1
|
Lin Z, Liu H, Richardson JJ, Xu W, Chen J, Zhou J, Caruso F. Metal-phenolic network composites: from fundamentals to applications. Chem Soc Rev 2024; 53:10800-10826. [PMID: 39364569 DOI: 10.1039/d3cs00273j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Composites with tailored compositions and functions have attracted widespread scientific and industrial interest. Metal-phenolic networks (MPNs), which are composed of phenolic ligands and metal ions, are amorphous adhesive coordination polymers that have been combined with various functional components to create composites with potential in chemistry, biology, and materials science. This review aims to provide a comprehensive summary of both fundamental knowledge and advancements in the field of MPN composites. The advantages of amorphous MPNs, over crystalline metal-organic frameworks, for fabricating composites are highlighted, including their mild synthesis, diverse interactions, and numerous intrinsic functionalities. The formation mechanisms and state-of-the-art synthesis strategies of MPN composites are summarized to guide their rational design. Subsequently, a detailed overview of the chemical interactions and structure-property relationships of composites based on different functional components (e.g., small molecules, polymers, biomacromolecules) is provided. Finally, perspectives are offered on the current challenges and future directions of MPN composites. This tutorial review is expected to serve as a fundamental guide for researchers in the field of metal-organic materials and to provide insights and avenues to enhance the performance of existing functional materials in applications across diverse fields.
Collapse
Affiliation(s)
- Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Hai Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Joseph J Richardson
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Wanjun Xu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
2
|
Kiriyama Y, Tokumaru H, Sadamoto H, Kobayashi S, Nochi H. Effects of Phenolic Acids Produced from Food-Derived Flavonoids and Amino Acids by the Gut Microbiota on Health and Disease. Molecules 2024; 29:5102. [PMID: 39519743 PMCID: PMC11548037 DOI: 10.3390/molecules29215102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The gut microbiota metabolizes flavonoids, amino acids, dietary fiber, and other components of foods to produce a variety of gut microbiota-derived metabolites. Flavonoids are the largest group of polyphenols, and approximately 7000 flavonoids have been identified. A variety of phenolic acids are produced from flavonoids and amino acids through metabolic processes by the gut microbiota. Furthermore, these phenolic acids are easily absorbed. Phenolic acids generally represent phenolic compounds with one carboxylic acid group. Gut microbiota-derived phenolic acids have antiviral effects against several viruses, such as SARS-CoV-2 and influenza. Furthermore, phenolic acids influence the immune system by inhibiting the secretion of proinflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α. In the nervous systems, phenolic acids may have protective effects against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Moreover, phenolic acids can improve levels of blood glucose, cholesterols, and triglycerides. Phenolic acids also improve cardiovascular functions, such as blood pressure and atherosclerotic lesions. This review focuses on the current knowledge of the effects of phenolic acids produced from food-derived flavonoids and amino acids by the gut microbiota on health and disease.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan (H.S.); (S.K.); (H.N.)
- Institute of Neuroscience, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan
| | - Hiroshi Tokumaru
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan (H.S.); (S.K.); (H.N.)
| | - Hisayo Sadamoto
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan (H.S.); (S.K.); (H.N.)
| | - Suguru Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan (H.S.); (S.K.); (H.N.)
- Institute of Neuroscience, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan (H.S.); (S.K.); (H.N.)
| |
Collapse
|
3
|
Issa S, Karpukhina N, Sleibi A. Effect of rosmarinic acid on microtensile bond strength of 1-step self-etch adhesive on artificial caries-affected dentine with or without NaOCl treatment: An in-vitro study. Dent Mater J 2024:2024-024. [PMID: 39462610 DOI: 10.4012/dmj.2024-024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
This study investigated the effect of rosmarinic acid (RA) on the immediate microtensile bond strength (µTBS) of 1-step self-etch adhesive to artificial caries-affected dentine (CAD), with or without NaOCl treatment. Dentine surfaces of 60 premolars were subjected to pH-cycling for artificial caries induction. Samples were randomly categorized into: NaOClRA group treated with 6% NaOCl and RA, RA group treated with RA solution, NaOCl group treated with 6% NaOCl, and untreated control group. Surface morphology was evaluated using SEM. Following bonding and composite placement, the specimens were sectioned into 1 mm2 beams after 24 h of water storage, then µTBS test was done. Failure modes were assessed under stereomicroscope. There was significant increase in the µTBS of NaOClRA compared to NaOCl group (p=0.001). RA group showed significant increase in µTBS compared to NaOCl and control groups, (p<0.001, p=0.009 respectively). In conclusion, RA improved the µTBS to CAD with or without NaOCl treatment.
Collapse
Affiliation(s)
- Shatha Issa
- Department of Conservative Dentistry, College of Dentistry, Mustansiriyah University
| | - Natalia Karpukhina
- Dental Physical Sciences Unit, Institute of Dentistry, Queen Mary University of London
| | - Ahmed Sleibi
- Department of Conservative Dentistry, College of Dentistry, Mustansiriyah University
| |
Collapse
|
4
|
Nyarko K, Mensah S, Greenlief CM. Examining the Use of Polyphenols and Sugars for Authenticating Honey on the U.S. Market: A Comprehensive Review. Molecules 2024; 29:4940. [PMID: 39459308 PMCID: PMC11510238 DOI: 10.3390/molecules29204940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The rise in honey production and imports into the United States necessitates the need for robust methods to authenticate honey origin and ensure consumer safety. This review addresses the scope of honey authentication, with a specific focus on the exploration of polyphenols and sugar markers to evaluate honeys in the U.S. In the absence of comprehensive federal standards for honey in the United States, challenges related to authenticity and adulteration persist. Examining the global landscape of honey authentication research, we observed a significant gap in the literature pertaining to U.S. honeys. While honeys from Europe, Australia, New Zealand, and Asia have been extensively studied, the decentralized nature of the U.S. honey market and the lack of comprehensive standards have limited the number of investigations conducted. This review consolidates the findings of global honey studies and emphasizes the need for further research studies on honey authenticity markers within the United States. We also explore previous studies on the U.S. that focused on identifying potential markers for honey authenticity. However, the inherent variability in polyphenol profiles and the lack of extensive studies of the sugar contents of honey on a global scale pose challenges to establishing universal markers. We conclude that by addressing these challenges, the field of research on polyphenols and sugars in honey can move toward more reliable and standardized methods. This advancement will enhance the use of polyphenols and other constituents like sugars as authenticity markers, ultimately benefiting both researchers and the honey industry in ensuring honey quality.
Collapse
Affiliation(s)
| | | | - C. Michael Greenlief
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA; (K.N.); (S.M.)
| |
Collapse
|
5
|
Cruz Neto JPR, de Luna Freire MO, de Albuquerque Lemos DE, Ribeiro Alves RMF, de Farias Cardoso EF, de Moura Balarini C, Duman H, Karav S, de Souza EL, de Brito Alves JL. Targeting Gut Microbiota with Probiotics and Phenolic Compounds in the Treatment of Atherosclerosis: A Comprehensive Review. Foods 2024; 13:2886. [PMID: 39335815 PMCID: PMC11431284 DOI: 10.3390/foods13182886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease. Dysregulated lipid metabolism, oxidative stress, and inflammation are the major mechanisms implicated in the development of AS. In addition, evidence suggests that gut dysbiosis plays an important role in atherogenesis, and modulation of the gut microbiota with probiotics and phenolic compounds has emerged as a promising strategy for preventing and treating AS. It has been shown that probiotics and phenolic compounds can improve atherosclerosis-related parameters by improving lipid profile, oxidative stress, and inflammation. In addition, these compounds may modulate the diversity and composition of the gut microbiota and improve atherosclerosis. The studies evaluated in the present review showed that probiotics and phenolic compounds, when consumed individually, improved atherosclerosis by modulating the gut microbiota in various ways, such as decreasing gut permeability, decreasing TMAO and LPS levels, altering alpha and beta diversity, and increasing fecal bile acid loss. However, no study was found that evaluated the combined use of probiotics and phenolic compounds to improve atherosclerosis. The available literature highlights the synergistic potential between phenolic compounds and probiotics to improve their health-promoting properties and functionalities. This review aims to summarize the available evidence on the individual effects of probiotics and phenolic compounds on AS, while providing insights into the potential benefits of nutraceutical approaches using probiotic strains, quercetin, and resveratrol as potential adjuvant therapies for AS treatment through modulation of the gut microbiota.
Collapse
Affiliation(s)
- José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - Deborah Emanuelle de Albuquerque Lemos
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - Rayanne Maira Felix Ribeiro Alves
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58037-760, PB, Brazil; (R.M.F.R.A.); (E.F.d.F.C.); (C.d.M.B.)
| | - Emmily Ferreira de Farias Cardoso
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58037-760, PB, Brazil; (R.M.F.R.A.); (E.F.d.F.C.); (C.d.M.B.)
| | - Camille de Moura Balarini
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58037-760, PB, Brazil; (R.M.F.R.A.); (E.F.d.F.C.); (C.d.M.B.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| |
Collapse
|
6
|
Gruenberg MG, Halvorson JJ, Hagerman AE, Enoma IG, Schmidt MA. Oxidation of Small Phenolic Compounds by Mn(IV). Molecules 2024; 29:4320. [PMID: 39339315 PMCID: PMC11434090 DOI: 10.3390/molecules29184320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Plant secondary metabolites, including phenolics, represent a large quantity of organic material that enters soil and contributes to the formation of soil organic matter (SOM). The process of phenolics forming SOM remains poorly understood. One possible mechanism is oxidation of the phenolic compound catalyzed by redox active metals such as manganese (Mn) and iron (Fe) in soils. In this work, we report how three phenolic compounds react with a redox active environmentally relevant metal, Mn(IV). The reactions were monitored via nuclear magnetic resonance (NMR), high-performance liquid chromatography (HPLC), and direct CO2 measurements. Using these techniques, we demonstrate that gallic acid reacts with Mn(IV) less efficiently than pyrogallol. The products of the gallic acid:Mn(IV) reaction are more oxidized than the products of the pyrogallol reaction. Gallic acid produces small molecules and releases CO2, while pyrogallol produces a less oxidized product, likely a quinone, and releases less CO2. Benzoic acid did not react with Mn(IV). This work provides a framework for how different classes of plant secondary metabolites may be degraded abiotically by redox active metals in soil.
Collapse
Affiliation(s)
- Madeline G Gruenberg
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
| | - Jonathan J Halvorson
- Northern Great Plains Research Laboratory, United States Department of Agriculture-Agricultural Research Service, Mandan, ND 58554, USA
| | - Ann E Hagerman
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Ikponmwosa G Enoma
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
| | - Michael A Schmidt
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
7
|
Haralur SB, Albarqi AT, Alamodi AG, Alamri AA, Aldail SA, Al-Qarni MA, AlQahtani SM, Alqahtani NM. Comparison of Various Surface Treatment Procedures on the Roughness and Susceptibility to Staining of Provisional Prosthodontic Materials. J Funct Biomater 2024; 15:256. [PMID: 39330231 PMCID: PMC11433105 DOI: 10.3390/jfb15090256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Esthetically pleasing temporary prostheses are often necessary for extended periods in a variety of clinical scenarios. Adjustments to the occlusion or margins are commonly needed before cementing the temporary prosthesis. Therefore, it is clinically necessary to repolish the rough surface to avoid biological and esthetic issues associated with rough surfaces. The purpose of this in vitro study was to assess and compare the impact of various polishing protocols on the surface roughness and color stability of three resin materials used for provisional crowns. A total of 150 specimens were fabricated from auto-polymerizing polymethyl methacrylate, bis-acryl composite, and Methyl methacrylate-LC resin using a stainless steel mold. Each material group was divided into five groups (n = 10) based on the applied surface treatment: positive control group (G1): no roughening or surface treatment, Negative control group (G2): acrylic bur-roughened surface without any polishing, the different surface treatment groups of silicon carbide and aluminum oxide stone polishing (G3), diamond-coated rubber twist (G4), and Surface Glaze (G5). An optical profilometer was used to assess the surface roughness of all samples. After undergoing 6000 cycles of thermocycling followed by immersion in a coffee solution for 15 days at 37 °C, color parameters were measured using a spectrophotometer both before and after a storage period to evaluate color differences. A two-way ANOVA test with α = 0.05 significance level was carried out to determine the impacts of both the materials utilized and the polishing protocol. Among the three types of resin examined, the bisacryl group exhibited superior surface quality in positive control groups, while PMMA resin demonstrated higher polishability. The diamond-coated rubber twits resulted in lower Ra values of 0.36 (0.01) µm, 0.52 (0.11) µm, and 0.28 (0.05) µm for PMMA, BAMA, and MMLC resins, respectively. The application of photo-polymerized surface glaze led to a plaque accumulation threshold of 0.2 µm across all resin groups. The greatest mean color change occurred in the negative control group, indicating a propensity for more staining on rougher surfaces. The Bisacryl resin exhibited higher ΔE values, whereas PMMA showed better color stability. The lowest ΔE values were found when the surface glaze was applied to all of the provisional crown resins. Untreated Bisacryl resin exhibited the lowest Ra values, while PMMA resins demonstrated superior surface morphology after polishing. PMMA provisional crown resins showed increased resistance to staining. The use of surface glaze enhanced both smoothness and color stability on the surfaces.
Collapse
Affiliation(s)
- Satheesh B. Haralur
- Department of Prosthodontics, College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia; (S.M.A.); (N.M.A.)
| | - Abdullah Turki Albarqi
- College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia; (A.T.A.); (A.G.A.); (A.A.A.); (S.A.A.)
| | | | - Abdulmajeed Ali Alamri
- College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia; (A.T.A.); (A.G.A.); (A.A.A.); (S.A.A.)
| | - Saad Awdah Aldail
- College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia; (A.T.A.); (A.G.A.); (A.A.A.); (S.A.A.)
| | - Mohammed A. Al-Qarni
- Department of Restorative Dentistry, College of Dentistry, King Khalid University, Abha 61471, Saudi Arabia;
| | - Saeed M. AlQahtani
- Department of Prosthodontics, College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia; (S.M.A.); (N.M.A.)
| | - Nasser M. Alqahtani
- Department of Prosthodontics, College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia; (S.M.A.); (N.M.A.)
| |
Collapse
|
8
|
Weikart DK, Coleman KM, Sweet MG, McAmis AM, Hopfer H, Neilson AP, Lambert JD. Cocoa and Polyphenol-Rich Cocoa Fractions Fail to Improve Acute Colonic Inflammation in Dextran Sulfate Sodium-Treated Mice. Mol Nutr Food Res 2024; 68:e2400431. [PMID: 38965660 DOI: 10.1002/mnfr.202400431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Indexed: 07/06/2024]
Abstract
SCOPE A study is conducted to determine the anti-inflammatory effects of cocoa and polyphenol-rich cocoa fractions in the dextran sulfate sodium (DSS)-induced mouse model of acute colonic inflammation. METHODS AND RESULTS Male C57BL/6J mice are treated with dietary cocoa powder, an extractable cocoa polyphenol fraction, or a non-extractable cocoa polyphenol fraction for 2 weeks prior to treatment with 2.5% DSS in the drinking water for 7 days to induce colonic inflammation. Cocoa treatment continues during the DSS period. Cocoa and/or cocoa fractions exacerbate DSS-induced weight loss and fail to mitigate DSS-induced colon shortening but do improve splenomegaly. Cocoa/cocoa fraction treatment fails to mitigate DSS-induced mRNA and protein markers of inflammation. Principal component analysis shows overlap between cocoa or cocoa fraction-treated mice and DSS-induced controls, but separation from mice not treated with DSS. CONCLUSION The results suggest cocoa and cocoa polyphenols may not be useful in mitigating acute colonic inflammation.
Collapse
Affiliation(s)
- Daphne K Weikart
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kiana M Coleman
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Michael G Sweet
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Ashley M McAmis
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Helene Hopfer
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrew P Neilson
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Joshua D Lambert
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
- The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
9
|
Nerlekar N, Patil P, Khot S, Kulkarni A, Dandge P, Berde A, Kamane S, Ghatage P, Dandge P. Cold maceration extraction of wild fruit Terminalia bellirica (Gaertn.) Roxb.: exploring its bioactives for biomedical applications. Prep Biochem Biotechnol 2024; 54:982-1000. [PMID: 38349742 DOI: 10.1080/10826068.2024.2313632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Terminalia bellirica (T. bellirica) (Gaertn.) Roxb. is a well-known traditional medicinal plants that show promising treatment because of fewer side effects in humans. In the present study, the total phenol, flavonoid, condensed and hydrolyzable tannins extracted and analyzed from cold macerated (CM) T. bellirica (Gaertn.) Roxb. fruit (TBF) and leaves (TBL) extract with the identification of bioactive compounds using GC-MS/MS technique. The highest amount of bioactive content was found in ethanolic extract than toluene. Current experimental data of TBF extract shows the maximum and significant biological activity like free radical scavenging activity against DPPH and FRAP assays with IC50 values of 51.07 ± 0.52 μg/ml and 63.14 ± 0.59 μg/ml respectively. However, IC50 cytotoxicity values of TBF extract on MCF-7 cells for 24 hrs was found to be 6.34 ± 0.72 μg/ml. Minimum inhibitory concentration (MIC) for infectious pathogens Escherichia coli and Bacillus cereus was >12.5 μg/ml and >100 μg/ml respectively, however, anti-inflammatory activity was demonstrated as an IC50 value of 509.1 ± 1.72 μg/ml. Cold macerated fruit extract revealed threatening inhibitory potential against the α-amylase and α-glucosidase enzymes, with IC50 of 50.98 ± 0.23 μg/ml and 46.70 ± 1.38 μg/ml respectively. Finally, the outcome of this study showed that T. bellirica (Gaertn.) Roxb. fruit extract could be an effective source of bioactives with efficient biomedical properties.
Collapse
Affiliation(s)
- Nisha Nerlekar
- Department of Biochemistry, Shivaji University, Kolhapur, India
| | - Pradnya Patil
- Department of Chemistry, Shivaji University, Kolhapur, India
| | - Suraj Khot
- Department of Chemistry, Shivaji University, Kolhapur, India
| | - Arati Kulkarni
- Department of Biochemistry, Shivaji University, Kolhapur, India
| | - Prafull Dandge
- Department of Chemistry, Shivaji University, Kolhapur, India
| | - Ajinkya Berde
- Department of Botany, Shivaji University, Kolhapur, India
| | - Shubham Kamane
- School of Earth Sciences, SRTM University, Nanded, India
| | | | - Padma Dandge
- Department of Biochemistry, Shivaji University, Kolhapur, India
| |
Collapse
|
10
|
Mohammadhasani K, Vahedi Fard M, Mottaghi Moghaddam Shahri A, Khorasanchi Z. Polyphenols improve non-alcoholic fatty liver disease via gut microbiota: A comprehensive review. Food Sci Nutr 2024; 12:5341-5356. [PMID: 39139973 PMCID: PMC11317728 DOI: 10.1002/fsn3.4178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 08/15/2024] Open
Abstract
Polyphenols, natural micronutrients derived from plants, are valued for their anti-inflammatory and antioxidant properties. The escalating global prevalence of non-alcoholic fatty liver disease (NAFLD) underscores its status as a chronic progressive liver condition. Furthermore, the dysregulation of gut microbiota (GM) is implicated in the onset and progression of NAFLD through the actions of metabolites such as bile acids (BAs), lipopolysaccharide (LPS), choline, and short-chain fatty acids (SCFAs). Additionally, GM may influence the integrity of the intestinal barrier. This review aims to evaluate the potential effects of polyphenols on GM and intestinal barrier function, and their subsequent impact on NAFLD. We searched through a wide range of databases, such as Web of Science, PubMed, EMBASE, and Scopus to gather information for our non-systematic review of English literature. GM functions and composition can be regulated by polyphenols such as chlorogenic acid, curcumin, green tea catechins, naringenin, quercetin, resveratrol, and sulforaphane. Regulating GM composition improves NAFLD by alleviating inflammation, liver fat accumulation, and liver enzymes. Furthermore, it improves serum lipid profile and gut barrier integrity. All of these components affect NAFLD through the metabolites of GM, including SCFAs, choline, LPS, and BAs. Current evidence indicates that chlorogenic acid, resveratrol, quercetin, and curcumin can modulate GM, improving intestinal barrier integrity and positively impacting NAFLD. More studies are necessary to evaluate the safety and efficacy of naringenin, sulforaphane, and catechin.
Collapse
Affiliation(s)
- Kimia Mohammadhasani
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Mohammad Vahedi Fard
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Ali Mottaghi Moghaddam Shahri
- International UNESCO Center for Health‐Related Basic Sciences and Human NutritionMashhad University of Medical SciencesMashhadIran
| | - Zahra Khorasanchi
- Department of Nutrition, School of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
11
|
Nobile V, Dudonné S, Kern C, Roveda G, Garcia C. Antiaging, Brightening, and Antioxidant Efficacy of Fermented Bilberry Extract ( Vaccinium myrtillus): A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024; 16:2203. [PMID: 39064646 PMCID: PMC11280171 DOI: 10.3390/nu16142203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Strategies for successful aging, including the use of food supplements, are part of the approach to support skin youthfulness. To demonstrate the efficacy of fermented bilberry extract (FBE) against skin aging and uneven complexion, a clinical trial was carried out on 66 subjects with visible "crow's feet" wrinkles, mild-to-moderate skin slackness, and uneven skin tone. The wrinkle depth, skin smoothness (Ra) and roughness (Rz), skin firmness (R0) and elasticity (R2), skin coloration (ITA°), and skin antioxidant capacity were measured before and after 28 (D28), 56 (D56), and 84 (D84) days of product use (either FBE or a placebo). These parameters were also integrated with a clinical evaluation, carried out by a dermatologist, and a self-assessment questionnaire to align the measured efficacy with the visual or perceived efficacy. At D84, the wrinkle depth had decreased by 10.6%, Ra had improved by 7.9%, Rz had decreased by 7.3%, R0 had improved by 13.3%, R2 had improved by 12.4%, and skin antioxidant capacity had increased by 20.8%. ITA° increased by 20.8% and was accompanied by a decrease in the skin's redness component by 16.8% and an increase in the lightness component by 2.2%. The variation of all the above-mentioned parameters was statistically significant between the FBE and PL groups. Our findings demonstrate the efficacy of FBE in improving skin aging and complexion evenness.
Collapse
Affiliation(s)
- Vincenzo Nobile
- R&D Department, Complife Italia S.r.l., 27028 San Martino Siccomario, Italy;
| | | | - Catherine Kern
- Seppic Research and Innovation, 92250 La Garenne Colombes, France
| | - Gloria Roveda
- Clinical Trial Department, Complife Italia S.r.l., 27028 San Martino Siccomario, Italy
| | - Christine Garcia
- Seppic Research and Innovation, 92250 La Garenne Colombes, France
| |
Collapse
|
12
|
Roy S, Sarkar T, Upadhye VJ, Chakraborty R. Comprehensive Review on Fruit Seeds: Nutritional, Phytochemical, Nanotechnology, Toxicity, Food Biochemistry, and Biotechnology Perspective. Appl Biochem Biotechnol 2024; 196:4472-4643. [PMID: 37755640 DOI: 10.1007/s12010-023-04674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/28/2023]
Abstract
Fruit seeds are leftovers from a variety of culinary sectors. They are generally unutilized and contribute greatly to global disposals. These seeds not only possess various nutritional attributes but also have many heath-beneficial properties. One way to make use of these seeds is to extract their bioactive components and create fortified food items. Nowadays, researchers are highly interested in creating innovative functional meals and food components from these unconventional resources. The main objective of this manuscript was to determine the usefulness of seed powder from 70 highly consumed fruits, including Apple, Apricot, Avocado, Banana, Blackberry, Blackcurrant, Blueberry, Cherry, Common plum, Cranberry, Gooseberry, Jackfruit, Jamun, Kiwi, Lemon, Mahua, Mango, Melon, Olive, Orange, and many more have been presented. The nutritional attributes, phytochemical composition, health advantages, nanotechnology applications, and toxicity of these fruit seeds have been fully depicted. This study also goes into in-depth detailing on creating useful food items out of these seeds, such as bakery goods, milk products, cereal-based goods, and meat products. It also identifies enzymes purified from these seeds along with their biochemical applications and any research openings in this area.
Collapse
Affiliation(s)
- Sarita Roy
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, 732102, India.
| | | | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
13
|
Yenigün S, Başar Y, İpek Y, Behçet L, Özen T, Demirtaş İ. Determination of antioxidant, DNA protection, enzyme inhibition potential and molecular docking studies of a biomarker ursolic acid in Nepeta species. J Biomol Struct Dyn 2024; 42:5799-5816. [PMID: 37394807 DOI: 10.1080/07391102.2023.2229440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Ursolic acid (UA), which has many biological properties such as anti-cancer, anti-inflammatory and antioxidant, and regulates some pharmacological processes, has been isolated from the flowers, leaves, berries and fruits of many plant species. In this work, UA was purified from the methanol-chloroform crude extract of Nepeta species (N. aristata, N. baytopii, N. italica, N. trachonitica, N. stenantha) using a silica gel column with chloroform or ethyl acetate solvents via bioactivity-guided isolation. The most active sub-fractions were determined under bioactivities using antioxidant and DNA protection activities and enzyme inhibitions. UA was purified from these fractions and its structure was elucidated by NMR spectroscopy techniques. The highest amount of UA was found in N. stenantha (8.53 mg UA/g), while the lowest amount of UA was found in N. trachonitica (1.92 mg UA/g). The bioactivities of UA were evaluated with antioxidant and DNA protection activities, enzyme inhibitions, kinetics and interactions. The inhibition values (IC50) of α-amylase, α-glucosidase, urease, CA, tyrosinase, lipase, AChE, and BChE were determined between 5.08 and 181.96 µM. In contrast, Ki values of enzyme inhibition kinetics were observed between 0.04 and 0.20 mM. In addition, Ki values of these enzymes for enzyme-UA interactions were calculated as 0.38, 0.86, 0.45, 1.01, 0.23, 0.41, 0.01 and 2.24 µM, respectively. It is supported that UA can be widely used as a good antioxidant against oxidative damage, an effective DNA protector against genetic diseases, and a suitable inhibitor for metabolizing enzymes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Semiha Yenigün
- Faculty of Science, Department of Chemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Yunus Başar
- Faculty of Arts and Sciences, Department of Biochemistry, Iğdır University, Iğdır, Turkey
| | - Yaşar İpek
- Faculty of Science, Department of Chemistry, Çankırı Karatekin University, Çankırı, Turkey
| | - Lütfi Behçet
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Bingöl University, Bingöl, Turkey
| | - Tevfik Özen
- Faculty of Science, Department of Chemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - İbrahim Demirtaş
- Faculty of Arts and Sciences, Department of Biochemistry, Iğdır University, Iğdır, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
14
|
Samtiya M, Badgujar PC, Chandratre GA, Aluko RE, Kumar A, Bhushan B, Dhewa T. Effect of selective fermentation on nutritional parameters and techno-functional characteristics of fermented millet-based probiotic dairy product. Food Chem X 2024; 22:101483. [PMID: 38840723 PMCID: PMC11152665 DOI: 10.1016/j.fochx.2024.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
The primary goal of this study was to assess the effect of selective fermentation on the nutritional and techno-functional characteristics of fermented millet-skim milk-based product. The product was made with HHB-311 biofortified pearl millet (PM) flour, skim milk powder, and isolated cultures (either alone or in combination) of Limosilactobacillus fermentum MS005 (LF) and Lactobacillus rhamnosus GG 347 (LGG). To optimize fermentation time, time intervals 8, 16, and 24 h were explored, while the temperature was kept 37 °C. Results of protein digestibility showed that LF (16 h) and LGG (24 h) fermented samples had significantly higher (P < 0.05) protein digestibility of 90.75 ± 1.6% and 93.76 ± 3.4%, respectively, than that of control (62.60 ± 2.6%). Further, 16 h fermentation with LF showed enhanced iron (39%) and zinc (14%) bioavailability. The results suggested that LF with 16 h fermentation is most suitable for making millet-based fermented products with superior techno-functional attributes and micronutrient bioavailability.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana 123 031, India
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028, India
| | - Prarabdh C. Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028, India
| | - Gauri A. Chandratre
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125001, India
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana 123 031, India
| | - Bharat Bhushan
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131 028, India
- Department of Food Science, Technology and Processing, School of Health Sciences, Amity University Punjab, Mohali, Punjab-140306, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana 123 031, India
| |
Collapse
|
15
|
Martemucci G, Khalil M, Di Luca A, Abdallah H, D’Alessandro AG. Comprehensive Strategies for Metabolic Syndrome: How Nutrition, Dietary Polyphenols, Physical Activity, and Lifestyle Modifications Address Diabesity, Cardiovascular Diseases, and Neurodegenerative Conditions. Metabolites 2024; 14:327. [PMID: 38921462 PMCID: PMC11206163 DOI: 10.3390/metabo14060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Several hallmarks of metabolic syndrome, such as dysregulation in the glucose and lipid metabolism, endothelial dysfunction, insulin resistance, low-to-medium systemic inflammation, and intestinal microbiota dysbiosis, represent a pathological bridge between metabolic syndrome and diabesity, cardiovascular, and neurodegenerative disorders. This review aims to highlight some therapeutic strategies against metabolic syndrome involving integrative approaches to improve lifestyle and daily diet. The beneficial effects of foods containing antioxidant polyphenols, intestinal microbiota control, and physical activity were also considered. We comprehensively examined a large body of published articles involving basic, animal, and human studie, as well as recent guidelines. As a result, dietary polyphenols from natural plant-based antioxidants and adherence to the Mediterranean diet, along with physical exercise, are promising complementary therapies to delay or prevent the onset of metabolic syndrome and counteract diabesity and cardiovascular diseases, as well as to protect against neurodegenerative disorders and cognitive decline. Modulation of the intestinal microbiota reduces the risks associated with MS, improves diabetes and cardiovascular diseases (CVD), and exerts neuroprotective action. Despite several studies, the estimation of dietary polyphenol intake is inconclusive and requires further evidence. Lifestyle interventions involving physical activity and reduced calorie intake can improve metabolic outcomes.
Collapse
Affiliation(s)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | - Alessio Di Luca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (A.D.L.); (A.G.D.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | | |
Collapse
|
16
|
Lv H, Qian D, Xu S, Fan G, Qian Q, Cha D, Qian X, Zhou G, Lu B. Modulation of long noncoding RNAs by polyphenols as a novel potential therapeutic approach in lung cancer: A comprehensive review. Phytother Res 2024; 38:3240-3267. [PMID: 38739454 DOI: 10.1002/ptr.8202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 05/16/2024]
Abstract
Lung cancer stands as a formidable global health challenge, necessitating innovative therapeutic strategies. Polyphenols, bioactive compounds synthesized by plants, have garnered attention for their diverse health benefits, particularly in combating various cancers, including lung cancer. The advent of whole-genome and transcriptome sequencing technologies has illuminated the pivotal roles of long noncoding RNAs (lncRNAs), operating at epigenetic, transcriptional, and posttranscriptional levels, in cancer progression. This review comprehensively explores the impact of polyphenols on both oncogenic and tumor-suppressive lncRNAs in lung cancer, elucidating on their intricate regulatory mechanisms. The comprehensive examination extends to the potential synergies when combining polyphenols with conventional treatments like chemotherapy, radiation, and immunotherapy. Recognizing the heterogeneity of lung cancer subtypes, the review emphasizes the need for the integration of nanotechnology for optimized polyphenol delivery and personalized therapeutic approaches. In conclusion, we collect the latest research, offering a holistic overview of the evolving landscape of polyphenol-mediated modulation of lncRNAs in lung cancer therapy. The integration of polyphenols and lncRNAs into multidimensional treatment strategies holds promise for enhancing therapeutic efficacy and navigating the challenges associated with lung cancer treatment.
Collapse
Affiliation(s)
- Hong Lv
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dawei Qian
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Shuhua Xu
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Guiqin Fan
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Qiuhong Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dongsheng Cha
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Xingjia Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Guoping Zhou
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Bing Lu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| |
Collapse
|
17
|
Nawaz M, Afridi MN, Ullah I, Khan IA, Ishaq MS, Su Y, Rizwan HM, Cheng KW, Zhou Q, Wang M. The inhibitory effects of endophytic metabolites on glycated proteins under non-communicable disease conditions: A review. Int J Biol Macromol 2024; 269:131869. [PMID: 38670195 DOI: 10.1016/j.ijbiomac.2024.131869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Protein glycation in human body is closely linked to the onset/progression of diabetes associated complications. These glycated proteins are commonly known as advanced glycation end products (AGEs). Recent literature has also highlighted the involvement of AGEs in other non-communicable diseases (NCDs) such as cardiovascular, cancer, and Alzheimer's diseases and explored the impact of plant metabolites on AGEs formation. However, the significance of endophytic metabolites against AGEs has recently garnered attention but has not been thoroughly summarized thus far. Therefore, the objective of this review is to provide a comprehensive overview of the importance of endophytic metabolites in combating AGEs under NCDs conditions. Additionally, this review aims to elucidate the processes of AGEs formation, absorption, metabolism, and their harmful effects. Collectively, endophytic metabolites play a crucial role in modulating signaling pathways and enhancing the digestibility properties of gut microbiota (GM) by targeting on AGEs/RAGE (receptor for AGEs) axis. Furthermore, these metabolites exhibit anti-AGEs activities similar to those derived from host plants, but at a lower cost and higher production rate. The use of endophytes as a source of such metabolites offers a risk-free and sustainable approach that holds substantial potential for the treatment and management of NCDs.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Naveed Afridi
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Irfan Ullah
- CPSP/REU/SGR-2016-021-8421, College of Physicians and Surgeons, Pakistan
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Saqib Ishaq
- Department of Health and Biological Sciences, Abasyn University Peshawar, KP, Pakistan
| | - Yuting Su
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Hafiz Muhammad Rizwan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
18
|
Koçak G, Yildiz C. The Effects of Ferulic Acid, Tryptophan, and L-Glutamine on the Cryopreservation of Mouse Spermatozoa. Biopreserv Biobank 2024; 22:286-293. [PMID: 38150493 DOI: 10.1089/bio.2023.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
In this study, the effects of ferulic acid (0.1, 1, ve 10 mM), tryptophan (5, 25, ve 50 mM), and L-glutamine (10, 50, ve 100 mM) at different doses added to 18% raffinose + 3% skimmed milk powder sperm extender on the freezing of mouse spermatozoa in liquid nitrogen were investigated. The combination of 18% raffinose + 3% skimmed milk powder without additives was used as the control group. Frozen spermatozoa were thawed in a 37°C water bath for 30 seconds. After freeze-thawing, motility, dead spermatozoa ratio, plasma membrane integrity, abnormal acrosome ratio, motility endurance (for 4 hours), and cell apoptosis tests were performed in Human Tubal Fluid (HTF). Compared with the control group after freezing and thawing, the highest motility and plasma membrane integrity were obtained in the 10 mM L-glutamine group with 56.6% ± 2.11% and 77.8% ± 0.87%, respectively (p < 0.05). In addition, when compared to the control group, the lowest rate of dead spermatozoa and abnormal acrosome was found in the 10 mM L-glutamine group as 26.0% ± 1.46% and 6.3% ± 1.09%, respectively (p < 0.05). The highest motility values for spermatozoa endurance were determined in the 10 and 50 mM L-glutamine groups up to the 4th hour compared to the control group (p < 0.05). In the evaluation of apoptosis in semen samples, there was no significant difference between the control, 0.1 mM ferulic acid, and 10 mM L-glutamine groups (p > 0.05). As a result, it was determined that the addition of 10 mM L-glutamine to the spermatozoa extender increased the motility, viable spermatozoa, functional membrane integrity, intact acrosome ratios, or motility endurance after freeze-thawing and could be used successfully in the freezing extender of mouse spermatozoa.
Collapse
Affiliation(s)
- Gökhan Koçak
- Laboratory and Veterinary Health Program, Department of Medical Services and Techniques, Tuzluca Vocational High School, Iğdır University, Iğdır, Turkey
| | - Cengiz Yildiz
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, University of Mustafa Kemal, Hatay, Turkey
| |
Collapse
|
19
|
Alvarado-Ramos K, Bravo-Nunez Á, Halimi C, Maillot M, Icard-Vernière C, Forti C, Preite C, Ferrari L, Sala T, Losa A, Cominelli E, Sparvoli F, Camilli E, Lisciani S, Marconi S, Georgé S, Mouquet-Rivier C, Kunert K, Reboul E. Improving the antinutritional profiles of common beans (Phaseolus vulgaris L.) moderately impacts carotenoid bioaccessibility but not mineral solubility. Sci Rep 2024; 14:11908. [PMID: 38789472 PMCID: PMC11126681 DOI: 10.1038/s41598-024-61475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Common beans are a common staple food with valuable nutritional qualities, but their high contents in antinutritional factors (ANFs) can decrease the bioavailability of (i) fat-soluble micronutrients including carotenoids and (ii) minerals. Our objective was to select ANF-poor bean lines that would not interfere with carotenoid and mineral bioavailability. To achieve this objective, seeds of commercial and experimental Phaseolus vulgaris L. bean lines were produced for 2 years and the bean's content in ANFs (saponins, phytates, tannins, total polyphenols) was assessed. We then measured carotenoid bioaccessibility and mineral solubility (i.e. the fraction of carotenoid and mineral that transfer into the aqueous phase of the digesta and is therefore absorbable) from prepared beans using in vitro digestion. All beans contained at least 200 mg/100 g of saponins and 2.44 mg/100 g tannins. The low phytic acid (lpa) lines, lpa1 and lpa12 exhibited lower phytate levels (≈ - 80%, p = 0.007 and p = 0.02) than their control BAT-93. However, this decrease had no significant impact on mineral solubility. HP5/1 (lpa + phaseolin and lectin PHA-E free) bean line, induced an improvement in carotenoid bioaccessibility (i.e., + 38%, p = 0.02, and + 32%, p = 0.005, for phytofluene bioaccessibility in 2021 and 2022, respectively). We conclude that decrease in the phytate bean content should thus likely be associated to decreases in other ANFs such as tannins or polyphenols to lead to significant improvement of micronutrient bioaccessibility.
Collapse
Affiliation(s)
| | - Ángela Bravo-Nunez
- Aix-Marseille Université, INRAE, INSERM, C2VN, Marseille, France
- University of Valladolid, Valladolid, Spain
| | - Charlotte Halimi
- Aix-Marseille Université, INRAE, INSERM, C2VN, Marseille, France
| | | | - Christèle Icard-Vernière
- QualiSud, Université de Montpellier, Université d'Avignon, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Chiara Forti
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milan, Italy
| | - Chiara Preite
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milan, Italy
| | - Luisa Ferrari
- Council for Research in Agriculture and Economics, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Tea Sala
- Council for Research in Agriculture and Economics, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Alessia Losa
- Council for Research in Agriculture and Economics, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milan, Italy
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milan, Italy
| | - Emanuela Camilli
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Silvia Lisciani
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Stefania Marconi
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy
| | - Stephane Georgé
- Centre Technique de Conservation des Produits Agricoles, Avignon, France
| | - Claire Mouquet-Rivier
- QualiSud, Université de Montpellier, Université d'Avignon, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France
| | - Karl Kunert
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
20
|
Pal J, Sharma M, Tiwari A, Tiwari V, Kumar M, Sharma A, Hassan Almalki W, Alzarea SI, Kazmi I, Gupta G, Kumarasamy V, Subramaniyan V. Oxidative Coupling and Self-Assembly of Polyphenols for the Development of Novel Biomaterials. ACS OMEGA 2024; 9:19741-19755. [PMID: 38737049 PMCID: PMC11080037 DOI: 10.1021/acsomega.3c08528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 05/14/2024]
Abstract
In recent years, the development of biomaterials from green organic sources with nontoxicity and hyposensitivity has been explored for a wide array of biotherapeutic applications. Polyphenolic compounds have unique structural features, and self-assembly by oxidative coupling allows molecular species to rearrange into complex biomaterial that can be used for multiple applications. Self-assembled polyphenolic structures, such as hollow spheres, can be designed to respond to various chemical and physical stimuli that can release therapeutic drugs smartly. The self-assembled metallic-phenol network (MPN) has been used for modulating interfacial properties and designing biomaterials, and there are several advantages and challenges associated with such biomaterials. This review comprehensively summarizes current challenges and prospects of self-assembled polyphenolic hollow spheres and MPN coatings and self-assembly for biomedical applications.
Collapse
Affiliation(s)
- Jyoti Pal
- Department
of Chemistry and Toxicology, National Forensic
Sciences University, Sector 3 Rohini, Delhi 110085 India
| | - Manu Sharma
- Department
of Chemistry and Toxicology, National Forensic
Sciences University, Sector 3 Rohini, Delhi 110085 India
| | - Abhishek Tiwari
- Pharmacy
Academy, IFTM University, Lodhipur-Rajput, Moradabad, U.P. 244102, India
| | - Varsha Tiwari
- Pharmacy
Academy, IFTM University, Lodhipur-Rajput, Moradabad, U.P. 244102, India
| | - Manish Kumar
- Department
of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Ajay Sharma
- School of
Pharmaceutical Sciences, Delhi Pharmaceutical
Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Waleed Hassan Almalki
- Department
of Pharmacology, College of Pharmacy, Umm
Al-Qura University, Makkah 21421, Saudi Arabia
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Al-Jouf, Sakaka, 72388, Saudi Arabia
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gaurav Gupta
- Centre for
Global Health Research, Saveetha Medical College, Saveetha Institute
of Medical and Technical Sciences, Saveetha
University, Chennai, Tamil Nadu 602105, India
- School of
Pharmacy, Graphic Era Hill University, Dehradun 248007, India
- School
of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017 Jaipur, India
| | - Vinoth Kumarasamy
- Department
of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology
Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| |
Collapse
|
21
|
Tatar Yilmaz G, Yayli N, Tüzüner T, Bozdal G, Salmanli M, Renda G, Korkmaz B, Bozdeveci A, Alpay Karaoğlu Ş. Synthesis, Antimicrobial Activities, and Molecular Modeling Studies of Agents for the Sortase A Enzyme. Chem Biodivers 2024; 21:e202301659. [PMID: 38407541 DOI: 10.1002/cbdv.202301659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 02/27/2024]
Abstract
Sortase A (SrtA) is an attractive target for developing new anti-infective drugs that aim to interfere with essential virulence mechanisms, such as adhesion to host cells and biofilm formation. Herein, twenty hydroxy, nitro, bromo, fluoro, and methoxy substituted chalcone compounds were synthesized, antimicrobial activities and molecular modeling strategies against the SrtA enzyme were investigated. The most active compounds were found to be T2, T4, and T19 against Streptococcus mutans (S. mutans) with MIC values of 1.93, 3.8, 3.94 μg/mL, and docking scores of -6.46, -6.63, -6.73 kcal/mol, respectively. Also, these three active compounds showed better activity than the chlorohexidine (CHX) (MIC value: 4.88 μg/mL, docking score: -6.29 kcal/mol) in both in vitro and in silico. Structural stability and binding free energy analysis of S.mutans SrtA with active compounds were measured by molecular dynamic (MD) simulations throughout 100 nanoseconds (ns) time. It was observed that the stability of the critical interactions between these compounds and the target enzyme was preserved. To prove further, in vivo biological evaluation studies could be conducted for the most promising precursor compounds T2, T4, and T19, and it might open new avenues to the discovery of more potent SrtA inhibitors.
Collapse
Affiliation(s)
- Gizem Tatar Yilmaz
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkiye
| | - Nurettin Yayli
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61080, Trabzon, Turkiye
| | - Tamer Tüzüner
- Department of Pediatric Dentistry, Faculty of Dentistry, Karadeniz Technical University, 61080, Trabzon, Turkiye
| | - Gözde Bozdal
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61080, Trabzon, Turkiye
| | - Merve Salmanli
- Department of Pediatric Dentistry, Faculty of Dentistry, Karadeniz Technical University, 61080, Trabzon, Turkiye
| | - Gülin Renda
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61080, Trabzon, Turkiye
| | - Büşra Korkmaz
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61080, Trabzon, Turkiye
| | - Arif Bozdeveci
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, 53100, Rize, Turkiye
| | - Şengül Alpay Karaoğlu
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, 53100, Rize, Turkiye
| |
Collapse
|
22
|
Chu X, Zhu W, Li X, Su E, Wang J. Bitter flavors and bitter compounds in foods: identification, perception, and reduction techniques. Food Res Int 2024; 183:114234. [PMID: 38760147 DOI: 10.1016/j.foodres.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 05/19/2024]
Abstract
Bitterness is one of the five basic tastes generally considered undesirable. The widespread presence of bitter compounds can negatively affect the palatability of foods. The classification and sensory evaluation of bitter compounds have been the focus in recent research. However, the rigorous identification of bitter tastes and further studies to effectively mask or remove them have not been thoroughly evaluated. The present paper focuses on identification of bitter compounds in foods, structural-based activation of bitter receptors, and strategies to reduce bitter compounds in foods. It also discusses the roles of metabolomics and virtual screening analysis in bitter taste. The identification of bitter compounds has seen greater success through metabolomics with multivariate statistical analysis compared to conventional chromatography, HPLC, LC-MS, and NMR techniques. However, to avoid false positives, sensory recognition should be combined. Bitter perception involves the structural activation of bitter taste receptors (TAS2Rs). Only 25 human TAS2Rs have been identified as responsible for recognizing numerous bitter compounds, showcasing their high structural diversity to bitter agonists. Thus, reducing bitterness can be achieved through several methods. Traditionally, the removal or degradation of bitter substances has been used for debittering, while the masking of bitterness presents a new effective approach to improving food flavor. Future research in food bitterness should focus on identifying unknown bitter compounds in food, elucidating the mechanisms of activation of different receptors, and developing debittering techniques based on the entire food matrix.
Collapse
Affiliation(s)
- Xinyu Chu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wangsheng Zhu
- Engineering Technology Research Center for Plant Cell of Anhui Province, West Anhui University, Anhui 237012, China
| | - Xue Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Erzheng Su
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Procession of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahong Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Procession of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
23
|
Defo Deeh PB, Sathiyaseelan A, Vishven Naveen K, Wang MH. Phytochemical analysis and antioxidant potential of Mondia whitei and Guibourtia tessmannii against H 2O 2-induced cytotoxicity in PC3 cells. J Biomol Struct Dyn 2024:1-15. [PMID: 38651748 DOI: 10.1080/07391102.2024.2335299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
The management of oxidative stress-related disorders has garnered significant interest, particularly in the exploration of medicinal plants possessing potent antioxidant activities. This study was undertaken to evaluate the antioxidant activity of Mondia whitei (MW) and Guibourtia tessmannii (GT) against H2O2-induced cytotoxicity in PC3 cells. The phytochemical composition of MW and GT was determined by GC-MS analysis. Total phenolic (TP) and total flavonoid (TF) contents were quantified by Folin Ciocalteu and AlCl3 methods, respectively. The antioxidant potential of the extracts was determined using the DPPH and ABTS+ radicals scavenging method, as well as cupric and ferric reducing capacity assay. Moreover, all phytocompounds were docked against acetylcholinesterase (AChE) and glutathione S-transferase (GST) using ArgusLab, and results were analyzed using the BIOVIA Discovery Studio Visualizer 2021 client. MW and GT comprised 20 and 22 compounds, respectively. GT exhibited higher TP and TF contents (210.70 ± 12.7; 12.61 ± 1.3 GAE/g DW) compared to MW (132.59 ± 12.59; 5.53 ± 1.3 mg of GAE/g DW). Both MW and GT demonstrated substantial antioxidant activity, with GT proving to be more effective in preventing H2O2-induced cytotoxicity. For instance, MW and GT significantly (p < .001) increased the DPPH, ABTS+, and cupric activity, compared with the H2O2 group. All compounds identified in MW and GT exhibited a strong binding affinity against AChE and GST. Drug likeness and toxicity of all phytocompounds were under the acceptable norms of Lipinski's rule. In conclusion, these plants could be effective candidates for the management/treatment of oxidative stress-related disorders.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Patrick Brice Defo Deeh
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | | | - Kumar Vishven Naveen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
24
|
Lee JY, Shin HH, Cho C, Ryu JH. Effect of Tannic Acid Concentrations on Temperature-Sensitive Sol-Gel Transition and Stability of Tannic Acid/Pluronic F127 Composite Hydrogels. Gels 2024; 10:256. [PMID: 38667675 PMCID: PMC11048884 DOI: 10.3390/gels10040256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Recently, interest in polyphenol-containing composite adhesives for various biomedical applications has been growing. Tannic acid (TA) is a polyphenolic compound with advantageous properties, including antioxidant and antimicrobial properties. Additionally, TA contains multiple hydroxyl groups that exhibit biological activity by forming hydrogen bonds with proteins and biomacromolecules. Furthermore, TA-containing polymer composites exhibit excellent tissue adhesion properties. In this study, the gelation behavior and adhesion forces of TA/Pluronic F127 (TA/PluF) composite hydrogels were investigated by varying the TA and PluF concentrations. PluF (above 16 wt%) alone showed temperature-responsive gelation behavior because of the closely packed micelle aggregates. After the addition of a small amount of TA, the TA/PluF hydrogels showed thermosensitive behavior similar to that of PluF hydrogels. However, the TA/PluF hydrogels containing more than 10 wt% TA completely suppressed the thermo-responsive gelation kinetics of PluF, which may have been due to the hydrogen bonds between TA and PluF. In addition, TA/PluF hydrogels with 40 wt% TA showed excellent tissue adhesion properties and bursting pressure in porcine intestinal tissues. These results are expected to aid in understanding the use of mixtures of TA and thermosensitive block copolymers to fabricate adhesive hydrogels for versatile biomedical applications.
Collapse
Affiliation(s)
- Jeong Yun Lee
- Department of Carbon Convergence Engineering, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
| | - Hyun Ho Shin
- Department of Chemical Engineering, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
| | - Chungyeon Cho
- Department of Carbon Convergence Engineering, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
- Department of Chemical Engineering, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
- Smart Convergence Materials Analysis Center, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea
| | - Ji Hyun Ryu
- Department of Carbon Convergence Engineering, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
- Department of Chemical Engineering, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
- Smart Convergence Materials Analysis Center, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea
| |
Collapse
|
25
|
Singh A, Rajput VD, Lalotra S, Agrawal S, Ghazaryan K, Singh J, Minkina T, Rajput P, Mandzhieva S, Alexiou A. Zinc oxide nanoparticles influence on plant tolerance to salinity stress: insights into physiological, biochemical, and molecular responses. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:148. [PMID: 38578547 DOI: 10.1007/s10653-024-01921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/18/2024] [Indexed: 04/06/2024]
Abstract
A slight variation in ecological milieu of plants, like drought, heavy metal toxicity, abrupt changes in temperature, flood, and salt stress disturbs the usual homeostasis or metabolism in plants. Among these stresses, salinity stress is particularly detrimental to the plants, leading to toxic effects and reduce crop productivity. In a saline environment, the accumulation of sodium and chloride ions up to toxic levels significantly correlates with intracellular osmotic pressure, and can result in morphological, physiological, and molecular alterations in plants. Increased soil salinity triggers salt stress signals that activate various cellular-subcellular mechanisms in plants to enable their survival in saline conditions. Plants can adapt saline conditions by maintaining ion homeostasis, activating osmotic stress pathways, modulating phytohormone signaling, regulating cytoskeleton dynamics, and maintaining cell wall integrity. To address ionic toxicity, researchers from diverse disciplines have explored novel approaches to support plant growth and enhance their resilience. One such approach is the application of nanoparticles as a foliar spray or seed priming agents positively improve the crop quality and yield by activating germination enzymes, maintaining reactive oxygen species homeostasis, promoting synthesis of compatible solutes, stimulating antioxidant defense mechanisms, and facilitating the formation of aquaporins in seeds and root cells for efficient water absorption under various abiotic stresses. Thus, the assessment mainly targets to provide an outline of the impact of salinity stress on plant metabolism and the resistance strategies employed by plants. Additionally, the review also summarized recent research efforts exploring the innovative applications of zinc oxide nanoparticles for reducing salt stress at biochemical, physiological, and molecular levels.
Collapse
Affiliation(s)
- Abhishek Singh
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.
| | - Shivani Lalotra
- School of Agriculture, Lovely Professional University, Jalandhar, India
| | - Shreni Agrawal
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, 391760, Gujarat, India
| | - Karen Ghazaryan
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia
| | - Jagpreet Singh
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Priyadarshani Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| |
Collapse
|
26
|
Alu'datt MH, Rababah T, Al-U'datt DGF, Gammoh S, Alkandari S, Allafi A, Alrosan M, Kubow S, Al-Rashdan HK. Designing novel industrial and functional foods using the bioactive compounds from Nigella sativa L. (black cumin): Biochemical and biological prospects toward health implications. J Food Sci 2024; 89:1865-1893. [PMID: 38407314 DOI: 10.1111/1750-3841.16981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/14/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Nigella sativa is one of the nutraceuticals that has gained popularity and studied extensively in recent decades as it is considered a safe medicinal plant for use as a dietary supplement. N. sativa contains a wide variety of bioactive substances, which include polyphenols, volatile oils (thymoquinone and p-cymene), proteins, and peptides. The biological attributes of N. sativa include antioxidant, antimicrobial, antifungal, anti-inflammatory, anticancer, antidiabetic, antihypertensive, hypolipidemic, and antioxidant activities, which have potential applications for the prevention of a variety of chronic diseases. In the food industry, N. sativa improves the sensory qualities, shelf life, strength, and freshness of foods, such as bread, pizza, biscuits, cookies, and cakes. This review discusses the industrial use of N. sativa, which includes processing technologies to enhance its health-promoting properties as well as the isolation of nutraceutical components.
Collapse
Affiliation(s)
- Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Taha Rababah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Doa'a G F Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Sharifa Alkandari
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ahmed Allafi
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Mohammad Alrosan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Stan Kubow
- School of Dietetics and Human Nutrition, McGill University, Montreal, Quebec, Canada
| | - Haneen K Al-Rashdan
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
27
|
Gomaa W, Saleem A, McGeough E, Ominski K, Chen L, Yang W. Effect of red osier dogwood extract on in vitro gas production, dry matter digestibility, and fermentation characteristics of forage-based diet or grain-based diet. Heliyon 2024; 10:e27991. [PMID: 38524609 PMCID: PMC10957426 DOI: 10.1016/j.heliyon.2024.e27991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/12/2023] [Accepted: 03/10/2024] [Indexed: 03/26/2024] Open
Abstract
This in vitro batch culture study investigated the effects of red osier dogwood (ROD) extract supplementation on gas production (GP), dry matter disappearance (DMD), and fermentation characteristics in high forage (HF) and high grain (HG) diets with varying media pH level. The experiment was a factorial arrangement of treatments in a completely randomized design with 2 media pH (5.8 and 6.5) × 4 dose rates of ROD extract (0, 1, 3, and 5% of DM substrate). An additional treatment of monensin was added as a positive control for each pH level. The HF substrate consisted of 400 and 600 g/kg DM barley-based concentrate and barley silage, respectively, while the HG substrate contained 100 and 900 g/kg DM barley silage and barley-based concentrate, respectively. Treatments were incubated for 24 h with GP, DMD and fermentation parameters determined. No interaction was detected between the media pH level and ROD extract dose rate on GP, DMD and most of the fermentation parameters. The GP, DMD, and total volatile fatty acid (VFA) concentration were greater (P = 0.01) with media pH of 6.5 in both HF and HG diets. The GP were not affected by increasing ROD dose rate, except that GP linearly decreased in the HF (P = 0.04) and HG (P = 0.01) diets at 24 h; the DMD tended to linearly decrease at pH 6.5 (P = 0.06) for both HF and HG diets and at pH 5.8 (P = 0.02) for the HG diet. Adding ROD extract to the HF and HG diets linearly (P = 0.01) increased the acetate molar proportion at high or low media pH and consequently, the acetate to propionate (A:P) ratio linearly (P ≤ 0.04) increased. Supplementation of ROD extract to the HF diet linearly (P = 0.04) decreased the molar proportion of propionate at pH 6.5 (interaction between pH and ROD extract; P = 0.05), but had no effect on propionate proportion when added to the HG diet. Moreover, the proportion of branched-chain fatty acids linearly (P = 0.03) decreased with ROD extract supplementation at low pH (interaction, P < 0.05) for HF diet and linearly decreased (P = 0.05) at pH 6.5 for HG diet (interaction, P < 0.05). The NH3-N concentration was not affected by ROD supplementation in the HF diet but it linearly (P = 0.01) decreased with increasing dose rate in the HG diet. Methane concentration tended to linearly (P = 0.06) increase with ROD extract supplementation at high pH for HF diet and linearly increased at pH 5.8 (P = 0.06) and pH 6.5 (P = 0.02) for HG diet. These results indicate that the decreased DMD and increased A:P ratio observed with addition of ROD extract may be beneficial to HG-fed cattle to reduce the risk of rumen acidosis without negatively impacting fiber digestion.
Collapse
Affiliation(s)
- W.M.S. Gomaa
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
- Department of Animal Nutrition and Clinical Nutrition, Assiut University, Assiut, Egypt
| | - A.M. Saleem
- Department of Animal and Poultry Production, South Valley University, Qena, 83523, Egypt
| | - E.J. McGeough
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - K. Ominski
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - L.Y. Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - W.Z. Yang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| |
Collapse
|
28
|
Meiners F, Hinz B, Boeckmann L, Secci R, Sueto S, Kuepfer L, Fuellen G, Barrantes I. Computational identification of natural senotherapeutic compounds that mimic dasatinib based on gene expression data. Sci Rep 2024; 14:6286. [PMID: 38491064 PMCID: PMC10943199 DOI: 10.1038/s41598-024-55870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
The major risk factor for chronic disease is chronological age, and age-related chronic diseases account for the majority of deaths worldwide. Targeting senescent cells that accumulate in disease-related tissues presents a strategy to reduce disease burden and to increase healthspan. The senolytic combination of the tyrosine-kinase inhibitor dasatinib and the flavonol quercetin is frequently used in clinical trials aiming to eliminate senescent cells. Here, our goal was to computationally identify natural senotherapeutic repurposing candidates that may substitute dasatinib based on their similarity in gene expression effects. The natural senolytic piperlongumine (a compound found in long pepper), and the natural senomorphics parthenolide, phloretin and curcumin (found in various edible plants) were identified as potential substitutes of dasatinib. The gene expression changes underlying the repositioning highlight apoptosis-related genes and pathways. The four compounds, and in particular the top-runner piperlongumine, may be combined with quercetin to obtain natural formulas emulating the dasatinib + quercetin formula.
Collapse
Affiliation(s)
- Franziska Meiners
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Lars Boeckmann
- Clinic and Policlinic for Dermatology and Venerology, University Medical Center Rostock, Strempelstr. 13, 18057, Rostock, Germany
| | - Riccardo Secci
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Salem Sueto
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Lars Kuepfer
- Institute for Systems Medicine with Focus on Organ Interaction, University Hospital RWTH Aachen, Aachen, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany.
| | - Israel Barrantes
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
29
|
Cedillos R, Aleman RS, Page R, Olson DW, Boeneke C, Prinyawiwatkul W, Aryana K. Influence of Hesperidin on the Physico-Chemical, Microbiological and Sensory Characteristics of Frozen Yogurt. Foods 2024; 13:808. [PMID: 38472921 DOI: 10.3390/foods13050808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Frozen yogurts contain yogurt culture bacteria, which might impart health benefits to their consumers. Global frozen yogurt market sales are expected to grow by 4.8% by 2028, which represents an important opportunity for the industry, consumers and researchers. Polyphenols are metabolites found in plants which have antioxidant and anti-inflammatory properties and might prevent chronic diseases such as cancer, diabetes and cardiovascular diseases. The objective of this study was to elucidate the effect of the polyphenol hesperidin on the physico-chemical, microbiological and sensory characteristics of frozen yogurts. Hesperidin was incorporated into frozen yogurt at three concentrations (125, 250 and 500 mg/90 g of product), while yogurt with no hesperidin was used as a control. The viscosity and overrun of the frozen yogurt were analyzed on day 0. The hardness, pH, color and Lactobacillus bulgaricus and Streptococcus thermophilus counts were determined after 0, 30 and 60 d. The melting rate was determined at 60 and 90 min after 0, 30 and 60 d. The bile and acid tolerances of both S. thermophilus and L. bulgaricus were measured after 7 and 60 d. A hedonic scale of nine points was used to measure sensory attributes. Data were analyzed at α = 0.05 with an ANOVA with Tukey's adjustment, and McNemar's test was used to analyze purchase intent. Hesperidin did not influence the pH, overrun or microbial characteristics. Polyphenol addition compared to the control decreased the melting rate but increased the hardness and bile tolerance of L. bulgaricus, as well as the L* and b* values. The sensory characteristics were not influenced by the lowest concentration of hesperidin, as it was not statistically different from the control. Moreover, consumers were interested in purchasing frozen yogurt with added hesperidin after learning about the health claim. This study can assist in the development of a healthier frozen yogurt in an increasingly competitive market.
Collapse
Affiliation(s)
- Roberto Cedillos
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Ricardo S Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Ryan Page
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Douglas W Olson
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Charles Boeneke
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Kayanush Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| |
Collapse
|
30
|
Winstead D, Di Gioia F, Jauregui M, Jacobson M. Nutritional properties of raw and cooked Azolla caroliniana Willd., an aquatic wild edible plant. Food Sci Nutr 2024; 12:2050-2060. [PMID: 38455165 PMCID: PMC10916663 DOI: 10.1002/fsn3.3904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 03/09/2024] Open
Abstract
Azolla caroliniana Willd. is an understudied wild edible plant native to the Eastern United States. Other species of Azolla have been used across the world for several thousand years as a livestock feed and as "green manure." The use of Azolla for human consumption is thought to be limited by its high total polyphenolic content (TPC). However, the TPC and nutritional content of A. caroliniana has not been thoroughly studied. We measured TPC and other nutrients before and after cooking methods designed to lower TPC. We found that TPC was 4.26 g gallic acid equivalent (GAE) kg-1 DW in raw A. caroliniana. All cooking methods significantly lowered TPC. Protein content was 19% DW, and the apparent protein digestibility was 78.45%. Our yield was 173 g FW m-2 day-1 and 5.53 g DW m-2 day-1. Azolla caroliniana is a high-yielding plant with great potential for cultivation and domestication.
Collapse
Affiliation(s)
- Daniel Winstead
- Department of Ecosystem Science and Management, College of Agricultural SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Francesco Di Gioia
- Department of Plant Science, College of Agricultural SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Marjorie Jauregui
- Department of Food Science, College of Agricultural SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Michael Jacobson
- Department of Ecosystem Science and Management, College of Agricultural SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
31
|
García-Manríquez N, Lozano C, Muñoz A, Morales MF, Giacaman RA. Anticaries properties of natural berries: systematic literature review. Nutr Rev 2024; 82:302-317. [PMID: 37352393 DOI: 10.1093/nutrit/nuad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023] Open
Abstract
CONTEXT Anticariogenic properties have been ascribed to polyphenolic compounds present in high concentrations in numerous fruits. Berries, in particular, have been reported as potentially having an inhibitory effect on the dental biofilm and subsequently on caries, but the evidence is unclear. OBJECTIVE The objective of this review was to explore the literature and summarize the evidence for berries having an inhibitory effect on the dental biofilm and an anticariogenic effect. DATA SOURCES Following Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, the PubMed, Web of Science, and SCOPUS databases were scanned using predefined and accessible terms, with a search strategy based on a structured PICO question. DATA EXTRACTION After article selection, 23 studies met the inclusion criteria, most of them being in vitro studies. A risk assessment was performed, and data were extracted and presented in a table for qualitative analysis. DATA ANALYSIS Meta-analyses were conducted using standardized mean differences (SMDs) with a 95% confidence interval (CI) by Review manager 5.4. RESULTS Only 3 types of berries were found to have a reported anticaries effect: grape seed extract (GSE), cranberry, and sour cherry. Nine studies that fulfilled the eligibility criteria were subjected to quantitative analysis. Meta-analyses showed GSE was associated with enhanced remineralization of dental enamel (SMD = .96 95% CI [.45, 1.46], P < .0002) and of dentin (SMD = .65 95% CI [.13, 1.17], P = .01). Cranberry extracts positively influenced the cariogenic dental biofilm by decreasing the biofilm biomass (SMD = -2.23 95% CI [-4.40, -.05], P = .04), and biovolume (SMD = -2.86 95% CI [-4.34, -1.37], P = .0002), and increasing the biofilm pH (SMD = 7.9 95% CI [3.49, 12.31], P < .0004). CONCLUSION Within the limitations of this systematic review and metaanalysis, GSE and cranberries or their active compounds could represent an alternative for caries management. Further clinical trials are needed to verify this effect in a clinical setting. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42020223579.
Collapse
Affiliation(s)
- Natalia García-Manríquez
- Cariology Unit, Department of Oral Rehabilitation, Faculty of Dentistry, University of Talca, Talca, Chile
| | - Carla Lozano
- Biochemistry and Oral Biology Laboratory, Research Institute for Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Ana Muñoz
- Cariology Unit, Department of Oral Rehabilitation, Faculty of Dentistry, University of Talca, Talca, Chile
| | - María Fernanda Morales
- Cariology Unit, Department of Oral Rehabilitation, Faculty of Dentistry, University of Talca, Talca, Chile
| | - Rodrigo A Giacaman
- Cariology Unit, Department of Oral Rehabilitation, Faculty of Dentistry, University of Talca, Talca, Chile
- Biochemistry and Oral Biology Laboratory, Research Institute for Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
- In teruniversity Center for Healthy Aging, Chilean State Universities, Chile
| |
Collapse
|
32
|
Patel H, Li J, Bo L, Mehta R, Ashby CR, Wang S, Cai W, Chen ZS. Nanotechnology-based delivery systems to overcome drug resistance in cancer. MEDICAL REVIEW (2021) 2024; 4:5-30. [PMID: 38515777 PMCID: PMC10954245 DOI: 10.1515/mr-2023-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024]
Abstract
Cancer nanomedicine is defined as the application of nanotechnology and nanomaterials for the formulation of cancer therapeutics that can overcome the impediments and restrictions of traditional chemotherapeutics. Multidrug resistance (MDR) in cancer cells can be defined as a decrease or abrogation in the efficacy of anticancer drugs that have different molecular structures and mechanisms of action and is one of the primary causes of therapeutic failure. There have been successes in the development of cancer nanomedicine to overcome MDR; however, relatively few of these formulations have been approved by the United States Food and Drug Administration for the treatment of cancer. This is primarily due to the paucity of knowledge about nanotechnology and the fundamental biology of cancer cells. Here, we discuss the advances, types of nanomedicines, and the challenges regarding the translation of in vitro to in vivo results and their relevance to effective therapies.
Collapse
Affiliation(s)
- Harsh Patel
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Jiaxin Li
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Letao Bo
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Riddhi Mehta
- St. John’s College of Liberal Arts and Sciences, St. John’s University, New York, NY, USA
| | - Charles R. Ashby
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Shanzhi Wang
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| |
Collapse
|
33
|
Huang X, Lowrie DB, Fan XY, Hu Z. Natural products in anti-tuberculosis host-directed therapy. Biomed Pharmacother 2024; 171:116087. [PMID: 38171242 DOI: 10.1016/j.biopha.2023.116087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Given that the disease progression of tuberculosis (TB) is primarily related to the host's immune status, it has been gradually realized that chemotherapy that targets the bacteria may never, on its own, wholly eradicate Mycobacterium tuberculosis, the causative agent of TB. The concept of host-directed therapy (HDT) with immune adjuvants has emerged. HDT could potentially interfere with infection and colonization by the pathogens, enhance the protective immune responses of hosts, suppress the overwhelming inflammatory responses, and help to attain a state of homeostasis that favors treatment efficacy. However, the HDT drugs currently being assessed in combination with anti-TB chemotherapy still face the dilemmas arising from side effects and high costs. Natural products are well suited to compensate for these shortcomings by having gentle modulatory effects on the host immune responses with less immunopathological damage at a lower cost. In this review, we first summarize the profiles of anti-TB immunology and the characteristics of HDT. Then, we focus on the rationale and challenges of developing and implementing natural products-based HDT. A succinct report of the medications currently being evaluated in clinical trials and preclinical studies is provided. This review aims to promote target-based screening and accelerate novel TB drug discovery.
Collapse
Affiliation(s)
- Xuejiao Huang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Douglas B Lowrie
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| |
Collapse
|
34
|
Li D, Zhu L, Wu Q, Chen Y, Wu G, Zhang H. Comparative study of dietary phenols with Tartary buckwheat protein (2S/13S): impact on structure, binding sites and functionality of protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:698-706. [PMID: 37653274 DOI: 10.1002/jsfa.12960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND This research was to investigate the interaction mechanism between 2S albumin and 13S globulin (2S and 13S, the most important storage proteins in Tartary buckwheat seeds) and three phenols (rutin, quercetin and myricetin) regarding the structural and antioxidant properties of their complexes. RESULTS There are differences in the binding affinity of phenols for 2S and 13S. Rutin had a higher binding affinity for 2S, myricetin had a higher binding affinity for 13S, and 13S exhibited a higher affinity toward phenols than did 2S. Binding with phenols significantly changed the secondary and tertiary structures of 2S and 13S, decreased the surface hydrophobic value and enhanced the antioxidant capacity. Molecular docking and isothermal titration calorimetry showed that the binding processes were spontaneous and that there were hydrogen bonds, hydrophobic bonds and van der Waals force interactions between phenols and proteins. CONCLUSION These findings could provide meaningful guidance for the further application of buckwheat protein complex. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongze Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, China
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| | - Yiling Chen
- Amway (China) Botanical R&D Centre, Wuxi, China
| | - Gangcheng Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, China
| | - Hui Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, China
| |
Collapse
|
35
|
Jang H, Choi M, Jang KS. Comprehensive phytochemical profiles and antioxidant activity of Korean local cultivars of red chili pepper ( Capsicum annuum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1333035. [PMID: 38318498 PMCID: PMC10840139 DOI: 10.3389/fpls.2024.1333035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
Red chili pepper (Capsicum annuum L.), which belongs to the Solanaceae family, contains a variety of phytochemicals with health-promoting properties including capsaicinoids, phenolics and fatty acids. Red chili pepper is one of the most consumed vegetables in Korea and occupies the largest cultivated area among spices. In this study, the ethanolic extracts from two Korean local cultivars, namely Subicho and Eumseong, were analyzed using a hybrid trapped ion mobility Q-TOF mass spectrometer equipped with a UPLC system, and their phytochemical profiles were then compared with those of a common phytophthora disease-resistant cultivar called Dokbulwang, which is extensively used for red chili pepper powder in public spaces across Korea. Utilizing high-resolution ion-mobility Q-TOF MS analysis, 458 and 192 compounds were identified from the three different red chili peppers in positive and negative ion modes, respectively, by matching with a reference spectral library. Principal component analysis revealed clear distinctions among the three cultivars, allowing us to identify key phytochemical components responsible for discriminating the local cultivars from the public cultivar. Furthermore, the assessment of total flavonoid, phenolic, and antioxidant activity in the red pepper extracts, highlighted their diverse molecular and chemical profiles. Despite the higher total flavonoid and phenolic content values observed in the public cultivar, the radical scavenging rate was higher in the local cultivars, particularly in Subicho. This suggest the presence of stronger antioxidant compounds in the local cultivar, indicating their potential health benefits due to their rich content of bioactive compounds. Notably, the local cultivars exhibited significantly higher proportions of organic compounds (more than four times) and terpenoids (more than two times) compared to the public cultivar. Specifically, higher levels of five major capsaicinoid compounds were found in the local cultivars when compared to the public cultivar. The observed disparities in phytochemical composition and antioxidant activities indicate the molecular diversity present among these cultivars. Further exploration of the bioactive compounds in these local cultivars could prove invaluable for the development of native crops, potentially leading to the discovery of novel sources of bioactive molecules for various applications in health and agriculture.
Collapse
Affiliation(s)
- Hyemi Jang
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
- Division of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Mira Choi
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Kyoung-Soon Jang
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, Republic of Korea
- Division of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
36
|
Olmos-Ruiz R, Garcia-Gomez P, Carvajal M, Yepes-Molina L. Exploring membrane vesicles in citrus fruits: a comparative analysis of conventional and organic farming approaches. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:235-248. [PMID: 37596244 DOI: 10.1002/jsfa.12903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/03/2023] [Accepted: 08/19/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Recently, vesicles derived from plant cell membranes have received attention for their potential use as active biomolecules and nanocarriers, and obtaining them from organic crops may be an interesting option because different farming systems can affect production, plant secondary metabolism and biochemistry of cell membranes. The present study aimed to determine how organic and conventional farming affects the mineral nutrition, gas exchange, CO2 fixation and biochemical composition of lemon fruits, which could have an impact on the different fractions of cell membranes in pulp and juice. RESULTS Organic trees had higher intrinsic water use efficiency (WUEi) but conventional trees had higher stomatal conductance (gs) and nitrogen use efficiency (NUtE). Also, organic lemons had significantly higher levels of some micronutrients (Ca, Cu, Fe and Zn). Second, the main differences in the membrane vesicles showed that organic pulp vesicles had a higher antioxidant activity and more oleic acid, whereas both types of vesicles from conventional lemons had more linoleic acid. CONCLUSION In conclusion, organic farming did not alter carbon fixation parameters but impacted nitrogen fixation and water uptake, and resulted in higher micronutrient levels in lemons. These mineral nutritional changes could be related to the higher production of membranes that showed suitable morphological traits and a high antioxidant activity, positively correlated with a high amount of oleic acid, which could have stronger cell protection characteristics. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Rafael Olmos-Ruiz
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Pablo Garcia-Gomez
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Micaela Carvajal
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Lucia Yepes-Molina
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
37
|
de Souza Basso B, Bastos MS, Antunes GL, Matzenbacher LS, Rodrigues KF, Garcia MCR, de Sousa AC, Levorse VG, Luft C, Tonial GV, Pavanato GM, Astarita LV, da Silva Melo DA, Donadio MVF, Santarém ER, de Oliveira JR. Baccharis anomala DC. extract reduces inflammation and attenuates hepatic fibrosis in vivo by decreasing NF-kB and extracellular matrix compounds. Toxicon 2024; 237:107560. [PMID: 38092194 DOI: 10.1016/j.toxicon.2023.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Baccharis anomala DC. (BA) is a plant species found in the tropical regions of South America and is widely used for its hepatoprotective effects, as well as for the treatment of gastrointestinal diseases. Studies have recently reported its antioxidant and anti-inflammatory potential. BA extract can reverse the activated phenotype of hepatic stellate cells (HSC), which plays a central role in extracellular matrix (ECM) deposition in the development of liver fibrosis. Thus, this study aimed to evaluate the effects of the treatment with BA extract on liver fibrosis in a CCl4-induced liver fibrosis model in BALB/c mice. Methanolic extract was obtained from BA leaves, a gas chromatography/mass spectrometry (GC/MS) to detect the compounds present was performed, and then administered by intraperitoneal injection in Balb/C mice at a concentration of 50 and 100 mg/kg together with the administration of CCl4 for inducing liver fibrosis. After 10 weeks, blood analysis, histopathology, oxidative stress, as well as protein and gene expression in the hepatic tissue were performed. Treatment with BA extract was able to reduce profibrotic markers by reducing the expression of α-SMA and Col-1 proteins, as well as reducing the formation of free radicals and lipid peroxidation. (BA extract showed anti-inflammatory effects in the liver by suppressing NF-kB activation and reducing gene expression of signaling targets (IL-6 and iNOS). The data obtained showed that BA extract has antifibrotic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Bruno de Souza Basso
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Matheus Scherer Bastos
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Géssica Luana Antunes
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas Strassburger Matzenbacher
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Kétlin Fernanda Rodrigues
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria Claudia Rosa Garcia
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Arieli Cruz de Sousa
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, 3, Brazil
| | - Vitor Giancarlo Levorse
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carolina Luft
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Giovana Vivan Tonial
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Giovanna Mezzomo Pavanato
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leandro Vieira Astarita
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Denizar Alberto da Silva Melo
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Eliane Romanato Santarém
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratory of Cellular Biophysics and Inflammation. School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
38
|
Ye H, Zhang H, Xiang J, Shen G, Yang F, Wang F, Wang J, Tang Y. Advances and prospects of natural dietary polyphenols as G-quadruplex stabilizers in biomedical applications. Int J Biol Macromol 2024; 254:127825. [PMID: 37926317 DOI: 10.1016/j.ijbiomac.2023.127825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
G-quadruplexes (G4s) have arrested continuous interest in cancer research, and targeting G4s with small molecules has become an ideal approach for drug development. Plant-based dietary polyphenols have attracted much attention for their remarkable anti-cancer effects. Studies have suggested that polyphenols exhibit interesting scaffolds to bind G4s, which can effectively downregulate the proto-oncogenes by stabilizing those G4 structures. Therefore, this review not only summarizes studies on natural dietary polyphenols (including analogs) as G4 stabilizers, but also reveals their anti-cancer activities. Furthermore, the structural and antioxidant insights of polyphenols with G4s are discussed, and future development is proposed. These insights may pave the way for the development of the next generation of anti-cancer drugs targeting nucleic acids.
Collapse
Affiliation(s)
- Huanfeng Ye
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hong Zhang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China.
| | - Junfeng Xiang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Gang Shen
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China
| | - Fengmin Yang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China
| | - Fangfang Wang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China.
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China.
| |
Collapse
|
39
|
González-May CA, Barradas-Castillo MDR, Perera-Rios JH, Gallegos-Tintoré S, Pérez-Izquierdo O, Aranda-González II. Dietary flavonoids may have a protective and therapeutic effect in Parkinson disease: A systematic review. Nutr Res 2024; 121:39-50. [PMID: 38039600 DOI: 10.1016/j.nutres.2023.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/03/2023]
Abstract
Parkinson disease (PD) is characterized by the loss of dopaminergic neurons because of oxidative stress and neuroinflammation. Polyphenols in vegetables, known for their high antioxidant capacity, may prevent the onset, or delay the progression of the disease; among these, flavonoids are the most abundant class of polyphenols in foods. Clinical and cohort studies have evaluated the effect of polyphenol consumption on the risk of developing PD or of attenuating the symptoms after diagnosis; therefore, it is necessary to integrate the scientific evidence into making dietary recommendations. The objective of this study was to perform a systematic review of randomized controlled trials and cohort studies that have investigated the use of polyphenols in PD. The studies were identified through the PubMed, Science Direct, Scielo, and Web of Science databases. A total of 1100 studies were found; these were analyzed and filtered by 2 independent reviewers. After completion, 5 studies were included (3 randomized controlled trials and 2 cohort studies). The consumption of flavonoids, anthocyanins, or 2-5 servings/week of specific foods (apples, red wine, blueberries, and strawberries) reduces the risk of PD and associated mortality. Treatment with licorice, curcumin, or cocoa, which are rich in flavonoids and other polyphenols, improves motor function in PD patients. No statistically significant differences were found in quality of life, disease progression or nonmotor symptoms such as cognitive ability and mood. Although cohort studies suggest a neuroprotective effect, further clinical studies are urgently needed to evaluate the effect of specific flavonoids and other polyphenols in PD.
Collapse
Affiliation(s)
| | | | | | - Santiago Gallegos-Tintoré
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Colonia Chuburná Hidalgo Inn, 97203, Mérida, Yucatán, México
| | - Odette Pérez-Izquierdo
- Facultad de Medicina, Universidad Autónoma de Yucatán, Centro, 97000, Mérida, Yucatán, México
| | | |
Collapse
|
40
|
Adeli OA, Heidari-Soureshjani S, Rostamian S, Azadegan-Dehkordi Z, Khaghani A. Effects and Mechanisms of Fisetin against Ischemia-reperfusion Injuries: A Systematic Review. Curr Pharm Biotechnol 2024; 25:2138-2153. [PMID: 38310454 DOI: 10.2174/0113892010281821240102105415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is a well-known ailment that can disturb organ function. OBJECTIVES This systematic review study investigated fisetin's effects and possible mechanisms in attenuating myocardial, cerebral, renal, and hepatic IRIs. METHODS This systematic review included studies earlier than Sep 2023 by following the PRISMA statement 2020. After determining inclusion and exclusion criteria and related keywords, bibliographic databases, such as Cochrane Library, PubMed, Web of Science, Embase, and Scopus databases, were used to search the relevant studies. Studies were imported in End- Note X8, and the primary information was recorded in Excel. RESULTS Fisetin reduced reactive oxygen species (ROS) generation and upregulated antioxidant enzymes, such as superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), and glutathione peroxidase (GPx), in ischemic tissues. Moreover, fisetin can attenuate oxidative stress by activating phosphoinositide-3-kinase-protein kinase B/Akt (PI3K/Akt) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Fisetin has been indicated to prevent the activation of several pro-inflammatory signaling pathways, including NF-κB (Nuclear factor kappa-light-chain-enhancer of activated B cells) and MAPKs (Mitogen-activated protein kinases). It also inhibits the production of pro-inflammatory cytokines and enzymes like tumor necrosis factor-a (TNF-α), inducible-NO synthase (iNOS), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), interleukin-1β (IL-1β), IL-1, and IL-6. Fisetin attenuates IRI by improving mitochondrial function, anti-apoptotic effects, promoting autophagy, and preserving tissues from histological changes induced by IRIs. CONCLUSION Fisetin, by antioxidant, anti-inflammatory, mitochondrial protection, promoting autophagy, and anti-apoptotic properties, can reduce cell injury due to myocardial, cerebral renal, and hepatic IRIs without any significant side effects.
Collapse
Affiliation(s)
- Omid-Ali Adeli
- Department of Pathology, Lorestan University of Medical Sciences, Khorramabad, Iran
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Sahar Rostamian
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Zahra Azadegan-Dehkordi
- Oriented Nursing Midwifery Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Armin Khaghani
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
41
|
Oi-Kano Y, Goto T, Takahashi H, Iwasaki Y, Kawada T. Effect of Oleuropein on Anti-Obesity and Uncoupling Protein 1 Level in Brown Adipose Tissue in Mild Treadmill Walking Rats with Diet-Induced Obesity. J Nutr Sci Vitaminol (Tokyo) 2024; 70:193-202. [PMID: 38945884 DOI: 10.3177/jnsv.70.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Oleuropein aglycone (OA), which is the absorbed form of oleuropein, is a major phenolic compound in extra virgin olive oil. We analyzed the anti-obesity effect of OA intake combined with mild treadmill walking (MTW, 4 m/min for 20 min/d, 5-6 d/wk, without electric shocks and slope) in rats under a high-fat diet (HF). Four-week-old male Sprague-Dawley rats (n=28) were equally divided into four groups: control (HF), 0.08% oleuropein-supplemented HF (HFO), HF with MTW (HF+W), and HFO with MTW (HFO+W) groups. After 28 d, the inguinal subcutaneous fat content and weight gain were significantly lower in the HFO+W group than in the control group. The HFO+W group also had significantly higher levels of urinary noradrenaline secretion, interscapular brown adipose tissue, uncoupling protein 1, brain transient receptor potential ankyrin subtype 1 (TRPA1), vanilloid subtype 1 (TRPV1), and brain-derived neurotrophic factor (BDNF) than the control group. Especially, the HFO+W group showed a synergistic effect on noradrenaline secretion. Therefore, OA combined with MTW may accelerate the enhancement of UCP1 and BDNF levels in rats with HF-induced obesity by increasing noradrenaline secretion after TRPA1 and TRPV1 activation.
Collapse
Affiliation(s)
- Yuriko Oi-Kano
- Laboratory of Nutrition Chemistry, Faculty of Home Economics, Kobe Women's University
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Yusaku Iwasaki
- Laboratory of Animal Function, Kyoto Prefectural University
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
42
|
Rogowska-van der Molen MA, Berasategui-Lopez A, Coolen S, Jansen RS, Welte CU. Microbial degradation of plant toxins. Environ Microbiol 2023; 25:2988-3010. [PMID: 37718389 DOI: 10.1111/1462-2920.16507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Plants produce a variety of secondary metabolites in response to biotic and abiotic stresses. Although they have many functions, a subclass of toxic secondary metabolites mainly serve plants as deterring agents against herbivores, insects, or pathogens. Microorganisms present in divergent ecological niches, such as soil, water, or insect and rumen gut systems have been found capable of detoxifying these metabolites. As a result of detoxification, microbes gain growth nutrients and benefit their herbivory host via detoxifying symbiosis. Here, we review current knowledge on microbial degradation of toxic alkaloids, glucosinolates, terpenes, and polyphenols with an emphasis on the genes and enzymes involved in breakdown pathways. We highlight that the insect-associated microbes might find application in biotechnology and become targets for an alternative microbial pest control strategy.
Collapse
Affiliation(s)
- Magda A Rogowska-van der Molen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Aileen Berasategui-Lopez
- Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Amsterdam Institute for Life and Environment, Section Ecology and Evolution, Vrije Universiteit, Amsterdam, The Netherlands
| | - Silvia Coolen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Robert S Jansen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
43
|
Di Trana A, Sabia E, Di Rosa AR, Addis M, Bellati M, Russo V, Dedola AS, Chiofalo V, Claps S, Di Gregorio P, Braghieri A. Caciocavallo Podolico Cheese, a Traditional Agri-Food Product of the Region of Basilicata, Italy: Comparison of the Cheese's Nutritional, Health and Organoleptic Properties at 6 and 12 Months of Ripening, and Its Digital Communication. Foods 2023; 12:4339. [PMID: 38231870 DOI: 10.3390/foods12234339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Traditional agri-food products (TAPs) are closely linked to the peculiarities of the territory of origin and are strategic tools for preserving culture and traditions; nutritional and organoleptic peculiarities also differentiate these products on the market. One such product is Caciocavallo Podolico Lucano (CPL), a stretched curd cheese made exclusively from raw milk from Podolian cows, reared under extensive conditions. The objective of this study was to characterise CPL and evaluate the effects of ripening (6 vs. 12 months) on the quality and organoleptic properties, using the technological "artificial senses" platform, of CPL produced and sold in the region of Basilicata, Italy. Additionally, this study represents the first analysis of cheese-related digital communication and trends online. The study found no significant differences between 6-month- and 12-month-ripened cheese, except for a slight increase in cholesterol levels in the latter. CPL aged for 6 and 12 months is naturally lactose-free, rich in bioactive components, and high in vitamin A and antioxidants and has a low PUFA-n6/n3 ratio. The "artificial sensory profile" was able to discriminate the organoleptic fingerprints of 6-month- and 12-month-ripened cheese. The application of a socio-semiotic methodology enabled us to identify the best drivers to create effective communication for this product. The researchers recommend focusing on creating a certification mark linked to the territory for future protection.
Collapse
Affiliation(s)
- Adriana Di Trana
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| | - Emilio Sabia
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| | - Ambra Rita Di Rosa
- Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | | | - Mara Bellati
- Behavior and Brain Lab IULM, Center of Research on Neuromarketing, IULM University, 20143 Milano, Italy
| | - Vincenzo Russo
- Department of Business, Law, Economics and Consumer Behaviour "Carlo A. Ricciardi", IULM University, 20143 Milano, Italy
| | | | - Vincenzo Chiofalo
- Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | - Salvatore Claps
- CREA Research Centre for Animal Production and Aquaculture, 85051 Bella, Italy
| | - Paola Di Gregorio
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| | - Ada Braghieri
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
44
|
Preedalikit W, Chittasupho C, Leelapornpisid P, Potprommanee S, Kiattisin K. Comparison of Biological Activities and Protective Effects on PAH-Induced Oxidative Damage of Different Coffee Cherry Pulp Extracts. Foods 2023; 12:4292. [PMID: 38231740 DOI: 10.3390/foods12234292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the main toxic components of ambient air particulate matter (PM), causing oxidative damage to the skin and ultimately resulting in skin aging. This study was conducted to determine the anti-oxidant, anti-aging properties and protective effects of the extracts of coffee cherry pulp (Coffea arabica L.), which is a by-product of the coffee industry, against the oxidative damage induced by PAH exposure in human epidermal keratinocytes (HaCaT). Three different techniques were used to extract the coffee cherry pulp: maceration, Soxhlet and ultrasonication to obtain CCM, CCS and CCU extract, respectively, which were then compared to investigate the total phenolic content (TPC) and total flavonoid content (TFC). The chemical compositions were identified and quantified using high-performance liquid chromatography (HPLC). The results demonstrated that Soxhlet could extract the highest content of chlorogenic acid, caffeine and theophylline. CCS showed the significantly highest TPC (324.6 ± 1.2 mg GAE/g extract), TFC (296.8 ± 1.2 mg QE/g extract), anti-radical activity against DPPH free radicals (98.2 ± 0.8 µM Trolox/g extract) and lipid peroxidation inhibition (136.6 ± 6.2 µM Trolox/g extract). CCS also showed the strongest anti-aging effects based on collagenase, elastase, hyaluronidase and tyrosinase inhibitory enzymes. In addition, CCS can protect human keratinocyte cells from PAH toxicity by increasing the cellular anti-oxidant capacity. This study suggests that CCS has the potential to be used as a cosmetic material that helps alleviate skin damage caused by air pollution.
Collapse
Affiliation(s)
- Weeraya Preedalikit
- Doctor of Philosophy Program in Pharmacy, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | - Kanokwan Kiattisin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
45
|
Buitimea-Cantúa GV, Chávez-Leal V, Soto-Caballero MC, Tellez-Medina DI, Welti-Chanes J, Escobedo-Avellaneda Z. Enzymatic Activity and Its Relationships with the Total Phenolic Content and Color Change in the High Hydrostatic Pressure-Assisted Curing of Vanilla Bean ( Vanilla planifolia). Molecules 2023; 28:7606. [PMID: 38005328 PMCID: PMC10674283 DOI: 10.3390/molecules28227606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Diverse enzymatic reactions taking place after the killing of green vanilla beans are involved in the flavor and color development of the cured beans. The effects of high hydrostatic pressure (HHP) at 50-400 MPa/5 min and blanching as vanilla killing methods were evaluated on the total phenolic content (TPC), polyphenoloxidase (PPO), and peroxidase (POD) activity and the color change at different curing cycles of sweating-drying (C0-C20) of vanilla beans. The rate constants describing the above parameters during the curing cycles were also obtained. The TPC increased from C1 to C6 compared with the untreated green beans after which it started to decrease. The 400 MPa samples showed the highest rate of phenolic increase. Immediately after the killing (C0), the highest increase in PPO activity was observed at 50 MPa (46%), whereas for POD it was at 400 MPa (25%). Both enzymes showed the maximum activity at C1, after which the activity started to decrease. As expected, the L* color parameter decreased during the entire curing for all treatments. An inverse relationship between the rate of TPC decrease and enzymatic activity loss was found, but the relationship with L* was unclear. HHP appears to be an alternative vanilla killing method; nevertheless, more studies are needed to establish its clear advantages over blanching.
Collapse
Affiliation(s)
- Génesis V. Buitimea-Cantúa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Viridiana Chávez-Leal
- Facultad de Ciencias Agrotecnologicas, Universidad Autónoma de Chihuahua, Av. Presa de la Amistad 2015, Cuauhtémoc, Chihuahua 31510, Mexico
| | - Mayra C. Soto-Caballero
- Facultad de Ciencias Agrotecnologicas, Universidad Autónoma de Chihuahua, Av. Presa de la Amistad 2015, Cuauhtémoc, Chihuahua 31510, Mexico
| | - Dario I. Tellez-Medina
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Azcapotzalco, Ciudad de México 11340, Mexico
| | - Jorge Welti-Chanes
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Zamantha Escobedo-Avellaneda
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| |
Collapse
|
46
|
Badalamenti N, Salbitani G, Cianciullo P, Bossa R, De Ruberto F, Greco V, Basile A, Maresca V, Bruno M, Carfagna S. Chemical Composition of Salvia fruticosa Mill. Essential Oil and Its Protective Effects on Both Photosynthetic Damage and Oxidative Stress in Conocephalum conicum L. Induced by Environmental Heavy Metal Concentrations. Antioxidants (Basel) 2023; 12:1990. [PMID: 38001843 PMCID: PMC10669765 DOI: 10.3390/antiox12111990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The genus Salvia L., belonging to the Lamiaceae family, contains more than 900 species distributed in various parts of the world. It is a genus containing aromatic plants used both in the culinary field and above all in the cosmetic area to produce several perfumes. Salvia fruticosa Mill., notoriously known as Greek Salvia, is a plant used since ancient times in traditional medicine, but today cultivated and used in various parts of Europe and Africa. Polar and apolar extracts of this plant confirmed the presence of several metabolites such as abietane and labdane diterpenoids, triterpenoids, steroids, and some flavonoids, causing interesting properties such as sedative, carminative, and antiseptic, while its essential oils (EOs) are mainly characterized by compounds such as 1,8-cineole and camphor. The aim of this work concerns the chemical analysis by GC and GC-MS, and the investigation of the biological properties, of the EO of S. fruticosa plants collected in eastern Sicily. The gas-chromatographic analysis confirmed the presence of 1,8-cineole (17.38%) and camphor (12.81%), but at the same time, also moderate amounts of α-terpineol (6.74%), β-myrcene (9.07%), camphene (8.66%), β-pinene (6.55%), and α-pinene (6.45%). To study the protective effect of EOs from S. fruticosa (both the total mixture and the individual compounds) on possible damage induced by heavy metals, an in vitro system was used in which a model organism, the liverwort Conocephalum conicum, was subjected to the effect of a mix of heavy metals (HM) prepared using values of concentrations actually measured in one of the most polluted watercourses of the Campania region, the Regi Lagni. Finally, the antioxidant response and the photosynthetic damage were examined. The exogenous application of the EO yields a resumption of the oxidative stress induced by HM, as demonstrated by the reduction in the Reactive Oxygen Species (ROS) content and by the increased activity of antioxidant enzyme catalase (CAT) and glutathione-S-transferase (GST). Furthermore, plants treated with HMs and EO showed a higher Fv/Fm (maximal quantum efficiency of PSII in the dark) with respect to HMs-only treated ones. These results clearly indicate the protective capacity of the EO of S. fruticosa against oxidative stress, which is achieved at least in part by modulating the redox state through the antioxidant pathway and on photosynthetic damage.
Collapse
Affiliation(s)
- Natale Badalamenti
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy; (N.B.); (M.B.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Giovanna Salbitani
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.S.); (P.C.); (R.B.); (V.G.); (S.C.)
| | - Piergiorgio Cianciullo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.S.); (P.C.); (R.B.); (V.G.); (S.C.)
| | - Rosanna Bossa
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.S.); (P.C.); (R.B.); (V.G.); (S.C.)
| | - Francesca De Ruberto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Napoli, Italy;
| | - Valeria Greco
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.S.); (P.C.); (R.B.); (V.G.); (S.C.)
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.S.); (P.C.); (R.B.); (V.G.); (S.C.)
| | - Viviana Maresca
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.S.); (P.C.); (R.B.); (V.G.); (S.C.)
| | - Maurizio Bruno
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy; (N.B.); (M.B.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
- Centro Interdipartimentale di Ricerca “Riutilizzo Bio-Based Degli Scarti da Matrici Agroalimentari” (RIVIVE), Università degli Studi di Palermo, 90128 Palermo, Italy
| | - Simona Carfagna
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.S.); (P.C.); (R.B.); (V.G.); (S.C.)
| |
Collapse
|
47
|
Ezugwu BU, Bala JD, Abioye OP, Oyewole OA. Phycoremediation of crude oil polluted water from selected water sources in Ogoniland, Rivers State, Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111916-111935. [PMID: 37544945 DOI: 10.1007/s11356-023-29004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/22/2023] [Indexed: 08/08/2023]
Abstract
Crude oil exploitation in the Niger Delta, particularly in Ogoniland, brought environmental devastation occasioned by petroleum pollution, as farmlands and water sources were destroyed. This study was designed to remediate crude oil contaminated water obtained from water sources in Ogoniland using two green algal species. Thirty water samples were collected from eight different water sources. The samples were analysed for total petroleum hydrocarbon (TPH) using gas chromatography/flame ionization detector (GC/FID). Algal samples were collected from Ogba River and at wetland in Military Hospital Benin, Edo State, Nigeria. The algal samples were identified, screened, optimized and grown in Bold basal medium. Results obtained from the determination of TPH showed that the infiltrated pond (Exc) sample site had the highest concentration among all the sites sampled with 198.8329 μg/L, R2 with 134.1296 μg/L, R1 with 108.9394 μg/L, R3 with 105.8011 μg/L, R4 with 98.442 8 μg/L, the hand-dug wells (Wll) had 9.6586 μg/L while the borehole (Bhl) had the lowest with 1.8310 μg/L. It was deduced that pollution of water sources was principally because of pollutants washed from the soil environment into the open surface water sources via run-off rather than through the seepage from the underground aquifers, incriminating illegal oil mining and artisanal refining. Results obtained from the analysis of algal growth medium indicated that the two algal species were able to absorb the hydrocarbon contaminants, albeit at different rates, corresponding with the algal growth rate. Analysis of algal biomass after 4 weeks of remediation showed that from the initial 10.27 μg/20 mL added to the growth medium, the highest TPH mean value of 0.490 μg/20 mL was extracted from Ulothrix zonata (F.Weber & Mohr) Kützing biomass grown in Exc compared to 0.344 μg/20 mL of TPH extracted from Chlorella sorokiniana Shihira & R.W.Krauss grown in the same sample site. Also, Ulothrix zonata had higher TPH yield 0.023 μg/20 mL in Bhl compared to Chlorella sorokiniana 0.021 μg/20 mL of TPH from the same water source. This result indicated Ulothrix zonata had superior TPH phycoremediation ability to Chlorella sorokiniana. While the present study calls for deployment of the algal species for field trial, it is strongly recommended that crude oil pollution should be discouraged.
Collapse
Affiliation(s)
- Basil Utazi Ezugwu
- Department of Microbiology, School of Life Sciences, Federal University of Technology, Niger State, Minna, Nigeria
| | - Jeremiah David Bala
- Department of Microbiology, School of Life Sciences, Federal University of Technology, Niger State, Minna, Nigeria
- African Center of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Niger State, Minna, Nigeria
| | - Olabisi Peter Abioye
- Department of Microbiology, School of Life Sciences, Federal University of Technology, Niger State, Minna, Nigeria
| | - Oluwafemi Adebayo Oyewole
- Department of Microbiology, School of Life Sciences, Federal University of Technology, Niger State, Minna, Nigeria.
- African Center of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Niger State, Minna, Nigeria.
| |
Collapse
|
48
|
Luo X, Tian B, Zhai Y, Guo H, Liu S, Li J, Li S, James TD, Chen Z. Room-temperature phosphorescent materials derived from natural resources. Nat Rev Chem 2023; 7:800-812. [PMID: 37749285 DOI: 10.1038/s41570-023-00536-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/27/2023]
Abstract
Room-temperature phosphorescent (RTP) materials have enormous potential in many different areas. Additionally, the conversion of natural resources to RTP materials has attracted considerable attention. Owing to their inherent luminescent properties, natural materials can be efficiently converted into sustainable RTP materials. However, to date, only a few reviews have focused on this area of endeavour. Motivated by this lack of coverage, in this Review, we address this shortcoming and introduce the types of natural resource available for the preparation of RTP materials. We mainly focus on the inherent advantages of natural resources for RTP materials, strategies for activating and enhancing the RTP properties of the natural resources as well as the potential applications of these RTP materials. In addition, we discuss future challenges and opportunities in this area of research.
Collapse
Affiliation(s)
- Xiongfei Luo
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Bing Tian
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yingxiang Zhai
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Hongda Guo
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P. R. China.
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China.
| |
Collapse
|
49
|
Kang MJ, Kim KR, Kim K, Morrill AG, Jung C, Sun S, Lee DH, Suh JH, Sung J. Metabolomic analysis reveals linkage between chemical composition and sensory quality of different floral honey samples. Food Res Int 2023; 173:113454. [PMID: 37803778 DOI: 10.1016/j.foodres.2023.113454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
Honey has a distinct flavor characterized by various volatiles and non-volatiles from diverse origins. In this study, metabolomics combined with sensory analysis was performed to identify relationships between chemical profile and sensory quality of honey. Targeted metabolomic analysis was conducted to determine volatile and non-volatile profiles of seven different honey. Volatile profile was analyzed using headspace solid-phase microextraction (HS-SPME) coupled to GC - MS. LC - MS/MS, HPLC - UV, and HPLC-RI were employed to analyze flavonoids, organic acids, and sugars, respectively. Authentic standards were utilized for confirmation of metabolites. Sensory evaluation included quantitative descriptive analysis and consumer acceptance test. The results showed that sucrose (sweetness) was responsible for a positive hedonic perception, while organic acids and flavonoids (sourness, astringency, bitterness) negatively affected consumer acceptance. Volatiles with floral notes (e.g. decyl formate) were preferred, but others with off-flavors (e.g. 2-methylbenzofuran) were not preferred by consumers. Flavor familiarity was strongly correlated with the consumer acceptance of honey, indicating that the balance between volatiles and non-volatiles is significant for honey flavor quality. This work demonstrates the role of key flavor compounds in honey quality, and may be applicable to the quality control of honey.
Collapse
Affiliation(s)
- Min Jeong Kang
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, 100 Cedar Street, Athens, GA 30602, USA
| | - Keup-Rae Kim
- Department of Food Science and Biotechnology, Andong National University, Andong, Republic of Korea; Agriculture Science and Technology Research Institute, Andong National University, Andong, Republic of Korea
| | - Keono Kim
- Department of Food Science and Biotechnology, Andong National University, Andong, Republic of Korea; Agriculture Science and Technology Research Institute, Andong National University, Andong, Republic of Korea
| | - Aria G Morrill
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, 100 Cedar Street, Athens, GA 30602, USA
| | - Chuleui Jung
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea; Agriculture Science and Technology Research Institute, Andong National University, Andong, Republic of Korea
| | - Sukjun Sun
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea; Agriculture Science and Technology Research Institute, Andong National University, Andong, Republic of Korea
| | - Dong-Hee Lee
- Industry-Academy Cooperation Foundation, Andong National University, Andong, Republic of Korea
| | - Joon Hyuk Suh
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, 100 Cedar Street, Athens, GA 30602, USA.
| | - Jeehye Sung
- Department of Food Science and Biotechnology, Andong National University, Andong, Republic of Korea; Agriculture Science and Technology Research Institute, Andong National University, Andong, Republic of Korea.
| |
Collapse
|
50
|
Yang J, Kim JS, Kwon YS, Seong ES, Kim MJ. Antioxidant and Antiproliferative Activities of Eclipta prostrata (L.) L. Extract and Isolated Compounds. Molecules 2023; 28:7354. [PMID: 37959773 PMCID: PMC10650814 DOI: 10.3390/molecules28217354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The primary objective of this study was to elucidate the chemical composition, antioxidant properties, and antiproliferative activities of Eclipta prostrata extracts. Two flavonoids, 3'-O-methylorobol and apigenin 7-sulfate, were isolated from the ethyl acetate (EtOAc) extract of E. prostrata. The total phenolic and flavonoid contents of the E. prostrata extracts, as well as their overall antioxidant activities as measured using the 2,2-diphenyl-1-picrylhydrazyl and reducing power assays, were investigated. The E. prostrata EtOAc extract exhibited significantly greater antioxidant activities in both assays and higher phenol and flavonoid contents than the other extracts. The potential antiproliferative properties of the E. prostrata extracts and isolated compounds were investigated in vitro against the AGS, A549, and HT-29 cancer cell lines and the normal human HEK-293 cell line using the MTT assay. Annexin V-FITC/PI staining analysis and quantitative real-time PCR were used to assess AGS cell apoptosis. At a concentration of 100 µg/mL, the EtOAc extract of E. prostrata reduced AGS cell viability and proliferation by inducing apoptosis through the alteration of gene expression in the apoptotic cascade. These results highlight E. prostrata as a promising source of anticancer compounds.
Collapse
Affiliation(s)
- Jinfeng Yang
- Research Institute of Food Science & Engineering Technology, Hezhou University, Hezhou 542899, China;
| | - Joo Seok Kim
- Bioherb Research Institute, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Yong Soo Kwon
- Department of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Eun Soo Seong
- Bioherb Research Institute, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Myong Jo Kim
- Bioherb Research Institute, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|