1
|
Li X, Song C, Kang X, Chen F, Li A, Wang Y, Zou J, Yin J, Li Y, Sun Z, Ma X, Liu J. Assembly and functional profile of rhizosphere microbial community during the Salix viminalis-AMF remediation of polycyclic aromatic hydrocarbon polluted soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122503. [PMID: 39299104 DOI: 10.1016/j.jenvman.2024.122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are positive to the phytoremediation by improving plant biomass and soil properties. However, the role of AM plants to the remediation of polycyclic aromatic hydrocarbons (PAHs) is yet to be widely recognized, and the impact of AM plants to indigenous microbial communities during remediation remains unclear. In this work, a 90-day study was conducted to assess the effect of AMF-Salix viminalis on the removal of PAHs, and explore the impact to the microbial community composition, abundance, and function. Results showed that AMF-Salix viminalis effectively enhanced the removal of benzo[a]pyrene, and enriched more PAH-degrading bacteria, consisting of Actinobacteria, Chloroflexi, Sphingomonas, and Stenotrophobacter, as well as fungi including Basidiomycota, Pseudogymnoascus, and Tomentella. For gene function, AM willow enhanced the enrichment of genes involved in amino acid synthesis, aminoacyl-tRNA biosynthesis, and cysteine and methionine metabolism pathways. F. mosseae inoculation had a greater effect on alpha- and beta-diversity of microbial genes at 90 d. Additionally, AMF inoculation significantly increased the soil microbial biomass carbon and organic matter concentration. All together, the microbial community assembly and function shaped by AM willow promoted the dissipation of PAHs. Our results support the effectiveness of AM remediation and contribute to reveal the enhancing-remediation mechanism to PAHs using multi-omics data.
Collapse
Affiliation(s)
- Xia Li
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Chuansheng Song
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Xiaofei Kang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Fengzhen Chen
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Ao Li
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yuancheng Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Junzhu Zou
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jiahui Yin
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; College of Horticulture, Jilin Agricultural University, Changchun, 130000, Jilin, China
| | - Yingying Li
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Zhenyuan Sun
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiaodong Ma
- Department of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, Shandong, China.
| | - Junxiang Liu
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
2
|
Obayori OS, Adesina OD, Salam LB, Ashade AO, Nwaokorie FO. Depletion of hydrocarbons and concomitant shift in bacterial community structure of a diesel-spiked tropical agricultural soil. ENVIRONMENTAL TECHNOLOGY 2024; 45:5368-5383. [PMID: 38118139 DOI: 10.1080/09593330.2023.2291421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/26/2023] [Indexed: 12/22/2023]
Abstract
Bacterial community of a diesel-spiked agricultural soil was monitored over a 42-day period using the metagenomic approach in order to gain insight into key phylotypes impacted by diesel contamination and be able to predict end point of bioattenuation. Soil physico-chemical parameters showed significant differences (P < 0.05) between the Polluted Soil (PS) and the Unpolluted control (US)across time points. After 21 days, the diesel content decreased by 27.39%, and at the end of 42 days, by 57.11%. Aromatics such as benzene, anthanthrene, propylbenzene, phenanthrenequinone, anthraquinone, and phenanthridine were degraded to non-detected levels within 42 days, while some medium range alkanes and polyaromatics such as acenaphthylene, naphthalene, and anthracene showed significant levels of degradation. After 21 days (LASTD21), there was a massive enrichment of the phylum Proteobacteria (72.94%), a slight decrease in the abundance of phylum Actinobacteriota (12.74%), and > 500% decrease in the abundance of the phylum Acidobacteriodota (5.26%). Day 42 (LASTD42) saw establishment of the dominance of the Proteobacteria (34.95%), Actinobacteriota, (21.71%), and Firmicutes (32.14%), and decimation of phyla such as Gemmatimonadota, Planctomycetota, and Verrucromicrobiota which play important roles in the cycling of elements and soil health. Principal component analysis showed that in PS moisture contents, phosphorus, nitrogen, organic carbon, had greater impacts on the community structure in LASTD21, while acidity, potassium, sodium, calcium and magnesium impacted the control sample. Recovery time of the soil based on the residual hydrocarbons at Day 42 was estimated to be 229.112 d. Thus, additional biostimulation may be required to achieve cleanup within one growing season.
Collapse
Affiliation(s)
| | | | - Lateef Babatunde Salam
- Microbiology Unit, Department of Biological Sciences, Elizade University, Ilara-Mokin, Nigeria
| | | | | |
Collapse
|
3
|
Sakai M, Mori JF, Kanaly RA. Assessment of bacterial biotransformation of alkylnaphthalene lubricating base oil component 1-butylnaphthalene by LC/ESI-MS(/MS). CHEMOSPHERE 2024; 364:143269. [PMID: 39241838 DOI: 10.1016/j.chemosphere.2024.143269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Alkylnaphthalene lubricating oils are synthetic Group V base oils that are utilized in wide-ranging industrial applications and which are composed of polyalkyl chain-alkylated naphthalenes. Identification of alkylnaphthalene biotransformation products and determination of their mass spectrometry (MS) fragmentation signatures provides valuable information for predicting their environmental fates and for development of analytical methods to monitor their biodegradation. In this work, laboratory-based environmental petroleomics was applied to investigate the catabolism of the alkylnaphthalene, 1-butylnaphthalene (1-BN), by liquid chromatography electrospray ionization MS data mapping and targeted collision-induced dissociation (CID) analyses. Comparative mapping revealed that numerous catabolites were produced from soil bacterium, Sphingobium barthaii KK22. Targeted CID showed unique patterns of production of even-valued deprotonated fragments that were found to originate from specific classes of bacterial catabolites. Based upon results of CID analyses of catabolites and authentic standards, MS signatures were proposed to occur through formation of distonic radical anions from bacterially-produced alkylphenol biotransformation products. Finally, spectra interpretation was guided by CID results to propose chemical structures for twenty-two 1-BN catabolites resulting in construction of 1-BN biotransformation pathways. Multiple pathways were identified that included aromatic ring-opening, alkyl chain-shortening and production of α,β-unsaturated aldehydes from alkylated phenols. Until now, α,β-unsaturated aldehydes have not been a class of compounds much reported from alkylated polycyclic aromatic hydrocarbon (APAH) and PAH biotransformation. This work provides a new understanding of alkylnaphthalene biotransformation and proposes MS markers applicable to monitoring APAH biotransformation in the form of alkylated phenols, and by extension, α,β-unsaturated aldehydes, and toxic potential during spilled oil biodegradation.
Collapse
Affiliation(s)
- Miharu Sakai
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa, Kanagawa, Yokohama, 236-0027, Japan.
| | - Jiro F Mori
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa, Kanagawa, Yokohama, 236-0027, Japan.
| | - Robert A Kanaly
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa, Kanagawa, Yokohama, 236-0027, Japan.
| |
Collapse
|
4
|
Lumibao CY, Liu Y. Long-Term Contaminant Exposure Alters Functional Potential and Species Composition of Soil Bacterial Communities in Gulf Coast Prairies. Microorganisms 2024; 12:1460. [PMID: 39065226 PMCID: PMC11279120 DOI: 10.3390/microorganisms12071460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Environmental pollution is a persistent threat to coastal ecosystems worldwide, adversely affecting soil microbiota. Soil microbial communities perform critical functions in many coastal processes, yet they are increasingly subject to oil and heavy metal pollution. Here, we assessed how small-scale contamination by oil and heavy metal impacts the diversity and functional potential of native soil bacterial communities in the gulf coast prairie dunes of a barrier island in South Texas along the northern Gulf of Mexico. We analyzed the bacterial community structure and their predicted functional profiles according to contaminant history and examined linkages between species diversity and functional potential. Overall, contaminants altered bacterial community compositions without affecting richness, leading to strongly distinct bacterial communities that were accompanied by shifts in functional potential, i.e., changes in predicted metabolic pathways across oiled, metal, and uncontaminated environments. We also observed that exposure to different contaminants can either lead to strengthened or decoupled linkages between species diversity and functional potential. Taken together, these findings indicate that bacterial communities might recover their diversity levels after contaminant exposure, but with consequent shifts in community composition and function. Furthermore, the trajectory of bacterial communities can depend on the nature or type of disturbance.
Collapse
Affiliation(s)
- Candice Y. Lumibao
- Department of Life Sciences, Texas A&M University—Corpus Christi, Corpus Christi, TX 78412, USA;
| | | |
Collapse
|
5
|
Li D, Zhu Z, Cao X, Yang T, An S. Ecological risk of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in the sediment of a protected karst plateau lake (Caohai) wetland in China. MARINE POLLUTION BULLETIN 2024; 201:116199. [PMID: 38422826 DOI: 10.1016/j.marpolbul.2024.116199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Understanding PAH and OCP distributions and sources in lakes is necessary for developing pollutant control policies. Here, we assessed the occurrence, risk, and sources of PAHs and OCPs in the sediment of Caohai Lake. The PAHs were predominantly high-molecular-weight compounds (mean 57.5 %), and the diagnostic ratios revealed that coal, biomass burning, and traffic were the sources of PAHs. HCHs (6.53 ± 7.22 ng g-1) and DDTs (10.86 ± 12.16 ng g-1) were the dominant OCPs and were primarily sourced from fresh exogenous inputs. RDA showed that sediment properties explained 74.12 % and 65.44 % of the variation in PAH and OCP concentrations, respectively. Incremental lifetime cancer risk (ILCR) assessment indicated that hazardous PAHs in Caohai Lake sediment posed moderate risks to children and adults (ILCR>1.0 × 10-4), while the risk from OCPs was low; however, the recent influx of HCHs and DDTs requires additional attention.
Collapse
Affiliation(s)
- Dianpeng Li
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China
| | - Zhengjie Zhu
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China; Nanjing University Ecological Research Institute of Changshu, Suzhou 215500, Jiangsu, China
| | - Xuecheng Cao
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China
| | - Tangwu Yang
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China; Nanjing University Ecological Research Institute of Changshu, Suzhou 215500, Jiangsu, China
| | - Shuqing An
- School of Life Sciences, Nanjing University, Nanjing 210046, Jiangsu, China; Nanjing University Ecological Research Institute of Changshu, Suzhou 215500, Jiangsu, China.
| |
Collapse
|
6
|
Salam LB. Diverse hydrocarbon degradation genes, heavy metal resistome, and microbiome of a fluorene-enriched animal-charcoal polluted soil. Folia Microbiol (Praha) 2024; 69:59-80. [PMID: 37450270 DOI: 10.1007/s12223-023-01077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Environmental compartments polluted with animal charcoal from the skin and hide cottage industries are rich in toxic heavy metals and diverse hydrocarbon classes, some of which are carcinogenic, mutagenic, and genotoxic, and thus require a bio-based eco-benign decommission strategies. A shotgun metagenomic approach was used to decipher the microbiome, hydrocarbon degradation genes, and heavy metal resistome of a microbial consortium (FN8) from an animal-charcoal polluted site enriched with fluorene. Structurally, the FN8 microbial consortium consists of 26 phyla, 53 classes, 119 orders, 245 families, 620 genera, and 1021 species. The dominant phylum, class, order, family, genus, and species in the consortium are Proteobacteria (51.37%), Gammaproteobacteria (39.01%), Bacillales (18.09%), Microbulbiferaceae (11.65%), Microbulbifer (12.21%), and Microbulbifer sp. A4B17 (19.65%), respectively. The microbial consortium degraded 57.56% (28.78 mg/L) and 87.14% (43.57 mg/L) of the initial fluorene concentration in 14 and 21 days. Functional annotation of the protein sequences (ORFs) of the FN8 metagenome using the KEGG GhostKOALA, KofamKOALA, NCBI's conserved domain database, and BacMet revealed the detection of hydrocarbon degradation genes for benzoate, aminobenzoate, polycyclic aromatic hydrocarbons (PAHs), chlorocyclohexane/chlorobenzene, chloroalkane/chloroalkene, toluene, xylene, styrene, naphthalene, nitrotoluene, and several others. The annotation also revealed putative genes for the transport, uptake, efflux, and regulation of heavy metals such as arsenic, cadmium, chromium, mercury, nickel, copper, zinc, and several others. Findings from this study have established that members of the FN8 consortium are well-adapted and imbued with requisite gene sets and could be a potential bioresource for on-site depuration of animal charcoal polluted sites.
Collapse
Affiliation(s)
- Lateef Babatunde Salam
- Department of Biological Sciences, Microbiology unit, Elizade University, Ilara-Mokin, Ondo State, Nigeria.
| |
Collapse
|
7
|
Jiménez-Volkerink SN, Jordán M, Smidt H, Minguillón C, Vila J, Grifoll M. Metagenomic insights into the microbial cooperative networks of a benz(a)anthracene-7,12-dione degrading community from a creosote-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167832. [PMID: 37863223 DOI: 10.1016/j.scitotenv.2023.167832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Genotoxicity of PAH-contaminated soils can eventually increase after bioremediation due to the formation and accumulation of polar transformation products, mainly oxygenated PAHs (oxy-PAHs). Biodegradation of oxy-PAHs has been described in soils, but information on the microorganisms and mechanisms involved is still scarce. Benz(a)anthracene-7,12-dione (BaAQ), a transformation product from benz(a)anthracene frequently detected in soils, presents higher genotoxic potential than its parent PAH. Here, using sand-in-liquid microcosms we identified a specialized BaAQ-degrading subpopulation in a PAH-contaminated soil. A BaAQ-degrading microbial consortium was obtained by enrichment in sand-in-liquid cultures with BaAQ as sole carbon source, and its metagenomic analysis identified members of Sphingobium, Stenotrophomonas, Pusillimonas, Olivibacter, Pseudomonas, Achromobacter, and Hyphomicrobiales as major components. The integration of data from metabolomic and metagenomic functional gene analyses of the consortium revealed that the BaAQ metabolic pathway was initiated by Baeyer-Villiger monooxygenases (BVMOs). The presence of plasmid pANTQ-1 in the metagenomic sequences, identified in a previous multi-omic characterization of a 9,10-anthraquinone-degrading isolate recovered from the same soil, suggested the occurrence of a horizontal gene transfer event. Further metagenomic analysis of the BaAQ-degrading consortium also provided insights into the potential roles and interactions within the consortium members. Several potential auxotrophies were detected, indicating that relevant nutritional interdependencies and syntrophic associations were taking place within the community members, not only to provide suitable carbon and energy sources, but also to supply essential nutrients and cofactors. Our work confirms the essential role that BVMO may play as a detoxification mechanism to mitigate the risk posed by oxy-PAH formation during bioremediation of contaminated soils.
Collapse
Affiliation(s)
- Sara N Jiménez-Volkerink
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain
| | - Maria Jordán
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Cristina Minguillón
- Department of Nutrition, Food Science and Gastronomy, University of Barcelona, Avda. Prat de la Riba, 171, 08921 Sta. Coloma de Gramanet, Barcelona, Spain
| | - Joaquim Vila
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain.
| | - Magdalena Grifoll
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain
| |
Collapse
|
8
|
Liu M, Zhang L, Yang R, Cui H, Li Y, Li X, Huang H. Integrating metal-organic framework ZIF-8 with green modifier empowered bacteria with improved bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132475. [PMID: 37714005 DOI: 10.1016/j.jhazmat.2023.132475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/02/2023] [Accepted: 09/02/2023] [Indexed: 09/17/2023]
Abstract
Suspended microorganisms often experience diminished efficacy in the bioremediation of polycyclic aromatic hydrocarbons (PAHs). In this study, the potential of zeolite imidazolate framework-8 (ZIF-8) and the eco-friendly modifier citric acid (CA) was harnessed to generate a biomimetic mineralized protective shell on the surface of Bacillus subtilis ZL09-26, resulting in an enhanced capability for PAH degradation. This investigation encompassed the integrated responses of B. subtilis ZL09-26 to ZIF-8 and ZIF-8-CA at both cellular and proteomic levels. The amalgamation of ZIF-8 and CA not only stimulated the growth and bolstered the cell viability of B. subtilis ZL09-26, but also counteracted the toxic effects of phenanthrene (PHE) stress. Remarkably, the bioremediation prowess of B. subtilis ZL09-26@ZIF-8-CA surpassed that of ZL09-26@ZIF-8 and ZL09-26, achieving a PHE removal rate of 94.14 % within 6 days. After undergoing five cycles, ZL09-26@ZIF-8-CA demonstrated an enduring PHE removal rate exceeding 83.31 %. A complex interplay of various metabolic pathways orchestrated cellular responses, enhancing PHE transport and degradation. These pathways encompassed direct PHE biodegradation, central carbon metabolism, oxidative phosphorylation, purine metabolism, and aminoacyl-tRNA biosynthesis. This study not only extends the potential applications of biomineralized organisms but also offers alternative strategies for effective contaminant management.
Collapse
Affiliation(s)
- Mina Liu
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Rongrong Yang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, China
| | - Haiyang Cui
- RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Yanan Li
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, China
| | - Xiujuan Li
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, China.
| | - He Huang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, China
| |
Collapse
|
9
|
Sun Y, Hao Y, Zhang Q, Liu X, Wang L, Li J, Li M, Li D. Coping with extremes: Alternations in diet, gut microbiota, and hepatic metabolic functions in a highland passerine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167079. [PMID: 37714349 DOI: 10.1016/j.scitotenv.2023.167079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
In wild animals, diet and gut microbiota interactions are critical moderators of metabolic functions and are highly contingent on habitat conditions. Challenged by the extreme conditions of high-altitude environments, the strategies implemented by highland animals to adjust their diet and gut microbial composition and modulate their metabolic substrates remain largely unexplored. By employing a typical human commensal species, the Eurasian tree sparrow (Passer montanus, ETS), as a model species, we studied the differences in diet, digestive tract morphology and enzyme activity, gut microbiota, and metabolic energy profiling between highland (the Qinghai-Tibet Plateau, QTP; 3230 m) and lowland (Shijiazhuang, Hebei; 80 m) populations. Our results showed that highland ETSs had enlarged digestive organs and longer small intestinal villi, while no differences in key digestive enzyme activities were observed between the two populations. The 18S rRNA sequencing results revealed that the dietary composition of highland ETSs were more animal-based and less plant-based than those of the lowland ones. Furthermore, 16S rRNA sequencing results suggested that the intestinal microbial communities were structurally segregated between populations. PICRUSt metagenome predictions further indicated that the expression patterns of microbial genes involved in material and energy metabolism, immune system and infection, and xenobiotic biodegradation were strikingly different between the two populations. Analysis of liver metabolomics revealed significant metabolic differences between highland and lowland ETSs in terms of substrate utilization, as well as distinct sex-specific alterations in glycerophospholipids. Furthermore, the interplay between diet, liver metabolism, and gut microbiota suggests a dietary shift resulting in corresponding changes in gut microbiota and metabolic functions. Our findings indicate that highland ETSs have evolved to optimize digestion and absorption, rely on more protein-rich foods, and possess gut microbiota tailored to their dietary composition, likely adaptive physiological and ecological strategies adopted to cope with extreme highland environments.
Collapse
Affiliation(s)
- Yanfeng Sun
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Yaotong Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Qian Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xu Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Juyong Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Mo Li
- College of Life Sciences, Cangzhou Normal University, Cangzhou 061001, China.
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
10
|
Karaś MA, Wdowiak-Wróbel S, Marek-Kozaczuk M, Sokołowski W, Melianchuk K, Komaniecka I. Assessment of Phenanthrene Degradation Potential by Plant-Growth-Promoting Endophytic Strain Pseudomonas chlororaphis 23aP Isolated from Chamaecytisus albus (Hacq.) Rothm. Molecules 2023; 28:7581. [PMID: 38005303 PMCID: PMC10673423 DOI: 10.3390/molecules28227581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common xenobiotics that are detrimental to the environment and human health. Bacterial endophytes, having the capacity to degrade PAHs, and plant growth promotion (PGP) may facilitate their biodegradation. In this study, phenanthrene (PHE) utilization of a newly isolated PGP endophytic strain of Pseudomonas chlororaphis 23aP and factors affecting the process were evaluated. The data obtained showed that strain 23aP utilized PHE in a wide range of concentrations (6-100 ppm). Ethyl-acetate-extractable metabolites obtained from the PHE-enriched cultures were analyzed by gas chromatography-mass spectrometry (GC-MS) and thin-layer chromatography (HPTLC). The analysis identified phthalic acid, 3-(1-naphthyl)allyl alcohol, 2-hydroxybenzalpyruvic acid, α-naphthol, and 2-phenylbenzaldehyde, and allowed us to propose that the PHE degradation pathway of strain 23aP is initiated at the 1,2-, 3,4-carbon positions, while the 9,10-C pathway starts with non-enzymatic oxidation and is continued by the downstream phthalic pathway. Moreover, the production of the biosurfactants, mono- (Rha-C8-C8, Rha-C10-C8:1, Rha-C12:2-C10, and Rha-C12:1-C12:1) and dirhamnolipids (Rha-Rha-C8-C10), was confirmed using direct injection-electrospray ionization-mass spectrometry (DI-ESI-MS) technique. Changes in the bacterial surface cell properties in the presence of PHE of increased hydrophobicity were assessed with the microbial adhesion to hydrocarbons (MATH) assay. Altogether, this suggests the strain 23aP might be used in bioaugmentation-a biological method supporting the removal of pollutants from contaminated environments.
Collapse
Affiliation(s)
- Magdalena Anna Karaś
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (S.W.-W.); (M.M.-K.); (W.S.)
| | | | | | | | | | - Iwona Komaniecka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (S.W.-W.); (M.M.-K.); (W.S.)
| |
Collapse
|
11
|
Iturbe-Espinoza P, Bonte M, Weedon JT, Braster M, Brandt BW, van Spanning RJ. Correlating the succession of microbial communities from Nigerian soils to petroleum biodegradation. World J Microbiol Biotechnol 2023; 39:239. [PMID: 37392206 PMCID: PMC10314880 DOI: 10.1007/s11274-023-03656-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/19/2023] [Indexed: 07/03/2023]
Abstract
Whilst biodegradation of different hydrocarbon components has been widely demonstrated to occur by specialist oil-degrading bacteria, less is known about the impact on microbial communities as a function of oil composition by comparing the biodegradation of chemically complex fuels to synthetic products. The objectives of this study were (i) to assess the biodegradation capacity and succession of microbial communities isolated from Nigerian soils in media with crude oil or synthetic oil as sole sources of carbon and energy, and (ii) to assess the temporal variability of the microbial community size. Community profiling was done using 16 S rRNA gene amplicon sequencing (Illumina), and oil profiling using gas chromatography. The biodegradation of natural and synthetic oil differed probably due to the content of sulfur that may interfere with the biodegradation of hydrocarbons. Both alkanes and PAHs in the natural oil were biodegraded faster than in the synthetic oil. Variable community responses were observed during the degradation of alkanes and more simple aromatic compounds, but at later phases of growth they became more homogeneous. The degradation capacity and the size of the community from the more-contaminated soil were higher than those from the less-contaminated soil. Six abundant organisms isolated from the cultures were found to biodegrade oil molecules in pure cultures. Ultimately, this knowledge may contribute to a better understanding of how to improve the biodegradation of crude oil by optimizing culturing conditions through inoculation or bioaugmentation of specific bacteria during ex-situ biodegradation such as biodigesters or landfarming.
Collapse
Affiliation(s)
- Paul Iturbe-Espinoza
- Systems biology lab, Department of Molecular Cell Biology, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085 (location code O|2-2E51), NL-1081HV, Amsterdam, The Netherlands.
- Department of Environmental Science, Aarhus University, Roskilde, Denmark.
| | - Matthijs Bonte
- Shell Global Solutions International BV, The Hague, The Netherlands
- MB-Water, Amsterdam, The Netherlands
| | - James T Weedon
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martin Braster
- Systems biology lab, Department of Molecular Cell Biology, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085 (location code O|2-2E51), NL-1081HV, Amsterdam, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob Jm van Spanning
- Systems biology lab, Department of Molecular Cell Biology, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085 (location code O|2-2E51), NL-1081HV, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Jiménez-Volkerink SN, Jordán M, Singleton DR, Grifoll M, Vila J. Bacterial benz(a)anthracene catabolic networks in contaminated soils and their modulation by other co-occurring HMW-PAHs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121624. [PMID: 37059172 DOI: 10.1016/j.envpol.2023.121624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 05/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are major environmental pollutants in a number of point source contaminated sites, where they are found embedded in complex mixtures containing different polyaromatic compounds. The application of bioremediation technologies is often constrained by unpredictable end-point concentrations enriched in recalcitrant high molecular weight (HMW)-PAHs. The aim of this study was to elucidate the microbial populations and potential interactions involved in the biodegradation of benz(a)anthracene (BaA) in PAH-contaminated soils. The combination of DNA stable isotope probing (DNA-SIP) and shotgun metagenomics of 13C-labeled DNA identified a member of the recently described genus Immundisolibacter as the key BaA-degrading population. Analysis of the corresponding metagenome assembled genome (MAG) revealed a highly conserved and unique genetic organization in this genus, including novel aromatic ring-hydroxylating dioxygenases (RHD). The influence of other HMW-PAHs on BaA degradation was ascertained in soil microcosms spiked with BaA and fluoranthene (FT), pyrene (PY) or chrysene (CHY) in binary mixtures. The co-occurrence of PAHs resulted in a significant delay in the removal of PAHs that were more resistant to biodegradation, and this delay was associated with relevant microbial interactions. Members of Immundisolibacter, associated with the biodegradation of BaA and CHY, were outcompeted by Sphingobium and Mycobacterium, triggered by the presence of FT and PY, respectively. Our findings highlight that interacting microbial populations modulate the fate of PAHs during the biodegradation of contaminant mixtures in soils.
Collapse
Affiliation(s)
- Sara N Jiménez-Volkerink
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain
| | - Maria Jordán
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain
| | - David R Singleton
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708-0287, USA
| | - Magdalena Grifoll
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.
| | - Joaquim Vila
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain
| |
Collapse
|
13
|
Huang Y, Li L, Yin X, Zhang T. Polycyclic aromatic hydrocarbon (PAH) biodegradation capacity revealed by a genome-function relationship approach. ENVIRONMENTAL MICROBIOME 2023; 18:39. [PMID: 37122013 PMCID: PMC10150532 DOI: 10.1186/s40793-023-00497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbon (PAH) contamination has been a worldwide environmental issue because of its impact on ecosystems and human health. Biodegradation plays an important role in PAH removal in natural environments. To date, many PAH-degrading strains and degradation genes have been reported. However, a comprehensive PAH-degrading gene database is still lacking, hindering a deep understanding of PAH degraders in the era of big data. Furthermore, the relationships between the PAH-catabolic genotype and phenotype remain unclear. RESULTS Here, we established a bacterial PAH-degrading gene database and explored PAH biodegradation capability via a genome-function relationship approach. The investigation of functional genes in the experimentally verified PAH degraders indicated that genes encoding hydratase-aldolase could serve as a biomarker for preliminarily identifying potential degraders. Additionally, a genome-centric interpretation of PAH-degrading genes was performed in the public genome database, demonstrating that they were ubiquitous in Proteobacteria and Actinobacteria. Meanwhile, the global phylogenetic distribution was generally consistent with the culture-based evidence. Notably, a few strains affiliated with the genera without any previously known PAH degraders (Hyphomonas, Hoeflea, Henriciella, Saccharomonospora, Sciscionella, Tepidiphilus, and Xenophilus) also bore a complete PAH-catabolic gene cluster, implying their potential of PAH biodegradation. Moreover, a random forest analysis was applied to predict the PAH-degrading trait in the complete genome database, revealing 28 newly predicted PAH degraders, of which nine strains encoded a complete PAH-catabolic pathway. CONCLUSIONS Our results established a comprehensive PAH-degrading gene database and a genome-function relationship approach, which revealed several potential novel PAH-degrader lineages. Importantly, this genome-centric and function-oriented approach can overcome the bottleneck of conventional cultivation-based biodegradation research and substantially expand our current knowledge on the potential degraders of environmental pollutants.
Collapse
Affiliation(s)
- Yue Huang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Liguan Li
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaole Yin
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
14
|
Nemoto Y, Ozawa K, Mori JF, Kanaly RA. Nondesulfurizing benzothiophene biotransformation to hetero and homodimeric ortho-substituted diaryl disulfides by the model PAH-degrading Sphingobium barthaii. Biodegradation 2023; 34:215-233. [PMID: 36808269 DOI: 10.1007/s10532-023-10014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/06/2023] [Indexed: 02/21/2023]
Abstract
Understanding the biotransformation mechanisms of toxic sulfur-containing polycyclic aromatic hydrocarbon (PASH) pollutants such as benzothiophene (BT) is useful for predicting their environmental fates. In the natural environment, nondesulfurizing hydrocarbon-degrading bacteria are major active contributors to PASH biodegradation at petroleum-contaminated sites; however, BT biotransformation pathways by this group of bacteria are less explored when compared to desulfurizing organisms. When a model nondesulfurizing polycyclic aromatic hydrocarbon-degrading soil bacterium, Sphingobium barthaii KK22, was investigated for its ability to cometabolically biotransform BT by quantitative and qualitative methods, BT was depleted from culture media but was biotransformed into mostly high molar mass (HMM) hetero and homodimeric ortho-substituted diaryl disulfides (diaryl disulfanes). HMM diaryl disulfides have not been reported as biotransformation products of BT. Chemical structures were proposed for the diaryl disulfides by comprehensive mass spectrometry analyses of the chromatographically separated products and were supported by the identification of transient upstream BT biotransformation products, which included benzenethiols. Thiophenic acid products were also identified, and pathways that described BT biotransformation and novel HMM diaryl disulfide formation were constructed. This work shows that nondesulfurizing hydrocarbon-degrading organisms produce HMM diaryl disulfides from low molar mass polyaromatic sulfur heterocycles, and this may be taken into consideration when predicting the environmental fates of BT pollutants.
Collapse
Affiliation(s)
- Yuki Nemoto
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama, Kanagawa, 236-0027, Japan
| | - Kohei Ozawa
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama, Kanagawa, 236-0027, Japan
| | - Jiro F Mori
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama, Kanagawa, 236-0027, Japan
| | - Robert A Kanaly
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama, Kanagawa, 236-0027, Japan.
| |
Collapse
|
15
|
Urana R, Yadav J, Panchal S, Sharma P, Singh N. Phytoremediation of PAH compounds by microbial communities in sodic soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1501-1509. [PMID: 36694290 DOI: 10.1080/15226514.2023.2170321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The PAH degrading microbial consortium was collected from sodic soil of the nursery of Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India). And the soil was artificially amended with phenanthrene and naphthalene to isolate the PAHs degrading microbial consortium. The diversity of microbial consortium was analyzed using the NGS (Next Generation Sequencing) based metagenomic approach. The result of diversity analysis showed species Tepidanaerobacter syntrophicus, Sphingomonas oliophenolica, Arthrobacter psychrochitinipnius, Bifidobacterium bombi, Nocardiodies islandensis, Rhodovibrio sodomensis, Thiorhodococus pfennigii, Aeromicrobium ponti, Steroidobacter dentrificans, Actinomaduria maheshkhaliensis, Dactylosporangium maewongense, Pelotomaculum isophthalicicum, and Nocardioides islandensis were present in the consortium. Moreover, Sphingomonas, Arthrobacter, Sphingobium, Azospirillium, Thirohodococcus, and Pelotomaculum were the prominent pollutant degrader genera in the microbial consortium. Since the bioremediation of these pollutants occurs with a significant reduction in toxicity, the study's perspective is to use this type of consortium for bioremediation of specifically contaminated soil.
Collapse
Affiliation(s)
- Ruchi Urana
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, India
- Microbial Biotechnology Lab, Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Jyoti Yadav
- Microbial Biotechnology Lab, Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Suryakant Panchal
- Microbial Biotechnology Lab, Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Praveen Sharma
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Namita Singh
- Microbial Biotechnology Lab, Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, India
| |
Collapse
|
16
|
Becerril Mercado JE, García de Llasera MP, Méndez García M. Size Exclusion Chromatography Protein Profile of Selenastrum capricornutum Culture Extracts Degrading Benzo( a)Pyrene. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2159987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- José Eduardo Becerril Mercado
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, México
| | - Martha Patricia García de Llasera
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, México
| | - Manuel Méndez García
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, México
| |
Collapse
|
17
|
Lv L, Sun L, Yuan C, Han Y, Huang Z. The combined enhancement of RL, nZVI and AQDS on the microbial anaerobic-aerobic degradation of PAHs in soil. CHEMOSPHERE 2022; 307:135609. [PMID: 35809750 DOI: 10.1016/j.chemosphere.2022.135609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/11/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous persistent organic pollutants in soil, which have carcinogenic, teratogenic and mutagenic hazards. The effects of rhamnolipid (RL), nano zero-valent iron (nZVI), and anthraquinone-2,6-disulfonic acid (AQDS) on the degradation of PAHs in soil were studied. It was found that the treatment of 5 mg·kg-1RL + 1% nZVI +0.2 mmol·kg-1AQDS had the highest degradation rate. The degradation rate of total PAHs and HMW-PAHs was 72.81% and 79.47% respectively after 90 days. High-throughput sequencing showed that in RL + nZVI + AQDS enhanced soil, Clostridium, Geobacter, Anaeromyxobacter and Sphingomonas were the dominant species for anaerobic degradation of PAHs. Rhodococcus, Nocardioides, and Microvirga are the dominant species for aerobic degradation of PAHs. The activities of methyltransferase, dehydrogenase and catechol 1,2-dioxygenase in the anaerobic-aerobic degradation process of PAHs were consistent with the degradation process of PAHs, indicating the role of these enzymes in the degradation of PAHs. RL, nZVI, and AQDS combined enhanced microbial anaerobic-aerobic degradation has great application potential in remediation of PAHs-contaminated soil.
Collapse
Affiliation(s)
- Lianghe Lv
- Key Laboratory of Ecological Restoration of Regional Pollution Environment, Ministry of Education, Shenyang University, Shenyang, 110004, China
| | - Lina Sun
- Key Laboratory of Ecological Restoration of Regional Pollution Environment, Ministry of Education, Shenyang University, Shenyang, 110004, China.
| | - Chunli Yuan
- Key Laboratory of Ecological Restoration of Regional Pollution Environment, Ministry of Education, Shenyang University, Shenyang, 110004, China.
| | - Yue Han
- Key Laboratory of Ecological Restoration of Regional Pollution Environment, Ministry of Education, Shenyang University, Shenyang, 110004, China
| | - Zhaohui Huang
- Key Laboratory of Ecological Restoration of Regional Pollution Environment, Ministry of Education, Shenyang University, Shenyang, 110004, China
| |
Collapse
|
18
|
Fan K, Feng Q, Li K, Lin J, Wang W, Cao Y, Gai H, Song H, Huang T, Zhu Q, Xiao M. The metabolism of pyrene by a novel Altererythrobacter sp. with in-situ co-substrates: A mechanistic analysis based on pathway, genomics, and enzyme activity. CHEMOSPHERE 2022; 307:135784. [PMID: 35870609 DOI: 10.1016/j.chemosphere.2022.135784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Using co-substrates to enhance the metabolic activity of microbes is an effective way for high-molecular-weight polycyclic aromatic hydrocarbons removal in petroleum-contaminated environments. However, the long degradation period and exhausting substrates limit the enhancement of metabolic activity. In this study, Altererythrobacter sp. N1 was screened from petroleum-contaminated soil in Shengli Oilfield, China, which could utilize pyrene as the sole carbon source and energy source. Saturated aromatic fractions and crude oils were used as in-situ co-substrates to enhance pyrene degradation. Enzyme activity was influenced by the different co-substrates. The highest degradation rate (75.98%) was achieved when crude oil was used as the substrate because strain N1 could utilize saturated and aromatic hydrocarbons from crude oil simultaneously to enhance the degrading enzyme activity. Moreover, the phthalate pathway was dominant, while the salicylate pathway was secondary. Furthermore, the Rieske-type aromatic cyclo-dioxygenase gene was annotated in the Altererythrobacter sp. N1 genome for the first time. Therefore, the co-metabolism of pyrene was sustained to achieve a long degradation period without the addition of exogenous substrates. This study is valuable as a potential method for the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Kaiqi Fan
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Qingmin Feng
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Kun Li
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Junzhang Lin
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying, 257000, PR China.
| | - Weidong Wang
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying, 257000, PR China.
| | - Yanbin Cao
- Oil Production Research Institute, Shengli Oil Field Ltd. Co. SinoPEC, Dongying, 257000, PR China.
| | - Hengjun Gai
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Hongbing Song
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Tingting Huang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Quanhong Zhu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Meng Xiao
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
19
|
Wang D, Qin L, Liu E, Chai G, Su Z, Shan J, Yang Z, Wang Z, Wang H, Meng H, Zheng X, Li H, Li J, Lin Y. Biodegradation performance and diversity of enriched bacterial consortia capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons. ENVIRONMENTAL TECHNOLOGY 2022; 43:4200-4211. [PMID: 34148513 DOI: 10.1080/09593330.2021.1946163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/13/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are key organic pollutants in the environment that pose threats to the ecosystem and human health. The degradation of high molecular weight (HMW) PAHs by enriched bacterial consortia has been previously studied, while the involved metabolisms and microbial communities are still unclear and warrant further investigations. In this study, five bacterial consortia capable of utilizing different PAHs (naphthalene, anthracene, and pyrene) as the sole carbon and energy sources were enriched from PAH-contaminated soil samples. Among the five consortia, consortium TC exhibited the highest pyrene degradation efficiency (91%) after 19 d of incubation. The degradation efficiency was further enhanced up to 99% by supplementing yeast extract. Besides, consortium TC showed tolerances to high concentrations of pyrene (up to 1000 mg/L) and different heavy metal stresses (including Zn2+, Cd2+, and Pb2+). The dominant genus in consortium TC, GS, and PL showing relatively higher degradation efficiency for anthracene and pyrene was Pseudomonas, whereas consortium PG and GD were predominated by genus Achromobacter and class Enterobacteriaceae, respectively. Consortium TC, as a highly efficient HMW PAH-degrading consortium, could be applied for synergistic biodegradation of HMW PAHs and in situ bioremediation of the sites contaminated with both PAHs and heavy metals.
Collapse
Affiliation(s)
- Dongqi Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Water Resources and Environment, Xi'an University of Technology, Xi'an, People's Republic of China
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Lu Qin
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Enyu Liu
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Guodong Chai
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Zhenduo Su
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Jiaqi Shan
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Zhangjie Yang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Zhe Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Hui Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Haiyu Meng
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, People's Republic of China
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Huaien Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, People's Republic of China
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Jiake Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, People's Republic of China
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Yishan Lin
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Science, Xi'an, People's Republic of China
| |
Collapse
|
20
|
Mu J, Chen Y, Song Z, Liu M, Zhu B, Tao H, Bao M, Chen Q. Effect of terminal electron acceptors on the anaerobic biodegradation of PAHs in marine sediments. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129569. [PMID: 35999753 DOI: 10.1016/j.jhazmat.2022.129569] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The existing polycyclic aromatic hydrocarbons (PAHs) in marine sediment has become a critical threat to biological security. Terminal electron acceptor (TEA) amendment has been applied as a potential strategy to accelerate bioremediation in sediment. HCO3-, NO3-, and SO42- were separately added to anaerobic sediment system containing five kinds of PAH, namely, phenanthrene, anthracene, fluoranthene, pyrene and benzo(a)pyrene. PAH concentration, PAH metabolites, TEA concentration, and electron transport system (ETS) activity were investigated. The HCO3- amendment group achieved the max PAH degradation efficiency of 84.98 %. SO42- group led to the highest benzo(a)pyrene removal rate of 69.26 %. NO3- had the lowest PAH degradation rate of 76.16 %. ETS activity test showed that NO3- significantly inhibited electron transport activity in the sediment. The identified PAH metabolites were the same in each group, including 4,5-dimethylphenanthrene, 3-acetylphenanthrene, 9,10-anthracenedione, pyrene-7-hydroxy-8-carboxylic acid, anthrone, and dibenzothiophene. After 126 d's anaerobic degradation at 25 °C, the utilization of HCO3- and SO42- as selected TEAs promoted the PAH biodegradation performance better than the utilization of NO3-.
Collapse
Affiliation(s)
- Jun Mu
- School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China; College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572022, PR China
| | - Yu Chen
- School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China; Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhao Song
- School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China; Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Mei Liu
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Baikang Zhu
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Hengcong Tao
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, PR, China
| | - Qingguo Chen
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
21
|
Choi JS, Lim SH, Jung SR, Lingamdinne LP, Koduru JR, Kwak MY, Yang JK, Kang SH, Chang YY. Experimentally and spectroscopically evidenced mechanistic study of butyl peroxyacid oxidative degradation of benzo[a]pyrene in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115403. [PMID: 35660830 DOI: 10.1016/j.jenvman.2022.115403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Benzo[a]pyrene (BaP) is a major indicator of soil contamination and categorized as a highly persistent, carcinogenic, and mutagenic polycyclic aromatic hydrocarbon. An advanced peroxyacid oxidation process was developed to reduce soil pollution caused by BaP originating from creosote spills from railroad sleepers. The pH, organic matter, particle size distribution of soil, and concentrations of BaP and heavy metals (Cd, Cu, Zn, Pb, and As) in the BaP-contaminated soils were estimated. A batch experiment was conducted to determine the effects of organic acid type, soil particle size, stirring speed, and reaction time on the peroxyacid oxidation of BaP in the soil samples. Additionally, the effect of the organic acid concentration on the peroxyacid degradation of BaP was investigated using an oxidizing agent in spiked soil with and without hydrogen peroxide. The results of the oxidation process indicated that BaP and heavy metal residuals were below acceptable Korean standards. A significant difference in the oxidative degradation of BaP was observed between the spiked and natural soil samples. The formation of a peroxyacid intermediate was primarily responsible for the enhanced BaP oxidation. Further, butyric acid could be reused thrice without losing the efficacy (<90%). The systematic peroxyacid oxidative degradation mechanism of BaP was also discussed. A qualitative analysis of the by-products of the BaP reaction was conducted, and their corresponding toxicities were determined for possible field applications. The findings conclude that the developed peroxyacid oxidation method has potential applications in the treatment of BaP-contaminated soils.
Collapse
Affiliation(s)
- Jong-Soo Choi
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Seon-Hwa Lim
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Sang-Rak Jung
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Institute of Global Environment Kyunghee University, Seoul, 03134, Republic of Korea
| | | | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | | | - Jae-Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Seon-Hong Kang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
22
|
Zhang L, Liu H, Dai J, Xu P, Tang H. Unveiling degradation mechanism of PAHs by a Sphingobium strain from a microbial consortium. MLIFE 2022; 1:287-302. [PMID: 38818225 PMCID: PMC10989954 DOI: 10.1002/mlf2.12032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 06/01/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent pollutants with adverse biological effects and pose a serious threat to ecological environments and human health. The previously isolated phenanthrene-degrading bacterial consortium (PDMC) consists of the genera Sphingobium and Pseudomonas and can degrade a wide range of PAHs. To identify the degradation mechanism of PAHs in the consortium PDMC, metagenomic binning was conducted and a Sphingomonadales assembly genome with 100% completeness was obtained. Additionally, Sphingobium sp. SHPJ-2, an efficient degrader of PAHs, was successfully isolated from the consortium PDMC. Strain SHPJ-2 has powerful degrading abilities and various degradation pathways of high-molecular-weight PAHs, including fluoranthene, pyrene, benzo[a]anthracene, and chrysene. Two ring-hydroxylating dioxygenases, five cytochrome P450s, and a pair of electron transfer chains associated with PAH degradation in strain SHPJ-2, which share 83.0%-99.0% similarity with their corresponding homologous proteins, were identified by a combination of Sphingomonadales assembly genome annotation, reverse-transcription quantitative polymerase chain reaction and heterologous expression. Furthermore, when coexpressed in Escherichia coli BL21(DE3) with the appropriate electron transfer chain, PhnA1B1 could effectively degrade chrysene and benzo[a]anthracene, while PhnA2B2 degrade fluoranthene. Altogether, these results provide a comprehensive assessment of strain SHPJ-2 and contribute to a better understanding of the molecular mechanism responsible for the PAH degradation.
Collapse
Affiliation(s)
| | - Huan Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
23
|
Sharma S, Pandey LM. Biodegradation kinetics of binary mixture of hexadecane and phenanthrene by the bacterial microconsortium. BIORESOURCE TECHNOLOGY 2022; 358:127408. [PMID: 35667530 DOI: 10.1016/j.biortech.2022.127408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Crude oil bioremediation requires a correct selection of potential biodegraders to address the hazard. The present study investigates biodegradation kinetics of single aliphatic (Hexadecane, HEX), aromatic (Phenanthrene, PHE), and binary mixture (HEX + PHE) as co-contaminants by axenic cultures of A. fabrum SLAJ 731, B. subtilis RSL2 and P. aeruginosa P7815 and their consortium. A proposed integrated kinetic model combining first-order exponential decay and the Monod equation is well-fitted to degradation data. Maximum degradations of both the substrates were observed for microcosm, indicating synergistic effects of selected strains. The degradation rate indicated parallel utilization of HEX while serial utilization of PHE by selected strains. Maximum HEX and PHE degradations of 92.4 and 88.7 % were achieved by microconsortium, which increased to 97.2 and 91.9 % for the binary mixture. The biodegradation efficiencies of HEX and PHE were linearly correlated with Alkane hydroxylase and Catechol-2,3-dioxygenase activities, respectively.
Collapse
Affiliation(s)
- Swati Sharma
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Lalit M Pandey
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
24
|
Wójcik A, Stephan M, Ryczek W, Olechowska K, Wydro P, Dimova R, Broniatowski M. Interactions of polycyclic aromatic hydrocarbons and their nitro derivatives with bilayer and monolayer models of fungal membranes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Martinez-Varela A, Casas G, Berrojalbiz N, Piña B, Dachs J, Vila-Costa M. Polycyclic Aromatic Hydrocarbon Degradation in the Sea-Surface Microlayer at Coastal Antarctica. Front Microbiol 2022; 13:907265. [PMID: 35910648 PMCID: PMC9329070 DOI: 10.3389/fmicb.2022.907265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
As much as 400 Tg of carbon from airborne semivolatile aromatic hydrocarbons is deposited to the oceans every year, the largest identified source of anthropogenic organic carbon to the ocean. Microbial degradation is a key sink of these pollutants in surface waters, but has received little attention in polar environments. We have challenged Antarctic microbial communities from the sea-surface microlayer (SML) and the subsurface layer (SSL) with polycyclic aromatic hydrocarbons (PAHs) at environmentally relevant concentrations. PAH degradation rates and the microbial responses at both taxonomical and functional levels were assessed. Evidence for faster removal rates was observed in the SML, with rates 2.6-fold higher than in the SSL. In the SML, the highest removal rates were observed for the more hydrophobic and particle-bound PAHs. After 24 h of PAHs exposure, particle-associated bacteria in the SML showed the highest number of significant changes in their composition. These included significant enrichments of several hydrocarbonoclastic bacteria, especially the fast-growing genera Pseudoalteromonas, which increased their relative abundances by eightfold. Simultaneous metatranscriptomic analysis showed that the free-living fraction of SML was the most active fraction, especially for members of the order Alteromonadales, which includes Pseudoalteromonas. Their key role in PAHs biodegradation in polar environments should be elucidated in further studies. This study highlights the relevant role of bacterial populations inhabiting the sea-surface microlayer, especially the particle-associated habitat, as relevant bioreactors for the removal of aromatic hydrocarbons in the oceans.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Vila-Costa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| |
Collapse
|
26
|
Peralta H, Aguilar A, Cancino-Díaz JC, Cuevas-Rico EA, Carmona-González A, Cruz-Maya JA, Jan-Roblero J. Determination of the metabolic pathways for degradation of naphthalene and pyrene in Amycolatopsis sp. Poz14. Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109268. [PMID: 35026398 DOI: 10.1016/j.cbpc.2022.109268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 01/05/2022] [Indexed: 11/27/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) constitute important soil contaminants derived from petroleum. Poz14 strain can degrade pyrene and naphthalene. Its genome presented 9333 genes, among them those required for PAHs degradation. By phylogenomic analysis, the strain might be assigned to Amycolatopsis nivea. The strain was grown in glucose, pyrene, and naphthalene to compare their proteomes; 180 proteins were detected in total, and 90 of them were exclusives for xenobiotic conditions. Functions enriched with the xenobiotics belonged to transcription, translation, modification of proteins and transport of inorganic ions. Enriched pathways were pentose phosphate, proteasome and RNA degradation; in contrast, in glucose were glycolysis/gluconeogenesis and glyoxylate cycle. Proteins proposed to participate in the upper PAHs degradation were multicomponent oxygenase complexes, Rieske oxygenases, and dioxygenases; in the lower pathways were ortho-cleavage of catechol, phenylacetate, phenylpropionate, benzoate, and anthranilate. The catechol dioxygenase activity was measured and found increased when the strain was grown in naphthalene. Amycolatopsis sp. Poz14 genome and proteome revealed the PAHs degradation pathways and functions helping to contend the effects of such process.
Collapse
Affiliation(s)
- Humberto Peralta
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. postal 565-A, Cuernavaca, Morelos 62210, Mexico
| | - Alejandro Aguilar
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. postal 565-A, Cuernavaca, Morelos 62210, Mexico
| | - Juan Carlos Cancino-Díaz
- Laboratorio de Inmunomicrobiología, Prol. de Carpio y Plan de Ayala s/n, Col. Santo Tomás, 11340 Mexico City, Mexico
| | - Eduardo Abiud Cuevas-Rico
- Laboratorio de Biotecnología Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n, Col. Santo Tomás, 11340 Mexico City, Mexico
| | - Alejandra Carmona-González
- Laboratorio de Biotecnología Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n, Col. Santo Tomás, 11340 Mexico City, Mexico
| | - Juan Antonio Cruz-Maya
- Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Av. IPN 2580, Col. La Laguna Ticomán, 07340 Mexico City, Mexico
| | - Janet Jan-Roblero
- Laboratorio de Biotecnología Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n, Col. Santo Tomás, 11340 Mexico City, Mexico.
| |
Collapse
|
27
|
Changmei L, Gengrui W, Haizhen W, Yuxiao W, Shuang Z, Chaohai W. Kinetics and molecular mechanism of enhanced fluoranthene biodegradation by co-substrate phenol in co-culture of Stenotrophomonas sp. N5 and Advenella sp. B9. ENVIRONMENTAL RESEARCH 2022; 205:112413. [PMID: 34861230 DOI: 10.1016/j.envres.2021.112413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and phenol are persistent pollutants that coexist in coking wastewater (CWW). Fluoranthene (Flu) is the predominant PAH species in the CWW treatment system. Our work emphasized on distinguishing the effects of phenol on Flu biodegradation by co-culture of Stenotrophomonas sp. N5 and Advenella sp. B9 and illustrated the molecular mechanisms. Results showed Flu biodegradation by co-culture was enhanced by phenol. According to the first-order degradation kinetic analysis of Flu, phenol significantly increased the biodegradation rate constant and shortened the half-life of Flu. Transcriptome analysis pointed out the up-regulation of DNA repair activity and 3717 significantly differentially expressed genes (DEGs), were triggered by 800 mg/L phenol. GO enrichment analysis suggested these DEGs are mainly concentrated in biochemical processes such as metal ion binding and alpha-amino acid biosynthesis, which are closely associated with Flu biodegradation, indicating that phenol promotes DNA repair activity and reduces Flu genotoxicity. qRT-PCR was performed to detect the gene expression of aromatic ring-opening dioxygenase. Combined with transcriptome analysis, the qRT-PCR results suggested phenol did not induce the expression of related PAHs-degrading enzymes. RNA extraction and microbial growth curves of COC and COC + Ph provided further evidence that phenol serves as co-substrate which increases biomass and the concentration of degrading enzymes, therefore promoting the Flu degradation.
Collapse
Affiliation(s)
- Li Changmei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Wei Gengrui
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Wu Haizhen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Wang Yuxiao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Zhu Shuang
- Cener for Bioresources & Drug Discovery and School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wei Chaohai
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
28
|
Liu J, Liu Y, Dong W, Li J, Yu S, Wang J, Zuo R. Shifts in microbial community structure and function in polycyclic aromatic hydrocarbon contaminated soils at petrochemical landfill sites revealed by metagenomics. CHEMOSPHERE 2022; 293:133509. [PMID: 34995620 DOI: 10.1016/j.chemosphere.2021.133509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Investigations of the microbial community structures, potential functions and polycyclic aromatic hydrocarbon (PAH) degradation-related genes in PAH-polluted soils are useful for risk assessments, microbial monitoring, and the potential bioremediation of soils polluted by PAHs. In this study, five soil sampling sites were selected at a petrochemical landfill in Beijing, China, to analyze the contamination characteristics of PAHs and their impact on microorganisms. The concentrations of 16 PAHs were detected by gas chromatography-mass spectrometry. The total concentrations of the PAHs ranged from ND to 3166.52 μg/kg, while phenanthrene, pyrene, fluoranthene and benzo [ghi]perylene were the main components in the soil samples. According to the specific PAH ratios, the PAHs mostly originated from petrochemical wastes in the landfill. The levels of the total toxic benzo [a]pyrene equivalent (1.63-107.73 μg/kg) suggested that PAHs might result in adverse effects on soil ecosystems. The metagenomic analysis showed that the most abundant phyla in the soils were Proteobacteria and Actinobacteria, and Solirubrobacter was the most important genus. At the genus level, Bradyrhizobium, Mycobacterium and Anaeromyxobacter significantly increased under PAH stress. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, the most abundant category of functions that are involved in adapting to contaminant pressures was identified. Ten PAH degradation-related genes were significantly influenced by PAH pressure and showed correlations with PAH concentrations. All of the results suggested that the PAHs from the petrochemical landfill could be harmful to soil environments and impact the soil microbial community structures, while microorganisms would change their physiological functions to resist pollutant stress.
Collapse
Affiliation(s)
- Jiayou Liu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yun Liu
- South China Institute of Environmental Sciences, Ministry of Environmental Protection of the People's Republic of China, State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Guangzhou, 510655, China
| | - Weihong Dong
- Key Laboratory of Groundwater Resources and Environments, Ministry of Education, Jilin University, Changchun, Jilin, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin, 130021, China
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Shihang Yu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jinsheng Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Rui Zuo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
29
|
Mutanda I, Sun J, Jiang J, Zhu D. Bacterial membrane transporter systems for aromatic compounds: Regulation, engineering, and biotechnological applications. Biotechnol Adv 2022; 59:107952. [PMID: 35398204 DOI: 10.1016/j.biotechadv.2022.107952] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 12/13/2022]
|
30
|
Ubani O, Atagana HI, Selvarajan R, Ogola HJO. Unravelling the genetic and functional diversity of dominant bacterial communities involved in manure co-composting bioremediation of complex crude oil waste sludge. Heliyon 2022; 8:e08945. [PMID: 35243067 PMCID: PMC8857465 DOI: 10.1016/j.heliyon.2022.e08945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 01/07/2022] [Accepted: 02/09/2022] [Indexed: 01/07/2023] Open
Abstract
The present study aimed to characterize the bacterial community and functional diversity in co-composting microcosms of crude oil waste sludge amended with different animal manures, and to evaluate the scope for biostimulation based in situ bioremediation. Gas chromatography–mass spectrometry (GC–MS) analyses revealed enhanced attenuation (>90%) of the total polyaromatic hydrocarbons (PAHs); the manure amendments significantly enhancing (up to 30%) the degradation of high molecular weight (HMW) PAHs. Microbial community analysis showed the dominance (>99% of total sequences) of sequences affiliated to phyla Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. The core genera enriched were related to hydrocarbon metabolism (Pseudomonas, Delftia, Methylobacterium, Dietzia, Bacillus, Propionibacterium, Bradyrhizobium, Streptomyces, Achromobacter, Microbacterium and Sphingomonas). However, manure-treated samples exhibited high number and heterogeneity of unique operational taxonomic units (OTUs) with enrichment of additional hydrocarbon-degrading bacterial taxa (Proteiniphilum, unclassified Micrococcales, unclassified Lachnospiraceae, Sphingobium and Stenotrophomonas). Thirty-three culturable hydrocarbon-degrading microbes were isolated from the co-composting microcosms and mainly classified into Burkholderia, Sanguibacter, Pseudomonas, Bacillus, Rhodococcus, Lysinibacillus, Microbacterium, Brevibacterium, Geobacillus, Micrococcus, Arthrobacter, Cellulimicrobacterium, Streptomyces Dietzia,etc,. that was additionally affirmed with the presence of catechol 2,3-dioxygenase gene. Finally, enhanced in situ degradation of total (49%), LMW (>75%) and HMW PAHs (>35%) was achieved with an enriched bacterial consortium of these microbes. Overall, these findings suggests that co-composting treatment of crude oil sludge with animal manures selects for intrinsically diverse bacterial community, that could be a driving force behind accelerated bioremediation, and can be exploited for engineered remediation processes.
Collapse
Affiliation(s)
- Onyedikachi Ubani
- Department of Environmental Sciences, College of Agricultural and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort, 1709, South Africa
- Corresponding author.
| | - Harrison I. Atagana
- Institute of Nanotechnology & Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Campus, Roodepoort, 1709, South Africa
| | - Ramganesh Selvarajan
- Department of Environmental Sciences, College of Agricultural and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort, 1709, South Africa
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, No. 28, Luhuitou Road, Sanya, 572000, Hainan Province, PR China
- PG Research Department of Microbiology, J.J College of Arts and Science (Autonomous), Sivapuram, Pudukkottai, 622 422, Tamil Nadu, India
| | - Henry JO. Ogola
- Department of Environmental Sciences, College of Agricultural and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort, 1709, South Africa
- School of Agricultural and Food Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, P.O Box 210-40601, Kenya
| |
Collapse
|
31
|
Wang H, Chen P, Zhang S, Jiang J, Hua T, Li F. Degradation of pyrene using single-chamber air-cathode microbial fuel cells: Electrochemical parameters and bacterial community changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150153. [PMID: 34509835 DOI: 10.1016/j.scitotenv.2021.150153] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Pyrene, a typical four-ring polycyclic aromatic hydrocarbon, is abundantly present in the environment and is potentially harmful to the human body. In this study, single-chamber air-cathode microbial fuel cells (MFCs) were used to treat pyrene, and the ensuing degradation, electrical parameters, and microbial changes were analyzed. The results showed that MFCs could degrade pyrene, and the maximum degradation rate for 30 mg/L reached 88.1 ± 5.4%. The addition of pyrene reduced the electrical performance of the MFCs and suppressed the power output. Analysis of the anodic microbial community showed that the proportion of Alcaligenes and Stenotrophomonas increased with an increase in pyrene concentration, which may explain the high degradation rate of pyrene.
Collapse
Affiliation(s)
- Haonan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria at (Ministry of Education), Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Peng Chen
- Key Laboratory of Pollution Processes and Environmental Criteria at (Ministry of Education), Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Shixuan Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria at (Ministry of Education), Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiwei Jiang
- Key Laboratory of Pollution Processes and Environmental Criteria at (Ministry of Education), Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Tao Hua
- Key Laboratory of Pollution Processes and Environmental Criteria at (Ministry of Education), Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at (Ministry of Education), Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
32
|
Zhou M, Li Q, Wang X, Huang Q, Cang L. Electrokinetic combined peroxymonosulfate (PMS) remediation of PAH contaminated soil under different enhance methods. CHEMOSPHERE 2022; 286:131595. [PMID: 34293572 DOI: 10.1016/j.chemosphere.2021.131595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Because of the high hydrophobicity, low volatility, and high sorption capacity of PAHs, their remediation in contaminated soil is challenging. Electrokinetic (EK) enhanced chemical remediation is an emerging dual technology employed in this study, using a new oxidant peroxymonosulfate (PMS) to remediate PAHs contaminated soil. Here, PMS migration under electric field and the remediation efficiency for the PAHs polluted soil were assessed. We observed that the PMS removal efficiencies (59.7%-82.8%) were higher than those with persulfate (PS) (53.9%-78.5%), indicating PMS's superior oxidation capacity for PAHs. Although oxidant PMS can decontaminate PAHs in polluted soils, its removal of PAHs was only 11.0% without the enhanced methods. The enhancements increased the removal efficiency for PAHs from 0.33 to 2.10 times. At fixed catholyte pH of 4, the highest removal efficiency (34.1%) was achieved because it enhanced PMS migration from cathode to anode. These findings suggested that PMS was a potential oxidant for EK remediation, and some enhancements must be applied in EK combined PMS remediation PAHs polluted soil.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, 550001, China
| | - Qiuhua Li
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, 550001, China.
| | - Xia Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qiao Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Cang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Jayaramaiah RH, Egidi E, Macdonald CA, Wang J, Jeffries TC, Megharaj M, Singh BK. Soil initial bacterial diversity and nutrient availability determine the rate of xenobiotic biodegradation. Microb Biotechnol 2022; 15:318-336. [PMID: 34689422 PMCID: PMC8719800 DOI: 10.1111/1751-7915.13946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/23/2023] Open
Abstract
Understanding the relative importance of soil microbial diversity, plants and nutrient management is crucial to implement an effective bioremediation approach to xenobiotics-contaminated soils. To date, knowledge on the interactive effects of soil microbiome, plant and nutrient supply on influencing biodegradation potential of soils remains limited. In this study, we evaluated the individual and interactive effects of soil initial bacterial diversity, nutrient amendments (organic and inorganic) and plant presence on the biodegradation rate of pyrene, a polycyclic aromatic hydrocarbon. Initial bacterial diversity had a strong positive impact on soil biodegradation potential, with soil harbouring higher bacterial diversity showing ~ 2 times higher degradation rates than soils with lower bacterial diversity. Both organic and inorganic nutrient amendments consistently improved the degradation rate in lower diversity soils and had negative (inorganic) to neutral (organic) effect in higher diversity soils. Interestingly, plant presence/type did not show any significant effect on the degradation rate in most of the treatments. Structural equation modelling demonstrated that initial bacterial diversity had a prominent role in driving pyrene biodegradation rates. We provide novel evidence that suggests that soil initial microbial diversity, and nutrient amendments should be explicitly considered in the design and employment of bioremediation management strategies for restoring natural habitats disturbed by organic pollutants.
Collapse
Affiliation(s)
- Ramesha H. Jayaramaiah
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
| | - Eleonora Egidi
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
- Global Centre for Land‐based InnovationWestern Sydney UniversityPenrithNSW2751Australia
| | - Catriona A. Macdonald
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
| | - Jun‐Tao Wang
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
- Global Centre for Land‐based InnovationWestern Sydney UniversityPenrithNSW2751Australia
| | - Thomas C. Jeffries
- Global Centre for Land‐based InnovationWestern Sydney UniversityPenrithNSW2751Australia
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental RemediationThe University of NewcastleCallaghanNSW2308Australia
| | - Brajesh K. Singh
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
- Global Centre for Land‐based InnovationWestern Sydney UniversityPenrithNSW2751Australia
| |
Collapse
|
34
|
Teng T, Liang J, Wu Z. Identification of pyrene degraders via DNA-SIP in oilfield soil during natural attenuation, bioaugmentation and biostimulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149485. [PMID: 34392205 DOI: 10.1016/j.scitotenv.2021.149485] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Pyrene is a model contaminant of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs), which are compounds that have potential carcinogenic effects and pose a serious threat to human health. Finding effective pyrene-degrading bacteria is crucial for removing PAHs from soil. In this study, DNA-based stable isotope probing (DNA-SIP) technology was used to investigate pyrene degraders in PAH-contaminated oilfield soil during natural attenuation (NA), bioaugmentation (BA) and biostimulation (BS). The results show that BA played an important role in pyrene degradation with the highest pyrene removal rate (~95%) after 12 days incubation, followed by removal rates of ~90% for NA and ~30% for BS. In addition, 6 novel pyrene degraders were identified, while 12 well-known PAH degraders were demonstrated to participate in the biodegradation of pyrene. Additionally, the external homologous strains introduced during BA promoted the degradation of pyrene, but not by directly participating in the metabolism of the target compound. Rhamnolipid supplementation during BS promoted the involvement of more microorganisms in the degradation of pyrene, which was beneficial to identifying more pyrene degraders via DNA-SIP. These findings provide new insight into the effects of external homologous strains and supplementary rhamnolipids on pyrene degradation.
Collapse
Affiliation(s)
- Tingting Teng
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jidong Liang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zijun Wu
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
35
|
Zhang L, Qiu X, Huang L, Xu J, Wang W, Li Z, Xu P, Tang H. Microbial degradation of multiple PAHs by a microbial consortium and its application on contaminated wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126524. [PMID: 34323721 DOI: 10.1016/j.jhazmat.2021.126524] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in the environment and pose a serious threat to human health. Due to their unfavorable biological effects and persistent properties, it is extremely urgent to effectively degrade PAHs that are present in the environment, especially in wastewater. In this study, we obtained an efficient bacterial consortium (PDMC), consisting of the genera Sphingobium (58.57-72.40%) and Pseudomonas (25.93-39.75%), which is able to efficiently utilize phenanthrene or dibenzothiophene as the sole carbon source. The phenanthrene-cultivated consortium could also degrade naphthalene, acenaphthene, fluorene, anthracene, fluoranthene, benzo[a]anthracene, dibenzofuran, carbazole and indole, respectively. Furthermore, we identified the multiple key intermediates of aforementioned 11 substrates and discussed proposed pathways involved. Notably, a novel intermediate 1,2-dihydroxy-4a,9a-dihydroanthracene-9,10-dione of anthracene degradation was detected, which is extremely rare compared to previous reports. The PDMC consortium removed 100% of PAHs within 5 days in the small-scale wastewater bioremediation added with PAHs mixture, with a sludge settling velocity of 5% after 10 days of incubation. Experiments on the stability reveal the PDMC consortium always has excellent degrading ability for totaling 24 days. Combined with the microbial diversity analysis, the results suggest the PDMC consortium is a promising candidate to facilitate the bioremediation of PAHs-contaminated environments.
Collapse
Affiliation(s)
- Lige Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaoyu Qiu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ling Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jijun Xu
- Befar Group Co., LTD., Shandong, Binzhou 256619, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhao Li
- Befar Group Co., LTD., Shandong, Binzhou 256619, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
36
|
Segura A, Udaondo Z, Molina L. PahT regulates carbon fluxes in Novosphingobium sp. HR1a and influences its survival in soil and rhizospheres. Environ Microbiol 2021; 23:2969-2991. [PMID: 33817928 PMCID: PMC8360164 DOI: 10.1111/1462-2920.15509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 01/23/2023]
Abstract
Novosphingobium sp. HR1a is a good biodegrader of PAHs and aromatic compounds, and also a good colonizer of rhizospheric environments. It was previously demonstrated that this microbe is able to co-metabolize nutrients existing in root exudates together with the PAHs. We have revealed here that PahT, a regulator of the IclR-family, regulates the central carbon fluxes favouring the degradation of PAHs and mono-aromatic compounds, the ethanol and acetate metabolism and the uptake, phosphorylation and further degradation of mono- and oligo-saccharides through a phosphoenolpyruvate transferase system (PTS). As final products of these fluxes, pyruvate and acetyl-CoA are obtained. The pahT gene is located within a genomic region containing two putative transposons that carry all the genes for PAH catabolism; PahT also regulates these genes. Furthermore, encoded in this genomic region, there are genes that are involved in the recycling of phosphoenolpyruvate, from the obtained pyruvate, which is the motor molecule involved in the saccharide uptake by the PTS system. The co-metabolism of PAHs with different carbon sources, together with the activation of the thiosulfate utilization and an alternative cytochrome oxidase system, also regulated by PahT, represents an advantage for Novosphingobium sp. HR1a to survive in rhizospheric environments.
Collapse
Affiliation(s)
- Ana Segura
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, 18008, Spain
| | - Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Lázaro Molina
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, 18008, Spain
| |
Collapse
|
37
|
Wilcke W, Bigalke M, Wei C, Han Y, Musa Bandowe BA. Global distribution of oxygenated polycyclic aromatic hydrocarbons in mineral topsoils. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:717-729. [PMID: 33825209 DOI: 10.1002/jeq2.20224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Hazardous oxygenated polycyclic aromatic hydrocarbons (OPAHs) originate from combustion (primary sources) or postemission conversion of polycyclic aromatic hydrocarbons (PAHs) (secondary sources). We evaluated the global distribution of up to 15 OPAHs in 195 mineral topsoils from 33 study sites (covering 52° N-47° S, 71° W-118 °E) to identify indications of primary or secondary sources of OPAHs. The sums of the (frequently measured 7 and 15) OPAH concentrations correlated with those of the Σ16EPA-PAHs. The relationship of the Σ16EPA-PAH concentrations with the Σ7OPAH/Σ16EPA-PAH concentration ratios (a measure of the variable OPAH sources) could be described by a power function with a negative exponent <1, leveling off at a Σ16EPA-PAH concentration of approximately 400 ng g-1 . We suggest that below this value, secondary sources contributed more to the OPAH burden in soil than above this value, where primary sources dominated the OPAH mixture. This was supported by a negative correlation of the Σ16EPA-PAH concentrations with the contribution of the more readily biologically produced highly polar OPAHs (log octanol-water partition coefficient <3) to the Σ7OPAH concentrations. We identified mean annual precipitation (Spearman ρ = .33, p < .001, n = 143) and clay concentrations (ρ = .55, p < .001, n = 33) as important drivers of the Σ7OPAH/Σ16EPA-PAH concentration ratios. Our results indicate that at low PAH contamination levels, secondary sources contribute considerably and to a variable extent to total OPAH concentrations, whereas at Σ16EPA-PAH contamination levels >400 ng g-1 , there was a nearly constant Σ7OPAH/Σ16EPA-PAH ratio (0.08 ± 0.005 [SE], n = 80) determined by their combustion sources.
Collapse
Affiliation(s)
- Wolfgang Wilcke
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology, Reinhard-Baumeister-Platz 1, 76131, Karlsruhe, Germany
| | - Moritz Bigalke
- Institute of Geography, Univ. of Bern, Hallerstrasse 12, 3012, Bern, Switzerland
| | - Chong Wei
- Shanghai Carbon Data Research Center, Key Lab. of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- State Key Lab. of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Yongming Han
- State Key Lab. of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong Univ., Xi'an, 710049, China
| | - Benjamin A Musa Bandowe
- Dep. of Multiphase Chemistry, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| |
Collapse
|
38
|
Rhizosphere effect on removal and bioavailability of PAHs in contaminated agricultural soil. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00716-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe rhizosphere effect of ryegrass (Lolium perenne L.) on polycyclic aromatic hydrocarbons (PAHs) dissipation, bioavailability and the structure change of microbial community was investigated using a compartmented device-rhizobox. The PAHs removal efficiency, bioavailability and the change in structure of the microbial community were ascertained using HPLC, Tenax-TA extraction and PCR-DGGE, respectively. The results showed that in the root area (R1) and bulk soil (CK), the removal of 3-ring PAHs were 97.72 ± 0.34% and 95.51 ± 0.75%, 4-ring PAHs were 89.01 ± 1.61% and 78.65 ± 0.47%, 5-ring PAHs were 77.64 ± 4.05% and 48.63 ± 3.19%, 6-ring PAHs were 68.69 ± 3.68% and 36.09 ± 1.78%, respectively. The average removal efficiency of the total PAHs after 80 days followed the order: R1M (91.1%) > CKM (84.9%) > CK (77.6%), indicating that planted soil with inoculation of Mycobacterium sp. as well as non-planted soil inoculated with Mycobacterium sp. could both significantly accelerate the removal of PAHs compared to control soil. The bioavailability ratio of PAHs with 3 and 4 rings tended to decrease (from 59.9% to 14.8% for 3-ring and 7.61% to 5.08% for 4-ring, respectively in R1) while those with 5 rings increased significantly (from 2.41% to 33.78% in R1) during the last 40 days, indicating that bioavailability alteration varies with the number of rings in the PAHs. In addition, PAH bioavailability generally did not show a significant difference between treated soil and control soil. These results suggest that ryegrass rhizosphere effect as well as inoculation of Mycobacterium sp. can accelerate PAH removal in polluted soil. The bacteria community structure demonstrated a complex interplay of soil, bacteria and ryegrass root, and potential PAH degraders were present in abundance. This study provides the exploring data of rhizosphere and bioaugmentation effect on PAH dissipation in agricultural soil, as well as the change of bioavailability and microbial composition thereof.
Collapse
|
39
|
Li J, Xu Y, Song Q, Yang J, Xie L, Yu S, Zheng L. Polycyclic aromatic hydrocarbon and n-alkane pollution characteristics and structural and functional perturbations to the microbial community: a case-study of historically petroleum-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10589-10602. [PMID: 33098556 DOI: 10.1007/s11356-020-11301-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/18/2020] [Indexed: 05/25/2023]
Abstract
Characterization of the typical petroleum pollutants, polycyclic aromatic hydrocarbons (PAHs) and n-alkanes, and indigenous microbial community structure and function in historically contaminated soil at petrol stations is critical. Five soil samples were collected from a petrol station in Beijing, China. The concentrations of 16 PAHs and 31 n-alkanes were measured by gas chromatography-mass spectrometry. The total concentrations of PAHs and n-alkanes ranged from 973 ± 55 to 2667 ± 183 μg/kg and 6.40 ± 0.38 to 8.65 ± 0.59 mg/kg (dry weight), respectively, which increased with depth. According to the observed molecular indices, PAHs and n-alkanes originated mostly from petroleum-related sources. The levels of ΣPAHs and the total toxic benzo[a]pyrene equivalent (ranging from 6.41 to 72.54 μg/kg) might exert adverse biological effects. Shotgun metagenomic sequencing was employed to investigate the indigenous microbial community structure and function. The results revealed that Proteobacteria and Actinobacteria were the most abundant phyla, and Nocardioides and Microbacterium were the important genera. Based on COG and KEGG annotations, the highly abundant functional classes were identified, and these functions were involved in allowing microorganisms to adapt to the pressure from contaminants. Five petroleum hydrocarbon degradation-related genes were annotated, revealing the distribution of degrading microorganisms. This work facilitates the understanding of the composition, source, and potential ecological impacts of residual PAHs and n-alkanes in historically contaminated soil.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ying Xu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Quanwei Song
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China
| | - Jie Yang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lin Xie
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shihang Yu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lei Zheng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
40
|
Nzila A, Musa MM, Sankara S, Al-Momani M, Xiang L, Li QX. Degradation of benzo[a]pyrene by halophilic bacterial strain Staphylococcus haemoliticus strain 10SBZ1A. PLoS One 2021; 16:e0247723. [PMID: 33630955 PMCID: PMC7939701 DOI: 10.1371/journal.pone.0247723] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/11/2021] [Indexed: 11/21/2022] Open
Abstract
The exploitation of petroleum oil generates a considerable amount of “produced water or petroleum waste effluent (PWE)” that is contaminated with polycyclic aromatic hydrocarbons (PAHs), including Benzo[a]pyrene (BaP). PWE is characterised by its high salinity, which can be as high as 30% NaCl, thus the exploitation of biodegradation to remove PAHs necessitates the use of active halophilic microbes. The strain 10SBZ1A was isolated from oil contaminated soils, by enrichment experiment in medium containing 10% NaCl (w/v). Homology analyses of 16S rRNA sequences identified 10SBZ1A as a Staphylococcus haemoliticus species, based on 99.99% homology (NCBI, accession number GI: MN388897). The strain could grow in the presence of 4–200 μmol l-1 of BaP as the sole source of carbon, with a doubling time of 17–42 h. This strain optimum conditions for growth were 37 oC, 10% NaCl (w/v) and pH 7, and under these conditions, it degraded BaP at a rate of 0.8 μmol l-1 per day. The strain 10SBZ1A actively degraded PAHs of lower molecular weights than that of BaP, including pyrene, phenanthrene, anthracene. This strain was also capable of removing 80% of BaP in the context of soil spiked with BaP (10 μmol l-1 in 100 g of soil) within 30 days. Finally, a metabolic pathway of BaP was proposed, based on the identified metabolites using liquid chromatography-high resolution tandem mass spectrometry. To the best of our knowledge, this is the first report of a halophilic BaP degrading bacterial strain at salinity > 5% NaCl.
Collapse
Affiliation(s)
- Alexis Nzila
- Department of Life Sciences, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- * E-mail:
| | - Musa M. Musa
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Saravanan Sankara
- Department of Life Sciences, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Marwan Al-Momani
- Department of Mathematics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
41
|
N,N‐ and N,O‐6‐membered Ring
peri
‐Annelation in Naphthalene. Is it a Heteroring or merely a
peri
‐ Heterobridge? ChemistrySelect 2021. [DOI: 10.1002/slct.202004237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Mahto KU, Das S. Whole genome characterization and phenanthrene catabolic pathway of a biofilm forming marine bacterium Pseudomonas aeruginosa PFL-P1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111087. [PMID: 32871516 DOI: 10.1016/j.ecoenv.2020.111087] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 05/02/2023]
Abstract
Pseudomonas aeruginosa is a small rod shaped Gram-negative bacterium of Gammaproteobacteria class known for its metabolic versatility. P. aeruginosa PFL-P1 was isolated from Polycyclic Aromatic Hydrocarbons (PAHs) contaminated site of Paradip Port, Odisha Coast, India. The strain showed excellent biofilm formation and could retain its ability to form biofilm grown with different PAHs in monoculture as well as co-cultures. To explore mechanistic insights of PAHs metabolism, the whole genome of the strain was sequenced. Next generation sequencing unfolded a genome size of 6,333,060 bp encoding 5857 CDSs. Gene ontology distribution assigned to a total of 2862 genes, wherein 2235 genes were allocated to biological process, 1549 genes to cellular component and 2339 genes to molecular function. A total of 318 horizontally transferred genes were identified when the genome was compared with the reference genomes of P. aeruginosa PAO1 and P. aeruginosa DSM 50071. Further comparison of P. aeruginosa PFL-P1 genome with P. putida containing TOL plasmids revealed similarities in the meta cleavage pathway employed for degradation of aromatic compounds like xylene and toluene. Gene annotation and pathway analysis unveiled 145 genes involved in xenobiotic biodegradation and metabolism. The biofilm cultures of P. aeruginosa PFL-P1 could degrade ~74% phenanthrene within 120 h while degradation increased up to ~76% in co-culture condition. GC-MS analysis indicated presence of diverse metabolites indicating the involvement of multiple pathways for one of the PAHs (phenanthrene) degradation. The strain also possesses the genetic machinery to utilize diverse toxic aromatic compounds such as naphthalene, benzoate, aminobenzoate, fluorobenzoate, toluene, xylene, styrene, atrazine, caprolactam etc. Common catabolic gene clusters such as benABCD, xylXYZ and catAB were observed within the genome of P. aeruginosa PFL-P1 which play key roles in the degradation of various toxic aromatic compounds.
Collapse
Affiliation(s)
- Kumari Uma Mahto
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
43
|
Titaley IA, Simonich SLM, Larsson M. Recent Advances in the Study of the Remediation of Polycyclic Aromatic Compound (PAC)-Contaminated Soils: Transformation Products, Toxicity, and Bioavailability Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2020; 7:873-882. [PMID: 35634165 PMCID: PMC9139952 DOI: 10.1021/acs.estlett.0c00677] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic compounds (PACs) encompass a diverse group of compounds, often found in historically contaminated sites. Different experimental techniques have been used to remediate PACs-contaminated soils. This brief review surveyed over 270 studies concerning remediation of PACs-contaminated soils and found that, while these studies often measured the concentration of 16 parent polycyclic aromatic hydrocarbons (PAHs) pre- and post-remediation, only a fraction of the studies included the measurement of PAC-transformation products (PAC-TPs) and other PACs (n = 33). Only a few studies also incorporated genotoxicity/toxicity/mutagenicity analysis pre- and post-remediation (n = 5). Another aspect that these studies often neglected to include was bioavailability, as none of the studies that included measurement of PAH-TPs and PACs included bioavailability investigation. Based on the literature analysis, future remediation studies need to consider chemical analysis of PAH-TPs and PACs, genotoxicity/toxicity/mutagenicity, and bioavailability analyses pre- and post-remediation. These assessments will help address numerous concerns including, among others, the presence, properties, and toxicity of PACs and PAH-TPs, risk assessment of soil post-remediation, and the bioavailability of PAH-TPs. Other supplementary techniques that help assist these analyses and recommendations for future analyses are also discussed.
Collapse
Affiliation(s)
- Ivan A. Titaley
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, Örebro SE-701 82, Sweden
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Corresponding Author: Phone: +1 541 737 9208, Fax: +1 541 737 0497
| | - Staci L. Massey Simonich
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Maria Larsson
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, Örebro SE-701 82, Sweden
| |
Collapse
|
44
|
Removal of benzo[a]pyrene from soil in a novel permeable electroactive well system: Optimal integration of filtration, adsorption and bioelectrochemical degradation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Jugnia LB, Drouin K, Thériault P. Enhanced biotreatability of petroleum hydrocarbon-contaminated mining waste coupled with the attenuation of acid drainage production. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:1477-1490. [PMID: 33029810 DOI: 10.1002/jeq2.20147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
A biostimulation study was conducted on mining waste residue with nutrient (nitrogen and phosphorus) and/or liming agent (ash or CaCO3 ) amendment to assess petroleum hydrocarbon (PHC) biodegradation efficiency by indigenous microorganisms. Compounds accumulated and/or released by treated samples were also monitored to determine the potential for acid mine drainage production during biostimulation. The potential for natural attenuation (i.e., the biodegradation of PHC contamination) was initially low but increased significantly upon nutrient addition. The best results were obtained when nutrient addition was coupled with the addition of a liming agent, notably CaCO3 , which contributed to maintaining near-neutral pH values. In fact, during treatment without a liming agent, pH decreased due to the oxidation of sulfide minerals, resulting in acid mine drainage production with increased metals released into sample leachates. Sulfur- and iron-oxidizing bacteria were detected primarily in samples not amended with liming agents, and the predominant organisms were affiliated with Acidithiobacillus spp. and Acidiphilium spp. Overall, the results of the present study demonstrated that amendment with a liming agent when treating PHC-contaminated mining waste residue contributes to maintaining a pH close to neutrality, mitigates sulfate release, and reduces the release of metals without negatively affecting the activity of PHC degraders.
Collapse
Affiliation(s)
- Louis-B Jugnia
- Energy, Mining and Environment Research Center, National Research Council Canada, 6100 Royalmount Ave., Montreal, Québec, H4P2R2, Canada
| | - Karine Drouin
- Energy, Mining and Environment Research Center, National Research Council Canada, 6100 Royalmount Ave., Montreal, Québec, H4P2R2, Canada
| | | |
Collapse
|
46
|
Perczyk P, Wójcik A, Hachlica N, Wydro P, Broniatowski M. The composition of phospholipid model bacterial membranes determines their endurance to secretory phospholipase A2 attack – The role of cardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183239. [DOI: 10.1016/j.bbamem.2020.183239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
|
47
|
Li X, Zhang X, Li L, Lin C, Dong W, Shen W, Yong X, Jia H, Wu X, Zhou J. Anaerobic biodegradation of pyrene by Klebsiella sp. LZ6 and its proposed metabolic pathway. ENVIRONMENTAL TECHNOLOGY 2020; 41:2130-2139. [PMID: 30522413 DOI: 10.1080/09593330.2018.1556348] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Pyrene is one of the polycyclic aromatic hydrocarbons, which are a potential threat to ecosystems due to their mutagenicity, carcinogenicity, and teratogenicity. In this study, several bacteria were isolated from oil contaminated sludge and their capacity to biodegrade pyrene was investigated. Of these bacteria, the monoculture strain LZ6 showed the highest pyrene anaerobic biodegradation rate of 33% after 30 days when the initial concentration was 50 mg/L, and was identified as Klebsiella sp. LZ6 by morphological observation, the GENIII technology of Biolog, and 16S rDNA gene sequence analysis. The influence of various culture parameters on the biodegradation of pyrene were evaluated, and Klebsiella sp. LZ6 all showed the high degradation rate at an inoculum of 10-20% (v/v), pH 6.0-8.4, temperature 30-38°C, and initial pyrene concentration of 50-150 mg/L. The intermediate metabolites of the anaerobic biodegradation were analyzed by GC-MS. Several metabolites were identified, such as pyrene, 4,5-dihydro-, phenanthrene, dibenzo-p-dioxin, and 4-hydroxycinnamate acid. The anaerobic metabolic pathway for the degradation of pyrene was inferred by the products. It seems that pyrene was first reduced to pyrene,4,5-dihydro- by the adding of two hydrogen atoms, and then the carbon-carbon bond cleavage at saturated carbon atoms generated phenanthrene.
Collapse
Affiliation(s)
- Xiang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
- College of Environment, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xueying Zhang
- College of Environment, Nanjing Tech University, Nanjing, People's Republic of China
| | - Lian Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
- College of Environment, Nanjing Tech University, Nanjing, People's Republic of China
| | - Chaoba Lin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Weiran Shen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
- College of Environment, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiaoyu Yong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiayuan Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
- Bioenergy Research Institute, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
48
|
Ebrahimi V, Eyvazi S, Montazersaheb S, Yazdani P, Hejazi MA, Tarhriz V, Hejazi MS. Polycyclic Aromatic Hydrocarbons Degradation by Aquatic Bacteria Isolated from Khazar Sea, the World’s Largest Lake. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: Aquatic microorganisms have an important role in the bioremediation of environmental pollutants. Polycyclic Aromatic Hydrocarbons (PAHs) are described as dangerous pollutants that can bind covalently to the nucleic acids, causing mutations. Therefore, they have carcinogenic and toxic properties. Also, are involved in diseases such as asthma, lung dysfunction, and chronic bronchitis. This study aimed to isolate and characterize aquatic bio-degrading bacteria from the world’s largest lake, Khazar, with the ability to use PAHs as only carbon source. Methods: Samples were taken from the estuary of Siah Rud River (Mazandaran province, Iran) and Fereydunkenar beach leading to isolation of twenty-three bacteria on marine agar and sea water media. The isolates were cultured on separate ONR7a medium, each supplemented with only one PAH; as the sole carbon source; including naphthalene, phenanthrene, and anthracene. Results: Eleven bacterial isolates were able to grow on supplemented media: TBZ-E1, TBZ-E2, TBZ-E3, TBZ-S12, TBZ-S16, TBZ-E20, TBZ-SF2, TBZ-F1, TBZ-F2, TBZ-F3 and TBZ2. These isolates belong to Alteromonas, Marivivens, Pseudoalteromonas, Vibrio, Shewanella, Photobacterium, Mycobacterium and Pseudomonas genera. The qualitative analysis showed that the consortium of isolates TBZ-F1, TBZ-F2, TBZ-F3, TBZ-SF2, and TBZ2 displayed the highest degradation rate for phenanthrene and naphthalene. Naphthalene, phenanthrene, and anthracene were potently degraded by TBZ2 and TBZ-SF2 and accordingly were subjected to measure degradation potential of mentioned PAHs. Conclusion: The bacterial isolates of Caspian lake have a critical duty in biodegradation of PAHs. These isolates are representative samples of the bacterial population of this lake, participating in the purification process of this habitat.
Collapse
Affiliation(s)
- Vida Ebrahimi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parivar Yazdani
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Hejazi
- Branch for the Northwest and West Region, Agriculture Biotechnology Research Institute of Iran (ABRII), Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Li F, Guo S, Wu B, Wang S. Pilot-scale electro-bioremediation of heavily PAH-contaminated soil from an abandoned coking plant site. CHEMOSPHERE 2020; 244:125467. [PMID: 32050326 DOI: 10.1016/j.chemosphere.2019.125467] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/15/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
This study presents a systematic pilot-scale study on removal of PAHs from the abandoned site of Shenyang former Coking Plant in China (total PAH concentration of 5635.60 mg kg-1 in soil). Three treatments, including the control treatment (without inoculation and electric field), bioremediation (with inoculation), and the electro-bioremediation (with inoculation and electric field), were conducted with a treatment time of 182 days to assess their PAH-removal efficiency. All the treatments were conducted from May to October under natural conditions. Results show that electro-bioremediation enhanced the removal of total PAHs, especially high-ring (>3 rings) PAHs. At 182 days, the degradation extents of total and 4-6-ring PAHs reached 69.1% and 65.9%, respectively, under electro-bioremediation (29.3% and 44.4% higher, respectively, than those under bioremediation alone). After electro-bioremediation, the total toxicity equivalent concentrations of total PAHs and 4-, 5- and 6-ring PAHs reduced 49.0%, 63.7%, 48.2% and 30.1%, respectively. These results indicate that electro-bioremediation not only effectively removed the PAHs but also reduced the health risks of soil in an abandoned coking plant site. In addition, electro-bioremediation with polarity reversal could maintain uniform soil pH, the degradation extent of PAHs and soil microorganism numbers at all sites. The environmental conditions, such as temperature and rainfall, had little influence on the process of electro-bioremediation. These findings suggest that electro-bioremediation may be applied for field-scale remediation of heavily PAH-contaminated soil in abandoned coking plant sites.
Collapse
Affiliation(s)
- Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, China.
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| |
Collapse
|
50
|
Shinde VL, Suneel V, Rathore C, Shenoy BD. Degradation of tarballs using associated bacterial consortia. 3 Biotech 2020; 10:109. [PMID: 32099747 DOI: 10.1007/s13205-020-2095-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/23/2020] [Indexed: 10/25/2022] Open
Abstract
Tarballs are semi-solid blobs of crude-oil formed in marine environment. Microbial degradation of tarballs is poorly understood, though there are indications that tarball-associated microbes can degrade recalcitrant hydrocarbons present in tarballs. In this study, 38 tarball-associated bacteria from Betul beach, Goa, India were initially screened for crude oil degradation. Based on preliminary studies and literature survey, four bacterial strains, Alcanivorax sp. Betul-O, Marinobacter sp. Betul-26, Pseudomonas sp. Betul-14, and Pseudomonas sp. Betul-M were selected for bacterial consortia preparation. Eleven bacterial consortia were prepared and studied for degradation of n-alkanes and polycyclic aromatic hydrocarbon compounds (PAHs) of tarballs based on gravimetric and GC-MS-MS analyses. The bacterial consortia depleted 53.69-97.78% and 22.78-61.98% of n-alkanes and PAH compounds, respectively, within 45 days. Bacterial consortium comprising Pseudomonas sp. Betul-14, Pseudomonas sp. Betul-M, and Alcanivorax sp. Betul-O exhibited promising tarball degradation abilities with 97.78% and 61.98% degradation of n-alkanes and PAH, respectively, within 45 days. Further research is required to obtain insights into degradation products and possible pathways involved.
Collapse
|