1
|
Gianazza E, Papaianni GG, Brocca L, Banfi C, Mallia A. Omics Approaches to Study Perilipins and Their Significant Biological Role in Cardiometabolic Disorders. Int J Mol Sci 2025; 26:557. [PMID: 39859272 PMCID: PMC11765208 DOI: 10.3390/ijms26020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Lipid droplets (LDs), highly dynamic cellular organelles specialized in lipid storage and maintenance of lipid homeostasis, contain several proteins on their surface, among which the perilipin (Plin) family stands out as the most abundant group of LD-binding proteins. They play a pivotal role in influencing the behavior and functionality of LDs, regulating lipase activity, and preserving a balance between lipid synthesis and degradation, which is crucial in the development of obesity and abnormal accumulation of fat in non-adipose tissues, causing negative adverse biological effects, such as insulin resistance, mitochondrial dysfunction, and inflammation. The expression levels of Plins are often associated with various diseases, such as hepatic steatosis and atherosclerotic plaque formation. Thus, it becomes of interest to investigate the Plin roles by using appropriate "omics" approaches that may provide additional insight into the mechanisms through which these proteins contribute to cellular and tissue homeostasis. This review is intended to give an overview of the most significant omics studies focused on the characterization of Plin proteins and the identification of their potential targets involved in the development and progression of cardiovascular and cardiometabolic complications, as well as their interactors that could be useful for more efficient therapeutic and preventive approaches for patients.
Collapse
Affiliation(s)
| | | | | | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (E.G.); (G.G.P.); (L.B.); (A.M.)
| | | |
Collapse
|
2
|
Dos Santos MA, Bortolin RH, Cerda A, de Oliveira R, Stefani TIM, Fajardo CM, Dorea EL, Bernik MMS, Damasceno NRT, Hirata MH, Hirata RDC. Variants in GHRL, RETN, and PLIN1 are associated with obesity, diabetes, and metabolic syndrome, and influence food consumption in adults with obesity. Nutr Res 2024; 134:13-23. [PMID: 39826191 DOI: 10.1016/j.nutres.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
Genetic and environmental factors have important role in the pathogenesis of obesity and metabolic diseases. We hypothesized that genes involved in energy intake, cellular lipid metabolism and pro-inflammatory adipokines influence obesity-related metabolic disturbances and food intake. We explored the association of GHRL (rs26311G>C and rs4684677A>T), PLIN1 (rs2289487G>A and rs894160G>A), RETN (rs3745367C>T and rs7408174G>A), and NAMPT (rs1319501T>C) variants with obesity, metabolic and inflammatory markers, and food intake composition. Clinical, anthropometric, and laboratory data were obtained from 237 adults. Genomic DNA was extracted and genetic variants were analyzed by real-time polymerase chain reaction. Food intake was assessed in 81 subjects with obesity, who underwent a 9-week nutritional orientation program. Multivariate logistic regression analysis adjusted by covariates showed association of GHRL rs26311-G and rs4684677-A alleles with risk of type 2 diabetes (T2D) and/or metabolic syndrome (P < .05), and RETN rs7408174-C allele with risk of T2D and obesity (P < .05). Covariate-adjusted multivariate linear regression analysis showed association of PLIN1 rs894160-G allele with increased waist-to-hip ratio (P = .003). The nutritional orientation program reduced carbohydrate and total fat intake, in subjects with obesity (P < .05). Analysis of basal data revealed associations of PLIN1 rs894160-G with increased body mass index, PLIN1 rs2289487-A with reduced intake of total fat, monosaturated fatty acids and cholesterol, and RETN rs3745367-A with increased intake of protein and saturated fatty acids (P < .05). GHRL rs26311-G was associated with increased postprogram protein intake (P = .044). In conclusion, variants in GHRL, RETN, and PLIN1 are associated with obesity, T2D, metabolic syndrome, and increased waist-to-hip ratio, and influence food consumption in adults with obesity.
Collapse
Affiliation(s)
- Marina Aparecida Dos Santos
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, United States
| | - Alvaro Cerda
- Department of Basic Sciences, Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco 4810296, Chile
| | - Raquel de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Tamires Invencioni Moraes Stefani
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Cristina Moreno Fajardo
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Egídio Lima Dorea
- Medical Clinic Division, University Hospital, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | | | | | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| |
Collapse
|
3
|
Górczyńska-Kosiorz S, Kosiorz M, Dzięgielewska-Gęsiak S. Exploring the Interplay of Genetics and Nutrition in the Rising Epidemic of Obesity and Metabolic Diseases. Nutrients 2024; 16:3562. [PMID: 39458556 PMCID: PMC11510173 DOI: 10.3390/nu16203562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Obesity has become a significant global health issue. This multifaceted condition is influenced by genetic, environmental, and lifestyle factors, significantly influenced by nutrition. Aim: The study's objective is to elucidate the relationship between obesity-related genes, nutrient intake, and the development of obesity and the importance of other metabolic diseases. Methods: A comprehensive literature review spanning the past two decades was conducted to analyze the contributions of genetic variants-including FTO, MC4R, and LEPR-and their associations with dietary habits, highlighting how specific nutrients affect gene expression and obesity risk and how the coexistence of metabolic diseases such as type 2 diabetes and osteoporosis may modulate these factors. Moreover, the role of epigenetic factors, such as dietary patterns that encourage the development of obesity, was explored. Discussion and Conclusions: By understanding the intricate relationships among genetics, nutrients, and obesity development, this study highlights the importance of personalized dietary strategies in managing obesity. Overall, an integrated approach that considers genetic predispositions alongside environmental influences is essential for developing effective prevention and treatment methodologies, ultimately contributing to better health outcomes in diverse populations.
Collapse
Affiliation(s)
- Sylwia Górczyńska-Kosiorz
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Matylda Kosiorz
- Students’ Scientific Association by the Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland;
| | - Sylwia Dzięgielewska-Gęsiak
- Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland;
| |
Collapse
|
4
|
Bakhashab S, Batarfi AA, Alhartani MM, Turki R, Mady W. Genetic Association Between Polycystic Ovary Syndrome and the APOA5 rs662799 and PLIN1 rs894160 Metabolic Variants in the Western Saudi Population: A Case-Control Study. Biomark Insights 2024; 19:11772719241258585. [PMID: 38887365 PMCID: PMC11181890 DOI: 10.1177/11772719241258585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a common endocrinological condition affecting women of reproductive age, associated with insulin resistance and obesity. PCOS pathogenesis is complex and multifactorial, involving genetic and environmental factors. Objectives This study aimed to determine and compare genotype and allele frequencies of single nucleotide polymorphisms (SNPs) in the apolipoprotein A5 (APOA5; rs662799) and perilipin 1 (PLIN1; rs894160, rs1052700 and rs6496589) genes in Western Saudi women to investigate their association with PCOS and its clinical characteristics. Design and methods This was a case-control study conducted on women with (n = 104) and without (n = 87) PCOS. The SNPs were genotyped using TaqMan genotyping assays. Results Significant and direct associations were detected between PCOS susceptibility and APOA5 SNP rs662799 and PLIN1 SNP rs894160 (P < .001). For APOA5 SNP rs662799, women with the A allele were more likely to have PCOS (relative risk [RR] = 1.348, odds ratio [OR] = 2.313, P < .001) and hypertriglyceridaemia (OR = 17.0, P = .5) than women with the G allele. For PLIN1 SNP rs894160, women with the T allele were more likely to have PCOS than women with the C allele (RR = 8.043, OR = 7.427, P < .001). For PLIN1 SNP rs1052700, women with the TT genotype were more likely to have hyperandrogenism (OR = 29.75, P = .02) and an irregular period (OR = 0.07, P = .040) than women with the AT genotype. Conclusion We identified novel alleles and genotypes contributing to the genetic risk of PCOS in the Western Saudi population.
Collapse
Affiliation(s)
- Sherin Bakhashab
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma A Batarfi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahinar M Alhartani
- College of Medicine and Surgery, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Rola Turki
- Department of Obstetrics and Gynaecology, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Wessam Mady
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Griseti E, Bello AA, Bieth E, Sabbagh B, Iacovoni JS, Bigay J, Laurell H, Čopič A. Molecular mechanisms of perilipin protein function in lipid droplet metabolism. FEBS Lett 2024; 598:1170-1198. [PMID: 38140813 DOI: 10.1002/1873-3468.14792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Perilipins are abundant lipid droplet (LD) proteins present in all metazoans and also in Amoebozoa and fungi. Humans express five perilipins, which share a similar domain organization: an amino-terminal PAT domain and an 11-mer repeat region, which can fold into amphipathic helices that interact with LDs, followed by a structured carboxy-terminal domain. Variations of this organization that arose during vertebrate evolution allow for functional specialization between perilipins in relation to the metabolic needs of different tissues. We discuss how different features of perilipins influence their interaction with LDs and their cellular targeting. PLIN1 and PLIN5 play a direct role in lipolysis by regulating the recruitment of lipases to LDs and LD interaction with mitochondria. Other perilipins, particularly PLIN2, appear to protect LDs from lipolysis, but the molecular mechanism is not clear. PLIN4 stands out with its long repetitive region, whereas PLIN3 is most widely expressed and is used as a nascent LD marker. Finally, we discuss the genetic variability in perilipins in connection with metabolic disease, prominent for PLIN1 and PLIN4, underlying the importance of understanding the molecular function of perilipins.
Collapse
Affiliation(s)
- Elena Griseti
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Abdoul Akim Bello
- Institut de Pharmacologie Moléculaire et Cellulaire - IPMC, Université Côte d'Azur, CNRS, Valbonne, France
| | - Eric Bieth
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
- Departement de Génétique Médicale, Centre Hospitalier Universitaire de Toulouse, France
| | - Bayane Sabbagh
- Centre de Recherche en Biologie Cellulaire de Montpellier - CRBM, Université de Montpellier, CNRS, France
| | - Jason S Iacovoni
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Joëlle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire - IPMC, Université Côte d'Azur, CNRS, Valbonne, France
| | - Henrik Laurell
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier - CRBM, Université de Montpellier, CNRS, France
| |
Collapse
|
6
|
Lariviere D, Craig SJC, Paul IM, Hohman EE, Savage JS, Wright RO, Chiaromonte F, Makova KD, Reimherr ML. Methylation profiles at birth linked to early childhood obesity. J Dev Orig Health Dis 2024; 15:e7. [PMID: 38660759 PMCID: PMC11268442 DOI: 10.1017/s2040174424000060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Childhood obesity represents a significant global health concern and identifying its risk factors is crucial for developing intervention programs. Many "omics" factors associated with the risk of developing obesity have been identified, including genomic, microbiomic, and epigenomic factors. Here, using a sample of 48 infants, we investigated how the methylation profiles in cord blood and placenta at birth were associated with weight outcomes (specifically, conditional weight gain, body mass index, and weight-for-length ratio) at age six months. We characterized genome-wide DNA methylation profiles using the Illumina Infinium MethylationEpic chip, and incorporated information on child and maternal health, and various environmental factors into the analysis. We used regression analysis to identify genes with methylation profiles most predictive of infant weight outcomes, finding a total of 23 relevant genes in cord blood and 10 in placenta. Notably, in cord blood, the methylation profiles of three genes (PLIN4, UBE2F, and PPP1R16B) were associated with all three weight outcomes, which are also associated with weight outcomes in an independent cohort suggesting a strong relationship with weight trajectories in the first six months after birth. Additionally, we developed a Methylation Risk Score (MRS) that could be used to identify children most at risk for developing childhood obesity. While many of the genes identified by our analysis have been associated with weight-related traits (e.g., glucose metabolism, BMI, or hip-to-waist ratio) in previous genome-wide association and variant studies, our analysis implicated several others, whose involvement in the obesity phenotype should be evaluated in future functional investigations.
Collapse
Affiliation(s)
- Delphine Lariviere
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Sarah J C Craig
- Department of Biology, Penn State University, University Park, PA, USA
- Center for Medical Genomics, Penn State University, University Park, PA, USA
| | - Ian M Paul
- Center for Medical Genomics, Penn State University, University Park, PA, USA
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Emily E Hohman
- Center for Childhood Obesity Research, Penn State University, University Park, PA, USA
| | - Jennifer S Savage
- Center for Childhood Obesity Research, Penn State University, University Park, PA, USA
- Nutrition Department, Penn State University, University Park, PA, USA
| | | | - Francesca Chiaromonte
- Center for Medical Genomics, Penn State University, University Park, PA, USA
- Department of Statistics, Penn State University, University Park, PA, USA
- L'EMbeDS, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà, Pisa, Italy
| | - Kateryna D Makova
- Department of Biology, Penn State University, University Park, PA, USA
- Center for Medical Genomics, Penn State University, University Park, PA, USA
| | - Matthew L Reimherr
- Center for Medical Genomics, Penn State University, University Park, PA, USA
- Department of Statistics, Penn State University, University Park, PA, USA
| |
Collapse
|
7
|
Lariviere D, Craig SJC, Paul IM, Hohman EE, Savage JS, Wright RO, Chiaromonte F, Makova KD, Reimherr ML. Methylation profiles at birth linked to early childhood obesity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.12.24301172. [PMID: 38260407 PMCID: PMC10802761 DOI: 10.1101/2024.01.12.24301172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Childhood obesity represents a significant global health concern and identifying risk factors is crucial for developing intervention programs. Many 'omics' factors associated with the risk of developing obesity have been identified, including genomic, microbiomic, and epigenomic factors. Here, using a sample of 48 infants, we investigated how the methylation profiles in cord blood and placenta at birth were associated with weight outcomes (specifically, conditional weight gain, body mass index, and weight-for-length ratio) at age six months. We characterized genome-wide DNA methylation profiles using the Illumina Infinium MethylationEpic chip, and incorporated information on child and maternal health, and various environmental factors into the analysis. We used regression analysis to identify genes with methylation profiles most predictive of infant weight outcomes, finding a total of 23 relevant genes in cord blood and 10 in placenta. Notably, in cord blood, the methylation profiles of three genes (PLIN4, UBE2F, and PPP1R16B) were associated with all three weight outcomes, which are also associated with weight outcomes in an independent cohort suggesting a strong relationship with weight trajectories in the first six months after birth. Additionally, we developed a Methylation Risk Score (MRS) that could be used to identify children most at risk for developing childhood obesity. While many of the genes identified by our analysis have been associated with weight-related traits (e.g., glucose metabolism, BMI, or hip-to-waist ratio) in previous genome-wide association and variant studies, our analysis implicated several others, whose involvement in the obesity phenotype should be evaluated in future functional investigations.
Collapse
Affiliation(s)
- Delphine Lariviere
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA
| | - Sarah J C Craig
- Department of Biology, Penn State University, University Park, PA
- Center for Medical Genomics, Penn State University, University Park, PA
| | - Ian M Paul
- Center for Medical Genomics, Penn State University, University Park, PA
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA
| | - Emily E Hohman
- Center for Childhood Obesity Research, Penn State University, University Park, PA
| | - Jennifer S Savage
- Center for Childhood Obesity Research, Penn State University, University Park, PA
- Nutrition Department, Penn State University, University Park, PA
| | | | - Francesca Chiaromonte
- Center for Medical Genomics, Penn State University, University Park, PA
- Department of Statistics, Penn State University, University Park, PA
- EMbeDS, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà, Pisa, Italy
| | - Kateryna D Makova
- Department of Biology, Penn State University, University Park, PA
- Center for Medical Genomics, Penn State University, University Park, PA
| | - Matthew L Reimherr
- Center for Medical Genomics, Penn State University, University Park, PA
- Department of Statistics, Penn State University, University Park, PA
| |
Collapse
|
8
|
Kim MH, Lee JH, Lee JS, Kim DC, Yang JW, An HJ, Na JM, Jung WJ, Song DH. Perilipin1 Expression as a Prognostic Factor in Patients with Squamous Cell Carcinoma of the Lung. Diagnostics (Basel) 2023; 13:3475. [PMID: 37998612 PMCID: PMC10670494 DOI: 10.3390/diagnostics13223475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Perilipin (PLIN) is a major structural protein located on the surface of lipid droplets. PLIN plays an important role in human metabolism and is associated with metabolic diseases, such as obesity, diabetes, hypertension, and endocrine disorders. The dysregulation of lipid metabolism is one of the most prominent metabolic changes observed in cancers. Therefore, the PLIN protein family has recently attracted attention owing to its role in lipid metabolism and cancer. To date, no studies have addressed the association between the prognosis of lung cancer and PLIN1 expression. For the first time, we found that high PLIN1 expression was significantly correlated with worse disease-free survival (DFS) in lung squamous cell carcinoma (SCC). We examined PLIN1 expression by the immunohistochemical analysis of surgical lung SCC specimens obtained from 94 patients. We analyzed the correlation between PLIN1 expression, clinicopathological data, and patient survival, using a chi-squared test, Kaplan-Meier analysis with log-rank tests, and the multivariate Cox proportional hazards regression test. High PLIN1 expression was significantly correlated with lower DFS in the Kaplan-Meier analysis and the multivariate Cox proportional hazards regression model. High PLIN1 expression was significantly correlated with worse prognosis in lung SCC.
Collapse
Affiliation(s)
- Min Hye Kim
- Department of Pathology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (M.H.K.)
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
| | - Jeong Hee Lee
- Department of Pathology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (M.H.K.)
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
- Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jong Sil Lee
- Department of Pathology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (M.H.K.)
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
- Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Dong Chul Kim
- Department of Pathology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (M.H.K.)
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
- Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jung Wook Yang
- Department of Pathology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (M.H.K.)
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
- Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hyo Jung An
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
- Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon 51472, Republic of Korea
| | - Ji Min Na
- Department of Pathology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (M.H.K.)
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Wook Jae Jung
- Department of Pathology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (M.H.K.)
| | - Dae Hyun Song
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
- Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon 51472, Republic of Korea
| |
Collapse
|
9
|
Bombarda-Rocha V, Silva D, Badr-Eddine A, Nogueira P, Gonçalves J, Fresco P. Challenges in Pharmacological Intervention in Perilipins (PLINs) to Modulate Lipid Droplet Dynamics in Obesity and Cancer. Cancers (Basel) 2023; 15:4013. [PMID: 37568828 PMCID: PMC10417315 DOI: 10.3390/cancers15154013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Perilipins (PLINs) are the most abundant proteins in lipid droplets (LD). These LD-associated proteins are responsible for upgrading LD from inert lipid storage structures to fully functional organelles, fundamentally integrated in the lipid metabolism. There are five distinct perilipins (PLIN1-5), each with specific expression patterns and metabolic activation, but all capable of regulating the activity of lipases on LD. This plurality creates a complex orchestrated mechanism that is directly related to the healthy balance between lipogenesis and lipolysis. Given the essential role of PLINs in the modulation of the lipid metabolism, these proteins can become interesting targets for the treatment of lipid-associated diseases. Since reprogrammed lipid metabolism is a recognized cancer hallmark, and obesity is a known risk factor for cancer and other comorbidities, the modulation of PLINs could either improve existing treatments or create new opportunities for the treatment of these diseases. Even though PLINs have not been, so far, directly considered for pharmacological interventions, there are many established drugs that can modulate PLINs activity. Therefore, the aim of this study is to assess the involvement of PLINs in diseases related to lipid metabolism dysregulation and whether PLINs can be viewed as potential therapeutic targets for cancer and obesity.
Collapse
Affiliation(s)
- Victória Bombarda-Rocha
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Allal Badr-Eddine
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
| | - Patrícia Nogueira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
10
|
Vourdoumpa A, Paltoglou G, Charmandari E. The Genetic Basis of Childhood Obesity: A Systematic Review. Nutrients 2023; 15:1416. [PMID: 36986146 PMCID: PMC10058966 DOI: 10.3390/nu15061416] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Overweight and obesity in childhood and adolescence represents one of the most challenging public health problems of our century owing to its epidemic proportions and the associated significant morbidity, mortality, and increase in public health costs. The pathogenesis of polygenic obesity is multifactorial and is due to the interaction among genetic, epigenetic, and environmental factors. More than 1100 independent genetic loci associated with obesity traits have been currently identified, and there is great interest in the decoding of their biological functions and the gene-environment interaction. The present study aimed to systematically review the scientific evidence and to explore the relation of single-nucleotide polymorphisms (SNPs) and copy number variants (CNVs) with changes in body mass index (BMI) and other measures of body composition in children and adolescents with obesity, as well as their response to lifestyle interventions. Twenty-seven studies were included in the qualitative synthesis, which consisted of 7928 overweight/obese children and adolescents at different stages of pubertal development who underwent multidisciplinary management. The effect of polymorphisms in 92 different genes was assessed and revealed SNPs in 24 genetic loci significantly associated with BMI and/or body composition change, which contribute to the complex metabolic imbalance of obesity, including the regulation of appetite and energy balance, the homeostasis of glucose, lipid, and adipose tissue, as well as their interactions. The decoding of the genetic and molecular/cellular pathophysiology of obesity and the gene-environment interactions, alongside with the individual genotype, will enable us to design targeted and personalized preventive and management interventions for obesity early in life.
Collapse
Affiliation(s)
- Aikaterini Vourdoumpa
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
| | - George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
11
|
Extracellular Vesicles as Carriers of Adipokines and Their Role in Obesity. Biomedicines 2023; 11:biomedicines11020422. [PMID: 36830957 PMCID: PMC9953604 DOI: 10.3390/biomedicines11020422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Extracellular vesicles (EVs) have lately arisen as new metabolic players in energy homeostasis participating in intercellular communication at the local and distant levels. These nanosized lipid bilayer spheres, carrying bioactive molecular cargo, have somehow changed the paradigm of biomedical research not only as a non-classic cell secretion mechanism, but as a rich source of biomarkers and as useful drug-delivery vehicles. Although the research about the role of EVs on metabolism and its deregulation on obesity and associated pathologies lagged slightly behind other diseases, the knowledge about their function under normal and pathological homeostasis is rapidly increasing. In this review, we are focusing on the current research regarding adipose tissue shed extracellular vesicles including their characterization, size profile, and molecular cargo content comprising miRNAs and membrane and intra-vesicular proteins. Finally, we will focus on the functional aspects attributed to vesicles secreted not only by adipocytes, but also by other cells comprising adipose tissue, describing the evidence to date on the deleterious effects of extracellular vesicles released by obese adipose tissue both locally and at the distant level by interacting with other peripheral organs and even at the central level.
Collapse
|
12
|
Ofori EK, Letsu BS, Amponsah SK, Ahenkorah J, Crabbe S, Kwao-Zigah G, Oppong SY, Diaba-Nuhoho P, Amanquah SD. Impact of blood perilipin A levels on obesity and metabolic health. BMC Res Notes 2022; 15:367. [PMID: 36503541 PMCID: PMC9743615 DOI: 10.1186/s13104-022-06261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Perilipin A is a common protein that coats lipid surfaces preventing them from being exposed to oxidative damage. Researchers have found little consistency in the relationship between perilipin A levels in the blood and body fat. This study was a cross-sectional observational that looked at circulating perilipin A levels and how they relate to metabolic health. RESULTS The participants in this study were 86 individuals with a mean age of 45.5 ± 1.2 years. Multiple clinical and metabolic indicators (age, weight, BMI, total body fat mass, triglyceride, and HOMA-IR) were shown to be inversely associated with perilipin A levels (rho = - 0.32, - 0.37, - 0.40, - 0.45, - 0.33 and - 0.29; p < 0.05 respectively). Obese persons were almost six times more likely than non-obese individuals to have lower perilipin A levels (odds ratio = 6.22, CI = 2.35-11.50, p < 0.001). Our findings underscore the important role of perilipin A proteins in metabolic health.
Collapse
Affiliation(s)
- Emmanuel K Ofori
- Department of Chemical Pathology, University of Ghana Medical School, Accra, Ghana.
| | - Bright Selorm Letsu
- Department of Chemical Pathology, University of Ghana Medical School, Accra, Ghana
| | - Seth K Amponsah
- Department of Medical Pharmacology, University of Ghana Medical School, Accra, Ghana
| | - John Ahenkorah
- Department of Anatomy, University of Ghana Medical School, Accra, Ghana
| | | | - Genevieve Kwao-Zigah
- Department of Chemical Pathology, University of Ghana Medical School, Accra, Ghana
| | | | | | - Seth D Amanquah
- Department of Chemical Pathology, University of Ghana Medical School, Accra, Ghana
| |
Collapse
|
13
|
Polymorphism PLIN1 11482 G>A interacts with dietary intake to modulate anthropometric measures and lipid profile in adults with normal-weight obesity syndrome. Br J Nutr 2022; 128:1004-1012. [PMID: 34725012 DOI: 10.1017/s0007114521004396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Evidence shows that genetic polymorphisms in perilipin 1 gene (PLIN1) are associated with excessive accumulation of body fat and disturbances in cardiometabolic markers. Therefore, the aim of this study was to verify whether the SNP PLIN1 11482 G>A (rs894160) interacts with nutrient intake, anthropometric, body composition and cardiometabolic markers in adults with normal-weight obesity (NWO) syndrome. A cross-sectional study was carried out with 116 individuals aged 20-59 years, with normal BMI and high percentage of body fat. Anthropometric and body composition measures, glycaemic control and serum lipid markers, SNP PLIN1 11482 G>A and nutrient intake were evaluated. Interactions between nutrient intake and the SNP were determined by regression models and adjusted for potential confounders. The SNP frequency was 56·0 % GG, 38·8 % GA and 5·2 % AA. Anthropometric measures and biochemical markers were not different according to genotype, except for total cholesterol (TC), LDL-cholesterol and non-HDL-cholesterol concentrations. However, important interactions between the SNP and dietary intake were observed. Carbohydrate intake interacted with the SNP PLIN1 11482 G>A to modulate waist circumference (WC) and the homeostatic model assessment of insulin resistance index. Interaction of lipid intake and the SNP modulated TC and LDL-cholesterol concentrations, and the interaction between protein intake and the SNP tended to modulate weight, WC and BMI. The SNP PLIN1 11482 G>A seems to modulate responses in anthropometric and lipid profile biomarkers of subjects with NWO depending on the dietary macronutrient composition, which may have long-term impact on cardiometabolic markers.
Collapse
|
14
|
Brown Adipose Tissue Sheds Extracellular Vesicles That Carry Potential Biomarkers of Metabolic and Thermogenesis Activity Which Are Affected by High Fat Diet Intervention. Int J Mol Sci 2022; 23:ijms231810826. [PMID: 36142750 PMCID: PMC9504916 DOI: 10.3390/ijms231810826] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Brown adipose tissue (BAT) is a key target for the development of new therapies against obesity due to its role in promoting energy expenditure; BAT secretory capacity is emerging as an important contributor to systemic effects, in which BAT extracellular vesicles (EVs) (i.e., batosomes) might be protagonists. EVs have emerged as a relevant cellular communication system and carriers of disease biomarkers. Therefore, characterization of the protein cargo of batosomes might reveal their potential as biomarkers of the metabolic activity of BAT. In this study, we are the first to isolate batosomes from lean and obese Sprague–Dawley rats, and to establish reference proteome maps. An LC-SWATH/MS analysis was also performed for comparisons with EVs secreted by white adipose tissue (subcutaneous and visceral WAT), and it showed that 60% of proteins were exclusive to BAT EVs. Precisely, batosomes of lean animals contain proteins associated with mitochondria, lipid metabolism, the electron transport chain, and the beta-oxidation pathway, and their protein cargo profile is dramatically affected by high fat diet (HFD) intervention. Thus, in obesity, batosomes are enriched with proteins involved in signal transduction, cell communication, the immune response, inflammation, thermogenesis, and potential obesity biomarkers including UCP1, Glut1, MIF, and ceruloplasmin. In conclusion, the protein cargo of BAT EVs is affected by the metabolic status and contains potential biomarkers of thermogenesis activity.
Collapse
|
15
|
Vales-Villamarín C, Lumpuy-Castillo J, Gavela-Pérez T, de Dios O, Pérez-Nadador I, Soriano-Guillén L, Garcés C. Sex-Dependent Mediation of Leptin in the Association of Perilipin Polymorphisms with BMI and Plasma Lipid Levels in Children. Nutrients 2022; 14:nu14153072. [PMID: 35893926 PMCID: PMC9332311 DOI: 10.3390/nu14153072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Variations in the perilipin (PLIN) gene have been suggested to be associated with obesity and its related alterations, but a different nutritional status seems to contribute to differences in these associations. In our study, we examined the association of several polymorphisms at the PLIN locus with obesity and lipid profile in children, and then analyzed the mediation of plasma leptin levels on these associations. The single-nucleotide polymorphisms (SNPs) rs894160, rs1052700, and rs2304795 in PLIN1, and rs35568725 in PLIN2, were analyzed by RT-PCR in 1264 children aged 6–8 years. Our results showed a contrasting association of PLIN1 rs1052700 with apolipoprotein (Apo) A-I levels in boys and girls, with genotype TT carriers showing significantly higher Apo A-I levels in boys and significantly lower Apo A-I levels in girls. Significant associations of the SNP PLIN2 rs35568725 with high-density lipoprotein cholesterol (HDL-cholesterol), Apo A-I, and non-esterified fatty acids (NEFA) were observed in boys but not in girls. The associations of the SNPs studied with body mass index (BMI), NEFA, and Apo A-I in boys and girls were different depending on leptin concentration. In conclusion, we describe the mediation of plasma leptin levels in the association of SNPs in PLIN1 and PLIN2 with BMI, Apo A-I, and NEFA. Different leptin levels by sex may contribute to explain the sex-dependent association of the PLIN SNPs with these variables.
Collapse
Affiliation(s)
- Claudia Vales-Villamarín
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; (C.V.-V.); (O.d.D.); (I.P.-N.)
| | - Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain;
| | - Teresa Gavela-Pérez
- Department of Pediatrics, IIS-FJD, 28040 Madrid, Spain; (T.G.-P.); (L.S.-G.)
| | - Olaya de Dios
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; (C.V.-V.); (O.d.D.); (I.P.-N.)
| | - Iris Pérez-Nadador
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; (C.V.-V.); (O.d.D.); (I.P.-N.)
| | | | - Carmen Garcés
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; (C.V.-V.); (O.d.D.); (I.P.-N.)
- Correspondence: ; Tel.: +34-91-5404892
| |
Collapse
|
16
|
Lipid droplets associated perilipins protein insights into finding a therapeutic target approach to cure non-alcoholic fatty liver disease (NAFLD). FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-021-00395-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Non-alcoholic fatty liver disease (NAFLD) is now the most common form of chronic liver disease in the world, and it’s linked to a slew of other risk factors including diabetes, obesity, dysbiosis and inflammatory bowel disease. More than 30 years ago, a patient was diagnosed with fatty liver with excessive fat accumulation in hepatocytes, a disorder known as hepatosteatosis. There will be no promising therapeutic medicines available from 1980 to 2021 which can reverse the fatty liver to normal liver state. In this review, we highlighted on lipid droplet associated protein which play a major role in accumulation of fat in liver cells and how these cellular pathway could be a promising therapeutic approach to treat the fatty liver disease.
Main body
Over the last few decades, Western countries follow a high-fat diet and change their lifestyle pattern due to certain metabolic disorders prevalence rate is very high all over the world. NAFLD is a major health issue and burden globally nowadays. Researchers are trying to find out the potential therapeutic target to combat the disease. The exact pathophysiology of the disease is still unclear. In the present decades. There is no Food and Drug Administration approved drugs are available to reverse the chronic condition of the disease. Based on literature survey, lipid droplets and their associated protein like perilipins play an eminent role in body fat regulation. In this review, we explain all types of perilipins such as perilipin1-5 (PLIN1-5) and their role in the pathogenesis of fatty liver which will be helpful to find the novel pharmacological target to treat the fatty liver.
Conclusion
In this review, majorly focussed on how fat is get deposited into hepatocytes follow the cellular signalling involved during lipid droplet biogenesis and leads to NAFLD. However, up to date still there mechanism of action is unclear. In this review, we hypothesized that lipid droplets associated proteins like perilipins could be better pharmacological target to reverse the chronic stage of fatty liver disease and how these lipid droplets associated proteins hide a clue to maintain the normal lipid homeostasis in the human body.
Collapse
|
17
|
Comparative Proteomic Analysis of tPVAT during Ang II Infusion. Biomedicines 2021; 9:biomedicines9121820. [PMID: 34944635 PMCID: PMC8698607 DOI: 10.3390/biomedicines9121820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Perivascular adipose tissue (PVAT) homeostasis plays an important role in maintaining vascular function, and PVAT dysfunction may induce several pathophysiological situations. In this study, we investigated the effect and mechanism of the local angiotensin II (Ang II) on PVAT. High-throughput comparative proteomic analysis, based on TMT labeling combined with LC-MS/MS, were performed on an in vivo Ang II infusion mice model to obtain a comprehensive view of the protein ensembles associated with thoracic PVAT (tPVAT) dysfunction induced by Ang II. In total, 5037 proteins were confidently identified, of which 4984 proteins were quantified. Compared with the saline group, 145 proteins were upregulated and 146 proteins were downregulated during Ang II-induced tPVAT pathogenesis. Bioinformatics analyses revealed that the most enriched GO terms were annotated as gene silencing, monosaccharide binding, and extracellular matrix. In addition, some novel proteins, potentially associated with Ang II infusion, were identified, such as acyl-CoA carboxylase α, very long-chain acyl-CoA synthetase (ACSVL), uncoupling protein 1 (UCP1), perilipin, RAS protein-specific guanine nucleotide-releasing factor 2 (RasGRF2), and hypoxia inducible factor 1α (HIF-1α). Ang II could directly participate in the regulation of lipid metabolism, transportation, and adipocyte differentiation by affecting UCP1 and perilipin. Importantly, the key KEGG pathways were involved in fatty acid biosynthesis, FABP3-PPARα/γ, RasGRF2-ERK-HIF-1α, RasGRF2-PKC-HIF-1α, and STAT3-HIF-1α axis. The present study provided the most comprehensive proteome profile of mice tPVAT and some novel insights into Ang II-mediated tPVAT dysfunction and will be helpful for understanding the possible relationship between local RAS activation and PVAT dysfunction.
Collapse
|
18
|
Alhallak I, Wolter KG, Munoz AC, Simmen FA, Ward RJ, Petty SA, Li LX, Simmen RC. Breast adipose regulation of premenopausal breast epithelial phenotype involves interleukin 10. J Mol Endocrinol 2021; 67:173-188. [PMID: 34382943 PMCID: PMC8489570 DOI: 10.1530/jme-21-0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 11/08/2022]
Abstract
Epidemiological studies inversely associate BMI with breast cancer risk in premenopausal women, but the pathophysiological linkage remains ill-defined. Despite the documented relevance of the 'local' environment to breast cancer progression and the well-accepted differences in transcriptome and metabolic properties of anatomically distinct fat depots, specific breast adipose contributions to the proliferative potential of non-diseased breast glandular compartment are not fully understood. To address early breast cancer causation in the context of obesity status, we compared the cellular and molecular phenotypes of breast adipose and matched breast glandular tissue from premenopausal non-obese (mean BMI = 27 kg/m2) and obese (mean BMI = 44 kg/m2) women. Breast adipose from obese women showed higher expression levels of adipogenic, pro-inflammatory, and estrogen synthetic genes than from non-obese women. Obese breast glandular tissue displayed lower proliferation and inflammatory status and higher expression of anti-proliferative/pro-senescence biomarkers TP53 and p21 than from non-obese women. Transcript levels for T-cell receptor and co-receptors CD3 and CD4 were higher in breast adipose of obese cohorts, coincident with elevated adipose interleukin 10 (IL10) and FOXP3 gene expression. In human breast epithelial cell lines MCF10A and HMEC, recombinant human IL10 reduced cell viability and CCND1 transcript levels, increased those of TP53 and p21, and promoted (MCF10A) apoptosis. Our findings suggest that breast adipose-associated IL10 may mediate paracrine interactions between non-diseased breast adipose and breast glandular compartments and highlight how breast adipose may program the local inflammatory milieu, partly by recruiting FOXP3+ T regulatory cells, to influence premenopausal breast cancer risk.
Collapse
Affiliation(s)
- Iad Alhallak
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Keith G. Wolter
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Ana Castro Munoz
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Frank A. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
- Department of The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | | | - Stacy A. Petty
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Lin-Xi Li
- Department of Microbiology & Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Rosalia C.M. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
- Department of The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| |
Collapse
|
19
|
Barrea L, Frias-Toral E, Aprano S, Castellucci B, Pugliese G, Rodriguez-Veintimilla D, Vitale G, Gentilini D, Colao A, Savastano S, Muscogiuri G. The clock diet: a practical nutritional guide to manage obesity through chrononutrition. Minerva Med 2021; 113:172-188. [PMID: 33913659 DOI: 10.23736/s0026-4806.21.07207-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronobiology studies the biological rhythms or circadian cycles of living organisms and their adaptation to external changes. Biological rhythms can affect hormone production cycles such as sleep/wake, and nutrition/fasting, but these factors can also alter the circadian rhythm (CR). In recent years, numerous studies have highlighted how feeding times and frequency can influence biological rhythms. Additionally, individuals' chronotype, working shifts, and food intake can make a deep impact on people's tendency to develop obesity and metabolic diseases. In this context, a single food and a specific combination of these, can also affect the CR and fasting cycle and consequently body weight and viceversa. The purpose of the review is to propose practical nutritional recommendations to help in resynchronizing the circadian rhythm as a tool in weight control.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Naples, Italy - .,Endocrinology Unit, Department of Clinical Medicine and Surgery, Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), University Medical School of Naples, Naples, Italy -
| | - Evelyn Frias-Toral
- Research Committee, SOLCA Guayaquil, Guayaquil, Ecuador.,Palliative Care Residency, Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - Sara Aprano
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), University Medical School of Naples, Naples, Italy.,Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University Medical School of Naples, Naples, Italy
| | - Bianca Castellucci
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), University Medical School of Naples, Naples, Italy.,Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University Medical School of Naples, Naples, Italy
| | - Gabriella Pugliese
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), University Medical School of Naples, Naples, Italy.,Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University Medical School of Naples, Naples, Italy
| | | | - Giovanni Vitale
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milan, Italy
| | - Annamaria Colao
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), University Medical School of Naples, Naples, Italy.,Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University Medical School of Naples, Naples, Italy.,Cattedra Unesco Educazione alla salute e allo sviluppo sostenibile, University Federico II, Naples, Italy
| | - Silvia Savastano
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), University Medical School of Naples, Naples, Italy.,Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University Medical School of Naples, Naples, Italy
| | - Giovanna Muscogiuri
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), University Medical School of Naples, Naples, Italy.,Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University Medical School of Naples, Naples, Italy.,Cattedra Unesco Educazione alla salute e allo sviluppo sostenibile, University Federico II, Naples, Italy
| |
Collapse
|
20
|
Ramskov Tetzlaff CN, Ramhøj L, Lardenois A, Axelstad M, Evrard B, Chalmel F, Taxvig C, Svingen T. Adult female rats perinatally exposed to perfluorohexane sulfonate (PFHxS) and a mixture of endocrine disruptors display increased body/fat weights without a transcriptional footprint in fat cells. Toxicol Lett 2021; 339:78-87. [DOI: 10.1016/j.toxlet.2020.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022]
|
21
|
Rufino AT, Costa VM, Carvalho F, Fernandes E. Flavonoids as antiobesity agents: A review. Med Res Rev 2020; 41:556-585. [PMID: 33084093 DOI: 10.1002/med.21740] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/02/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022]
Abstract
Obesity is a global health problem that affects all age groups in both developing and developed countries. In recent years, the prevalence of overweight and obesity has reached pandemic levels, resulting in a dramatic increase in the incidence of various comorbidities, such as cardiovascular diseases, type 2 diabetes, and cancer, consequently leading to massive health and socioeconomic burdens. Together with lifestyle changes, antiobesity pharmacotherapy is gaining momentum as an adjunctive treatment. However, the available pharmacological approaches have limited use owing to either significant adverse effects or low efficacy. Over the years, natural products have been an important source of lead compounds for drug discovery. Among these, flavonoids are associated with important biological effects and health-promoting activities. In this review, we discuss the modulatory effects of flavonoids on obesity and their potential mechanisms of action. The literature strongly suggests that most common flavonoids demonstrate a pronounced effect on obesity as shown by their ability to lower body weight, fat mass, and plasma triglycerides/cholesterol, both in in vitro and in vivo models. The impact of flavonoids on obesity can be observed through different mechanisms: reducing food intake and fat absorption, increasing energy expenditure, modulating lipid metabolism, or regulating gut microbiota profile. A better understanding of the known antiobesity mechanisms of flavonoids will enable their potential use to treat this medical condition. Therefore, this review focuses on the putative biological mechanisms through which flavonoids may prevent or treat obesity and highlights new perspectives on future pharmacological use.
Collapse
Affiliation(s)
- Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Vera M Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
22
|
Powrózek T, Brzozowska A, Mazurek M, Prendecka M, Homa-Mlak I, Mlak R, Małecka-Massalska T. AA genotype of PLIN1 13041A>G as an unfavourable predictive factor of malnutrition associated with fat mass loss in locally advanced head and neck cancer male patients treated with radiotherapy. Support Care Cancer 2020; 29:1923-1932. [PMID: 32803726 PMCID: PMC7892500 DOI: 10.1007/s00520-020-05675-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
Introduction Malnutrition is a frequently diagnosed condition in head and neck cancer (HNC) patients after radiation therapy (RTH). Malnutrition causes adipose tissue dysfunction associated with intensified lipolysis and disruption of the activity of mechanisms that protect adipose tissue against this process, which include the protective function of perilipin. Material and methods The purpose of this study was the evaluation of the predictive value of 13041A>G PLIN1 polymorphism in the development of malnutrition related to adipose tissue loss in a group of 80 patients with locally advanced HNC treated by means of radical radiation therapy. Results After the completion of RTH, men with AA genotype had significantly lower fat mass (FM compared to men with G haplotype; FM: 13.84 ± 6.36 kg and 19.06 ± 6.30 kg (p = 0.009). In consequence of RTH, the AA genotype carriers lost an average of 37.01% adipose tissue mass and patients with GA and GG genotypes lost 12.82 and 0.31% (p = 0.035), respectively. AA genotype was also associated with higher chance of ≥ 10%, ≥ 20% and ≥ 30% FM loss in the course of RTH (OR = 13.78; 5.78; 2.28). Conclusions The evaluation of such molecular factors as SNP 13041A>G may have higher predictive value in the development of malnutrition associated with severe loss of fat mass than the subjective scales, e.g., SGA and NRS-2002. The presence of AA genotype on men with HNC before RTH may facilitate earlier nutritional intervention and supportive treatment aimed at limiting or preventing body mass and fat mass loss during the applied treatment. Electronic supplementary material The online version of this article (10.1007/s00520-020-05675-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomasz Powrózek
- Department of Human Physiology, Medical University of Lublin, Lublin, Poland.
| | - Anna Brzozowska
- St. John of Dukla Lublin Region Cancer Center, Lublin, Poland
| | - Marcin Mazurek
- Department of Human Physiology, Medical University of Lublin, Lublin, Poland
| | - Monika Prendecka
- Department of Human Physiology, Medical University of Lublin, Lublin, Poland
| | - Iwona Homa-Mlak
- Department of Human Physiology, Medical University of Lublin, Lublin, Poland
| | - Radosław Mlak
- Department of Human Physiology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
23
|
Abstract
Sleep deprivation has been reported to be a contributing factor for the epidemic of obesity. However, it is still largely unknown how sleep deprivation contributes to obesity at the transcriptional level. Here, we identified the significantly changed genes and pathways that may contribute to the sleep deprivation-induced obesity by analyzing two online datasets, including mouse obesity database and mouse sleep deprivation database. 298 differentially expressed genes (DEGs) were identified in high fat diet mice as compared to normal diet mice, while 541 DEGs were identified in mice with sleep deprivation when compared with mice with normal sleep. There are 12 common DEGs, such as Saa3 and Plin4, in both comparisons. And six of common DEGs were validated in other Gene Expression Omnibus (GEO) dataset. GO and KEGG pathway analyses revealed 19 common altered pathways, and most of them were metabolic processes, including steroid metabolic process, small molecule metabolic process and cholesterol metabolic process. Notably, we found that Aldoc, Cyp2b10, Nsdhl, Pcsk9, Saa3, Plin4 and Acss2 were involved in most of those altered pathways. Taken together, our study suggests that Saa3, Plin4, Aldoc, Cyp2b10, Nsdhl, Pcsk9 and Acss2 might be involved in sleep deprivation-induced obesity by regulating metabolic processes.
Collapse
Affiliation(s)
- YI WEI
- Nanjing Forest Police College, Nanjing 210023, P. R. China
| |
Collapse
|
24
|
Hallmark B, Karafet TM, Hsieh P, Osipova LP, Watkins JC, Hammer MF. Genomic Evidence of Local Adaptation to Climate and Diet in Indigenous Siberians. Mol Biol Evol 2018; 36:315-327. [DOI: 10.1093/molbev/msy211] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Brian Hallmark
- Interdisciplinary Program in Statistics, University of Arizona, Tucson, AZ
| | | | - PingHsun Hsieh
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Ludmila P Osipova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Joseph C Watkins
- Interdisciplinary Program in Statistics, University of Arizona, Tucson, AZ
| | - Michael F Hammer
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ
- Department of Genome Sciences, University of Washington, Seattle, WA
| |
Collapse
|
25
|
O'Rourke RW. Adipose tissue and the physiologic underpinnings of metabolic disease. Surg Obes Relat Dis 2018; 14:1755-1763. [PMID: 30193906 PMCID: PMC6289667 DOI: 10.1016/j.soard.2018.07.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/20/2018] [Accepted: 07/28/2018] [Indexed: 12/22/2022]
Abstract
Adipose tissue dysfunction underlies the pathogenesis of metabolic disease. The metrics used to quantify adiposity and its association with metabolic disease, including body mass index, have limitations with important clinical implications. An understanding of the molecular and cellular mechanisms by which adipose tissue regulates systemic metabolism and contributes to metabolic disease will lead to next-generation adipose tissue-based therapy.
Collapse
Affiliation(s)
- Robert W O'Rourke
- Department of Surgery, University of Michigan Medical School, Michigan Medicine, and Ann Arbor Veterans Administration Hospital, Ann Arbor, Michigan.
| |
Collapse
|
26
|
Maia-Landim A, Ramírez JM, Lancho C, Poblador MS, Lancho JL. Long-term effects of Garcinia cambogia/Glucomannan on weight loss in people with obesity, PLIN4, FTO and Trp64Arg polymorphisms. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:26. [PMID: 29361938 PMCID: PMC5781311 DOI: 10.1186/s12906-018-2099-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/17/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Overweight and obesity are considered major health problems that contribute to increase mortality and quality of life. Both conditions have a high prevalence across the world reaching epidemic numbers. Our aim was to evaluate the effects of the administration of Garcinia cambogia (GC) and Glucomannan (GNN) on long-term weight loss in people with overweight or obesity. METHODS Prospective, not-randomized controlled intervention trial was conducted. We treated 214 subjects with overweight or obesity with GC and GNN (500 mg twice a day, each) for 6 months evaluating weight, fat mass, visceral fat, basal metabolic rate, and lipid and glucose blood profiles comparing them with basal values. Some patients were carriers of polymorphisms PLIN4 -11482G > A-, fat mass and obesity-associated (FTO) -rs9939609 A/T- and β-adrenergic receptor 3 (ADRB3) -Trp64Arg. RESULTS Treatment produced weight loss, reducing fat mass, visceral fat, lipid and blood glucose profiles while increasing basal metabolic rate. Results were independent of sex, age or suffering from hypertension, diabetes mellitus type 2 or dyslipidemia and were attenuated in carriers of PLIN4, FTO, Trp64Arg polymorphisms. CONCLUSIONS Administration of GC and GNN reduce weight and improve lipid and glucose blood profiles in people with overweight or obesity, although the presence of polymorphisms PLIN4, FTO and ADRB3 might hinder in some degree these effects. ISRCTN78807585, 19 September 2017, retrospective study.
Collapse
|
27
|
Xiong X, Bales ES, Ir D, Robertson CE, McManaman JL, Frank DN, Parkinson J. Perilipin-2 modulates dietary fat-induced microbial global gene expression profiles in the mouse intestine. MICROBIOME 2017; 5:117. [PMID: 28877764 PMCID: PMC5588750 DOI: 10.1186/s40168-017-0327-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/20/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Intestinal microbiota are critical determinants of obesity and metabolic disease risk. In previous work, we showed that deletion of the cytoplasmic lipid droplet (CLD) protein perilipin-2 (Plin2) modulates gut microbial community structure and abrogates long-term deleterious effects of a high-fat (HF) diet in mice. However, the impact of Plin2 on microbiome function is unknown. RESULTS Here, we used metatranscriptomics to identify differences in microbiome transcript expression in WT and Plin2-null mice following acute exposure to high-fat/low-carbohydrate (HF) or low-fat/high-carbohydrate (LF) diets. Consistent with previous studies, dietary changes resulted in significant taxonomic shifts. Unexpectedly, when fed a HF diet, the microbiota of Plin2-null and WT mice exhibited dramatic shifts in transcript expression despite no discernible shift in community structure. For Plin2-null mice, these changes included the coordinated upregulation of metabolic enzymes directing flux towards the production of growth metabolites such as fatty acids, nucleotides, and amino acids. In contrast, the LF diet did not appear to induce the same dramatic changes in transcript or pathway expression between the two genotypes. CONCLUSIONS Our data shows that a host genotype can modulate microbiome function without impacting community structure and identify Plin2 as a specific host determinant of diet effects on microbial function. Along with uncovering potential mechanisms for integrating how diet modulates host and microbial metabolism, our findings demonstrate the limits of 16S rRNA surveys to inform on community functional activities and the need to prioritize metatranscriptomic studies to gain more meaningful insights into microbiome function.
Collapse
Affiliation(s)
- Xuejian Xiong
- Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4 ON Canada
| | - Elise S. Bales
- Division of Reproductive Sciences, University of Colorado, 12700 E. 19th Avenue, Aurora, 80045 CO USA
| | - Diana Ir
- Division of Infectious Diseases, University of Colorado, 12700 E. 19th Avenue, Aurora, 80045 CO USA
| | - Charles E. Robertson
- Division of Infectious Diseases, University of Colorado, 12700 E. 19th Avenue, Aurora, 80045 CO USA
- Microbiome Research Consortium, University of Colorado, 12700 E. 19th Avenue, Aurora, 80045 CO USA
| | - James L. McManaman
- Division of Reproductive Sciences, University of Colorado, 12700 E. 19th Avenue, Aurora, 80045 CO USA
- The Center for Human Nutrition, University of Colorado, 12700 E. 19th Avenue, Aurora, 80045 CO USA
| | - Daniel N. Frank
- Division of Infectious Diseases, University of Colorado, 12700 E. 19th Avenue, Aurora, 80045 CO USA
- Microbiome Research Consortium, University of Colorado, 12700 E. 19th Avenue, Aurora, 80045 CO USA
| | - John Parkinson
- Molecular Medicine, Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4 ON Canada
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, M5S 1A8 ON Canada
- Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, M5S 1A8 ON Canada
| |
Collapse
|
28
|
Kimmel AR, Sztalryd C. The Perilipins: Major Cytosolic Lipid Droplet-Associated Proteins and Their Roles in Cellular Lipid Storage, Mobilization, and Systemic Homeostasis. Annu Rev Nutr 2017; 36:471-509. [PMID: 27431369 DOI: 10.1146/annurev-nutr-071813-105410] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery by Dr. Constantine Londos of perilipin 1, the major scaffold protein at the surface of cytosolic lipid droplets in adipocytes, marked a fundamental conceptual change in the understanding of lipolytic regulation. Focus then shifted from the enzymatic activation of lipases to substrate accessibility, mediated by perilipin-dependent protein sequestration and recruitment. Consequently, the lipid droplet became recognized as a unique, metabolically active cellular organelle and its surface as the active site for novel protein-protein interactions. A new area of investigation emerged, centered on lipid droplets' biology and their role in energy homeostasis. The perilipin family is of ancient origin and has expanded to include five mammalian genes and a growing list of evolutionarily conserved members. Universally, the perilipins modulate cellular lipid storage. This review provides a summary that connects the perilipins to both cellular and whole-body homeostasis.
Collapse
Affiliation(s)
- Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, Maryland 20892;
| | - Carole Sztalryd
- The Geriatric Research Education and Clinical Center, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201.,Division of Endocrinology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland 21201;
| |
Collapse
|
29
|
Cortes de Oliveira C, Nicoletti CF, Pinhel MADS, de Oliveira BAP, Quinhoneiro DCG, Noronha NY, Fassini PG, Marchini JS, da Silva Júnior WA, Salgado Júnior W, Nonino CB. Influence of expression of UCP3, PLIN1 and PPARG2 on the oxidation of substrates after hypocaloric dietary intervention. Clin Nutr 2017; 37:1383-1388. [PMID: 28651828 DOI: 10.1016/j.clnu.2017.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS In addition to environmental and psychosocial factors, it is known that genetic factors can also influence the regulation of energy metabolism, body composition and determination of excess weight. The objective of this study was to evaluate the influence of UCP3, PLIN1 and PPARG2 genes on the substrates oxidation in women with grade III obesity after hypocaloric dietary intervention. SUBJECTS/METHODS This is a longitudinal study with 21 women, divided into two groups: Intervention Group (G1): 11 obese women (Body Mass Index (BMI) ≥40 kg/m2), and Control Group (G2): 10 eutrophic women (BMI between 18.5 kg/m2 and 24.9 kg/m2). Weight (kg), height (m), BMI (kg/m2), substrate oxidation (by Indirect Calorimetry) and abdominal subcutaneous adipose tissue were collected before and after the intervention. For the dietary intervention, the patients were hospitalized for 6 weeks receiving 1200 kcal/day. RESULTS There was a significant weight loss (8.4 ± 4.3 kg - 5.2 ± 1.8%) and reduction of UCP3 expression after hypocaloric dietary intervention. There was a positive correlation between carbohydrate oxidation and UCP3 (r = 0.609; p = 0.04), PLIN1 (r = 0.882; p = 0.00) and PPARG2 (r = 0.791; p = 0.00) expression before dietary intervention and with UCP3 (r = 0.682; p = 0.02) and PLIN1 (r = 0.745; p = 0.00) genes after 6 weeks of intervention. There was a negative correlation between lipid oxidation and PLIN1 (r = -0.755; p = 0.00) and PPARG2 (r = 0.664; p = 0.02) expression before dietary intervention and negative correlation with PLIN1 (r = 0.730; p = 0.02) expression after 6 weeks of hypocaloric diet. CONCLUSION Hypocaloric diet reduces UCP3 expression in individuals with obesity and the UCP3, PLIN1 and PPARG2 expression correlate positively with carbohydrate oxidation and negatively with lipid oxidation.
Collapse
Affiliation(s)
- Cristiana Cortes de Oliveira
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Carolina Ferreira Nicoletti
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Marcela Augusta de Souza Pinhel
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | - Natália Yumi Noronha
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Priscila Giacomo Fassini
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Júlio Sérgio Marchini
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Wilson Araújo da Silva Júnior
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Wilson Salgado Júnior
- Department of Surgery and Anatomy, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Carla Barbosa Nonino
- Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
30
|
Aller EE, Mariman EC, Bouwman FG, van Baak MA. Genetic Predictors of ≥5% Weight Loss by Multidisciplinary Advice to Severely Obese Subjects. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2017; 10:32-42. [PMID: 28578327 PMCID: PMC5872564 DOI: 10.1159/000469662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/09/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Weight loss success is determined by genetic factors, which may differ according to treatment strategy. METHODS From a multidisciplinary obesity treatment program involving dietary advice, psychological counseling, and increased physical activity, 587 subjects (68% female; 46.1 ± 12.4 years; BMI 39.9 ± 6.3) were recruited. At baseline, a blood sample was drawn for DNA isolation. Genotypes were determined for 30 polymorphisms in 25 candidate genes. The association between genotypes and weight loss was assessed after 3 months (short-term) and after 12 months of treatment (long-term). Weight loss was categorized as ≥5% or <5% of initial weight. RESULTS The G/G genotype of PLIN1 (rs2289487) and PLIN1 (rs2304795), the T/T genotype of PLIN1 (rs1052700), and the C/C genotype of MMP2 predicted ≥5% weight loss in the first 3 months. The C/G-G/G genotype of PPARγ (rs1801282) and the T/C genotype of TIMP4 (rs3755724) predicted ≥5% weight loss after 12 months. Subjects with the combination of PPARγ (rs1801282) C/G-G/G and TIMP4 (rs3755724) T/C lost even more weight. CONCLUSION Polymorphisms in genes related to regulation of fat storage and structural adaptation of the adipocytes are predictors for weight loss success with different genes being relevant for short-term and long-term weight loss success.
Collapse
Affiliation(s)
| | | | | | - Marleen A. van Baak
- Department of Human Biology and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
31
|
Sandhu HS, Puri S, Sharma R, Sokhi J, Singh G, Matharoo K, Bhanwer AJS. Associating genetic variation at Perilipin 1, Complement Factor D and Adiponectin loci to the bone health status in North Indian population. Gene 2017; 610:80-89. [DOI: 10.1016/j.gene.2017.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/09/2017] [Accepted: 02/06/2017] [Indexed: 12/20/2022]
|
32
|
Tokgöz Y, Işık IA, Akbari S, Kume T, Sayın O, Erdal E, Arslan N. Perilipin polymorphisms are risk factors for the development of obesity in adolescents? A case-control study. Lipids Health Dis 2017; 16:52. [PMID: 28274232 PMCID: PMC5343409 DOI: 10.1186/s12944-017-0440-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/27/2017] [Indexed: 11/23/2022] Open
Abstract
Background The variations in perilipin gene (PLIN) were previously associated with obesity. We examined the association of polymorphisms at the PLIN locus in adolescents with obesity and their connection with serum adipokines. Methods A total of 308 children (206 obese, 66.8% and 102 healthy control, 33.2%) between the ages of 10-18 years were included into the study. PLIN gene analysis [PLIN 1, PLIN 4, PLIN 6, PLIN 5’UTR-1234 C > G and PLIN 10171 A/T] were studied by Real Time-PCR. Serum leptin, adiponectin, resistin and ghrelin levels were studied by ELISA method in both groups and their link with perilipin polymorphisms were analyzed. Results Serum leptin level was found significantly high in obese adolescents. Other adipokine levels were similar in both groups. The incidence of PLIN 1, PLIN 4, PLIN 5’UTR-1234 C > G and PLIN 10171 A/T minor and major alleles was similar in both groups. PLIN 6 T/T allele was determined significantly high in obese adolescents compared to that of control group. No correlation was detected between perilipin polymorphism and serum levels of adipokines. Conclusion The PLIN 6 polymorphism of the perilipin gene may influence the risk of the obesity during adolescence. Trial registration Retrospectively registered.
Collapse
Affiliation(s)
- Yavuz Tokgöz
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Dokuz Eylul University Faculty of Medicine, 35330, Inciraltı-Izmir, Turkey.
| | - Ishak Abdurrahman Işık
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Dokuz Eylul University Faculty of Medicine, 35330, Inciraltı-Izmir, Turkey
| | - Soheil Akbari
- Department of Medical Biology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Tuncay Kume
- Department of Biochemistry, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Oya Sayın
- Research Laboratory, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Esra Erdal
- Department of Medical Biology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Nur Arslan
- Department of Pediatric Metabolism and Nutrition, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
33
|
Garaulet M, Vera B, Bonnet-Rubio G, Gómez-Abellán P, Lee YC, Ordovás JM. Lunch eating predicts weight-loss effectiveness in carriers of the common allele at PERILIPIN1: the ONTIME (Obesity, Nutrigenetics, Timing, Mediterranean) study. Am J Clin Nutr 2016; 104:1160-1166. [PMID: 27629052 DOI: 10.3945/ajcn.116.134528] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND We propose that eating lunch late impairs the mobilization of fat from adipose tissue, particularly in carriers of PERILIPIN1 (PLIN1) variants. OBJECTIVE The aim was to test the hypothesis that PLIN1, a circadian lipid-stabilizing protein in the adipocyte, interacts with the timing of food intake to affect weight loss. DESIGN A total of 1287 overweight and obese subjects [229 men and 1058 women; mean ± SD body mass index (in kg/m2): 31 ± 5] who attended outpatient obesity clinics were enrolled in the ONTIME (Obesity, Nutrigenetics, Timing, Mediterranean) study. Timing of food intake was estimated with a validated questionnaire. Anthropometric variables and PLIN1 genotypes were analyzed, including 6209T>C (rs2289487), 11482G>A (rs894160), 13041A>G (rs2304795), and 14995A>T (rs1052700). The main outcomes were effectiveness of the program and weight-loss progression during 28 wk of treatment. RESULTS The PLIN1 locus was associated with variability in response to a weight-loss program. Specifically, carrying the minor C allele at the PLIN1 6209T>C was associated with better weight-loss response (P = 0.035). The probability of being a better responder [percentage of weight loss ≥7.5% (median)] was 33% higher among C than among TT carriers (OR: 1.32; 95% CI: 1.05, 1.67; P = 0.017). We found an interaction of PLIN1 × food timing between the 14995A>T variant and timing of lunch eating for total weight loss (P = 0.035). Among AA carriers, eating late was associated with less weight loss (P < 0.001), whereas time of eating did not influence weight loss among TT carriers (P = 0.326). CONCLUSIONS Variability at the PLIN1 locus is associated with variability in weight loss. Moreover, eating late is related to lower weight-loss effectiveness among carriers of the AA genotype at the PLIN1 14995A>T variant. These results contribute to our ability to implement more precise and successful obesity treatments. The ONTIME study was registered at clinicaltrials.gov as NCT02829619.
Collapse
Affiliation(s)
- Marta Garaulet
- Chronobiology Laboratory, Department of Physiology, University of Murcia and Research Biomedical Institute of Murcia (IMIB), Murcia, Spain;
| | - Beatriz Vera
- Chronobiology Laboratory, Department of Physiology, University of Murcia and Research Biomedical Institute of Murcia (IMIB), Murcia, Spain
| | - Gemma Bonnet-Rubio
- Chronobiology Laboratory, Department of Physiology, University of Murcia and Research Biomedical Institute of Murcia (IMIB), Murcia, Spain
| | - Purificación Gómez-Abellán
- Chronobiology Laboratory, Department of Physiology, University of Murcia and Research Biomedical Institute of Murcia (IMIB), Murcia, Spain
| | - Yu-Chi Lee
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA; Department of Clinical Investigation, Centro Nacional Investigaciones Cardiovasculares, Madrid, Spain; and Department of Nutritional Genomics, Instituto Madrileno de Estudios Avanzados en Alimentacion, Madrid, Spain
| |
Collapse
|
34
|
Drevinge C, Dalen KT, Mannila MN, Täng MS, Ståhlman M, Klevstig M, Lundqvist A, Mardani I, Haugen F, Fogelstrand P, Adiels M, Asin-Cayuela J, Ekestam C, Gådin JR, Lee YK, Nebb H, Svedlund S, Johansson BR, Hultén LM, Romeo S, Redfors B, Omerovic E, Levin M, Gan LM, Eriksson P, Andersson L, Ehrenborg E, Kimmel AR, Borén J, Levin MC. Perilipin 5 is protective in the ischemic heart. Int J Cardiol 2016; 219:446-54. [DOI: 10.1016/j.ijcard.2016.06.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/12/2016] [Indexed: 10/21/2022]
|
35
|
UCP2 and PLIN1 Expression Affects the Resting Metabolic Rate and Weight Loss on Obese Patients. Obes Surg 2016; 27:343-348. [DOI: 10.1007/s11695-016-2275-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
|
37
|
Oliveira BAP, Pinhel MAS, Nicoletti CF, Oliveira CC, Quinhoneiro DCG, Noronha NY, Marchini JS, Marchry AJ, Junior WS, Nonino CB. UCP1 and UCP3 Expression Is Associated with Lipid and Carbohydrate Oxidation and Body Composition. PLoS One 2016; 11:e0150811. [PMID: 26959981 PMCID: PMC4784729 DOI: 10.1371/journal.pone.0150811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/19/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND/OBJECTIVE Uncoupling proteins (UCPs) are located in the inner membrane of mitochondria. These proteins participate in thermogenesis and energy expenditure. This study aimed to evaluate how UCP1 and UCP3 expression influences substrate oxidation and elicits possible changes in body composition in patients submitted to bariatric surgery. SUBJECTS/METHODS This is a longitudinal study comprising 13 women with obesity grade III that underwent bariatric surgery and 10 healthy weight individuals (control group). Body composition was assessed by bioelectrical impedance. Carbohydrate and fat oxidation was determined by indirect calorimetry. Subcutaneous adipose tissue was collected for gene expression analysis. QPCR was used to evaluate UCP1 and UCP3 expression. RESULTS Obese patients and the control group differed significantly in terms of lipid and carbohydrate oxidation. Six months after bariatric surgery, the differences disappeared. Lipid oxidation correlated with the percentage of fat mass in the postoperative period. Multiple linear regression analysis showed that the UCP1 and UCP3 genes contributed to lipid and carbohydrate oxidation. Additionally, UCP3 expression was associated with BMI, percentage of lean body mass, and percentage of mass in the postoperative period. CONCLUSIONS UCP1 and UCP3 expression is associated with lipid and carbohydrate oxidation in patients submitted to bariatric surgery. In addition, UCP3 participates in body composition modulation six months postoperatively.
Collapse
Affiliation(s)
- Bruno A. P. Oliveira
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Marcela A. S. Pinhel
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Carolina F. Nicoletti
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Cristiana C. Oliveira
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Driele C. G. Quinhoneiro
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Natália Y. Noronha
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Júlio S. Marchini
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Ana J. Marchry
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Wilson S. Junior
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Carla B. Nonino
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
- * E-mail:
| |
Collapse
|
38
|
Luglio HF, Sulistyoningrum DC, Susilowati R. The role of genes involved in lipolysis on weight loss program in overweight and obese individuals. J Clin Biochem Nutr 2015; 57:91-7. [PMID: 26388665 PMCID: PMC4566022 DOI: 10.3164/jcbn.14-117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/23/2014] [Indexed: 01/22/2023] Open
Abstract
The ability of obese people to reduce weight in the same treatment varied. Genetic make up as well as the behavioral changes are important for the successfulness of the program. One of the most proposed genetic variations that have been reported in many intervention studies was genes that control lipolysis process. This review summarizes studies that were done showing the influence of genetic polymorphisms in lipolysis pathway and weight loss in a weight loss treatment program. Some studies had shown that certain enzymes involved in this process were related to successfulness of weight loss program. Single Nucleotide Polymorphism (SNP) in PLIN (11482G>A) and ADRB3 (Trp64Arg) are the most studied polymorphisms that have effect on weight loss intervention. However, those studies were not conclusive because of limited number of subjects used and controversies in the results. Thus, replication and confirmation on the role of those genes in weight loss are important due to their potential to be used as predictors of the results of the program.
Collapse
Affiliation(s)
- Harry Freitag Luglio
- Department of Health Nutrition, Faculty of Medicine, Universitas Gadjah Mada, Jl. Farmako, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Dian Caturini Sulistyoningrum
- Department of Health Nutrition, Faculty of Medicine, Universitas Gadjah Mada, Jl. Farmako, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Rina Susilowati
- Department of Histology and Cell Biology, Faculty of Medicine, Universitas Gadjah Mada, Jl. Farmako, Sekip Utara, Yogyakarta 55281, Indonesia
| |
Collapse
|
39
|
Xiong XQ, Chen D, Sun HJ, Ding L, Wang JJ, Chen Q, Li YH, Zhou YB, Han Y, Zhang F, Gao XY, Kang YM, Zhu GQ. FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1867-75. [PMID: 26111885 DOI: 10.1016/j.bbadis.2015.06.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/23/2015] [Accepted: 06/20/2015] [Indexed: 12/21/2022]
Abstract
Irisin is a cleaved and secreted fragment of fibronectin type III domain containing 5 (FNDC5), and contributes to the beneficial effects of exercise on metabolism. Here we report the therapeutical effects of FNDC5/irisin on metabolic derangements and insulin resistance in obesity, and show the lipolysis effect of irisin and its signal molecular mechanism. In obese mice, lentivirus mediated-FNDC5 overexpression enhanced energy expenditure, lipolysis and insulin sensitivity, and reduced hyperlipidemia, hyperglycemia, hyperinsulinism, blood pressure and norepinephrine levels; it increased hormone-sensitive lipase (HSL) expression and phosphorylation, and reduced perilipin level and adipocyte diameter in adipose tissues. Subcutaneous perfusion of irisin reduced hyperlipidemia and hyperglycemia, and improved insulin resistance. Either FNDC5 overexpression or irisin perfusion only induced a tendency toward a slight decrease in body weight in obese mice. In 3T3-L1 adipocytes, irisin enhanced basal lipolysis rather than isoproterenol-induced lipolysis, which were prevented by inhibition of adenylate cyclase or PKA; irisin increased the HSL and perilipin phosphorylation; it increased PKA activity, and cAMP and HSL mRNA levels, but reduced perilipin expression. These results indicate that FNDC5/irisin ameliorates glucose/lipid metabolic derangements and insulin resistance in obese mice, and enhances lipolysis via cAMP-PKA-HSL/perilipin pathway. FNDC5 or irisin can be taken as an effective therapeutic strategy for metabolic disorders.
Collapse
Affiliation(s)
- Xiao-Qing Xiong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dan Chen
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hai-Jian Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lei Ding
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jue-Jin Wang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ye-Bo Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ying Han
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Feng Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xing-Ya Gao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
40
|
Goni L, Cuervo M, Milagro FI, Martínez JA. Future Perspectives of Personalized Weight Loss Interventions Based on Nutrigenetic, Epigenetic, and Metagenomic Data. J Nutr 2015; 146:905S-912S. [PMID: 26962191 DOI: 10.3945/jn.115.218354] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/21/2015] [Accepted: 09/23/2015] [Indexed: 12/24/2022] Open
Abstract
As obesity has become a major global public health challenge, a large number of studies have analyzed different strategies aimed at inducing a negative energy balance and, consequently, body weight loss. However, most existing weight loss programs are generally unsuccessful, so several interventions have been carried out to identify physiologic and behavioral factors concerning this variability in order to implement more personalized treatment. Nowadays, an individualized approach is being proposed through so-called personalized nutrition, whereby not only the phenotype but also the genotype is used for customized nutrition treatment. Regarding body weight regulation, ∼70 polymorphisms have been identified in or near genes related to energy expenditure, appetite, adipogenesis, insulin resistance, and lipid metabolism. Although personalized nutrition refers mainly to genetic makeup, recent advances in the investigation of the epigenome and the microbiome open the door to implement more personalized recommendations for body weight management. In this context, recent studies have demonstrated the existence of several epigenetic markers that may modify gene expression and could be involved in the outcome of weight loss interventions. Moreover, different studies have shown that dietary interventions could affect the composition of gut microbiota and have an impact on body weight. The integration of nutrigenetic, epigenetic, and metagenomic data may lead to the design of more personalized dietary treatments to prevent chronic diseases and to optimize the individual's response to dietary interventions.
Collapse
Affiliation(s)
- Leticia Goni
- Department of Nutrition, Food Sciences, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Marta Cuervo
- Department of Nutrition, Food Sciences, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.,Navarra Institute for Health Research, Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Sciences, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Sciences, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.,Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
41
|
Gol S, Ros-Freixedes R, Zambonelli P, Tor M, Pena R, Braglia S, Zappaterra M, Estany J, Davoli R. Relationship between perilipin genes polymorphisms and growth, carcass and meat quality traits in pigs. J Anim Breed Genet 2015; 133:24-30. [DOI: 10.1111/jbg.12159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/25/2015] [Indexed: 10/23/2022]
Affiliation(s)
- S. Gol
- Departament de Producció Animal-Agrotecnio Center; Universitat de Lleida; Lleida Catalonia Spain
| | - R. Ros-Freixedes
- Departament de Producció Animal-Agrotecnio Center; Universitat de Lleida; Lleida Catalonia Spain
| | - P. Zambonelli
- Department of Agricultural and Food Science (DISTAL); University of Bologna; Reggio Emilia Italy
| | - M. Tor
- Departament de Producció Animal-Agrotecnio Center; Universitat de Lleida; Lleida Catalonia Spain
| | - R.N. Pena
- Departament de Producció Animal-Agrotecnio Center; Universitat de Lleida; Lleida Catalonia Spain
| | - S. Braglia
- Department of Agricultural and Food Science (DISTAL); University of Bologna; Reggio Emilia Italy
| | - M. Zappaterra
- Department of Agricultural and Food Science (DISTAL); University of Bologna; Reggio Emilia Italy
| | - J. Estany
- Departament de Producció Animal-Agrotecnio Center; Universitat de Lleida; Lleida Catalonia Spain
| | - R. Davoli
- Department of Agricultural and Food Science (DISTAL); University of Bologna; Reggio Emilia Italy
| |
Collapse
|
42
|
Kim J, Shin J, Ha J. Screening methods for AMP-activated protein kinase modulators: a patent review. Expert Opin Ther Pat 2014; 25:261-77. [PMID: 25535089 DOI: 10.1517/13543776.2014.995626] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION AMP-activated protein kinase (AMPK) functions as a cellular energy gauge that maintains cellular homeostasis and has been suggested to play important roles in tumorigenesis, lifespan and autophagy. Accordingly, AMPK is a potential target of drugs for controlling a growing number of human diseases ranging from metabolic disorders to cancer, highlighting the need for rational and robust screening systems for identifying compounds that modulate AMPK. AREAS COVERED The relevant screening methods in the patent and scientific literature were analyzed, and key features of direct AMPK modulators are discussed in the context of their physiological relevance and the three-dimensional structure of the AMPK complex. EXPERT OPINION The mechanism of action of modulators is important in designing drugs with enhanced efficacy, specificity and stability. Most patented assay formats for identifying AMPK modulators are based on classical enzyme assays that monitor AMPK activity or changes in AMPK-dependent cellular physiology. However, these systems do not provide information about underlying mechanisms. Two patented assay systems use a specific domain or the three-dimensional structure of AMPK to identify AMPK modulators. The recent identification of two AMPK modulators, A-769662 and C-2 (or its prodrug, C-13), suggests the promise of structure-based assays in discovering more potent and specific modulators of AMPK.
Collapse
Affiliation(s)
- Joungmok Kim
- Kyung Hee University, School of Dentistry, Oral Biochemistry and Molecular Biology , Seoul , Republic of Korea
| | | | | |
Collapse
|
43
|
Goni L, Milagro FI, Cuervo M, Martínez JA. Single-nucleotide polymorphisms and DNA methylation markers associated with central obesity and regulation of body weight. Nutr Rev 2014; 72:673-90. [DOI: 10.1111/nure.12143] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Leticia Goni
- Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research; University of Navarra; Pamplona Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research; University of Navarra; Pamplona Spain
- Instituto de Salud Carlos III; CIBER Fisiología Obesidad y Nutrición (CIBERobn); Madrid Spain
| | - Marta Cuervo
- Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research; University of Navarra; Pamplona Spain
- Instituto de Salud Carlos III; CIBER Fisiología Obesidad y Nutrición (CIBERobn); Madrid Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research; University of Navarra; Pamplona Spain
- Instituto de Salud Carlos III; CIBER Fisiología Obesidad y Nutrición (CIBERobn); Madrid Spain
| |
Collapse
|
44
|
Sahini N, Borlak J. Recent insights into the molecular pathophysiology of lipid droplet formation in hepatocytes. Prog Lipid Res 2014; 54:86-112. [PMID: 24607340 DOI: 10.1016/j.plipres.2014.02.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/17/2014] [Accepted: 02/21/2014] [Indexed: 12/11/2022]
Abstract
Triacyglycerols are a major energy reserve of the body and are normally stored in adipose tissue as lipid droplets (LDs). The liver, however, stores energy as glycogen and digested triglycerides in the form of fatty acids. In stressed condition such as obesity, imbalanced nutrition and drug induced liver injury hepatocytes accumulate excess lipids in the form of LDs whose prolonged storage leads to disease conditions most notably non-alcoholic fatty liver disease (NAFLD). Fatty liver disease has become a major health burden with more than 90% of obese, nearly 70% of overweight and about 25% of normal weight patients being affected. Notably, research in recent years has shown LD as highly dynamic organelles for maintaining lipid homeostasis through fat storage, protein sorting and other molecular events studied in adipocytes and other cells of living organisms. This review focuses on the molecular events of LD formation in hepatocytes and the importance of cross talk between different cell types and their signalling in NAFLD as to provide a perspective on molecular mechanisms as well as possibilities for different therapeutic intervention strategies.
Collapse
Affiliation(s)
- Nishika Sahini
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
45
|
Konige M, Wang H, Sztalryd C. Role of adipose specific lipid droplet proteins in maintaining whole body energy homeostasis. Biochim Biophys Acta Mol Basis Dis 2013; 1842:393-401. [PMID: 23688782 DOI: 10.1016/j.bbadis.2013.05.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/10/2013] [Accepted: 05/03/2013] [Indexed: 12/15/2022]
Abstract
Excess or insufficient lipid storage in white adipose tissue lipid droplets is associated with dyslipidemia, insulin resistance and increased risk for diabetes type 2. Thus, maintenance of adipose lipid droplet growth and function is critical to preserve whole body insulin sensitivity and energy homeostasis. Progress in understanding biology of lipid droplets has underscored the role of proteins that interact with lipid droplets. Here, we review the current knowledge of adipose specific lipid droplet proteins, which share unique functions controlling adipocyte lipid storage, limiting lipid spill-over and lipotoxic effects thought to contribute to disease. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Manige Konige
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Hong Wang
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Carole Sztalryd
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Geriatric Research, Education, and Clinical Center, Baltimore Veterans Affairs Health Care Center, Baltimore, MD 21201, USA.
| |
Collapse
|
46
|
Sethupathy P. Needles in the genetic haystack of lipid disorders: single nucleotide polymorphisms in the microRNA regulome. J Lipid Res 2013; 54:1168-73. [PMID: 23505316 DOI: 10.1194/jlr.r035766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, microRNAs (miRNA) have emerged as important posttranscriptional regulators of gene expression in a wide variety of biological pathways. Since the discovery of the liver-specific miRNA-122 (miR-122) and its critical role in hepatic function, numerous additional miRNAs have been implicated in lipid metabolism. It is now apparent that lipid homeostasis is governed in part by an intricate web of miRNA activity. miRNAs are thought to confer robustness against environmental changes, such as diet modifications. Therefore, naturally occurring genetic variation that perturbs miRNA expression and/or function is likely to contribute to interindividual variability in lipid phenotypes. Although the field is still in its infancy, this review describes the growing evidence for miRNA-related genetic variation as etiological factors in lipid disorders. Specific examples, including a variant in a miRNA transcriptional control element that leads to dyslipidemia as well as a variant in a miRNA target site that modulates the effect of diet on plasma lipid levels, are discussed. Finally, the utility of recent systems genetics approaches to uncover hidden miRNA-related genetic associations with lipid disorders are considered, thereby illuminating the needles in the genetic haystack.
Collapse
Affiliation(s)
- Praveen Sethupathy
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
47
|
Maneschi E, Vignozzi L, Morelli A, Mello T, Filippi S, Cellai I, Comeglio P, Sarchielli E, Calcagno A, Mazzanti B, Vettor R, Vannelli GB, Adorini L, Maggi M. FXR activation normalizes insulin sensitivity in visceral preadipocytes of a rabbit model of MetS. J Endocrinol 2013; 218:215-31. [PMID: 23750014 DOI: 10.1530/joe-13-0109] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin resistance is the putative key underlying mechanism linking adipose tissue (AT) dysfunction with liver inflammation and steatosis in metabolic syndrome (MetS). We have recently demonstrated that the selective farnesoid X receptor (FXR) agonist obeticholic acid (OCA) ameliorates insulin resistance and the metabolic profile with a marked reduction in the amount of visceral AT (VAT) in a high-fat diet (HFD)-induced rabbit model of MetS. These effects were mediated by the activation of FXR, since treatment with the selective TGR5 agonist INT-777 was not able to ameliorate the metabolic parameters evaluated. Herein, we report the effects of in vivo OCA dosing on the liver, the VAT, and the adipogenic capacity of VAT preadipocytes (rPADs) isolated from rabbits on a HFD compared with those on a control diet. VAT and liver were studied by immunohistochemistry, Western blot analysis, and RT-PCR. rPADs were exposed to a differentiating mixture to evaluate adipogenesis. Adipocyte size, hypoxia, and the expression of perilipin and cytosolic insulin-regulated glucose transporter GLUT4 (SLC2A4) were significantly increased in VAT isolated from the HFD rabbits, and normalized by OCA. The expression of steatosis and inflammation markers was increased in the liver of the HFD rabbits and normalized by OCA. rPADs isolated from the HFD rabbits were less sensitive to insulin, as demonstrated by the decreased insulin-induced glucose uptake, triglyceride synthesis, and adipogenic capacity, as well as by the impaired fusion of lipid droplets. OCA treatment preserved all the aforementioned metabolic functions. In conclusion, OCA dosing in a MetS rabbit model ameliorates liver and VAT functions. This could reflect the ability of OCA to restore insulin sensitivity in AT unable to finalize its storage function, counteracting MetS-induced metabolic alterations and pathological AT deposition.
Collapse
Affiliation(s)
- Elena Maneschi
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|