1
|
Jang S, Yoo C, Kim HS, Kim J, Lee DY. Oxygenating respiratoid biosystem for therapeutic cell transplantation. Nat Commun 2024; 15:9151. [PMID: 39443443 PMCID: PMC11500001 DOI: 10.1038/s41467-024-53246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
In this study, we address the persistent challenge of providing adequate oxygen to transplanted cells by introducing a respiratoid biosystem. Central to our strategy is the chloroplast-transit-peptide (CTP), crucial for optimal oxygenation. Through conjugation of CTP with alginate, we achieve stabilization of chloroplast structure. Strategically anchored to the outer chloroplast membrane, CTP not only ensures structural integrity but also upregulates key photosynthesis-associated genes. This biosystem demonstrates exceptional efficacy in spontaneously generating oxygen, particularly under hypoxic conditions (~1% pO2). In an application, pancreatic islets encapsulated within the respiratoid biosystem and intraperitoneally implanted in diabetic mice maintain normal glucose levels effectively. Insulin secretion persists for 100 days post-xenotransplantation without the need for immunosuppressant administration, highlighting the reliance on the respiratoid biosystem's oxygen supply and structural stability. Our study demonstrates the respiratoid biosystem as a platform in tissue engineering, offering a nature-inspired solution to the critical challenge of spontaneous oxygen supply.
Collapse
Affiliation(s)
- Seonmi Jang
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, Republic of Korea
| | - Chaerim Yoo
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, Republic of Korea
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, USA
| | - Jiyun Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, Republic of Korea.
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea.
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, Republic of Korea.
- Elixir Pharmatech Inc, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Marulanda Valencia W, Pandit A. Photosystem II Subunit S (PsbS): A Nano Regulator of Plant Photosynthesis. J Mol Biol 2024; 436:168407. [PMID: 38109993 DOI: 10.1016/j.jmb.2023.168407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/26/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Light is required for photosynthesis, but plants are often exposed to excess light, which can lead to photodamage and eventually cell death. To prevent this, they evolved photoprotective feedback mechanisms that regulate photosynthesis and trigger processes that dissipate light energy as heat, called non-photochemical quenching (NPQ). In excess light conditions, the light reaction and activity of Photosystem II (PSII) generates acidification of the thylakoid lumen, which is sensed by special pH-sensitive proteins called Photosystem II Subunit S (PsbS), actuating a photoprotective "switch" in the light-harvesting antenna. Despite its central role in regulating photosynthetic energy conversion, the molecular mechanism of PsbS as well as its interaction with partner proteins are not well understood. This review summarizes the current knowledge on the molecular structure and mechanistic aspects of the light-stress sensor PsbS and addresses open questions and challenges in the field regarding a full understanding of its functional mechanism and role in NPQ.
Collapse
Affiliation(s)
| | - Anjali Pandit
- Leiden Inst. of Chemistry, Gorlaeus Laboratory, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
3
|
McQuillan JL, Cutolo EA, Evans C, Pandhal J. Proteomic characterization of a lutein-hyperaccumulating Chlamydomonas reinhardtii mutant reveals photoprotection-related factors as targets for increasing cellular carotenoid content. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:166. [PMID: 37925447 PMCID: PMC10625216 DOI: 10.1186/s13068-023-02421-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Microalgae are emerging hosts for the sustainable production of lutein, a high-value carotenoid; however, to be commercially competitive with existing systems, their capacity for lutein sequestration must be augmented. Previous attempts to boost microalgal lutein production have focussed on upregulating carotenoid biosynthetic enzymes, in part due to a lack of metabolic engineering targets for expanding lutein storage. RESULTS Here, we isolated a lutein hyper-producing mutant of the model green microalga Chlamydomonas reinhardtii and characterized the metabolic mechanisms driving its enhanced lutein accumulation using label-free quantitative proteomics. Norflurazon- and high light-resistant C. reinhardtii mutants were screened to yield four mutant lines that produced significantly more lutein per cell compared to the CC-125 parental strain. Mutant 5 (Mut-5) exhibited a 5.4-fold increase in lutein content per cell, which to our knowledge is the highest fold increase of lutein in C. reinhardtii resulting from mutagenesis or metabolic engineering so far. Comparative proteomics of Mut-5 against its parental strain CC-125 revealed an increased abundance of light-harvesting complex-like proteins involved in photoprotection, among differences in pigment biosynthesis, central carbon metabolism, and translation. Further characterization of Mut-5 under varying light conditions revealed constitutive overexpression of the photoprotective proteins light-harvesting complex stress-related 1 (LHCSR1) and LHCSR3 and PSII subunit S regardless of light intensity, and increased accrual of total chlorophyll and carotenoids as light intensity increased. Although the photosynthetic efficiency of Mut-5 was comparatively lower than CC-125, the amplitude of non-photochemical quenching responses of Mut-5 was 4.5-fold higher than in CC-125 at low irradiance. CONCLUSIONS We used C. reinhardtii as a model green alga and identified light-harvesting complex-like proteins (among others) as potential metabolic engineering targets to enhance lutein accumulation in microalgae. These have the added value of imparting resistance to high light, although partially compromising photosynthetic efficiency. Further genetic characterization and engineering of Mut-5 could lead to the discovery of unknown players in photoprotective mechanisms and the development of a potent microalgal lutein production system.
Collapse
Affiliation(s)
- Josie L McQuillan
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| | - Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Caroline Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| |
Collapse
|
4
|
Ptushenko VV, Knorre DD, Glagoleva ES. The Photoprotective Protein PsbS from Green Microalga Lobosphaera incisa: The Amino Acid Sequence, 3D Structure and Probable pH-Sensitive Residues. Int J Mol Sci 2023; 24:15060. [PMID: 37894741 PMCID: PMC10606523 DOI: 10.3390/ijms242015060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
PsbS is one of the key photoprotective proteins, ensuring the tolerance of the photosynthetic apparatus (PSA) of a plant to abrupt changes in irradiance. Being a component of photosystem II, it provides the formation of quenching centers for excited states of chlorophyll in the photosynthetic antenna with an excess of light energy. The signal for "turning on" the photoprotective function of the protein is an excessive decrease in pH in the thylakoid lumen occurring when all the absorbed light energy (stored in the form of transmembrane proton potential) cannot be used for carbon assimilation. Hence, lumen-exposed protonatable amino acid residues that could serve as pH sensors are the essential components of PsbS-dependent photoprotection, and their pKa values are necessary to describe it. Previously, calculations of the lumen-exposed protonatable residue pKa values in PsbS from spinach were described in the literature. However, it has recently become clear that PsbS, although typical of higher plants and charophytes, can also provide photoprotection in green algae. Namely, the stress-induced expression of PsbS was recently shown for two green microalgae species: Chlamydomonas reinhardtii and Lobosphaera incisa. Therefore, we determined the amino acid sequence and modeled the three-dimensional structure of the PsbS from L. incisa, as well as calculated the pKa values of its lumen-exposed protonatable residues. Despite significant differences in amino acid sequence, proteins from L. incisa and Spinacia oleracea have similar three-dimensional structures. Along with the other differences, one of the two pH-sensing glutamates in PsbS from S. oleracea (namely, Glu-173) has no analogue in L. incisa protein. Moreover, there are only four glutamate residues in the lumenal region of the L. incisa protein, while there are eight glutamates in S. oleracea. However, our calculations show that, despite the relative deficiency in protonatable residues, at least two residues of L. incisa PsbS can be considered probable pH sensors: Glu-87 and Lys-196.
Collapse
Affiliation(s)
- Vasily V. Ptushenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Dmitry D. Knorre
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Elena S. Glagoleva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
5
|
Levin G, Schuster G. LHC-like Proteins: The Guardians of Photosynthesis. Int J Mol Sci 2023; 24:2503. [PMID: 36768826 PMCID: PMC9916820 DOI: 10.3390/ijms24032503] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
The emergence of chlorophyll-containing light-harvesting complexes (LHCs) was a crucial milestone in the evolution of photosynthetic eukaryotic organisms. Light-harvesting chlorophyll-binding proteins form complexes in proximity to the reaction centres of photosystems I and II and serve as an antenna, funnelling the harvested light energy towards the reaction centres, facilitating photochemical quenching, thereby optimizing photosynthesis. It is now generally accepted that the LHC proteins evolved from LHC-like proteins, a diverse family of proteins containing up to four transmembrane helices. Interestingly, LHC-like proteins do not participate in light harvesting to elevate photosynthesis activity under low light. Instead, they protect the photosystems by dissipating excess energy and taking part in non-photochemical quenching processes. Although there is evidence that LHC-like proteins are crucial factors of photoprotection, the roles of only a few of them, mainly the stress-related psbS and lhcSR, are well described. Here, we summarize the knowledge gained regarding the evolution and function of the various LHC-like proteins, with emphasis on those strongly related to photoprotection. We further suggest LHC-like proteins as candidates for improving photosynthesis in significant food crops and discuss future directions in their research.
Collapse
Affiliation(s)
- Guy Levin
- Faculty of Biology, Technion, Haifa 32000, Israel
| | - Gadi Schuster
- Faculty of Biology, Technion, Haifa 32000, Israel
- Grand Technion Energy Program, Technion, Haifa 32000, Israel
| |
Collapse
|
6
|
Ptushenko VV, Bondarenko GN, Vinogradova EN, Glagoleva ES, Karpova OV, Ptushenko OS, Shibzukhova KA, Solovchenko AE, Lobakova ES. Chilling Upregulates Expression of the PsbS and LhcSR Genes in the Chloroplasts of the Green Microalga Lobosphaera incisa IPPAS C-2047. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1699-1706. [PMID: 36717458 DOI: 10.1134/s0006297922120240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Non-photochemical quenching (NPQ) of excited chlorophyll states is essential for protecting the photosynthetic apparatus (PSA) from the excessive light-induced damage in all groups of oxygenic photosynthetic organisms. The key component of the NPQ mechanism in green algae and some other groups of algae and mosses is the LhcSR protein of the light harvesting complex (LHC) protein superfamily. In vascular plants, LhcSR is replaced by PsbS, another member of the LHC superfamily and a subunit of photosystem II (PSII). PsbS also performs the photoprotective function in mosses. For a long time, PsbS had been believed to be nonfunctional in green algae, although the corresponding gene was discovered in the genome of these organisms. The first evidence of the PsbS accumulation in the model green alga Chlamydomonas reinhardtii in response to the increase in irradiance was obtained only six years ago. However, the observed increase in the PsbS content was short-termed (on an hour-timescale). Here, we report a significant (more than three orders of magnitude) and prolonged (four days) upregulation of PsbS expression in response to the chilling-induced high-light stress followed by a less significant (~ tenfold) increase in the PsbS expression for nine days. This is the first evidence for the long-term upregulation of the PsbS expression in green alga (Chlorophyta) in response to stress. Our data indicate that the role of PsbS in the PSA of Chlorophyta is not limited to the first-line defense against stress, as it was previously assumed, but includes full-scale participation in the photoprotection of PSA from the environmental stress factors.
Collapse
Affiliation(s)
- Vasily V Ptushenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | | | - Elizaveta N Vinogradova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kurchatov Institute National Research Center, 123182 Moscow Russia
| | - Elena S Glagoleva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga V Karpova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Oxana S Ptushenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Karina A Shibzukhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexei E Solovchenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Pskov State University, Pskov, 128000, Russia
| | - Elena S Lobakova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
7
|
Cazzaniga S, Perozeni F, Baier T, Ballottari M. Engineering astaxanthin accumulation reduces photoinhibition and increases biomass productivity under high light in Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:77. [PMID: 35820961 PMCID: PMC9277849 DOI: 10.1186/s13068-022-02173-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022]
Abstract
Background Astaxanthin is a highly valuable ketocarotenoid with strong antioxidative activity and is natively accumulated upon environmental stress exposure in selected microorganisms. Green microalgae are photosynthetic, unicellular organisms cultivated in artificial systems to produce biomass and industrially relevant bioproducts. While light is required for photosynthesis, fueling carbon fixation processes, application of high irradiance causes photoinhibition and limits biomass productivity. Results Here, we demonstrate that engineered astaxanthin accumulation in the green alga Chlamydomonas reinhardtii conferred high light tolerance, reduced photoinhibition and improved biomass productivity at high irradiances, likely due to strong antioxidant properties of constitutively accumulating astaxanthin. In competitive co-cultivation experiments, astaxanthin-rich Chlamydomonas reinhardtii outcompeted its corresponding parental background strain and even the fast-growing green alga Chlorella vulgaris. Conclusions Metabolic engineering inducing astaxanthin and ketocarotenoids accumulation caused improved high light tolerance and increased biomass productivity in the model species for microalgae Chlamydomonas reinhardtii. Thus, engineering microalgal pigment composition represents a powerful strategy to improve biomass productivities in customized photobioreactors setups. Moreover, engineered astaxanthin accumulation in selected strains could be proposed as a novel strategy to outperform growth of other competing microalgal strains. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02173-3.
Collapse
|
8
|
Zhang Y, Ye Y, Bai F, Liu J. The oleaginous astaxanthin-producing alga Chromochloris zofingiensis: potential from production to an emerging model for studying lipid metabolism and carotenogenesis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:119. [PMID: 33992124 PMCID: PMC8126118 DOI: 10.1186/s13068-021-01969-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/07/2021] [Indexed: 05/05/2023]
Abstract
The algal lipids-based biodiesel, albeit having advantages over plant oils, still remains high in the production cost. Co-production of value-added products with lipids has the potential to add benefits and is thus believed to be a promising strategy to improve the production economics of algal biodiesel. Chromochloris zofingiensis, a unicellular green alga, has been considered as a promising feedstock for biodiesel production because of its robust growth and ability of accumulating high levels of triacylglycerol under multiple trophic conditions. This alga is also able to synthesize high-value keto-carotenoids and has been cited as a candidate producer of astaxanthin, the strongest antioxidant found in nature. The concurrent accumulation of triacylglycerol and astaxanthin enables C. zofingiensis an ideal cell factory for integrated production of the two compounds and has potential to improve algae-based production economics. Furthermore, with the advent of chromosome-level whole genome sequence and genetic tools, C. zofingiensis becomes an emerging model for studying lipid metabolism and carotenogenesis. In this review, we summarize recent progress on the production of triacylglycerol and astaxanthin by C. zofingiensis. We also update our understanding in the distinctive molecular mechanisms underlying lipid metabolism and carotenogenesis, with an emphasis on triacylglycerol and astaxanthin biosynthesis and crosstalk between the two pathways. Furthermore, strategies for trait improvements are discussed regarding triacylglycerol and astaxanthin synthesis in C. zofingiensis.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Ying Ye
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Fan Bai
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
|
10
|
Ueno Y, Shimakawa G, Aikawa S, Miyake C, Akimoto S. Photoprotection mechanisms under different CO 2 regimes during photosynthesis in a green alga Chlorella variabilis. PHOTOSYNTHESIS RESEARCH 2020; 144:397-407. [PMID: 32377933 DOI: 10.1007/s11120-020-00757-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/23/2020] [Indexed: 05/28/2023]
Abstract
Oxygenic photosynthesis converts light energy into chemical energy via electron transport and assimilates CO2 in the Calvin-Benson cycle with the chemical energy. Thus, high light and low CO2 conditions induce the accumulation of electrons in the photosynthetic electron transport system, resulting in the formation of reactive oxygen species. To prevent the accumulation of electrons, oxygenic photosynthetic organisms have developed photoprotection mechanisms, including non-photochemical quenching (NPQ) and alternative electron flow (AEF). There are diverse molecular mechanisms underlying NPQ and AEF, and the corresponding molecular actors have been identified and characterized using a model green alga Chlamydomonas reinhardtii. In contrast, detailed information about the photoprotection mechanisms is lacking for other green algal species. In the current study, we examined the photoprotection mechanisms responsive to CO2 in the green alga Chlorella variabilis by combining the analyses of pulse-amplitude-modulated fluorescence, O2 evolution, and the steady-state and time-resolved fluorescence spectra. Under the CO2-limited condition, ΔpH-dependent NPQ occurred in photosystems I and II. Moreover, O2-dependent AEF was also induced. Under the CO2-limited condition with carbon supplementation, NPQ was relaxed and light-harvesting chlorophyll-protein complex II was isolated from both photosystems. In C. variabilis, the O2-dependent AEF and the mechanisms that instantly convert the light-harvesting functions of both photosystems may be important for maintaining efficient photosynthetic activities under various CO2 conditions.
Collapse
Affiliation(s)
- Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
| | - Ginga Shimakawa
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Shimpei Aikawa
- Japan International Research Center for Agricultural Sciences, Tsukuba, 305-8686, Japan
| | - Chikahiro Miyake
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
11
|
Nowicka B. Practical aspects of the measurements of non-photochemical chlorophyll fluorescence quenching in green microalgae Chlamydomonas reinhardtii using Open FluorCam. PHYSIOLOGIA PLANTARUM 2020; 168:617-629. [PMID: 31264713 DOI: 10.1111/ppl.13003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Methods of chlorophyll fluorescence measurements are widely used in the research on photosynthesis and ecophysiology of plants and algae. Among them, a very popular technique is pulse-amplitude-modulation (PAM) flourometry, which is simple to carry out, fast and non-invasive. However, this method is also prone to generate artifacts if the experiments were not planned and executed properly. Application of this technique to algae brings additional complications, which need to be taken into consideration. Some of them are connected with sample preparation and setting of the protocols used, while another origin from the differences in the photosynthetic apparatus and regulation of photosynthesis in various algal groups when compared to vascular plants. In the present paper, some important practical aspects concerning PAM fluorometry measurements in the green microalga Chlamydomonas reinhardtii have been described, including the equipment settings and sample preparation. The impact of growth conditions, such as light, temperature and medium type on the induction of non-photochemical quenching of chlorophyll fluorescence have been also tackled, as well as the question of state transitions occurring in darkness.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, 30-387, Poland
| |
Collapse
|
12
|
Cazzaniga S, Kim M, Bellamoli F, Jeong J, Lee S, Perozeni F, Pompa A, Jin E, Ballottari M. Photosystem II antenna complexes CP26 and CP29 are essential for nonphotochemical quenching in Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2020; 43:496-509. [PMID: 31724187 PMCID: PMC7004014 DOI: 10.1111/pce.13680] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/04/2019] [Indexed: 05/08/2023]
Abstract
Photosystems must balance between light harvesting to fuel the photosynthetic process for CO2 fixation and mitigating the risk of photodamage due to absorption of light energy in excess. Eukaryotic photosynthetic organisms evolved an array of pigment-binding proteins called light harvesting complexes constituting the external antenna system in the photosystems, where both light harvesting and activation of photoprotective mechanisms occur. In this work, the balancing role of CP29 and CP26 photosystem II antenna subunits was investigated in Chlamydomonas reinhardtii using CRISPR-Cas9 technology to obtain single and double mutants depleted of monomeric antennas. Absence of CP26 and CP29 impaired both photosynthetic efficiency and photoprotection: Excitation energy transfer from external antenna to reaction centre was reduced, and state transitions were completely impaired. Moreover, differently from higher plants, photosystem II monomeric antenna proteins resulted to be essential for photoprotective thermal dissipation of excitation energy by nonphotochemical quenching.
Collapse
Affiliation(s)
| | - Minjae Kim
- Department of Life ScienceHanyang UniversitySeoulSouth Korea
| | | | - Jooyoen Jeong
- Department of Life ScienceHanyang UniversitySeoulSouth Korea
| | - Sangmuk Lee
- Department of Life ScienceHanyang UniversitySeoulSouth Korea
| | | | - Andrea Pompa
- Dipartimento di Scienze BiomolecolariUniversità degli Studi di UrbinoUrbinoItaly
- Istituto di Bioscienze e BiorisorseConsiglio Nazionale delle RicerchePerugiaItaly
| | - EonSeon Jin
- Department of Life ScienceHanyang UniversitySeoulSouth Korea
| | | |
Collapse
|
13
|
Pinnola A. The rise and fall of Light-Harvesting Complex Stress-Related proteins as photoprotection agents during evolution. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5527-5535. [PMID: 31424076 DOI: 10.1093/jxb/erz317] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/22/2019] [Indexed: 05/18/2023]
Abstract
Photosynthesis depends on light. However, excess light can be harmful for the photosynthetic apparatus because it produces reactive oxygen species (ROS) that cause photoinhibition. Oxygenic organisms evolved photoprotection mechanisms to counteract light-dependent ROS production, including preventive dissipation of excited states of chlorophyll (1Chl*) into heat in the process termed non-photochemical quenching (NPQ). This consists in the activation of 1Chl* quenching reactions when the thylakoid luminal pH drops below 5.2. In turn, acidification occurs when the rate of the CO2 reducing cycle is saturated and cannot regenerate ADP+Pi, thus inhibiting ATPase activity and the return of protons (H+) to the stromal compartment. The major and fastest component of NPQ is energy quenching, qE, which in algae depends on the Light-Harvesting Complex Stress-Related (LHCSR) proteins. In mosses, LHCSR proteins have remained the major catalysts of energy dissipation, but a minor contribution also occurs via a homologous protein, Photosystem II Subunit S (PSBS). In vascular plants, however, LHCSR has disappeared and PSBS is the only pH-sensitive trigger of qE. Why did PSBS replace LHCSR in the later stages of land colonization? Both PSBS and LHCSR belong to the Light Harvesting Complex superfamily (LHC) and share properties such as harboring protonatable residues that are exposed to the chloroplast lumen, which is essential for pH sensing. However, there are also conspicuous differences: LHCSR binds chlorophylls and xanthophylls while PSBS does not, implying that the former may well catalyse quenching reactions while the latter needs pigment-binding partners for its quenching function. Here, the evolution of quenching mechanisms for excess light is reviewed with a focus on the role of LHCSR versus PSBS, and the reasons for the redundancy of LHCSR in vascular plants as PSBS became established.
Collapse
Affiliation(s)
- Alberta Pinnola
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
14
|
Grossman A, Sanz-Luque E, Yi H, Yang W. Building the GreenCut2 suite of proteins to unmask photosynthetic function and regulation. Microbiology (Reading) 2019; 165:697-718. [DOI: 10.1099/mic.0.000788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Arthur Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Emanuel Sanz-Luque
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Heng Yi
- Key Laboratory of Photobiology, Institute of Botany (CAS), Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Wenqiang Yang
- Key Laboratory of Photobiology, Institute of Botany (CAS), Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
15
|
Benedetti M, Vecchi V, Barera S, Dall’Osto L. Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microb Cell Fact 2018; 17:173. [PMID: 30414618 PMCID: PMC6230293 DOI: 10.1186/s12934-018-1019-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022] Open
Abstract
Interest in bulk biomass from microalgae, for the extraction of high-value nutraceuticals, bio-products, animal feed and as a source of renewable fuels, is high. Advantages of microalgal vs. plant biomass production include higher yield, use of non-arable land, recovery of nutrients from wastewater, efficient carbon capture and faster development of new domesticated strains. Moreover, adaptation to a wide range of environmental conditions evolved a great genetic diversity within this polyphyletic group, making microalgae a rich source of interesting and useful metabolites. Microalgae have the potential to satisfy many global demands; however, realization of this potential requires a decrease of the current production costs. Average productivity of the most common industrial strains is far lower than maximal theoretical estimations, suggesting that identification of factors limiting biomass yield and removing bottlenecks are pivotal in domestication strategies aimed to make algal-derived bio-products profitable on the industrial scale. In particular, the light-to-biomass conversion efficiency represents a major constraint to finally fill the gap between theoretical and industrial productivity. In this respect, recent results suggest that significant yield enhancement is feasible. Full realization of this potential requires further advances in cultivation techniques, together with genetic manipulation of both algal physiology and metabolic networks, to maximize the efficiency with which solar energy is converted into biomass and bio-products. In this review, we draft the molecular events of photosynthesis which regulate the conversion of light into biomass, and discuss how these can be targeted to enhance productivity through mutagenesis, strain selection or genetic engineering. We outline major successes reached, and promising strategies to achieving significant contributions to future microalgae-based biotechnology.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Valeria Vecchi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Simone Barera
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Luca Dall’Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
16
|
Rea G, Antonacci A, Lambreva MD, Mattoo AK. Features of cues and processes during chloroplast-mediated retrograde signaling in the alga Chlamydomonas. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:193-206. [PMID: 29807591 DOI: 10.1016/j.plantsci.2018.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Retrograde signaling is an intracellular communication process defined by cues generated in chloroplast and mitochondria which traverse membranes to their destination in the nucleus in order to regulate nuclear gene expression and protein synthesis. The coding and decoding of such organellar message(s) involve gene medleys and metabolic components about which more is known in higher plants than the unicellular organisms such as algae. Chlamydomonas reinhardtii is an oxygenic microalgal model for genetic and physiological studies. It harbors a single chloroplast and is amenable for generating mutants. The focus of this review is on studies that delineate retrograde signaling in Chlamydomonas vis a vis higher plants. Thus, communication networks between chloroplast and nucleus involving photosynthesis- and ROS-generated signals, functional tetrapyrrole biosynthesis intermediates, and Ca2+-signaling that modulate nuclear gene expression in this alga are discussed. Conceptually, different signaling components converge to regulate either the same or functionally-overlapping gene products.
Collapse
Affiliation(s)
- Giuseppina Rea
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Maya D Lambreva
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Autar K Mattoo
- The Henry A Wallace Agricultural Research Centre, U.S. Department of Agriculture, Sustainable Agricultural Systems Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
17
|
Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production. Proc Natl Acad Sci U S A 2017; 114:E4296-E4305. [PMID: 28484037 PMCID: PMC5448231 DOI: 10.1073/pnas.1619928114] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis, because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. To advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ∼58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniform gene density over chromosomes, low repetitive sequence content (∼6%), and a high fraction of protein-coding sequence (∼39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (∼73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase (BKT), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. The high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production.
Collapse
|
18
|
Christa G, Cruz S, Jahns P, de Vries J, Cartaxana P, Esteves AC, Serôdio J, Gould SB. Photoprotection in a monophyletic branch of chlorophyte algae is independent of energy-dependent quenching (qE). THE NEW PHYTOLOGIST 2017; 214:1132-1144. [PMID: 28152190 DOI: 10.1111/nph.14435] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/15/2016] [Indexed: 05/22/2023]
Abstract
Phototrophic organisms need to ensure high photosynthetic performance whilst suppressing reactive oxygen species (ROS)-induced stress occurring under excess light conditions. The xanthophyll cycle (XC), related to the high-energy quenching component (qE) of the nonphotochemical quenching (NPQ) of excitation energy, is considered to be an obligatory component of photoprotective mechanisms. The pigment composition of at least one representative of each major clade of Ulvophyceae (Chlorophyta) was investigated. We searched for a light-dependent conversion of pigments and investigated the NPQ capacity with regard to the contribution of XC and the qE component when grown under different light conditions. A XC was found to be absent in a monophyletic group of Ulvophyceae, the Bryopsidales, when cultivated under low light, but was triggered in one of the 10 investigated bryopsidalean species, Caulerpa cf. taxifolia, when cultivated under high light. Although Bryopsidales accumulate zeaxanthin (Zea) under high-light (HL) conditions, NPQ formation is independent of a XC and not related to qE. qE- and XC-independent NPQ in the Bryopsidales contradicts the common perception regarding its ubiquitous occurrence in Chloroplastida. Zea accumulation in HL-acclimated Bryopsidales most probably represents a remnant of a functional XC. The existence of a monophyletic algal taxon that lacks qE highlights the need for broad biodiversity studies on photoprotective mechanisms.
Collapse
Affiliation(s)
- Gregor Christa
- Molecular Evolution, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sónia Cruz
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Peter Jahns
- Plant Biochemistry and Stress Physiology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jan de Vries
- Molecular Evolution, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Paulo Cartaxana
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana Cristina Esteves
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João Serôdio
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sven B Gould
- Molecular Evolution, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
19
|
Leonelli L, Erickson E, Lyska D, Niyogi KK. Transient expression in Nicotiana benthamiana for rapid functional analysis of genes involved in non-photochemical quenching and carotenoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:375-386. [PMID: 27407008 PMCID: PMC5516181 DOI: 10.1111/tpj.13268] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 05/21/2023]
Abstract
Plants must switch rapidly between light harvesting and photoprotection in response to environmental fluctuations in light intensity. This switch can lead to losses in absorbed energy usage, as photoprotective energy dissipation mechanisms can take minutes to hours to fully relax. One possible way to improve photosynthesis is to engineer these energy dissipation mechanisms (measured as non-photochemical quenching of chlorophyll a fluorescence, NPQ) to induce and relax more quickly, resulting in smaller losses under dynamic light conditions. Previous studies aimed at understanding the enzymes involved in the regulation of NPQ have relied primarily on labor-intensive and time-consuming generation of stable transgenic lines and mutant populations - approaches limited to organisms amenable to genetic manipulation and mapping. To enable rapid functional testing of NPQ-related genes from diverse organisms, we performed Agrobacterium tumefaciens-mediated transient expression assays in Nicotiana benthamiana to test if NPQ kinetics could be modified in fully expanded leaves. By expressing Arabidopsis thaliana genes known to be involved in NPQ, we confirmed the viability of this method for studying dynamic photosynthetic processes. Subsequently, we used naturally occurring variation in photosystem II subunit S, a modulator of NPQ in plants, to explore how differences in amino acid sequence affect NPQ capacity and kinetics. Finally, we functionally characterized four predicted carotenoid biosynthesis genes from the marine algae Nannochloropsis oceanica and Thalassiosira pseudonana and examined the effect of their expression on NPQ in N. benthamiana. This method offers a powerful alternative to traditional gene characterization methods by providing a fast and easy platform for assessing gene function in planta.
Collapse
Affiliation(s)
- Lauriebeth Leonelli
- Howard Hughes Medical InstituteDepartment of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720‐3102USA
| | - Erika Erickson
- Howard Hughes Medical InstituteDepartment of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720‐3102USA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Dagmar Lyska
- Howard Hughes Medical InstituteDepartment of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720‐3102USA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Krishna K. Niyogi
- Howard Hughes Medical InstituteDepartment of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720‐3102USA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| |
Collapse
|
20
|
Tibiletti T, Auroy P, Peltier G, Caffarri S. Chlamydomonas reinhardtii PsbS Protein Is Functional and Accumulates Rapidly and Transiently under High Light. PLANT PHYSIOLOGY 2016; 171:2717-30. [PMID: 27329221 PMCID: PMC4972282 DOI: 10.1104/pp.16.00572] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/18/2016] [Indexed: 05/18/2023]
Abstract
Photosynthetic organisms must respond to excess light in order to avoid photo-oxidative stress. In plants and green algae the fastest response to high light is non-photochemical quenching (NPQ), a process that allows the safe dissipation of the excess energy as heat. This phenomenon is triggered by the low luminal pH generated by photosynthetic electron transport. In vascular plants the main sensor of the low pH is the PsbS protein, while in the green alga Chlamydomonas reinhardtii LhcSR proteins appear to be exclusively responsible for this role. Interestingly, Chlamydomonas also possesses two PsbS genes, but so far the PsbS protein has not been detected and its biological function is unknown. Here, we reinvestigated the kinetics of gene expression and PsbS and LhcSR3 accumulation in Chlamydomonas during high light stress. We found that, unlike LhcSR3, PsbS accumulates very rapidly but only transiently. In order to determine the role of PsbS in NPQ and photoprotection in Chlamydomonas, we generated transplastomic strains expressing the algal or the Arabidopsis psbS gene optimized for plastid expression. Both PsbS proteins showed the ability to increase NPQ in Chlamydomonas wild-type and npq4 (lacking LhcSR3) backgrounds, but no clear photoprotection activity was observed. Quantification of PsbS and LhcSR3 in vivo indicates that PsbS is much less abundant than LhcSR3 during high light stress. Moreover, LhcSR3, unlike PsbS, also accumulates during other stress conditions. The possible role of PsbS in photoprotection is discussed.
Collapse
Affiliation(s)
- Tania Tibiletti
- Aix Marseille Université (AMU), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), UMR 7265 Biologie Végétale et Microbiologie Environnementales, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratoire de Génétique et Biophysique des Plantes, 13009 Marseille, France (T.T., S.C.); and Aix Marseille Université (AMU), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), UMR 7265 Biologie Végétale et Microbiologie Environnementales, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, 13108 St. Paul Les Durance, France (P.A., G.P.)
| | - Pascaline Auroy
- Aix Marseille Université (AMU), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), UMR 7265 Biologie Végétale et Microbiologie Environnementales, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratoire de Génétique et Biophysique des Plantes, 13009 Marseille, France (T.T., S.C.); and Aix Marseille Université (AMU), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), UMR 7265 Biologie Végétale et Microbiologie Environnementales, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, 13108 St. Paul Les Durance, France (P.A., G.P.)
| | - Gilles Peltier
- Aix Marseille Université (AMU), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), UMR 7265 Biologie Végétale et Microbiologie Environnementales, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratoire de Génétique et Biophysique des Plantes, 13009 Marseille, France (T.T., S.C.); and Aix Marseille Université (AMU), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), UMR 7265 Biologie Végétale et Microbiologie Environnementales, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, 13108 St. Paul Les Durance, France (P.A., G.P.)
| | - Stefano Caffarri
- Aix Marseille Université (AMU), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), UMR 7265 Biologie Végétale et Microbiologie Environnementales, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratoire de Génétique et Biophysique des Plantes, 13009 Marseille, France (T.T., S.C.); and Aix Marseille Université (AMU), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), UMR 7265 Biologie Végétale et Microbiologie Environnementales, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, 13108 St. Paul Les Durance, France (P.A., G.P.)
| |
Collapse
|
21
|
Correa-Galvis V, Redekop P, Guan K, Griess A, Truong TB, Wakao S, Niyogi KK, Jahns P. Photosystem II Subunit PsbS Is Involved in the Induction of LHCSR Protein-dependent Energy Dissipation in Chlamydomonas reinhardtii. J Biol Chem 2016; 291:17478-87. [PMID: 27358399 DOI: 10.1074/jbc.m116.737312] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 12/19/2022] Open
Abstract
Non-photochemical quenching of excess excitation energy is an important photoprotective mechanism in photosynthetic organisms. In Arabidopsis thaliana, a high quenching capacity is constitutively present and depends on the PsbS protein. In the green alga Chlamydomonas reinhardtii, non-photochemical quenching becomes activated upon high light acclimation and requires the accumulation of light harvesting complex stress-related (LHCSR) proteins. Expression of the PsbS protein in C. reinhardtii has not been reported yet. Here, we show that PsbS is a light-induced protein in C. reinhardtii, whose accumulation under high light is further controlled by CO2 availability. PsbS accumulated after several hours of high light illumination at low CO2 At high CO2, however, PsbS was only transiently expressed under high light and was degraded after 1 h of high light exposure. PsbS accumulation correlated with an enhanced non-photochemical quenching capacity in high light-acclimated cells grown at low CO2 However, PsbS could not compensate for the function of LHCSR in an LHCSR-deficient mutant. Knockdown of PsbS accumulation led to reduction of both non-photochemical quenching capacity and LHCSR3 accumulation. Our data suggest that PsbS is essential for the activation of non-photochemical quenching in C. reinhardtii, possibly by promoting conformational changes required for activation of LHCSR3-dependent quenching in the antenna of photosystem II.
Collapse
Affiliation(s)
- Viviana Correa-Galvis
- From the Plant Biochemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Petra Redekop
- From the Plant Biochemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Katharine Guan
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, and
| | - Annika Griess
- From the Plant Biochemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Thuy B Truong
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, and
| | - Setsuko Wakao
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, and
| | - Krishna K Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, and Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Peter Jahns
- From the Plant Biochemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany,
| |
Collapse
|
22
|
Yamori W, Shikanai T. Physiological Functions of Cyclic Electron Transport Around Photosystem I in Sustaining Photosynthesis and Plant Growth. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:81-106. [PMID: 26927905 DOI: 10.1146/annurev-arplant-043015-112002] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The light reactions in photosynthesis drive both linear and cyclic electron transport around photosystem I (PSI). Linear electron transport generates both ATP and NADPH, whereas PSI cyclic electron transport produces ATP without producing NADPH. PSI cyclic electron transport is thought to be essential for balancing the ATP/NADPH production ratio and for protecting both photosystems from damage caused by stromal overreduction. Two distinct pathways of cyclic electron transport have been proposed in angiosperms: a major pathway that depends on the PROTON GRADIENT REGULATION 5 (PGR5) and PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE 1 (PGRL1) proteins, which are the target site of antimycin A, and a minor pathway mediated by the chloroplast NADH dehydrogenase-like (NDH) complex. Recently, the regulation of PSI cyclic electron transport has been recognized as essential for photosynthesis and plant growth. In this review, we summarize the possible functions and importance of the two pathways of PSI cyclic electron transport.
Collapse
Affiliation(s)
- Wataru Yamori
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan;
- Precursory Research for Embryonic Science and Technology (PRESTO) and
| | - Toshiharu Shikanai
- Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
23
|
Ballottari M, Truong TB, De Re E, Erickson E, Stella GR, Fleming GR, Bassi R, Niyogi KK. Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii. J Biol Chem 2016; 291:7334-46. [PMID: 26817847 PMCID: PMC4817166 DOI: 10.1074/jbc.m115.704601] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 11/29/2022] Open
Abstract
Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green alga Chlamydomonas reinhardtii. Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesis in vivo and in vitro for identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp117, Glu221, and Glu224 were shown to be essential for LHCSR3-dependent NPQ induction in C. reinhardtii. Analysis of recombinant proteins carrying the same mutations refolded in vitro with pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide.
Collapse
Affiliation(s)
- Matteo Ballottari
- From the Department of Biotechnology, University of Verona, Strada Le Grazie, I-37134 Verona, Italy
| | - Thuy B Truong
- the Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Eleonora De Re
- the Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, and the Graduate Group in Applied Science and Technology, University of California, Berkeley, California 94720
| | - Erika Erickson
- the Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, the Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, and
| | - Giulio R Stella
- From the Department of Biotechnology, University of Verona, Strada Le Grazie, I-37134 Verona, Italy, the Sorbonne Universités, UPMC Univ-Paris 6, CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Graham R Fleming
- the Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, and the Graduate Group in Applied Science and Technology, University of California, Berkeley, California 94720 the Department of Chemistry, Hildebrand B77, University of California, Berkeley, California 94720-1460
| | - Roberto Bassi
- From the Department of Biotechnology, University of Verona, Strada Le Grazie, I-37134 Verona, Italy,
| | - Krishna K Niyogi
- the Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, the Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, and
| |
Collapse
|
24
|
Wobbe L, Bassi R, Kruse O. Multi-Level Light Capture Control in Plants and Green Algae. TRENDS IN PLANT SCIENCE 2016; 21:55-68. [PMID: 26545578 DOI: 10.1016/j.tplants.2015.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/16/2015] [Accepted: 10/05/2015] [Indexed: 05/02/2023]
Abstract
Life on Earth relies on photosynthesis, and the ongoing depletion of fossil carbon fuels has renewed interest in phototrophic light-energy conversion processes as a blueprint for the conversion of atmospheric CO2 into various organic compounds. Light-harvesting systems have evolved in plants and green algae, which are adapted to the light intensity and spectral composition encountered in their habitats. These organisms are constantly challenged by a fluctuating light supply and other environmental cues affecting photosynthetic performance. Excess light can be especially harmful, but plants and microalgae are equipped with different acclimation mechanisms to control the processing of sunlight absorbed at both photosystems. We summarize the current knowledge and discuss the potential for optimization of phototrophic light-energy conversion.
Collapse
Affiliation(s)
- Lutz Wobbe
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Roberto Bassi
- Universita degli Studi di Verona, Department of Biotechnology, Strada Le Grazie 15, 37134 Verona, Italy
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615, Bielefeld, Germany.
| |
Collapse
|
25
|
Zhou Y, Schideman L, Park D, Stirbet A, Govindjee, Rupassara S, Krehbiel J, Seufferheld M. Characterization of a Chlamydomonas reinhardtii mutant strain with improved biomass production under low light and mixotrophic conditions. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Xu DQ, Chen Y, Chen GY. Light-harvesting regulation from leaf to molecule with the emphasis on rapid changes in antenna size. PHOTOSYNTHESIS RESEARCH 2015; 124:137-158. [PMID: 25773873 DOI: 10.1007/s11120-015-0115-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/03/2015] [Indexed: 06/04/2023]
Abstract
In the sunlight-fluctuating environment, plants often encounter both light-deficiency and light-excess cases. Therefore, regulation of light harvesting is absolutely essential for photosynthesis in order to maximize light utilization at low light and avoid photodamage of the photosynthetic apparatus at high light. Plants have developed a series of strategies of light-harvesting regulation during evolution. These strategies include rapid responses such as leaf movement and chloroplast movement, state transitions, and reversible dissociation of some light-harvesting complex of the photosystem II (LHCIIs) from PSII core complexes, and slow acclimation strategies such as changes in the protein abundance of light-harvesting antenna and modifications of leaf morphology, structure, and compositions. This review discusses successively these strategies and focuses on the rapid change in antenna size, namely reversible dissociation of some peripheral light-harvesting antennas (LHCIIs) from PSII core complex. It is involved in protective role and species dependence of the dissociation, differences between the dissociation and state transitions, relationship between the dissociation and thylakoid protein phosphorylation, and possible mechanism for thermal dissipation by the dissociated LHCIIs.
Collapse
Affiliation(s)
- Da-Quan Xu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | | | |
Collapse
|
27
|
Erickson E, Wakao S, Niyogi KK. Light stress and photoprotection in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:449-465. [PMID: 25758978 DOI: 10.1111/tpj.12825] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 05/18/2023]
Abstract
Plants and algae require light for photosynthesis, but absorption of too much light can lead to photo-oxidative damage to the photosynthetic apparatus and sustained decreases in the efficiency and rate of photosynthesis (photoinhibition). Light stress can adversely affect growth and viability, necessitating that photosynthetic organisms acclimate to different environmental conditions in order to alleviate the detrimental effects of excess light. The model unicellular green alga, Chlamydomonas reinhardtii, employs diverse strategies of regulation and photoprotection to avoid, minimize, and repair photo-oxidative damage in stressful light conditions, allowing for acclimation to different and changing environments.
Collapse
Affiliation(s)
- Erika Erickson
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Setsuko Wakao
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
28
|
La Rocca N, Sciuto K, Meneghesso A, Moro I, Rascio N, Morosinotto T. Photosynthesis in extreme environments: responses to different light regimes in the Antarctic alga Koliella antarctica. PHYSIOLOGIA PLANTARUM 2015; 153:654-67. [PMID: 25186023 DOI: 10.1111/ppl.12273] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/07/2014] [Accepted: 07/23/2014] [Indexed: 05/22/2023]
Abstract
Antarctic algae play a fundamental role in polar ecosystem thanks to their ability to grow in an extreme environment characterized by low temperatures and variable illumination. Here, for prolonged periods, irradiation is extremely low and algae must be able to harvest light as efficiently as possible. On the other side, at low temperatures even dim irradiances can saturate photosynthesis and drive to the formation of reactive oxygen species. Colonization of this extreme environment necessarily required the optimization of photosynthesis regulation mechanisms by algal organisms. In order to investigate these adaptations we analyzed the time course of physiological and morphological responses to different irradiances in Koliella antarctica, a green microalga isolated from Ross Sea (Antarctica). Koliella antarctica not only modulates cell morphology and composition of its photosynthetic apparatus on a long-term acclimation, but also shows the ability of a very fast response to light fluctuations. Koliella antarctica controls the activity of two xanthophyll cycles. The first, involving lutein epoxide and lutein, may be important for the growth under very low irradiances. The second, involving conversion of violaxanthin to antheraxanthin and zeaxanthin, is relevant to induce a fast and particularly strong non-photochemical quenching, when the alga is exposed to higher light intensities. Globally K. antarctica thus shows the ability to activate a palette of responses of the photosynthetic apparatus optimized for survival in its natural extreme environment.
Collapse
|
29
|
Gao S, Gu W, Xiong Q, Ge F, Xie X, Li J, Chen W, Pan G, Wang G. Desiccation enhances phosphorylation of PSII and affects the distribution of protein complexes in the thylakoid membrane. PHYSIOLOGIA PLANTARUM 2015; 153:492-502. [PMID: 25132456 DOI: 10.1111/ppl.12258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 05/03/2023]
Abstract
Desiccation has significant effects on photosynthetic processes in intertidal macro-algae. We studied an intertidal macro-alga, Ulva sp., which can tolerate desiccation, to investigate changes in photosynthetic performance and the components and structure of thylakoid membrane proteins in response to desiccation. Our results demonstrate that photosystem II (PSII) is more sensitive to desiccation than photosystem I (PSI) in Ulva sp. Comparative proteomics of the thylakoid membrane proteins at different levels of desiccation suggested that there were few changes in the content of proteins involved in photosynthesis during desiccation. Interestingly, we found that both the PSII subunit, PsbS (Photosystem II S subunit) (a four-helix protein in the LHC superfamily), and light-harvesting complex stress-related (LHCSR) proteins, which are required for non-photochemical quenching in land plants and algae, respectively, were present under both normal and desiccation conditions and both increased slightly during desiccation. In addition, the results of immunoblot analysis suggested that the phosphorylation of PSII and LHCII increases during desiccation. To investigate further, we separated out a supercomplex formed during desiccation by blue native-polyacrylamide gel electrophoresis and identified the components by mass spectrometry analysis. Our results show that phosphorylation of the complex increases slightly with decreased water content. All the results suggest that during the course of desiccation, few changes occur in the content of thylakoid membrane proteins, but a rearrangement of the protein complex occurs in the intertidal macro-alga Ulva sp.
Collapse
Affiliation(s)
- Shan Gao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Biogenesis of light harvesting proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:861-71. [PMID: 25687893 DOI: 10.1016/j.bbabio.2015.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 11/20/2022]
Abstract
The LHC family includes nuclear-encoded, integral thylakoid membrane proteins, most of which coordinate chlorophyll and xanthophyll chromophores. By assembling with the core complexes of both photosystems, LHCs form a flexible peripheral moiety for enhancing light-harvesting cross-section, regulating its efficiency and providing protection against photo-oxidative stress. Upon its first appearance, LHC proteins underwent evolutionary diversification into a large protein family with a complex genetic redundancy. Such differentiation appears as a crucial event in the adaptation of photosynthetic organisms to changing environmental conditions and land colonization. The structure of photosystems, including nuclear- and chloroplast-encoded subunits, presented the cell with a number of challenges for the control of the light harvesting function. Indeed, LHC-encoding messages are translated in the cytosol, and pre-proteins imported into the chloroplast, processed to their mature size and targeted to the thylakoids where are assembled with chromophores. Thus, a tight coordination between nuclear and plastid gene expression, in response to environmental stimuli, is required to adjust LHC composition during photoacclimation. In recent years, remarkable progress has been achieved in elucidating structure, function and regulatory pathways involving LHCs; however, a number of molecular details still await elucidation. In this review, we will provide an overview on the current knowledge on LHC biogenesis, ranging from organization of pigment-protein complexes to the modulation of gene expression, import and targeting to the photosynthetic membranes, and regulation of LHC assembly and turnover. Genes controlling these events are potential candidate for biotechnological applications aimed at optimizing light use efficiency of photosynthetic organisms. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
|
31
|
Juergens MT, Deshpande RR, Lucker BF, Park JJ, Wang H, Gargouri M, Holguin FO, Disbrow B, Schaub T, Skepper JN, Kramer DM, Gang DR, Hicks LM, Shachar-Hill Y. The regulation of photosynthetic structure and function during nitrogen deprivation in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2015; 167:558-73. [PMID: 25489023 PMCID: PMC4326741 DOI: 10.1104/pp.114.250530] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/01/2014] [Indexed: 05/19/2023]
Abstract
The accumulation of carbon storage compounds by many unicellular algae after nutrient deprivation occurs despite declines in their photosynthetic apparatus. To understand the regulation and roles of photosynthesis during this potentially bioenergetically valuable process, we analyzed photosynthetic structure and function after nitrogen deprivation in the model alga Chlamydomonas reinhardtii. Transcriptomic, proteomic, metabolite, and lipid profiling and microscopic time course data were combined with multiple measures of photosynthetic function. Levels of transcripts and proteins of photosystems I and II and most antenna genes fell with differing trajectories; thylakoid membrane lipid levels decreased, while their proportions remained similar and thylakoid membrane organization appeared to be preserved. Cellular chlorophyll (Chl) content decreased more than 2-fold within 24 h, and we conclude from transcript protein and (13)C labeling rates that Chl synthesis was down-regulated both pre- and posttranslationally and that Chl levels fell because of a rapid cessation in synthesis and dilution by cellular growth rather than because of degradation. Photosynthetically driven oxygen production and the efficiency of photosystem II as well as P700(+) reduction and electrochromic shift kinetics all decreased over the time course, without evidence of substantial energy overflow. The results also indicate that linear electron flow fell approximately 15% more than cyclic flow over the first 24 h. Comparing Calvin-Benson cycle transcript and enzyme levels with changes in photosynthetic (13)CO2 incorporation rates also pointed to a coordinated multilevel down-regulation of photosynthetic fluxes during starch synthesis before the induction of high triacylglycerol accumulation rates.
Collapse
Affiliation(s)
- Matthew T Juergens
- Department of Plant Biology (M.T.J., R.R.D., B.D., Y.S.-H.) and Plant Research Laboratory (M.T.J., B.F.L., D.M.K.), Michigan State University, East Lansing, Michigan 48824;Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (J.-J.P., M.G., D.R.G.);Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (H.W., L.M.H.);National Center of Biomedical Analysis, Beijing 100850, China (H.W.);College of Agricultural, Consumer, and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico 88003 (F.O.H., T.S.);Department of Physiology, Cambridge Advanced Imaging Centre, Cambridge CB2 3DY, United Kingdom (J.N.S.); andDepartment of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599 (L.M.H.)
| | - Rahul R Deshpande
- Department of Plant Biology (M.T.J., R.R.D., B.D., Y.S.-H.) and Plant Research Laboratory (M.T.J., B.F.L., D.M.K.), Michigan State University, East Lansing, Michigan 48824;Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (J.-J.P., M.G., D.R.G.);Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (H.W., L.M.H.);National Center of Biomedical Analysis, Beijing 100850, China (H.W.);College of Agricultural, Consumer, and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico 88003 (F.O.H., T.S.);Department of Physiology, Cambridge Advanced Imaging Centre, Cambridge CB2 3DY, United Kingdom (J.N.S.); andDepartment of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599 (L.M.H.)
| | - Ben F Lucker
- Department of Plant Biology (M.T.J., R.R.D., B.D., Y.S.-H.) and Plant Research Laboratory (M.T.J., B.F.L., D.M.K.), Michigan State University, East Lansing, Michigan 48824;Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (J.-J.P., M.G., D.R.G.);Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (H.W., L.M.H.);National Center of Biomedical Analysis, Beijing 100850, China (H.W.);College of Agricultural, Consumer, and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico 88003 (F.O.H., T.S.);Department of Physiology, Cambridge Advanced Imaging Centre, Cambridge CB2 3DY, United Kingdom (J.N.S.); andDepartment of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599 (L.M.H.)
| | - Jeong-Jin Park
- Department of Plant Biology (M.T.J., R.R.D., B.D., Y.S.-H.) and Plant Research Laboratory (M.T.J., B.F.L., D.M.K.), Michigan State University, East Lansing, Michigan 48824;Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (J.-J.P., M.G., D.R.G.);Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (H.W., L.M.H.);National Center of Biomedical Analysis, Beijing 100850, China (H.W.);College of Agricultural, Consumer, and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico 88003 (F.O.H., T.S.);Department of Physiology, Cambridge Advanced Imaging Centre, Cambridge CB2 3DY, United Kingdom (J.N.S.); andDepartment of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599 (L.M.H.)
| | - Hongxia Wang
- Department of Plant Biology (M.T.J., R.R.D., B.D., Y.S.-H.) and Plant Research Laboratory (M.T.J., B.F.L., D.M.K.), Michigan State University, East Lansing, Michigan 48824;Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (J.-J.P., M.G., D.R.G.);Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (H.W., L.M.H.);National Center of Biomedical Analysis, Beijing 100850, China (H.W.);College of Agricultural, Consumer, and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico 88003 (F.O.H., T.S.);Department of Physiology, Cambridge Advanced Imaging Centre, Cambridge CB2 3DY, United Kingdom (J.N.S.); andDepartment of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599 (L.M.H.)
| | - Mahmoud Gargouri
- Department of Plant Biology (M.T.J., R.R.D., B.D., Y.S.-H.) and Plant Research Laboratory (M.T.J., B.F.L., D.M.K.), Michigan State University, East Lansing, Michigan 48824;Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (J.-J.P., M.G., D.R.G.);Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (H.W., L.M.H.);National Center of Biomedical Analysis, Beijing 100850, China (H.W.);College of Agricultural, Consumer, and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico 88003 (F.O.H., T.S.);Department of Physiology, Cambridge Advanced Imaging Centre, Cambridge CB2 3DY, United Kingdom (J.N.S.); andDepartment of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599 (L.M.H.)
| | - F Omar Holguin
- Department of Plant Biology (M.T.J., R.R.D., B.D., Y.S.-H.) and Plant Research Laboratory (M.T.J., B.F.L., D.M.K.), Michigan State University, East Lansing, Michigan 48824;Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (J.-J.P., M.G., D.R.G.);Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (H.W., L.M.H.);National Center of Biomedical Analysis, Beijing 100850, China (H.W.);College of Agricultural, Consumer, and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico 88003 (F.O.H., T.S.);Department of Physiology, Cambridge Advanced Imaging Centre, Cambridge CB2 3DY, United Kingdom (J.N.S.); andDepartment of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599 (L.M.H.)
| | - Bradley Disbrow
- Department of Plant Biology (M.T.J., R.R.D., B.D., Y.S.-H.) and Plant Research Laboratory (M.T.J., B.F.L., D.M.K.), Michigan State University, East Lansing, Michigan 48824;Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (J.-J.P., M.G., D.R.G.);Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (H.W., L.M.H.);National Center of Biomedical Analysis, Beijing 100850, China (H.W.);College of Agricultural, Consumer, and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico 88003 (F.O.H., T.S.);Department of Physiology, Cambridge Advanced Imaging Centre, Cambridge CB2 3DY, United Kingdom (J.N.S.); andDepartment of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599 (L.M.H.)
| | - Tanner Schaub
- Department of Plant Biology (M.T.J., R.R.D., B.D., Y.S.-H.) and Plant Research Laboratory (M.T.J., B.F.L., D.M.K.), Michigan State University, East Lansing, Michigan 48824;Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (J.-J.P., M.G., D.R.G.);Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (H.W., L.M.H.);National Center of Biomedical Analysis, Beijing 100850, China (H.W.);College of Agricultural, Consumer, and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico 88003 (F.O.H., T.S.);Department of Physiology, Cambridge Advanced Imaging Centre, Cambridge CB2 3DY, United Kingdom (J.N.S.); andDepartment of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599 (L.M.H.)
| | - Jeremy N Skepper
- Department of Plant Biology (M.T.J., R.R.D., B.D., Y.S.-H.) and Plant Research Laboratory (M.T.J., B.F.L., D.M.K.), Michigan State University, East Lansing, Michigan 48824;Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (J.-J.P., M.G., D.R.G.);Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (H.W., L.M.H.);National Center of Biomedical Analysis, Beijing 100850, China (H.W.);College of Agricultural, Consumer, and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico 88003 (F.O.H., T.S.);Department of Physiology, Cambridge Advanced Imaging Centre, Cambridge CB2 3DY, United Kingdom (J.N.S.); andDepartment of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599 (L.M.H.)
| | - David M Kramer
- Department of Plant Biology (M.T.J., R.R.D., B.D., Y.S.-H.) and Plant Research Laboratory (M.T.J., B.F.L., D.M.K.), Michigan State University, East Lansing, Michigan 48824;Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (J.-J.P., M.G., D.R.G.);Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (H.W., L.M.H.);National Center of Biomedical Analysis, Beijing 100850, China (H.W.);College of Agricultural, Consumer, and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico 88003 (F.O.H., T.S.);Department of Physiology, Cambridge Advanced Imaging Centre, Cambridge CB2 3DY, United Kingdom (J.N.S.); andDepartment of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599 (L.M.H.)
| | - David R Gang
- Department of Plant Biology (M.T.J., R.R.D., B.D., Y.S.-H.) and Plant Research Laboratory (M.T.J., B.F.L., D.M.K.), Michigan State University, East Lansing, Michigan 48824;Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (J.-J.P., M.G., D.R.G.);Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (H.W., L.M.H.);National Center of Biomedical Analysis, Beijing 100850, China (H.W.);College of Agricultural, Consumer, and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico 88003 (F.O.H., T.S.);Department of Physiology, Cambridge Advanced Imaging Centre, Cambridge CB2 3DY, United Kingdom (J.N.S.); andDepartment of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599 (L.M.H.)
| | - Leslie M Hicks
- Department of Plant Biology (M.T.J., R.R.D., B.D., Y.S.-H.) and Plant Research Laboratory (M.T.J., B.F.L., D.M.K.), Michigan State University, East Lansing, Michigan 48824;Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (J.-J.P., M.G., D.R.G.);Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (H.W., L.M.H.);National Center of Biomedical Analysis, Beijing 100850, China (H.W.);College of Agricultural, Consumer, and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico 88003 (F.O.H., T.S.);Department of Physiology, Cambridge Advanced Imaging Centre, Cambridge CB2 3DY, United Kingdom (J.N.S.); andDepartment of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599 (L.M.H.)
| | - Yair Shachar-Hill
- Department of Plant Biology (M.T.J., R.R.D., B.D., Y.S.-H.) and Plant Research Laboratory (M.T.J., B.F.L., D.M.K.), Michigan State University, East Lansing, Michigan 48824;Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (J.-J.P., M.G., D.R.G.);Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (H.W., L.M.H.);National Center of Biomedical Analysis, Beijing 100850, China (H.W.);College of Agricultural, Consumer, and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico 88003 (F.O.H., T.S.);Department of Physiology, Cambridge Advanced Imaging Centre, Cambridge CB2 3DY, United Kingdom (J.N.S.); andDepartment of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599 (L.M.H.)
| |
Collapse
|
32
|
Büchel C. Evolution and function of light harvesting proteins. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:62-75. [PMID: 25240794 DOI: 10.1016/j.jplph.2014.04.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 05/10/2023]
Abstract
Photosynthetic eukaryotes exhibit very different light-harvesting proteins, but all contain membrane-intrinsic light-harvesting complexes (Lhcs), either as additional or sole antennae. Lhcs non-covalently bind chlorophyll a and in most cases another Chl, as well as very different carotenoids, depending on the taxon. The proteins fall into two major groups: The well-defined Lhca/b group of proteins binds typically Chl b and lutein, and the group is present in the 'green lineage'. The other group consists of Lhcr/Lhcf, Lhcz and Lhcx/LhcSR proteins. The former are found in the so-called Chromalveolates, where they mostly bind Chl c and carotenoids very efficient in excitation energy transfer, and in their red algae ancestors. Lhcx/LhcSR are present in most Chromalveolates and in some members of the green lineage as well. Lhcs function in light harvesting, but also in photoprotection, and they influence the organisation of the thylakoid membrane. The different functions of the Lhc subfamilies are discussed in the light of their evolution.
Collapse
Affiliation(s)
- Claudia Büchel
- Goethe University Frankfurt, Institute of Molecular Biosciences, Max von Laue Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
33
|
Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F, Calatayud A, Dąbrowski P, Elsheery NI, Ferroni L, Guidi L, Hogewoning SW, Jajoo A, Misra AN, Nebauer SG, Pancaldi S, Penella C, Poli D, Pollastrini M, Romanowska-Duda ZB, Rutkowska B, Serôdio J, Suresh K, Szulc W, Tambussi E, Yanniccari M, Zivcak M. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. PHOTOSYNTHESIS RESEARCH 2014; 122:121-58. [PMID: 25119687 PMCID: PMC4210649 DOI: 10.1007/s11120-014-0024-6] [Citation(s) in RCA: 372] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 06/02/2014] [Indexed: 05/18/2023]
Abstract
The aim of this educational review is to provide practical information on the hardware, methodology, and the hands on application of chlorophyll (Chl) a fluorescence technology. We present the paper in a question and answer format like frequently asked questions. Although nearly all information on the application of Chl a fluorescence can be found in the literature, it is not always easily accessible. This paper is primarily aimed at scientists who have some experience with the application of Chl a fluorescence but are still in the process of discovering what it all means and how it can be used. Topics discussed are (among other things) the kind of information that can be obtained using different fluorescence techniques, the interpretation of Chl a fluorescence signals, specific applications of these techniques, and practical advice on different subjects, such as on the length of dark adaptation before measurement of the Chl a fluorescence transient. The paper also provides the physiological background for some of the applied procedures. It also serves as a source of reference for experienced scientists.
Collapse
Affiliation(s)
- Hazem M. Kalaji
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Gert Schansker
- Avenue des Amazones 2, 1226 Chêne-Bougeries, Switzerland
| | - Richard J. Ladle
- Institute of Biological and Health Sciences, Federal University of Alagoas, Praça Afrânio Jorge, s/n, Prado, Maceió, AL Brazil
| | - Vasilij Goltsev
- Department of Biophysics and Radiobiology, Faculty of Biology, St. Kliment Ohridski University of Sofia, 8 Dr. Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Karolina Bosa
- Department of Pomology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Suleyman I. Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276 Russia
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Filippo Bussotti
- Department of Agri-Food Production and Environmental Science (DISPAA), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Angeles Calatayud
- Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Ctra. Moncada-Náquera Km 4.5, Moncada, 46113 Valencia, Spain
| | - Piotr Dąbrowski
- Department of Environmental Improvement, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Nabil I. Elsheery
- Agricultural Botany Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Lorenzo Ferroni
- Department of Life Sciences and Biotechnologies, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, Via del Borghetto, 80, 56124 Pisa, Italy
| | | | - Anjana Jajoo
- School of Life Sciences, Devi Ahilya University, Indore, 452 001 M.P India
| | - Amarendra N. Misra
- Centre for Life Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Ranchi, 835205 India
| | - Sergio G. Nebauer
- Departamento de Producción vegetal, Universitat Politècnica de València, C de Vera sn, 46022 Valencia, Spain
| | - Simonetta Pancaldi
- Department of Life Sciences and Biotechnologies, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| | - Consuelo Penella
- Departamento de Horticultura, Instituto Valenciano de Investigaciones Agrarias, Ctra. Moncada-Náquera Km 4.5, Moncada, 46113 Valencia, Spain
| | - DorothyBelle Poli
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153 USA
| | - Martina Pollastrini
- Department of Agri-Food Production and Environmental Science (DISPAA), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | | | - Beata Rutkowska
- Agricultural Chemistry Department, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - João Serôdio
- Departamento de Biologia, CESAM – Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Kancherla Suresh
- Directorate of Oil Palm Research, West Godavari Dt., Pedavegi, 534 450 Andhra Pradesh India
| | - Wiesław Szulc
- Agricultural Chemistry Department, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Eduardo Tambussi
- Institute of Plant Physiology, INFIVE (Universidad Nacional de La Plata – Consejo Nacional de Investigaciones Científicas y Técnicas), Diagonal 113 N°495, 327 La Plata, Argentina
| | - Marcos Yanniccari
- Institute of Plant Physiology, INFIVE (Universidad Nacional de La Plata – Consejo Nacional de Investigaciones Científicas y Técnicas), Diagonal 113 N°495, 327 La Plata, Argentina
| | - Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| |
Collapse
|
34
|
Improving the sunlight-to-biomass conversion efficiency in microalgal biofactories. J Biotechnol 2014; 201:28-42. [PMID: 25160918 DOI: 10.1016/j.jbiotec.2014.08.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/31/2014] [Accepted: 08/18/2014] [Indexed: 12/31/2022]
Abstract
Microalgae represent promising organisms for the sustainable production of commodities, chemicals or fuels. Future use of such systems, however, requires increased productivity of microalgal mass cultures in order to reach an economic viability for microalgae-based production schemes. The efficiency of sunlight-to-biomass conversion that can be observed in bulk cultures is generally far lower (35-80%) than the theoretical maximum, because energy losses occur at multiple steps during the light-driven conversion of carbon dioxide to organic carbon. The light-harvesting system is a major source of energy losses and thus a prime target for strain engineering. Truncation of the light-harvesting antenna in the algal model organism Chlamydomonas reinhardtii was shown to be an effective way of increasing culture productivity at least under saturating light conditions. Furthermore engineering of the Calvin-Benson cycle or the creation of photorespiratory bypasses in A. thaliana proved to be successful in terms of achieving higher biomass productivities. An efficient generation of novel microalgal strains with improved sunlight conversion efficiencies by targeted engineering in the future will require an expanded molecular toolkit. In the meantime random mutagenesis coupled to high-throughput screening for desired phenotypes can be used to provide engineered microalgae.
Collapse
|
35
|
Ebenhöh O, Fucile G, Finazzi G, Rochaix JD, Goldschmidt-Clermont M. Short-term acclimation of the photosynthetic electron transfer chain to changing light: a mathematical model. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130223. [PMID: 24591710 DOI: 10.1098/rstb.2013.0223] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Photosynthetic eukaryotes house two photosystems with distinct light absorption spectra. Natural fluctuations in light quality and quantity can lead to unbalanced or excess excitation, compromising photosynthetic efficiency and causing photodamage. Consequently, these organisms have acquired several distinct adaptive mechanisms, collectively referred to as non-photochemical quenching (NPQ) of chlorophyll fluorescence, which modulates the organization and function of the photosynthetic apparatus. The ability to monitor NPQ processes fluorometrically has led to substantial progress in elucidating the underlying molecular mechanisms. However, the relative contribution of distinct NPQ mechanisms to variable light conditions in different photosynthetic eukaryotes remains unclear. Here, we present a mathematical model of the dynamic regulation of eukaryotic photosynthesis using ordinary differential equations. We demonstrate that, for Chlamydomonas, our model recapitulates the basic fluorescence features of short-term light acclimation known as state transitions and discuss how the model can be iteratively refined by comparison with physiological experiments to further our understanding of light acclimation in different species.
Collapse
Affiliation(s)
- Oliver Ebenhöh
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, , Meston Building, Old Aberdeen, Aberdeen AB24 3UE, UK
| | | | | | | | | |
Collapse
|
36
|
Gerotto C, Morosinotto T. Evolution of photoprotection mechanisms upon land colonization: evidence of PSBS-dependent NPQ in late Streptophyte algae. PHYSIOLOGIA PLANTARUM 2013; 149:583-98. [PMID: 23663155 DOI: 10.1111/ppl.12070] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 05/20/2023]
Abstract
Light is the energy source for photosynthetic organisms but, if absorbed in excess, it can drive to the formation of reactive oxygen species and photoinhibition. One major mechanism to avoid oxidative damage in plants and algae is the dissipation of excess excitation energy as heat, called non-photochemical quenching (NPQ). Eukaryotic algae and plants, however, rely on two different proteins for NPQ activation, the former mainly depending on LHCSR (Lhc-like protein Stress Related; previously called Li818, Light Induced protein 818), whereas in the latter the major role is played by a distinct protein, PSBS (photosystem II subunit S). In the moss Physcomitrella patens, which diverged from vascular plants early after land colonization, both these proteins were found to be present and active in inducing NPQ, suggesting that during plants evolution both mechanisms co-existed. In order to investigate in more detail NPQ adaptation toward land colonization, we analyzed Streptophyte algae, the latest organisms to diverge from the land plants ancestors. Among them we found evidence of a PSBS-dependent NPQ in species belonging to Charales, Coleochaetales and Zygnematales, the latest groups to diverge from land plants ancestors. On the contrary earlier diverging algae, as Mesostigmatales and Klebsormidiales, likely rely on LHCSR for their NPQ activation. Presented evidence thus suggests that PSBS-dependent NPQ, although possibly present in some Chlorophyta, was stably acquired in the Cambrian period about 500 million years ago, before late Streptophyte algae diverged from plants ancestors.
Collapse
Affiliation(s)
- Caterina Gerotto
- Dipartimento di Biologia, Università di Padova, Via Ugo Bassi 58 B, 35121, Padova, Italy
| | - Tomas Morosinotto
- Dipartimento di Biologia, Università di Padova, Via Ugo Bassi 58 B, 35121, Padova, Italy
| |
Collapse
|
37
|
Mou S, Zhang X, Dong M, Fan X, Xu J, Cao S, Xu D, Wang W, Ye N. Photoprotection in the green tidal alga Ulva prolifera: role of LHCSR and PsbS proteins in response to high light stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:1033-9. [PMID: 23865617 DOI: 10.1111/j.1438-8677.2012.00712.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/02/2012] [Indexed: 05/11/2023]
Abstract
Ulva prolifera, an intertidal macroalga, has to adapt to wide variations in light intensity, making this species particularly rewarding for studying the evolution of photoprotective mechanisms. Intense light induced increased non-photochemical quenching (NPQ) and stimulated de-epoxidation of xanthophyll cycle components, while DTT-treated samples had lower NPQ capacity, indicating that the xanthophyll cycle must participate in photoprotection. In this work, we found that the PsbS-related NPQ was maintained in U. prolifera. According to analysed gene expression, both LhcSR and psbS were up-regulated in high light, suggesting that these two genes are light-induced. LHCSR and PsbS proteins were present at different light intensities and accumulated under high light conditions, and PsbS concentrations were higher than LHCSR, showing that the NPQ mechanism of U. prolifera is more dependent on PsbS protein concentration. Moreover, the level of both LHCSR and PsbS proteins was high even in the darkness, and neither the transcript level nor protein content of LhcSR and psbS genes varied significantly following short-term exposure to intense light. These findings suggest that this alga can modulate NPQ levels through regulation of the xanthophyll cycle and concentrations of PsbS and/or LHCSR.
Collapse
Affiliation(s)
- S Mou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pagliano C, Saracco G, Barber J. Structural, functional and auxiliary proteins of photosystem II. PHOTOSYNTHESIS RESEARCH 2013; 116:167-88. [PMID: 23417641 DOI: 10.1007/s11120-013-9803-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/07/2013] [Indexed: 05/06/2023]
Abstract
Photosystem II (PSII) is the water-splitting enzyme complex of photosynthesis and consists of a large number of protein subunits. Most of these proteins have been structurally and functionally characterized, although there are differences between PSII of plants, algae and cyanobacteria. Here we catalogue all known PSII proteins giving a brief description, where possible of their genetic origin, physical properties, structural relationships and functions. We have also included details of auxiliary proteins known at present to be involved in the in vivo assembly, maintenance and turnover of PSII and which transiently bind to the reaction centre core complex. Finally, we briefly give details of the proteins which form the outer light-harvesting systems of PSII in different types of organisms.
Collapse
Affiliation(s)
- Cristina Pagliano
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Viale T. Michel 5, 15121, Torino, Alessandria, Italy,
| | | | | |
Collapse
|
39
|
Dolhi JM, Maxwell DP, Morgan-Kiss RM. The Antarctic Chlamydomonas raudensis: an emerging model for cold adaptation of photosynthesis. Extremophiles 2013; 17:711-22. [PMID: 23903324 DOI: 10.1007/s00792-013-0571-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
Permanently cold habitats dominate our planet and psychrophilic microorganisms thrive in cold environments. Environmental adaptations unique to psychrophilic microorganisms have been thoroughly described; however, the vast majority of studies to date have focused on cold-adapted bacteria. The combination of low temperatures in the presence of light is one of the most damaging environmental stresses for a photosynthetic organism: in order to survive, photopsychrophiles (i.e. photosynthetic organisms adapted to low temperatures) balance temperature-independent reactions of light energy capture/transduction with downstream temperature-dependent metabolic processes such as carbon fixation. Here, we review research on photopsychrophiles with a focus on an emerging model organism, Chlamydomonas raudensis UWO241 (UWO241). UWO241 is a psychrophilic green algal species and is a member of the photosynthetic microbial eukaryote community that provides the majority of fixed carbon for ice-covered lake ecosystems located in the McMurdo Dry Valleys, Antarctica. The water column exerts a range of environmental stressors on the phytoplankton community that inhabits this aquatic ecosystem, including low temperatures, extreme shade of an unusual spectral range (blue-green), high salinity, nutrient deprivation and extremes in seasonal photoperiod. More than two decades of work on UWO241 have produced one of our most comprehensive views of environmental adaptation in a cold-adapted, photosynthetic microbial eukaryote.
Collapse
Affiliation(s)
- Jenna M Dolhi
- Department of Microbiology, Miami University, 700 E High St., 32 Pearson Hall, Oxford, OH 45056, USA
| | | | | |
Collapse
|
40
|
Khuong TTH, Crété P, Robaglia C, Caffarri S. Optimisation of tomato Micro-tom regeneration and selection on glufosinate/Basta and dependency of gene silencing on transgene copy number. PLANT CELL REPORTS 2013; 32:1441-54. [PMID: 23673466 DOI: 10.1007/s00299-013-1456-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 05/23/2023]
Abstract
An efficient protocol of transformation and selection of transgenic lines of Micro-tom, a widespread model cultivar for tomato, is reported. RNA interference silencing efficiency and stability have been investigated and correlated with the number of insertions. Given its small size and ease of cultivation, the tomato (Solanum lycopersicon) cultivar Micro-tom is of widespread use as a model tomato plant. To create and screen transgenic plants, different selectable markers are commonly used. The bar marker carrying the resistance to the herbicide glufosinate/Basta, has many advantages, but it has been little utilised and with low efficiency for identification of tomato transgenic plants. Here we describe a procedure for accurate selection of transgenic Micro-tom both in vitro and in soil. Immunoblot, Southern blot and phenotypic analyses showed that 100 % of herbicide-resistant plants were transgenic. In addition, regeneration improvement has been obtained by using 2 mg/l Gibberellic acid in the shoot elongation medium; rooting optimisation on medium containing 1 mg/l IAA allowed up to 97 % of shoots developing strong and very healthy roots after only 10 days. Stable transformation frequency by infection of leaf explants with Agrobacterium reached 12 %. Shoots have been induced by combination of 1 mg/l zeatin-trans and 0.1 mg/l IAA. Somatic embryogenesis of cotyledon on medium containing 1 mg/l zeatin + 2 mg/l IAA is described in Micro-tom. The photosynthetic psbS gene has been used as reporter gene for RNA silencing studies. The efficiency of gene silencing has been found equivalent using three different target gene fragments of 519, 398 and 328 bp. Interestingly, silencing efficiency decreased from T0 to the T3 generation in plants containing multiple copies of the inserted T-DNA, while it was stable in plants containing a single insertion.
Collapse
|
41
|
Zhang X, Ye N, Mou S, Xu D, Fan X. Occurrence of the PsbS and LhcSR products in the green alga Ulva linza and their correlation with excitation pressure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:336-341. [PMID: 23811776 DOI: 10.1016/j.plaphy.2013.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
To avoid photoinhibition, plants have developed diverse photoprotection mechanisms. One of the short-term high light protection mechanisms in plants is non-photochemical quenching (NPQ), which dissipates the absorbed light energy as thermal energy. In the green alga, Ulva linza, the kinetics of NPQ starts with an initial, quick rise followed by a decline, and then a second and higher rise at longer time periods. During the whole phase, NPQ is triggered and controlled by ΔpH, then strengthened and modulated by zeaxanthin. Light-harvesting complex (LHC) family members are known to play crucial roles in this mechanism. The PSBS protein, a member of the LHC family that was thought to be present exclusively in higher plants, has been identified for the first time in U. linza. The expression of both PSBS and LHCSR was up-regulated during high light conditions, and LHCSR increased more than PSBS. Both LHCSR and PSBS-dependent NPQ may be important strategies for adapting to the environment, and they have undoubtedly played a role in their evolution.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, China
| | | | | | | | | |
Collapse
|
42
|
Niyogi KK, Truong TB. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:307-14. [PMID: 23583332 DOI: 10.1016/j.pbi.2013.03.011] [Citation(s) in RCA: 331] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 05/17/2023]
Abstract
All photosynthetic organisms need to regulate light harvesting for photoprotection. Three types of flexible non-photochemical quenching (NPQ) mechanisms have been characterized in oxygenic photosynthetic cyanobacteria, algae, and plants: OCP-, LHCSR-, and PSBS-dependent NPQ. OCP-dependent NPQ likely evolved first, to quench excess excitation in the phycobilisome (PB) antenna of cyanobacteria. During evolution of eukaryotic algae, PBs were lost in the green and secondary red plastid lineages, while three-helix light-harvesting complex (LHC) antenna proteins diversified, including LHCSR proteins that function in dissipating excess energy rather than light harvesting. PSBS, an independently evolved member of the LHC protein superfamily, seems to have appeared exclusively in the green lineage, acquired a function as a pH sensor that turns on NPQ, and eventually replaced LHCSR in vascular plants.
Collapse
Affiliation(s)
- Krishna K Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.
| | | |
Collapse
|
43
|
Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2013; 110:10016-21. [PMID: 23716695 DOI: 10.1073/pnas.1222606110] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants and green algae have a low pH-inducible mechanism in photosystem II (PSII) that dissipates excess light energy, measured as the nonphotochemical quenching of chlorophyll fluorescence (qE). Recently, nonphotochemical quenching 4 (npq4), a mutant strain of the green alga Chlamydomonas reinhardtii that is qE-deficient and lacks the light-harvesting complex stress-related protein 3 (LHCSR3), was reported [Peers G, et al. (2009) Nature 462(7272):518-521]. Here, applying a newly established procedure, we isolated the PSII supercomplex and its associated light-harvesting proteins from both WT C. reinhardtii and the npq4 mutant grown in either low light (LL) or high light (HL). LHCSR3 was present in the PSII supercomplex from the HL-grown WT, but not in the supercomplex from the LL-grown WT or mutant. The purified PSII supercomplex containing LHCSR3 exhibited a normal fluorescence lifetime at a neutral pH (7.5) by single-photon counting analysis, but a significantly shorter lifetime at pH 5.5, which mimics the acidified lumen of the thylakoid membranes in HL-exposed chloroplasts. The switch from light-harvesting mode to energy-dissipating mode observed in the LHCSR3-containing PSII supercomplex was sensitive to dicyclohexylcarbodiimide, a protein-modifying agent specific to protonatable amino acid residues. We conclude that the PSII-LHCII-LHCSR3 supercomplex formed in the HL-grown C. reinhardtii cells is capable of energy dissipation on protonation of LHCSR3.
Collapse
|
44
|
Sunku K, de Groot HJM, Pandit A. Insights into the photoprotective switch of the major light-harvesting complex II (LHCII): a preserved core of arginine-glutamate interlocked helices complemented by adjustable loops. J Biol Chem 2013; 288:19796-804. [PMID: 23629658 DOI: 10.1074/jbc.m113.456111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Light-harvesting antennae of the LHC family form transmembrane three-helix bundles of which two helices are interlocked by conserved arginine-glutamate (Arg-Glu) ion pairs that form ligation sites for chlorophylls. The antenna proteins of photosystem II have an intriguing dual function. In excess light, they can switch their conformation from a light-harvesting into a photoprotective state, in which the excess and harmful excitation energies are safely dissipated as heat. Here we applied magic angle spinning NMR and selective Arg isotope enrichment as a noninvasive method to analyze the Arg structures of the major light-harvesting complex II (LHCII). The conformations of the Arg residues that interlock helix A and B appear to be preserved in the light-harvesting and photoprotective state. Several Arg residues have very downfield-shifted proton NMR responses, indicating that they stabilize the complex by strong hydrogen bonds. For the Arg Cα chemical shifts, differences are observed between LHCII in the active, light-harvesting and in the photoprotective, quenched state. These differences are attributed to a conformational change of the Arg residue in the stromal loop region. We conclude that the interlocked helices of LHCII form a rigid core. Consequently, the LHCII conformational switch does not involve changes in A/B helix tilting but likely involves rearrangements of the loops and helical segments close to the stromal and lumenal ends.
Collapse
Affiliation(s)
- Kiran Sunku
- Department of Solid-State NMR, Leiden Institute of Chemistry, Gorlaeus Laboratory, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
45
|
Pandit A, Reus M, Morosinotto T, Bassi R, Holzwarth AR, de Groot HJM. An NMR comparison of the light-harvesting complex II (LHCII) in active and photoprotective states reveals subtle changes in the chlorophyll a ground-state electronic structures. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:738-44. [PMID: 23466337 DOI: 10.1016/j.bbabio.2013.02.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/14/2013] [Accepted: 02/23/2013] [Indexed: 11/15/2022]
Abstract
To protect the photosynthetic apparatus against photo-damage in high sunlight, the photosynthetic antenna of oxygenic organisms can switch from a light-harvesting to a photoprotective mode through the process of non-photochemical quenching (NPQ). There is growing evidence that light-harvesting proteins of photosystem II participate in photoprotection by a built-in capacity to switch their conformation between light-harvesting and energy-dissipating states. Here we applied high-resolution Magic-Angle Spinning Nuclear Magnetic Resonance on uniformly (13)C-enriched major light-harvesting complex II (LHCII) of Chlamydomonas reinhardtii in active or quenched states. Our results reveal that the switch into a dissipative state is accompanied by subtle changes in the chlorophyll (Chl) a ground-state electronic structures that affect their NMR responses, particularly for the macrocycle (13)C4, (13)C5 and (13)C6 carbon atoms. Inspection of the LHCII X-ray structures shows that of the Chl molecules in the terminal emitter domain, where excited-state energy accumulates prior to further transfer or dissipation, the C4, 5 and 6 atoms are in closest proximity to lutein; supporting quenching mechanisms that involve altered Chl-lutein interactions in the dissipative state. In addition the observed changes could represent altered interactions between Chla and neoxanthin, which alters its configuration under NPQ conditions. The Chls appear to have increased dynamics in unquenched, detergent-solubilized LHCII. Our work demonstrates that solid-state Nuclear Magnetic Resonance is applicable to investigate high-resolution structural details of light-harvesting proteins in varied functional conditions, and represents a valuable tool to address their molecular plasticity associated with photoprotection.
Collapse
Affiliation(s)
- Anjali Pandit
- Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
46
|
CALIANDRO ROSANNA, NAGEL KERSTINA, KASTENHOLZ BERND, BASSI ROBERTO, LI ZHIRONG, NIYOGI KRISHNAK, POGSON BARRYJ, SCHURR ULRICH, MATSUBARA SHIZUE. Effects of altered α- and β-branch carotenoid biosynthesis on photoprotection and whole-plant acclimation of Arabidopsis to photo-oxidative stress. PLANT, CELL & ENVIRONMENT 2013; 36:438-53. [PMID: 22860767 PMCID: PMC3640260 DOI: 10.1111/j.1365-3040.2012.02586.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/16/2012] [Indexed: 05/07/2023]
Abstract
Functions of α- and β-branch carotenoids in whole-plant acclimation to photo-oxidative stress were studied in Arabidopsis thaliana wild-type (wt) and carotenoid mutants, lutein deficient (lut2, lut5), non-photochemical quenching1 (npq1) and suppressor of zeaxanthin-less1 (szl1) npq1 double mutant. Photo-oxidative stress was applied by exposing plants to sunflecks. The sunflecks caused reduction of chlorophyll content in all plants, but more severely in those having high α- to β-branch carotenoid composition (α/β-ratio) (lut5, szl1npq1). While this did not alter carotenoid composition in wt or lut2, which accumulates only β-branch carotenoids, increased xanthophyll levels were found in the mutants with high α/β-ratios (lut5, szl1npq1) or without xanthophyll-cycle operation (npq1, szl1npq1). The PsbS protein content increased in all sunfleck plants but lut2. These changes were accompanied by no change (npq1, szl1npq1) or enhanced capacity (wt, lut5) of NPQ. Leaf mass per area increased in lut2, but decreased in wt and lut5 that showed increased NPQ. The sunflecks decelerated primary root growth in wt and npq1 having normal α/β-ratios, but suppressed lateral root formation in lut5 and szl1npq1 having high α/β-ratios. The results highlight the importance of proper regulation of the α- and β-branch carotenoid pathways for whole-plant acclimation, not only leaf photoprotection, under photo-oxidative stress.
Collapse
Affiliation(s)
- ROSANNA CALIANDRO
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
| | - KERSTIN A NAGEL
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
| | - BERND KASTENHOLZ
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
| | - ROBERTO BASSI
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
- Dipartimento di Biotecnologie, Università degli Studi di Verona37134 Verona, Italy
| | - ZHIRONG LI
- Department of Plant and Microbial Biology, Howard Hughes Medical InstituteUniversity of California
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720-3102, USA
| | - KRISHNA K NIYOGI
- Department of Plant and Microbial Biology, Howard Hughes Medical InstituteUniversity of California
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720-3102, USA
| | - BARRY J POGSON
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National UniversityCanberra, ACT 0200, Australia
| | - ULRICH SCHURR
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
| | - SHIZUE MATSUBARA
- IBG-2: Pflanzenwissenschaften, Forschungszentrum Jülich52425 Jülich, Germany
| |
Collapse
|
47
|
Allorent G, Tokutsu R, Roach T, Peers G, Cardol P, Girard-Bascou J, Seigneurin-Berny D, Petroutsos D, Kuntz M, Breyton C, Franck F, Wollman FA, Niyogi KK, Krieger-Liszkay A, Minagawa J, Finazzi G. A dual strategy to cope with high light in Chlamydomonas reinhardtii. THE PLANT CELL 2013; 25:545-57. [PMID: 23424243 PMCID: PMC3608777 DOI: 10.1105/tpc.112.108274] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Absorption of light in excess of the capacity for photosynthetic electron transport is damaging to photosynthetic organisms. Several mechanisms exist to avoid photodamage, which are collectively referred to as nonphotochemical quenching. This term comprises at least two major processes. State transitions (qT) represent changes in the relative antenna sizes of photosystems II and I. High energy quenching (qE) is the increased thermal dissipation of light energy triggered by lumen acidification. To investigate the respective roles of qE and qT in photoprotection, a mutant (npq4 stt7-9) was generated in Chlamydomonas reinhardtii by crossing the state transition-deficient mutant (stt7-9) with a strain having a largely reduced qE capacity (npq4). The comparative phenotypic analysis of the wild type, single mutants, and double mutants reveals that both state transitions and qE are induced by high light. Moreover, the double mutant exhibits an increased photosensitivity with respect to the single mutants and the wild type. Therefore, we suggest that besides qE, state transitions also play a photoprotective role during high light acclimation of the cells, most likely by decreasing hydrogen peroxide production. These results are discussed in terms of the relative photoprotective benefit related to thermal dissipation of excess light and/or to the physical displacement of antennas from photosystem II.
Collapse
Affiliation(s)
- Guillaume Allorent
- Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France
- Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
- Université Grenoble 1, F-38041 Grenoble, France
- Institut National Recherche Agronomique, Unité Mixte de Recherche 1200, F-38054 Grenoble, France
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, 444-8585 Okazaki, Japan
| | - Thomas Roach
- Commissariat à l'Energie Atomique et Energies Alternatives Saclay, Institute of Biology and Technology-Saclay, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8221, Service de Bioénergétique, Biologie Structurale et Mécanisme, 91191 Gif-sur-Yvette cedex, France
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1062
| | - Pierre Cardol
- Laboratoire de Génétique des Microorganismes Département des Sciences de la Vie, Université de Liège, B-4000 Liege, Belgium
| | - Jacqueline Girard-Bascou
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie Institut de Biologie Physico Chimique, F-75005 Paris, France
| | - Daphné Seigneurin-Berny
- Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France
- Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
- Université Grenoble 1, F-38041 Grenoble, France
- Institut National Recherche Agronomique, Unité Mixte de Recherche 1200, F-38054 Grenoble, France
| | - Dimitris Petroutsos
- Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France
- Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
- Université Grenoble 1, F-38041 Grenoble, France
- Institut National Recherche Agronomique, Unité Mixte de Recherche 1200, F-38054 Grenoble, France
| | - Marcel Kuntz
- Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France
- Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
- Université Grenoble 1, F-38041 Grenoble, France
- Institut National Recherche Agronomique, Unité Mixte de Recherche 1200, F-38054 Grenoble, France
| | - Cécile Breyton
- Unité Mixte de Recherche 5075, Centre National de la Recherche Scientifique/Commissariat à l’Energie Atomique/Université Grenoble 1, Institut de Biologie Structurale, F-38054 Grenoble, France
| | - Fabrice Franck
- Laboratoire de Bioénergétique, Département des Sciences de la Vie, Université de Liège, B-4000 Liege, Belgium
| | - Francis-André Wollman
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie Institut de Biologie Physico Chimique, F-75005 Paris, France
| | - Krishna K. Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3102
| | - Anja Krieger-Liszkay
- Commissariat à l'Energie Atomique et Energies Alternatives Saclay, Institute of Biology and Technology-Saclay, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8221, Service de Bioénergétique, Biologie Structurale et Mécanisme, 91191 Gif-sur-Yvette cedex, France
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, 444-8585 Okazaki, Japan
| | - Giovanni Finazzi
- Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France
- Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
- Université Grenoble 1, F-38041 Grenoble, France
- Institut National Recherche Agronomique, Unité Mixte de Recherche 1200, F-38054 Grenoble, France
- Address correspondence to
| |
Collapse
|
48
|
Tyystjärvi E. Photoinhibition of Photosystem II. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:243-303. [PMID: 23273864 DOI: 10.1016/b978-0-12-405210-9.00007-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Photoinhibition of Photosystem II (PSII) is the light-induced loss of PSII electron-transfer activity. Although photoinhibition has been studied for a long time, there is no consensus about its mechanism. On one hand, production of singlet oxygen ((1)O(2)) by PSII has promoted models in which this reactive oxygen species (ROS) is considered to act as the agent of photoinhibitory damage. These chemistry-based models have often not taken into account the photophysical features of photoinhibition-like light response and action spectrum. On the other hand, models that reproduce these basic photophysical features of the reaction have not considered the importance of data about ROS. In this chapter, it is shown that the evidence behind the chemistry-based models and the photophysically oriented models can be brought together to build a mechanism that confirms with all types of experimental data. A working hypothesis is proposed, starting with inhibition of the manganese complex by light. Inability of the manganese complex to reduce the primary donor promotes recombination between the oxidized primary donor and Q(A), the first stable quinone acceptor of PSII. (1)O(2) production due to this recombination may inhibit protein synthesis or spread the photoinhibitory damage to another PSII center. The production of (1)O(2) is transient because loss of activity of the oxygen-evolving complex induces an increase in the redox potential of Q(A), which lowers (1)O(2) production.
Collapse
Affiliation(s)
- Esa Tyystjärvi
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland.
| |
Collapse
|
49
|
Gerotto C, Alboresi A, Giacometti GM, Bassi R, Morosinotto T. Coexistence of plant and algal energy dissipation mechanisms in the moss Physcomitrella patens. THE NEW PHYTOLOGIST 2012; 196:763-773. [PMID: 23005032 DOI: 10.1111/j.1469-8137.2012.04345.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/08/2012] [Indexed: 05/20/2023]
Abstract
Although light is the source of energy for photosynthetic organisms, it causes oxidative stress when in excess. Plants and algae prevent reactive oxygen species (ROS) formation by activation of nonphotochemical quenching (NPQ), which dissipates excess excitation energy as heat. Although NPQ is found in both algae and plants, these organisms rely on two different proteins for its activation, Light harvesting complex stress-related (LHCSR) and Photosystem II subunit S (PSBS). In the moss Physcomitrella patens, both proteins are present and active. Several P. patens lines depleted in or over-expressing PSBS and/or LHCSR at various levels were generated by exploiting the ability of Physcomitrella to undergo homologous recombination. The analysis of the transgenic lines showed that either protein is sufficient, alone, for NPQ activation independently of the other, supporting the idea that they rely on different activation mechanisms. Modulation of PSBS and/or LHCSR contents was found to be correlated with NPQ amplitude, indicating that plants and algae can directly modulate their ability to dissipate energy simply by altering the accumulation level of one or both of these proteins. The availability of a large range of P. patens genotypes differing in PSBS and LHCSR content allowed comparison of their activation mechanisms and discussion of implications for the evolution of photoprotection during land colonization.
Collapse
Affiliation(s)
- Caterina Gerotto
- Dipartimento di Biologia, Università di Padova, Via Ugo Bassi 58 B, 35121, Padova, Italy
| | - Alessandro Alboresi
- Dipartimento di Biotecnologie, Università di Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Giorgio M Giacometti
- Dipartimento di Biologia, Università di Padova, Via Ugo Bassi 58 B, 35121, Padova, Italy
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Tomas Morosinotto
- Dipartimento di Biologia, Università di Padova, Via Ugo Bassi 58 B, 35121, Padova, Italy
| |
Collapse
|
50
|
Formighieri C, Franck F, Bassi R. Regulation of the pigment optical density of an algal cell: Filling the gap between photosynthetic productivity in the laboratory and in mass culture. J Biotechnol 2012; 162:115-23. [DOI: 10.1016/j.jbiotec.2012.02.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/27/2012] [Accepted: 02/29/2012] [Indexed: 11/26/2022]
|