/Schol LUVs can be used as nanocontainers, whose content can be released by light in a controlled and switchable manner.
Collapse
Affiliation(s)
- Zhong-Kai Cui
- Department of Chemistry, Center for Self-Assembled Chemical Structures (CSACS), Université de Montréal , C.P. 6128, Succ. Centre Ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|
13
|
SzymaŃski W, Yilmaz D, Koçer A, Feringa BL. Bright ion channels and lipid bilayers. Acc Chem Res 2013; 46:2910-23. [PMID: 23597020 DOI: 10.1021/ar4000357] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
If we look at a simple organism such as a zebrafish under a microscope, we would see many cells working in harmony. If we zoomed in, we would observe each unit performing its own tasks in a special aqueous environment isolated from the other units by a lipid bilayer approximately 5 nm thick. These confined units are social: they communicate with one another by sensing and responding to the chemical changes in their environment through receptors and ion channels. These channels control the highly specific and selective passage of ions from one side of the cell to the other and are embedded in lipid bilayers. The movement of ions through ion channels supports excitation and electrical signaling in the nervous system. Ion channels have fascinated scientists not only because of their specificity and selectivity, but also for their functions, the serious consequences when they malfunction, and the other potential applications of these molecules. Light is a useful trigger to control and manipulate ion channels externally. With the many state-of-the-art optical technologies available, light offers a high degree of spatial and temporal control, millisecond precision, and noninvasive intervention and does not change the chemical environment of the system of interest. In this Account, we discuss research toward the dynamic control of lipid bilayer assembly and channel function, particularly the transport across the lipid bilayer-ion channel barrier of cells using light. We first summarize the manipulation of ion channel activity with light to modulate the channel's natural activity. Based on the type of photoswitch employed, we can achieve novel functionalities with these channels, and control neural activity. Then we discuss the recent developments in light-induced transport through lipid bilayers. We focus on three different approaches: the incorporation of photoswitchable copolymers into the lipids, the doping of the lipid bilayer with photosensitive amphiphiles and the preparation of the lipid bilayers solely from photoswitchable lipids. These examples reflect the versatility of what we can achieve by manipulating biological systems with light, from triggering the permeability of a specific area of a lipid bilayer to controlling the behavior of a whole organism.
Collapse
Affiliation(s)
- Wiktor SzymaŃski
- Center for Systems Chemistry, Stratingh Institute for Chemistry and ‡Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Duygu Yilmaz
- Center for Systems Chemistry, Stratingh Institute for Chemistry and ‡Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - ArmaĞan Koçer
- Center for Systems Chemistry, Stratingh Institute for Chemistry and ‡Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ben L. Feringa
- Center for Systems Chemistry, Stratingh Institute for Chemistry and ‡Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
14
|
Fomina N, Sankaranarayanan J, Almutairi A. Photochemical mechanisms of light-triggered release from nanocarriers. Adv Drug Deliv Rev 2012; 64:1005-20. [PMID: 22386560 PMCID: PMC3395781 DOI: 10.1016/j.addr.2012.02.006] [Citation(s) in RCA: 344] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 02/16/2012] [Accepted: 02/16/2012] [Indexed: 12/18/2022]
Abstract
Over the last three decades, a handful of photochemical mechanisms have been applied to a large number of nanoscale assemblies that encapsulate a payload to afford spatio-temporal and remote control over activity of the encapsulated payload. Many of these systems are designed with an eye towards biomedical applications, as spatio-temporal and remote control of bioactivity would advance research and clinical practice. This review covers five underlying photochemical mechanisms that govern the activity of the majority of photoresponsive nanocarriers: 1. photo driven isomerization and oxidation, 2. surface plasmon absorption and photothermal effects, 3. photo driven hydrophobicity changes, 4. photo driven polymer backbone fragmentation and 5. photo driven de-crosslinking. The ways in which these mechanisms have been incorporated into nanocarriers and how they affect release are detailed, as well as the advantages and disadvantages of each system.
Collapse
Affiliation(s)
- Nadezda Fomina
- University of California San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, Dept. of Materials Science and Engineering, Dept. of NanoEngineering, 9500 Gilman Dr. MC 0660, La Jolla, CA, USA
| | - Jagadis Sankaranarayanan
- University of California San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, Dept. of Materials Science and Engineering, Dept. of NanoEngineering, 9500 Gilman Dr. MC 0660, La Jolla, CA, USA
| | - Adah Almutairi
- University of California San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, Dept. of Materials Science and Engineering, Dept. of NanoEngineering, 9500 Gilman Dr. MC 0660, La Jolla, CA, USA
| |
Collapse
|
15
|
Liang X, Yue X, Dai Z, Kikuchi JI. Photoresponsive liposomal nanohybrid cerasomes. Chem Commun (Camb) 2011; 47:4751-3. [PMID: 21409244 DOI: 10.1039/c1cc00063b] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An innovative photoresponsive cerasome is fabricated by sol-gel process in combination of self-assembly technique from a molecularly designed organoalkoxysilylated lipid containing an azobenzene unit, which is able to operate as a "valve" with an "on-off" function under specific stimuli to control the release of loaded guest molecules from the liposomal membrane.
Collapse
Affiliation(s)
- Xiaolong Liang
- Nanomedicine and Biosensor Laboratory, School of Sciences, State Key Laboratory of Urban Water Resources andEnvironment, Harbin Institute of Technology, Harbin 150001, China
| | | | | | | |
Collapse
|
16
|
Polyelectrolyte-coated liposomes: stabilization of the interfacial complexes. Adv Colloid Interface Sci 2008; 142:43-52. [PMID: 18571615 DOI: 10.1016/j.cis.2008.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 04/07/2008] [Accepted: 04/16/2008] [Indexed: 12/28/2022]
Abstract
Anionic liposomes, composed of egg lecithin (EL) or dipalmitoylphosphatidylcholine (DPPC) with 20 mol% of cardiolipin (CL(2-)), were mixed with cationic polymers, poly(4-vinylpyridine) fully quaternized with ethyl bromide (P2) or poly-L-lysine (PL). Polymer/liposome binding studies were carried out using electrophoretic mobility (EPM), fluorescence, and conductometry as the main analytical tools. Binding was also examined in the presence of added salt and polyacrylic acid (PAA). The following generalizations arose from the experiments: (a) Binding of P2 and PL to small EL/CL(2-) liposomes (60-80 nm in diameter) is electrostatic in nature and completely reversed by addition of salt or PAA. (b) Binding can be enhanced by hydrophobization of the polymer with cetyl groups. (c) Binding can also be enhanced by changing the phase state of the lipid bilayer from liquid to solid (i.e. going from EL to DPPC) or by increasing the size of the liposomes (i.e. going from 60-80 to 300 nm). By far the most promising systems, from the point of view of constructing polyelectrolyte multilayers on liposome cores without disruption of liposome integrity, involve small, liquid, anionic liposomes coated initially with polycations carrying pendant alkyl groups.
Collapse
|
17
|
Kuiper JM, Stuart MCA, Engberts JBFN. Photochemically induced disturbance of the alkyl chain packing in vesicular membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:426-432. [PMID: 18067338 DOI: 10.1021/la702892m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In previous reports, we presented the synthesis and properties of double-tailed azobenzene-substituted phosphate amphiphiles (Kuiper et al. Synthesis 2003, 695 and Kuiper et al. Langmuir 2004, 20, 1152). We also reported that an ion channel can be regulated by trans-cis isomerization of these amphiphiles, which were incorporated in the membrane (Folgering et al. Langmuir 2004, 20, 6985). In the present study, the effect of trans-cis isomerization of both single- and double-tailed azobenzene-substituted amphiphiles on the aggregation and packing behavior has been studied. The phase transition temperature of a membrane and the thermal half-life times of the cis azobenzene-substituted amphiphiles in membranes have been measured. Furthermore, the synthesis and properties of single-tailed azobenzene-substituted phosphate amphiphiles are described and compared with those of the double-tailed analogues. The single-tailed azobenzene-substituted phosphates have a low solubility in water and form micelles, sheets, and crystals. In all cases the trans-cis isomerization leads to a disturbance of the chain packing. Both single- and double-tailed cis azobenzene-substituted phosphates lowered the main phase transition temperature of bilayer membranes. The effect increased when the azobenzene moiety was situated closer to the head group. Accordingly, the half-life times of the cis azobenzene group was shorter when the azobenzene group was positioned closer to the head group for both the single- and double-tailed amphiphiles. Interestingly, the thermal cis-trans isomerization of the single-tailed azobenzene-substituted phosphates was faster in a DOPC membrane than that for the free monomer in aqueous solution.
Collapse
Affiliation(s)
- Johanna M Kuiper
- Physical Organic Chemistry Unit, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
18
|
Mansoorabadi SO, Thibodeaux CJ, Liu HW. The diverse roles of flavin coenzymes--nature's most versatile thespians. J Org Chem 2007; 72:6329-42. [PMID: 17580897 PMCID: PMC2519020 DOI: 10.1021/jo0703092] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Flavin coenzymes play a variety of roles in biological systems. This Perspective highlights the chemical versatility of flavins by reviewing research on five flavoenzymes that have been studied in our laboratory. Each of the enzymes discussed in this review [the acyl-CoA dehydrogenases (ACDs), CDP-6-deoxy-l-threo-d-glycero-4-hexulose-3-dehydrase reductase (E3), CDP-4-aceto-3,6-dideoxygalactose synthase (YerE), UDP-galactopyranose mutase (UGM), and type II isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IDI-2)] utilizes flavin in a distinct role. In particular, the catalytic mechanisms of two of these enzymes, UGM and IDI-2, may involve novel flavin chemistry.
Collapse
Affiliation(s)
- Steven O. Mansoorabadi
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA
| | - Christopher J. Thibodeaux
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA
| | - Hung-wen Liu
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
19
|
Liu XM, Yang B, Wang YL, Wang JY. Photoisomerisable cholesterol derivatives as photo-trigger of liposomes: Effect of lipid polarity, temperature, incorporation ratio, and cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1720:28-34. [PMID: 16368070 DOI: 10.1016/j.bbamem.2005.10.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 10/23/2005] [Accepted: 10/24/2005] [Indexed: 11/29/2022]
Abstract
Three cholesterol derivatives containing an azobenzene moiety with different polarities were designed and synthesized (AB lipids 1 to 3). The effects of structure, temperature and incorporation ratio on liposomes were studied, with the results showing that the polarity in 4-substituent and in some cases, 4'-substituent may be important for their incorporation feasibility and photoisomerizability in liposomes. Liposomes incorporated with AB lipid 3 could release multi-pulsatilely upon UV and visible light irradiation both in gel state and liquid crystal state of liposomes. An increase in the incorporation ratio of AB lipid 3 enhanced the amount of drug released greatly. Unlike other azobenzene photo-triggers reported, AB lipid 3 did not increase the spontaneous release of liposomes. Furthermore, cholesterol suppressed the spontaneous release of liposomes.
Collapse
Affiliation(s)
- Xin-Ming Liu
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| | | | | | | |
Collapse
|
20
|
Andresen TL, Jensen SS, Jørgensen K. Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 2005; 44:68-97. [PMID: 15748655 DOI: 10.1016/j.plipres.2004.12.001] [Citation(s) in RCA: 400] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tumor specific drug delivery has become increasingly interesting in cancer therapy, as the use of chemotherapeutics is often limited due to severe side effects. Conventional drug delivery systems have shown low efficiency and a continuous search for more advanced drug delivery principles is therefore of great importance. In the first part of this review, we present current strategies in the drug delivery field, focusing on site-specific triggered drug release from liposomes in cancerous tissue. Currently marketed drug delivery systems lack the ability to actively release the carried drug and rely on passive diffusion or slow non-specific degradation of the liposomal carrier. To obtain elevated tumor-to-normal tissue drug ratios, it is important to develop drug delivery strategies where the liposomal carriers are actively degraded specifically in the tumor tissue. Many promising strategies have emerged ranging from externally triggered light- and thermosensitive liposomes to receptor targeted, pH- and enzymatically triggered liposomes relying on an endogenous trigger mechanism in the cancerous tissue. However, even though several of these strategies were introduced three decades ago, none of them have yet led to marketed drugs and are still far from achieving this goal. The most advanced and prospective technologies are probably the prodrug strategies where non-toxic drugs are carried and activated specifically in the malignant tissue by overexpressed enzymes. In the second part of this paper, we review our own work, exploiting secretory phospholipase A2 as a site-specific trigger and prodrug activator in cancer therapy. We present novel prodrug lipids together with biophysical investigations of liposome systems, constituted by these new lipids and demonstrate their degradability by secretory phospholipase A2. We furthermore give examples of the biological performance of the enzymatically degradable liposomes as advanced drug delivery systems.
Collapse
Affiliation(s)
- Thomas L Andresen
- Department of Chemistry, Technical University of Denmark, Building 207, DK-2800 Lyngby, Denmark.
| | | | | |
Collapse
|
21
|
Karlsson M, Davidson M, Karlsson R, Karlsson A, Bergenholtz J, Konkoli Z, Jesorka A, Lobovkina T, Hurtig J, Voinova M, Orwar O. BIOMIMETIC NANOSCALE REACTORS AND NETWORKS. Annu Rev Phys Chem 2004; 55:613-49. [PMID: 15117264 DOI: 10.1146/annurev.physchem.55.091602.094319] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methods based on self-assembly, self-organization, and forced shape transformations to form synthetic or semisynthetic enclosed lipid bilayer structures with several properties similar to biological nanocompartments are reviewed. The procedures offer unconventional micro- and nanofabrication routes to yield complex soft-matter devices for a variety of applications for example, in physical chemistry and nanotechnology. In particular, we describe novel micromanipulation methods for producing fluid-state lipid bilayer networks of nanotubes and surface-immobilized vesicles with controlled geometry, topology, membrane composition, and interior contents. Mass transport in nanotubes and materials exchange, for example, between conjugated containers, can be controlled by creating a surface tension gradient that gives rise to a moving boundary or by induced shape transformations. The network devices can operate with extremely small volume elements and low mass, to the limit of single molecules and particles at a length scale where a continuum mechanics approximation may break down. Thus, we also describe some concepts of anomalous fluctuation-dominated kinetics and anomalous diffusive behaviours, including hindered transport, as they might become important in studying chemistry and transport phenomena in these confined systems. The networks are suitable for initiating and controlling chemical reactions in confined biomimetic compartments for rationalizing, for example, enzyme behaviors, as well as for applications in nanofluidics, bioanalytical devices, and to construct computational and complex sensor systems with operations building on chemical kinetics, coupled reactions and controlled mass transport.
Collapse
Affiliation(s)
- Mattias Karlsson
- Department of Chemistry and Bioscience, and Microtechnology Center at Chalmers, SE-41296 Goteborg, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kuiper JM, Engberts JBFN. H-aggregation of azobenzene-substituted amphiphiles in vesicular membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:1152-60. [PMID: 15803690 DOI: 10.1021/la0358724] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Photochemical switching has been studied of double-tailed phosphate amphiphiles containing azobenzene units in both tails in aqueous vesicular dispersions and in mixed vesicular systems with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Since the ease of switching depends on the strength of the bilayer packing, particular emphasis has been placed on the occurrence of H-aggregation in the hydrophobic core of the vesicles. UV-vis spectrometry was employed to monitor H-aggregation and showed how this process depends on the ionic strength and on the mode of preparation of the vesicles. Two types of H-aggregates were observed in mixed DOPC vesicles with 5 mol % of azobenzene phosphate: one with lambda(max) at around 300 nm and one with lambda(max) at 305-320 nm. Those with lambda(max) at 300 nm could not be trans-cis photoisomerized, whereas those with lambda(max) at 305-320 nm are more loosely packed and can be photochemically switched. The permeability of the vesicular bilayers, as probed with leakage experiments using calcein as a fluorescent probe, was examined as another measure for the strength of bilayer packing. Leakage occurred only for DOPC vesicles containing more than 20 mol % of azobenzenephosphate, irradiated with UV light to induce trans-cis photoisomerization. We contend that detailed information on bilayer packing will be of crucial importance for fine-tuning the lateral pressure in vesicular membranes with the ultimate aim to steer the opening and closing of mechanosensitive protein channels of large conductance.
Collapse
Affiliation(s)
- Johanna M Kuiper
- Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
23
|
Wan Y, Angleson JK, Kutateladze AG. Liposomes from novel photolabile phospholipids: light-induced unloading of small molecules as monitored by PFG NMR. J Am Chem Soc 2002; 124:5610-1. [PMID: 12010013 DOI: 10.1021/ja016874i] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A molecular dithiane-based approach to synthesis of novel photolabile phospholipids is developed. These lipids are used in formulations with egg-POPC and cholesterol to prepare light-sensitive liposomes. Irradiation of such liposomes in PBS buffer (medium pressure mercury lamp, Pyrex filter, lambda > 300 nm) significantly increases the bilayer permeability and accelerates the release of entrapped small organic molecules by an order of magnitude. A simple assay, based on (1)H or (19)F PFG NMR measurements of diffusion coefficients, is developed to monitor light-induced unloading of the probe molecules.
Collapse
Affiliation(s)
- Yongqin Wan
- Contribution from the Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, USA
| | | | | |
Collapse
|
24
|
Yaroslavov AA, Efimova AA, Lobyshev VI, Kabanov VA. Reversibility of structural rearrangements in the negative vesicular membrane upon electrostatic adsorption/desorption of the polycation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1560:14-24. [PMID: 11958772 DOI: 10.1016/s0005-2736(01)00453-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interaction of small unilamellar vesicles (SUVs), composed of negative diphosphatidylglycerol (cardiolipin, CL(2-)) and neutral dipalmitoylphosphatidylcholine (DPPC), with poly(N-ethyl-4-vinylpyridinium bromide) (PEVP) was studied in water solution above and below the vesicular membrane melting point by means of differential scanning calorimetry, photon correlation spectroscopy, microelectrophoresis, conductometry, and fluorescence techniques. It has been found that CL(2-) species are homogeneously distributed within DPPC-CL(2-) SUV membrane leaflets and between them. Interaction of PEVP with DPPC-CL(2-) SUVs led to drastic structural rearrangements in the membrane if it was in the fluid state (liquid SUVs). Negative CL(2-) molecules migrated from the inner to the outer membrane leaflet and segregated in the vicinity of adsorbed PEVP chains. In addition, PEVP adsorption terminated completely the exchange of lipid molecules between the SUVs. At the same time, the integrity of liquid SUVs contacting PEVP remained unchanged. Since the interaction of PEVP with liquid SUVs was predominantly electrostatic in nature, the polycation could be completely removed from the vesicular membrane by addition of an excess of polyacrylic acid (PAA) polyanions forming a more stable electrostatic complex with PEVP. Removal of PEVP resulted in complete resumption of the original distribution of lipids in lateral and transmembrane directions as well as intervesicular lipid exchange. In contrast, PEVP interacting with DPPC-CL(2-) SUVs formed defects in the vesicular membrane if it was in the gel state (solid SUVs). Such interaction was contributed not only by electrostatic but most likely by hydrophobic interactions involving the defected membrane sites. PEVP kept contacting solid SUVs in the presence of an abundant amount of PAA. The established phenomena may be important for understanding the biological effects of polycations.
Collapse
Affiliation(s)
- A A Yaroslavov
- School of Chemistry, M.V. Lomonosov Moscow Slate University, Leninskie Gory, 119899, Moscow, Russia.
| | | | | | | |
Collapse
|
25
|
Affiliation(s)
- D C Drummond
- Research Institute, California Pacific Medical Center, 94115, San Francisco, CA, USA
| | | | | |
Collapse
|
26
|
Zhang ZY, Smith BD. Synthesis and characterization of NVOC-DOPE, a caged photoactivatable derivative of dioleoylphosphatidylethanolamine. Bioconjug Chem 1999; 10:1150-2. [PMID: 10563787 DOI: 10.1021/bc990087h] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A caged, photocleavable derivative of dioleoylphosphatidylethanolamine (DOPE) called NVOC-DOPE was prepared by reaction of DOPE with 6-nitroveratryloxycarbonyl chloride. In contrast to egg phosphatidylethanolamine (EPE), NVOC-DOPE or its 1:1 mixture with EPE forms liposomes at both pH 7.4 and 5.0. Photolysis (lambda > 300 nm) of aqueous liposomal dispersions of NVOC-DOPE at pH 9.0, 7.4, or 5.0 results in complete conversion to DOPE and subsequent release of entrapped calcein dye. The temporal and spatial control associated with the photorelease technique suggests that NVOC-DOPE can be used to study a range of important dynamic membrane processes such as membrane fusion and the action of membrane-associated enzymes.
Collapse
Affiliation(s)
- Z Y Zhang
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA
| | | |
Collapse
|
27
|
Bisby RH, Mead C, Mitchell AC, Morgan CG. Fast laser-induced solute release from liposomes sensitized with photochromic lipid: effects of temperature, lipid host, and sensitizer concentration. Biochem Biophys Res Commun 1999; 262:406-10. [PMID: 10462488 DOI: 10.1006/bbrc.1999.1206] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liposomes of gel-phase phospholipid have been prepared containing a photochromic lipid sensitizer. A fast UV laser pulse isomerizes the sensitizer destabilizing the lipid bilayer structure and causing release of trapped solute. The kinetics of solute release have been investigated as a function of host lipid chain length, sensitizer concentration, and temperature, and the limits of liposome stability have been established. At low concentrations of sensitizer, pulsed laser irradiation induces some solute release when continuous UV illumination is ineffective. Although rates of solute release usually increase with temperature, at low sensitizer concentration in a rigid host, leakage at first increases but then decreases rapidly above a threshold temperature. The results presented are relevant to the design of photostimulated drug delivery systems and to potential applications of photosensitive liposomes as caging agents for biological effectors.
Collapse
Affiliation(s)
- R H Bisby
- Science Research Institute, University of Salford, Salford, M5 4WT, United Kingdom.
| | | | | | | |
Collapse
|
28
|
|