1
|
Kuser-Abali G, Ugurlu-Bayarslan A, Yilmaz Y, Ozcan F, Karaer F, Bugra K. SIK2: A Novel Negative Feedback Regulator of FGF2 Signaling. Adv Biol (Weinh) 2024:e2400032. [PMID: 39267218 DOI: 10.1002/adbi.202400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/20/2024] [Indexed: 09/17/2024]
Abstract
A wide range of cells respond to fibroblast growth factor 2 (FGF2) by proliferation via activation of the Ras/ERK1/2 pathway. In this study, the potential involvement of salt inducible kinase SIK2) in this cascade within retinal Müller glia is explored. It is found that SIK2 phosphorylation status and activity are modulated in an FGF2-dependent manner, possibly via ERK1/2. With SIK2 downregulation, enhanced ERK1/2 activation with delayed attenuation and increased cell proliferation is observed, while SIK2 overexpression hampers FGF2-dependent ERK1/2 activation. In vitro kinase and site-directed mutagenesis studies indicate that SIK2 targets the pathway element GRB2-associated-binding protein 1 (Gab1) on Ser266. This phosphorylation event weakens Gab1 interactions with its partners growth factor receptor-bound protein 2 (Grb2) and Src homology region 2 domain containing phosphatase 2 (Shp2). Collectively, these results suggest that during FGF2-dependent proliferation process ERK1/2-mediated activation of SIK2 targets Gab1, resulting in downregulation of the Ras/ERK1/2 cascade in a feedback loop.
Collapse
Affiliation(s)
- Gamze Kuser-Abali
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Faculty of Medicine Nursing & Health Sciences, The Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Asli Ugurlu-Bayarslan
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Department of Biology, Kastamonu University, Kastamonu, 37150, Turkey
| | - Yeliz Yilmaz
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Izmir Biomedicine and Genome Center, Izmir, 35340, Turkey
| | - Ferruh Ozcan
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| | - Funda Karaer
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Ministry of Education, Turkey
| | - Kuyas Bugra
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Life Sciences Center, Bogazici University, Bebek, Istanbul, 34342, Turkey
| |
Collapse
|
2
|
Bournez C, Gally JM, Aci-Sèche S, Bernard P, Bonnet P. Virtual screening of natural products to enhance melanogenosis. Mol Inform 2024; 43:e202300335. [PMID: 38864978 DOI: 10.1002/minf.202300335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024]
Abstract
Natural products have long been an important source of inspiration for medicinal chemistry and drug discovery. In the cosmetic field, they remain the major elements of the composition and serve as marketing asset. Recent research showed the implication of salt-inducible kinases on the melanin production in skin via MITF regulation. Finding new potent modulators on such target could open the way to several cosmetic applications to attenuate visible signs of photoaging and improve the tan without sun. Since virtual screening can be a powerful tool for detecting hit compounds in the early stages of a drug discovery process, we applied this method on salt-inducible kinase 2 to discover potential interesting compounds. Here, we present the different steps from the construction of a database of natural products, to the validation of a docking protocol and the results of the virtual screening. Hits from the screening were tested in vitro to confirm their efficiency and results are discussed.
Collapse
Affiliation(s)
- Colin Bournez
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, 45067, Orléans Cedex 2, France
| | - José-Manuel Gally
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, 45067, Orléans Cedex 2, France
| | - Samia Aci-Sèche
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, 45067, Orléans Cedex 2, France
| | | | - Pascal Bonnet
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, 45067, Orléans Cedex 2, France
| |
Collapse
|
3
|
Kwon H, Lee JH, Yoo JM, Nguyen H, An H, Chang SE, Song Y. Semaxanib, a VEGF inhibitor, suppresses melanogenesis by modulating CRTC3 independently of VEGF signaling. J Dermatol Sci 2024; 115:121-129. [PMID: 39127591 DOI: 10.1016/j.jdermsci.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/27/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Dysregulation of melanogenesis contributes to the development of skin hyperpigmentation diseases, which poses a treatment challenge. Following the establishment of CRTC3 screening methods to explore small molecules inhibiting melanogenesis for the topical treatment of hyperpigmentation diseases, we identified a candidate molecule, semaxanib. OBJECTIVE To explore the antimelanogenic effects of semaxanib, a vascular endothelial growth factor receptor (VEGFR) 2 inhibitor, for potential applications in hyperpigmentation management and to unravel the role of VEGF signaling in melanocyte biology by investigating mechanism of action of semaxanib. METHODS Mouse-derived spontaneously immortalized melanocytes, B16F10, and normal human primary epidermal melanocytes cells were treated with semaxanib, and cellular responses were assessed using cell viability assays and melanin content measurements. Molecular mechanisms were investigated using transcriptional activity assays, reverse-transcription polymerase chain reaction, and immunoblotting analysis. In vivo studies were conducted using an epidermis-humanized transgenic mouse model and ex vivo human skin tissues. RESULTS Semaxanib ameliorated melanin content in cultured melanocytes by downregulating the expression of melanogenesis-associated genes by suppressing the CRTC3/microphthalmia-associated transcription factors. Topical application of semaxanib reduced melanin accumulation in the ultraviolet B-stimulated ex vivo human epidermis and tail of K14-stem cell factor transgenic mice. Mechanistically, the antimelanogenic effect induced by semaxanib was associated with SIK2-CRTC3-MITF rather than VEGF signaling in melanocytes. CONCLUSION Semaxanib emerges as a promising candidate for the development of therapeutics for hyperpigmentation, potentially working independently of VEGF signaling in human melanocytes.
Collapse
Affiliation(s)
- HyeJi Kwon
- Department of Brain Sciences, Brain Korea 21 project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jeong Hyeon Lee
- Department of Dermatology, Brain Korea 21 project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jae Min Yoo
- Department of Dermatology, Brain Korea 21 project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Huonggiang Nguyen
- Department of Brain Sciences, Brain Korea 21 project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hongchan An
- College of Pharmacy and Insitute of Pharmaceutical Sciences, CHA University Pocheon, Gyeonggi-do, Korea.
| | - Sung Eun Chang
- Department of Dermatology, Brain Korea 21 project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| | - Youngsup Song
- Department of Brain Sciences, Brain Korea 21 project, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
4
|
Lissek T. Aging as a Consequence of the Adaptation-Maladaptation Dilemma. Adv Biol (Weinh) 2024; 8:e2300654. [PMID: 38299389 DOI: 10.1002/adbi.202300654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Indexed: 02/02/2024]
Abstract
In aging, the organism is unable to counteract certain harmful influences over its lifetime which leads to progressive dysfunction and eventually death, thus delineating aging as one failed process of adaptation to a set of aging stimuli. A central problem in understanding aging is hence to explain why the organism cannot adapt to these aging stimuli. The adaptation-maladaptation theory of aging proposes that in aging adaptation processes such as adaptive transcription, epigenetic remodeling, and metabolic plasticity drive dysfunction themselves over time (maladaptation) and thereby cause aging-related disorders such as cancer and metabolic dysregulation. The central dilemma of aging is thus that the set of adaptation mechanisms that the body uses to deal with internal and external stressors acts as a stressor itself and cannot be effectively counteracted. The only available option for the organism to decrease maladaptation may be a program to progressively reduce the output of adaptive cascades (e.g., via genomic methylation) which then leads to reduced physiological adaptation capacity and syndromes like frailty, immunosenescence, and cognitive decline. The adaptation-maladaptation dilemma of aging entails that certain biological mechanisms can simultaneously protect against aging as well as drive aging. The key to longevity may lie in uncoupling adaptation from maladaptation.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| |
Collapse
|
5
|
Lv J, Zhang X, An X, Cao Y, Meng D, Zou K, Gao R, Zhang R. The inhibition of VDAC1 oligomerization promotes pigmentation through the CaMK-CRTCs/CREB-MITF pathway. Exp Cell Res 2024; 434:113874. [PMID: 38070860 DOI: 10.1016/j.yexcr.2023.113874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
The voltage-dependent anion channel 1 (VDAC1) forms an oligomeric structure on the mitochondrial outer membrane, which plays critical roles in many physiological processes. Research studies have demonstrated that the knockout of VDAC1 increases pigment content and up-regulates the expression of melanogenic genes. Due to its involvement in various physiological processes, the depletion of VDAC1 has significant detrimental effects on cellular functions and the inhibition of VDAC1 oligomerization has recently emerged as a promising strategy for the treatment of several diseases. In this study, we found that VDAC1 oligomerization inhibitors, VBIT-12 and NSC-15364, promote melanogenesis, dendrite formation and melanosome transport in human epidermal melanocytes (HEMCs). Mechanistically, treatment of HEMCs with an oligomerization inhibitor increased the level of cytoplasmic calcium ions, which activated calcium-calmodulin dependent protein kinase (CaMK) and led to the phosphorylation of CREB and the nuclear translocation of CREB-regulated transcription coactivators (CRTCs). Subsequently, CRTCs, p-CREB and CREB-binding protein (CBP) in the nucleus cooperatively recruit the transcription machinery to initiate the transcription of MITF thus promoting pigmentation. Importantly, our study also demonstrates that VDAC1 oligomerization inhibitors increase pigmentation in zebrafish and in human skin explants, highlighting their potential as a therapeutic strategy for skin pigmentation disorders.
Collapse
Affiliation(s)
- Jinpeng Lv
- School of Pharmacy, Changzhou University, Changzhou, 213000, China; Department of Dermatology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Ximei Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213000, China
| | - Xiaohong An
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, China; Yunnan Botanee Bio-technology Group Co., Ltd., Kunming, 650106, China
| | - Yan Cao
- Department of Dermatology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Duo Meng
- School of Pharmacy, Changzhou University, Changzhou, 213000, China
| | - Kun Zou
- School of Pharmacy, Changzhou University, Changzhou, 213000, China
| | - Rongyin Gao
- Department of Dermatology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Ruzhi Zhang
- Department of Dermatology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China.
| |
Collapse
|
6
|
Zhu J, Li C, Wang P, Liu Y, Li Z, Chen Z, Zhang Y, Wang B, Li X, Yan Z, Liang X, Zhou S, Ao X, Zhu M, Zhou P, Gu Y. Deficiency of salt-inducible kinase 2 (SIK2) promotes immune injury by inhibiting the maturation of lymphocytes. MedComm (Beijing) 2023; 4:e366. [PMID: 37706195 PMCID: PMC10495731 DOI: 10.1002/mco2.366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Salt-inducible kinase 2 (SIK2) belongs to the serine/threonine protein kinases of the AMPK/SNF1 family, which has important roles in cell cycle, tumor, melanogenesis, neuronal damage repair and apoptosis. Recent studies showed that SIK2 regulates the macrophage polarization to make a balance between inflammation and macrophage. Macrophage is critical to initiate immune regulation, however, whether SIK2 can be involved in immune regulation is not still well understood. Here, we revealed that the protein of SIK2 was highly expressed in thymus, spleen, lung, and brain. And SIK2 protein content increased in RAW264.7 and AHH1 cells with a time and dose-dependent after-ionizing radiation (IR). Inhibition of SIK2 could promote AHH1 cells apoptosis Moreover, we used the Cre-LoxP system to construct the SIK2+/- mice, and the research on function suggested that the deficiency of SIK2 could promote the sensitivity of IR. The deficiency of SIK2 promoted the immune injury via inhibiting the maturation of T cells and B cells. Furthermore, the TCRβ rearrangement was inhibited by the deficiency of SIK2. Collectively, this study demonstrated that SIK2 provides an essential function of regulating immune injury, which will provide new ideas for the treatment of immune injury-related diseases.
Collapse
Affiliation(s)
- Jiaojiao Zhu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingP. R. China
| | - Chao Li
- School of Life ScienceShihezi University, ShiheziXinjiang ProvinceP. R. China
| | - Ping Wang
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingP. R. China
| | - Yuhao Liu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingP. R. China
| | - Zhongqiu Li
- Medical SchoolShihezi University, ShiheziXinjiang ProvinceP. R. China
| | - Zhongmin Chen
- PLA Rocket Force Characteristic Medical CenterBeijingP. R. China
| | - Ying Zhang
- Medical SchoolShihezi University, ShiheziXinjiang ProvinceP. R. China
| | - Bin Wang
- School of Life ScienceShihezi University, ShiheziXinjiang ProvinceP. R. China
| | - Xueping Li
- School of Life ScienceShihezi University, ShiheziXinjiang ProvinceP. R. China
| | - Ziyan Yan
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingP. R. China
| | - Xinxin Liang
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceP. R. China
| | - Shenghui Zhou
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceP. R. China
| | - Xingkun Ao
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceP. R. China
| | - Maoxiang Zhu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingP. R. China
| | - Pingkun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingP. R. China
| | - Yongqing Gu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingP. R. China
- Medical SchoolShihezi University, ShiheziXinjiang ProvinceP. R. China
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceP. R. China
| |
Collapse
|
7
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
8
|
Wang J, Gong J, Wang Q, Tang T, Li W. VDAC1 negatively regulates melanogenesis through the Ca 2+-calcineurin-CRTC1-MITF pathway. Life Sci Alliance 2022; 5:5/10/e202101350. [PMID: 35649693 PMCID: PMC9160443 DOI: 10.26508/lsa.202101350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022] Open
Abstract
This study revealed an important and novel role of mitochondrial VDAC1 in regulating melanogenesis in resting melanocytes through a Ca2+-regulated pathway that is independent of the alpha-MSH/UVB pathway. Melanocytes produce melanin for protecting DNA from ultraviolet exposure to maintain genomic stability. However, the precise regulation of melanogenesis is not fully understood. VDAC1, which is mainly localized in the outer mitochondrial membrane, functions as a gatekeeper for the entry or exit of Ca2+ between mitochondria and the cytosol and participates in multiple physiological processes. Here, we showed a novel role of VDAC1 in melanogenesis. Depletion of VDAC1 increased pigment content and up-regulated melanogenic genes, TYR, TYRP1, and TYRP2. Knockdown of VDAC1 increased free cytosolic Ca2+ in cultured melanocytes at the resting state, which activated calcineurin through the Ca2+-calmodulin-CaN pathway. The activated CaN dephosphorylated CRTC1 to facilitate its nuclear translocation and ultimately up-regulated the transcription of the master regulator of melanogenesis MITF. Consistently, depletion of Vdac1 in mice led to up-regulation of the transcription of MITF and thereafter its targeted melanogenic genes. These findings suggest that VDAC1 is an important negative regulator of melanogenesis, which expands our knowledge about pigment production and implies its potential role in melanoma.
Collapse
Affiliation(s)
- Jianli Wang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Juanjuan Gong
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Qiaochu Wang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Tieshan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Zheng Y, Zhou Y, Huang Y, Wang H, Guo H, Yuan B, Zhang J. Transcriptome sequencing of black and white hair follicles in the giant panda. Integr Zool 2022; 18:552-568. [PMID: 35500067 DOI: 10.1111/1749-4877.12652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the completion of the draft assembly of the giant panda genome sequence, RNA sequencing technology has been widely used in genetic research on giant pandas. We used RNA-seq to examine black and white hair follicle samples from adult pandas. By comparison with the giant panda genome, 75 963 SNP loci were labeled, 2 426 differentially expressed genes were identified, and 2 029 new genes were discovered, among which 631 were functionally annotated. A cluster analysis of the differentially expressed genes showed that they were mainly related to the Wnt signaling pathway, ECM-receptor interaction, the p53 signaling pathway and ribosome processing. The enrichment results showed that there were significant differences in the regulatory networks of hair follicles with different colors during the transitional stage of hair follicle resting growth, which may play a regulatory role in melanin synthesis during growth. In conclusion, our results provide new insights and more data support for research on the color formation in giant pandas. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Yingmin Zhou
- Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park, China
| | - Yijie Huang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Haoqi Wang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Haixiang Guo
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Bao Yuan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Jiabao Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| |
Collapse
|
10
|
Khan NH, Mir M, Qian L, Baloch M, Ali Khan MF, Rehman AU, Ngowi EE, Wu DD, Ji XY. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. J Adv Res 2022; 36:223-247. [PMID: 35127174 PMCID: PMC8799916 DOI: 10.1016/j.jare.2021.06.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background Skin cancer has been the leading type of cancer worldwide. Melanoma and non-melanoma skin cancers are now the most common types of skin cancer that have been reached to epidemic proportion. Based on the rapid prevalence of skin cancers, and lack of efficient drug delivery systems, it is essential to surge the possible ways to prevent or cure the disease. Aim of review Although surgical modalities and therapies have been made great progress in recent years, however, there is still an urgent need to alleviate its increased burden. Hence, understanding the precise pathophysiological signaling mechanisms and all other factors of such skin insults will be beneficial for the development of more efficient therapies. Key scientific concepts of review In this review, we explained new understandings about onset and development of skin cancer and described its management via polymeric micro/nano carriers-based therapies, highlighting the current key bottlenecks and future prospective in this field. In therapeutic drug/gene delivery approaches, polymeric carriers-based system is the most promising strategy. This review discusses that how polymers have successfully been exploited for development of micro/nanosized systems for efficient delivery of anticancer genes and drugs overcoming all the barriers and limitations associated with available conventional therapies. In addition to drug/gene delivery, intelligent polymeric nanocarriers platforms have also been established for combination anticancer therapies including photodynamic and photothermal, and for theranostic applications. This portfolio of latest approaches could promote the blooming growth of research and their clinical availability.
Collapse
Key Words
- 5-ALA, 5-aminolevulinic acid
- 5-FU, 5-fluorouracil
- AIDS, Acquired immune deficiency syndrome
- BCC, Basal cell carcinoma
- BCCs, Basal cell carcinomas
- Basal cell carcinoma
- CREB, response element-binding protein
- DDS, Drug delivery system
- DIM-D, Di indolyl methane derivative
- Drug delivery
- GNR-PEG-MN, PEGylated gold nanorod microneedle
- Gd, Gadolinium
- Gene delivery
- HH, Hedgehog
- HPMC, Hydroxypropyl methylcellulose
- IPM, Isopropyl myristate
- MCIR, Melanocortin-1 receptor
- MNPs, Magnetic nanoparticle
- MNs, Microneedles
- MRI, Magnetic Resonance Imaging
- MSC, Melanoma skin cancer
- Microneedles
- Mn, Manganese
- NMSC, Non melanoma skin cancer
- NPs, Nano Particles
- OTR, Organ transplant recipients
- PAMAM, Poly-amidoamines
- PAN, Polyacrylonitrile
- PATCH1, Patch
- PCL, Poly (ε-caprolactone)
- PDT, Photodynamic therapy
- PEG, Polyethylene glycol
- PLA, Poly lactic acid
- PLA-HPG, Poly (d-l-lactic acid)-hyperbranched polyglycerol
- PLGA, Poly (lactide-co-glycolide) copolymers
- PLL, Poly (L-lysine)
- Polymeric nanocarriers
- QDs, Quantum dots
- SC, Skin cancer
- SCC, Squamous cell Carcinoma
- SMO, Smoothen
- SPIO, Superparamagnetic iron oxide
- Squamous cell carcinoma
- UV, Ultra Violet
- cAMP, Cyclic adenosine monophosphate
- dPG, Dendritic polyglycerol
- hTERT, Human telomerase reverse transcriptase
Collapse
Affiliation(s)
- Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences. Henan University, Kaifeng, Henan 475004, China
| | - Maria Mir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Lei Qian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mahnoor Baloch
- School of Natural Sciences, National University of Science and Technology, Islamabad 44000, Pakistan
| | - Muhammad Farhan Ali Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asim-ur- Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Sciences, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
11
|
Allouche J, Rachmin I, Adhikari K, Pardo LM, Lee JH, McConnell AM, Kato S, Fan S, Kawakami A, Suita Y, Wakamatsu K, Igras V, Zhang J, Navarro PP, Lugo CM, Noonan HR, Christie KA, Itin K, Mujahid N, Lo JA, Won CH, Evans CL, Weng QY, Wang H, Osseiran S, Lovas A, Németh I, Cozzio A, Navarini AA, Hsiao JJ, Nguyen N, Kemény LV, Iliopoulos O, Berking C, Ruzicka T, Gonzalez-José R, Bortolini MC, Canizales-Quinteros S, Acuna-Alonso V, Gallo C, Poletti G, Bedoya G, Rothhammer F, Ito S, Schiaffino MV, Chao LH, Kleinstiver BP, Tishkoff S, Zon LI, Nijsten T, Ruiz-Linares A, Fisher DE, Roider E. NNT mediates redox-dependent pigmentation via a UVB- and MITF-independent mechanism. Cell 2021; 184:4268-4283.e20. [PMID: 34233163 PMCID: PMC8349839 DOI: 10.1016/j.cell.2021.06.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/09/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022]
Abstract
Ultraviolet (UV) light and incompletely understood genetic and epigenetic variations determine skin color. Here we describe an UV- and microphthalmia-associated transcription factor (MITF)-independent mechanism of skin pigmentation. Targeting the mitochondrial redox-regulating enzyme nicotinamide nucleotide transhydrogenase (NNT) resulted in cellular redox changes that affect tyrosinase degradation. These changes regulate melanosome maturation and, consequently, eumelanin levels and pigmentation. Topical application of small-molecule inhibitors yielded skin darkening in human skin, and mice with decreased NNT function displayed increased pigmentation. Additionally, genetic modification of NNT in zebrafish alters melanocytic pigmentation. Analysis of four diverse human cohorts revealed significant associations of skin color, tanning, and sun protection use with various single-nucleotide polymorphisms within NNT. NNT levels were independent of UVB irradiation and redox modulation. Individuals with postinflammatory hyperpigmentation or lentigines displayed decreased skin NNT levels, suggesting an NNT-driven, redox-dependent pigmentation mechanism that can be targeted with NNT-modifying topical drugs for medical and cosmetic purposes.
Collapse
Affiliation(s)
- Jennifer Allouche
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Inbal Rachmin
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kaustubh Adhikari
- School of Mathematics and Statistics, The Open University, Milton Keynes, MK7 6AA, UK; Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Luba M Pardo
- Department of Dermatology, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Ju Hee Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, 03722 Seoul, Korea
| | - Alicia M McConnell
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and the Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Shinichiro Kato
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Immunology, Center for 5D Cell Dynamics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shaohua Fan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, 200438 Shanghai, China
| | - Akinori Kawakami
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Yusuke Suita
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Vivien Igras
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jianming Zhang
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Paula P Navarro
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Camila Makhlouta Lugo
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Haley R Noonan
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and the Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Kathleen A Christie
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Kaspar Itin
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
| | - Nisma Mujahid
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Boston University School of Medicine, Boston, MA 02118, USA; University of Utah, Department of Dermatology, Salt Lake City, UT 84132, USA
| | - Jennifer A Lo
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Chong Hyun Won
- Department of Dermatology, Asan Medical Center, Ulsan University College of Medicine, 05505 Seoul, Korea
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Qing Yu Weng
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hequn Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sam Osseiran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Alyssa Lovas
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - István Németh
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary
| | - Antonio Cozzio
- Department of Dermatology, Venerology, and Allergology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Alexander A Navarini
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
| | - Jennifer J Hsiao
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nhu Nguyen
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lajos V Kemény
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| | - Othon Iliopoulos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Thomas Ruzicka
- Department of Dermatology and Allergy, University Hospital Munich, Ludwig Maximilian University, 80337 Munich, Germany
| | - Rolando Gonzalez-José
- Instituto Patagónico de Ciencias Sociales y Humanas-Centro Nacional Patagónico, CONICET, Puerto Madryn U912OACD, Argentina
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México e Instituto Nacional de Medicina Genómica, Mexico City 04510, Mexico
| | | | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Gabriel Bedoya
- Genética Molecular (GENMOL), Universidad de Antioquia, Medellín 5001000, Colombia
| | - Francisco Rothhammer
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000009, Chile; Programa de Genetica Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 1027, Chile
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Maria Vittoria Schiaffino
- Internal Medicine, Diabetes and Endocrinology Unit, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Tishkoff
- Departments of Genetics and Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and the Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Tamar Nijsten
- Department of Dermatology, Erasmus Medical Center, 3015 Rotterdam, the Netherlands
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200433, China; UMR 7268, CNRS-EFS-ADES, Aix-Marseille University, Marseille 13005, France
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Elisabeth Roider
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland; Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary.
| |
Collapse
|
12
|
The Small-Molecule Inhibitor MRIA9 Reveals Novel Insights into the Cell Cycle Roles of SIK2 in Ovarian Cancer Cells. Cancers (Basel) 2021; 13:cancers13153658. [PMID: 34359562 PMCID: PMC8345098 DOI: 10.3390/cancers13153658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary The current standard therapy of ovarian cancers comprises a reductive surgery followed by a combination of taxane-platinum-based primary chemotherapy. However, despite an initial positive response, patients in the advanced stage showed relapse within months or even weeks. Thus, there is a need to find combinatorial therapies that permit overcoming the paclitaxel-associated resistance in patients. Here, we found that MRIA9, a newly developed small-molecule inhibitor of the salt-inducible-kinase 2, interferes with the cell division of cancer cells. More importantly, MRIA9 increases paclitaxel efficiency in eliminating ovarian cancer cells and patient derived cancer cells by inducing apoptosis or programmed cell death. Thus, our study indicates that MRIA9 might represent a novel therapeutical tool for translational studies to overcome paclitaxel resistance in ovarian cancer. Abstract The activity of the Salt inducible kinase 2 (SIK2), a member of the AMP-activated protein kinase (AMPK)-related kinase family, has been linked to several biological processes that maintain cellular and energetic homeostasis. SIK2 is overexpressed in several cancers, including ovarian cancer, where it promotes the proliferation of metastases. Furthermore, as a centrosome kinase, SIK2 has been shown to regulate the G2/M transition, and its depletion sensitizes ovarian cancer to paclitaxel-based chemotherapy. Here, we report the consequences of SIK2 inhibition on mitosis and synergies with paclitaxel in ovarian cancer using a novel and selective inhibitor, MRIA9. We show that MRIA9-induced inhibition of SIK2 blocks the centrosome disjunction, impairs the centrosome alignment, and causes spindle mispositioning during mitosis. Furthermore, the inhibition of SIK2 using MRIA9 increases chromosomal instability, revealing the role of SIK2 in maintaining genomic stability. Finally, MRIA9 treatment enhances the sensitivity to paclitaxel in 3D-spheroids derived from ovarian cancer cell lines and ovarian cancer patients. Our study suggests selective targeting of SIK2 in ovarian cancer as a therapeutic strategy for overcoming paclitaxel resistance.
Collapse
|
13
|
Nuts and bolts of the salt-inducible kinases (SIKs). Biochem J 2021; 478:1377-1397. [PMID: 33861845 PMCID: PMC8057676 DOI: 10.1042/bcj20200502] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022]
Abstract
The salt-inducible kinases, SIK1, SIK2 and SIK3, most closely resemble the AMP-activated protein kinase (AMPK) and other AMPK-related kinases, and like these family members they require phosphorylation by LKB1 to be catalytically active. However, unlike other AMPK-related kinases they are phosphorylated by cyclic AMP-dependent protein kinase (PKA), which promotes their binding to 14-3-3 proteins and inactivation. The most well-established substrates of the SIKs are the CREB-regulated transcriptional co-activators (CRTCs), and the Class 2a histone deacetylases (HDAC4/5/7/9). Phosphorylation by SIKs promotes the translocation of CRTCs and Class 2a HDACs to the cytoplasm and their binding to 14-3-3s, preventing them from regulating their nuclear binding partners, the transcription factors CREB and MEF2. This process is reversed by PKA-dependent inactivation of the SIKs leading to dephosphorylation of CRTCs and Class 2a HDACs and their re-entry into the nucleus. Through the reversible regulation of these substrates and others that have not yet been identified, the SIKs regulate many physiological processes ranging from innate immunity, circadian rhythms and bone formation, to skin pigmentation and metabolism. This review summarises current knowledge of the SIKs and the evidence underpinning these findings, and discusses the therapeutic potential of SIK inhibitors for the treatment of disease.
Collapse
|
14
|
Kindl GH, D'Orazio JA. Pharmacologic manipulation of skin pigmentation. Pigment Cell Melanoma Res 2021; 34:777-785. [PMID: 33666358 DOI: 10.1111/pcmr.12969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022]
Abstract
Skin complexion is among the most recognizable phenotypes between individuals and is mainly determined by the amount and type of melanin pigment deposited in the epidermis. Persons with dark skin complexion have more of a brown/black pigment known as eumelanin in their epidermis whereas those with fair skin complexions have less. Epidermal eumelanin acts as a natural sunblock by preventing incoming UV photons from penetrating into the skin and therefore protects against UV mutagenesis. By understanding the signaling pathways and regulation of pigmentation, strategies can be developed to manipulate skin pigmentation to improve UV resistance and to diminish skin cancer risk.
Collapse
Affiliation(s)
- Gabriel H Kindl
- The University of Kentucky College of Medicine, University of Kentucky, Lexington, KY, USA.,The Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - John A D'Orazio
- The University of Kentucky College of Medicine, University of Kentucky, Lexington, KY, USA.,The Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Department of Pediatrics, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
15
|
|
16
|
Yardman-Frank JM, Fisher DE. Skin pigmentation and its control: From ultraviolet radiation to stem cells. Exp Dermatol 2020; 30:560-571. [PMID: 33320376 DOI: 10.1111/exd.14260] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the light of substantial discoveries in epithelial and hair pigmentation pathophysiology, this review summarizes the current understanding of skin pigmentation mechanisms. Melanocytes are pigment-producing cells, and their key regulating transcription factor is the melanocyte-specific microphthalmia-associated transcription factor (m-MITF). Ultraviolet (UV) radiation is a unique modulator of skin pigmentation influencing tanning pathways. The delayed tanning pathway occurs as UVB produces keratinocyte DNA damage, causing p53-mediated expression of the pro-opiomelanocortin (POMC) gene that is processed to release α-melanocyte-stimulating hormone (α-MSH). α-MSH stimulates the melanocortin 1 receptor (MC1R) on melanocytes, leading to m-MITF expression and melanogenesis. POMC cleavage also releases β-endorphin, which creates a neuroendocrine pathway that promotes UV-seeking behaviours. Mutations along the tanning pathway can affect pigmentation and increase the risk of skin malignancies. MC1R variants have received considerable attention, yet the allele is highly polymorphic with varied phenotypes. Vitiligo presents with depigmented skin lesions due to autoimmune destruction of melanocytes. UVB phototherapy stimulates melanocyte stem cells in the hair bulge to undergo differentiation and upwards migration resulting in perifollicular repigmentation of vitiliginous lesions, which is under sophisticated signalling control. Melanocyte stem cells, normally quiescent, undergo cyclic activation/differentiation and downward migration with the hair cycle, providing pigment to hair follicles. Physiological hair greying results from progressive loss of melanocyte stem cells and can be accelerated by acute stress-induced, sympathetic driven hyperproliferation of the melanocyte stem cells. Ultimately, by reviewing the pathways governing epithelial and follicular pigmentation, numerous areas of future research and potential points of intervention are highlighted.
Collapse
Affiliation(s)
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Sun Z, Jiang Q, Li J, Guo J. The potent roles of salt-inducible kinases (SIKs) in metabolic homeostasis and tumorigenesis. Signal Transduct Target Ther 2020; 5:150. [PMID: 32788639 PMCID: PMC7423983 DOI: 10.1038/s41392-020-00265-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/22/2020] [Indexed: 01/26/2023] Open
Abstract
Salt-inducible kinases (SIKs) belong to AMP-activated protein kinase (AMPK) family, and functions mainly involve in regulating energy response-related physiological processes, such as gluconeogenesis and lipid metabolism. However, compared with another well-established energy-response kinase AMPK, SIK roles in human diseases, especially in diabetes and tumorigenesis, are rarely investigated. Recently, the pilot roles of SIKs in tumorigenesis have begun to attract more attention due to the finding that the tumor suppressor role of LKB1 in non-small-cell lung cancers (NSCLCs) is unexpectedly mediated by the SIK but not AMPK kinases. Thus, here we tend to comprehensively summarize the emerging upstream regulators, downstream substrates, mouse models, clinical relevance, and candidate inhibitors for SIKs, and shed light on SIKs as the potential therapeutic targets for cancer therapies.
Collapse
Affiliation(s)
- Zicheng Sun
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.,Department of Breast and Thyroid Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Qiwei Jiang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Jie Li
- Department of Breast and Thyroid Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| |
Collapse
|
18
|
Armouti M, Winston N, Hatano O, Hobeika E, Hirshfeld-Cytron J, Liebermann J, Takemori H, Stocco C. Salt-inducible Kinases Are Critical Determinants of Female Fertility. Endocrinology 2020; 161:5826400. [PMID: 32343771 PMCID: PMC7286620 DOI: 10.1210/endocr/bqaa069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022]
Abstract
Follicle development is the most crucial step toward female fertility and is controlled mainly by follicle-stimulating hormone (FSH). In ovarian granulosa cells (GCs), FSH activates protein kinase A by increasing 3',5'-cyclic adenosine 5'-monophosphate (cAMP). Since cAMP signaling is impinged in part by salt-inducible kinases (SIKs), we examined the role of SIKs on the regulation of FSH actions. Here, we report that SIKs are essential for normal ovarian function and female fertility. All SIK isoforms are expressed in human and rodent GCs at different levels (SIK3>SIK2>SIK1). Pharmacological inhibition of SIK activity potentiated the stimulatory effect of FSH on markers of GC differentiation in mouse, rat, and human GCs and estradiol production in rat GCs. In humans, SIK inhibition strongly enhanced FSH actions in GCs of patients with normal or abnormal ovarian function. The knockdown of SIK2, but not SIK1 or SIK3, synergized with FSH on the induction of markers of GC differentiation. SIK inhibition boosted gonadotropin-induced GC differentiation in vivo, while the genomic knockout of SIK2 led to a significant increase in the number of ovulated oocytes. Conversely, SIK3 knockout females were infertile, FSH insensitive, and had abnormal folliculogenesis. These findings reveal novel roles for SIKs in the regulation of GC differentiation and female fertility, and contribute to our understanding of the mechanisms regulated by FSH. Furthermore, these data suggest that specific pharmacological modulation of SIK2 activity could be of benefit to treat ovulatory defects in humans and to increase the propagation of endangered species and farm mammals.
Collapse
Affiliation(s)
- Marah Armouti
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Nicola Winston
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine. Chicago, Illinois
| | - Osamu Hatano
- Department of Basic Medicine, Nara Medical University, Nara, Japan
| | - Elie Hobeika
- Fertility Centers of Illinois, Chicago, Illinois
| | | | | | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Carlos Stocco
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine. Chicago, Illinois
- Correspondence: Carlos Stocco, Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612. E-mail:
| |
Collapse
|
19
|
Zhang M, Wang H, Sun G. Tumor‐suppressor Fbxw7 targets SIK2 for degradation to interfere with TORC2‐AKT signaling in pancreatic cancer. Cell Biol Int 2020; 44:1900-1910. [PMID: 32437091 DOI: 10.1002/cbin.11396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Ming‐xia Zhang
- Department of OncologyThe First Affiliated Hospital of Anhui Medical University Hefei China
- Department of Radiation OncologyThe First Affiliated Hospital of Anhui Medical University Hefei China
| | - Hao Wang
- Department of Radiation OncologyThe First Affiliated Hospital of Anhui Medical University Hefei China
| | - Guo‐ping Sun
- Department of OncologyThe First Affiliated Hospital of Anhui Medical University Hefei China
| |
Collapse
|
20
|
Park M, Miyoshi C, Fujiyama T, Kakizaki M, Ikkyu A, Honda T, Choi J, Asano F, Mizuno S, Takahashi S, Yanagisawa M, Funato H. Loss of the conserved PKA sites of SIK1 and SIK2 increases sleep need. Sci Rep 2020; 10:8676. [PMID: 32457359 PMCID: PMC7250853 DOI: 10.1038/s41598-020-65647-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/05/2020] [Indexed: 11/25/2022] Open
Abstract
Although sleep is one of the most conserved behaviors, the intracellular mechanism regulating sleep/wakefulness remains unknown. We recently identified a protein kinase, SIK3, as a sleep-regulating molecule. Mice that lack a well-conserved protein kinase A (PKA) phosphorylation site, S551, showed longer non-rapid eye movement (NREM) sleep and increased NREMS delta density. S551 of SIK3 is conserved in other members of the SIK family, such as SIK1 (S577) and SIK2 (S587). Here, we examined whether the PKA phosphorylation sites of SIK1 and SIK2 are involved in sleep regulation by generating Sik1S577A and Sik2S587A mice. The homozygous Sik1S577A mice showed a shorter wake time, longer NREMS time, and higher NREMS delta density than the wild-type mice. The heterozygous and homozygous Sik2S587A mice showed increased NREMS delta density. Both the Sik1S577A and Sik2S587A mice exhibited proper homeostatic regulation of sleep need after sleep deprivation. Despite abundant expression of Sik1 in the suprachiasmatic nucleus, the Sik1S577A mice showed normal circadian behavior. Although Sik2 is highly expressed in brown adipose tissue, the male and female Sik2S587A mice that were fed either a chow or high-fat diet showed similar weight gain as the wild-type littermates. These results suggest that PKA-SIK signaling is involved in the regulation of sleep need.
Collapse
Affiliation(s)
- Minjeong Park
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Chika Miyoshi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Tomoyuki Fujiyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Miyo Kakizaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Aya Ikkyu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Takato Honda
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Jinhwan Choi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Fuyuki Asano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan. .,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. .,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, 305-8575, Ibaraki, Japan.
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8575, Japan. .,Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan.
| |
Collapse
|
21
|
Kim JH, Hong AR, Kim YH, Yoo H, Kang SW, Chang SE, Song Y. JNK suppresses melanogenesis by interfering with CREB-regulated transcription coactivator 3-dependent MITF expression. Am J Cancer Res 2020; 10:4017-4029. [PMID: 32226536 PMCID: PMC7086364 DOI: 10.7150/thno.41502] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
Melanogenesis is a critical self-defense mechanism against ultraviolet radiation (UVR)-induced skin damage and carcinogenesis; however, dysregulation of melanin production and distribution causes skin-disfiguring pigmentary disorders. Melanogenesis is initiated by UVR-induced cAMP generation and ensuing activation of transcription factor CREB, which induces expression of the master melanogenic regulator MITF. Recent studies have demonstrated that recruitment of CRTCs to the CREB transcription complex is also required for UVR-stimulated melanogenesis. Therefore, modulation of cAMP-CRTC/CREB-MITF signaling may be a useful therapeutic strategy for UVR-associated skin pigmentary disorders. Methods: We identified the small-molecule Ro31-8220 from CREB/CRTC activity screening and examined its melanogenic activity in cultured mouse and human melanocytes as well as in human skin. Molecular mechanisms were deciphered by immunoblotting, RT-PCR, promoter assays, tyrosinase activity assays, immunofluorescent examination of CRTC3 subcellular localization, and shRNA-based knockdown. Results: Ro31-8220 suppressed basal and cAMP-stimulated melanin production in melanocytes and human melanocyte co-culture as well as UVR-stimulated melanin accumulation in human skin through downregulation of MITF and tyrosinase expression. Mechanistically, down regulation of MITF expression by Ro31-8220 was due to inhibition of transcriptional activity of CREB, which was resulted from phosphorylation-dependent blockade of nuclear translocation of CRTC3 via JNK activation. The selective JNK activator anisomycin also inhibited melanin production through phosphoinhibition of CRTC3, while JNK inhibition enhanced melanogenesis by stimulating CRTC3 dephosphorylation and nuclear migration. Conclusions: Melanogenesis can be enhanced or suppressed via pharmacological modulation of a previously unidentified JNK-CRTC/CREB-MITF signaling axis. As Ro31-8220 potently inhibits UVR-stimulated melanin accumulation in human skin, suggesting that small-molecule JNK-CRTC signaling modulators may provide therapeutic benefit for pigmentation disorders.
Collapse
|
22
|
Rachmin I, Ostrowski SM, Weng QY, Fisher DE. Topical treatment strategies to manipulate human skin pigmentation. Adv Drug Deliv Rev 2020; 153:65-71. [PMID: 32092380 DOI: 10.1016/j.addr.2020.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/15/2020] [Accepted: 02/19/2020] [Indexed: 01/07/2023]
Abstract
Skin pigmentation is a result of melanin produced by melanocytes in the epidermis. Melanocyte activity, along with the type and distribution of melanins, is the main driver for diversity of skin pigmentation. Dark melanin acts to protect against the deleterious effects of ultraviolet (UV) radiation, including photo-aging and skin cancer formation. In turn, UV radiation activates skin melanocytes to induce further pigmentation (i.e., "tanning pathway"). The well-characterized MSH/MC1R-cAMP-MITF pathway regulates UV-induced melanization. Pharmacologic activation of this pathway ("sunless tanning") represents a potential strategy for skin cancer prevention, particularly in those with light skin or the "red hair" phenotype who tan poorly after UV exposure due to MC1R inactivating polymorphisms. Skin hyperpigmentation can also occur as a result of inflammatory processes and dermatological disorders such as melasma. While primarily of cosmetic concern, these conditions can dramatically impact quality of life of affected patients. Several topical agents are utilized to treat skin pigmentation disorders. Here, we review melanogenesis induced by UV exposure and the agents that target this pathway.
Collapse
|
23
|
PAK4 signaling in health and disease: defining the PAK4-CREB axis. Exp Mol Med 2019; 51:1-9. [PMID: 30755582 PMCID: PMC6372590 DOI: 10.1038/s12276-018-0204-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/27/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
p21-Activated kinase 4 (PAK4), a member of the PAK family, regulates a wide range of cellular functions, including cell adhesion, migration, proliferation, and survival. Dysregulation of its expression and activity thus contributes to the development of diverse pathological conditions. PAK4 plays a pivotal role in cancer progression by accelerating the epithelial–mesenchymal transition, invasion, and metastasis. Therefore, PAK4 is regarded as an attractive therapeutic target in diverse types of cancers, prompting the development of PAK4-specific inhibitors as anticancer drugs; however, these drugs have not yet been successful. PAK4 is essential for embryonic brain development and has a neuroprotective function. A long list of PAK4 effectors has been reported. Recently, the transcription factor CREB has emerged as a novel effector of PAK4. This finding has broad implications for the role of PAK4 in health and disease because CREB-mediated transcriptional reprogramming involves a wide range of genes. In this article, we review the PAK4 signaling pathways involved in prostate cancer, Parkinson’s disease, and melanogenesis, focusing in particular on the PAK4-CREB axis. An enzyme that regulates an important controller of gene expression may offer a therapeutic target for cancer and other diseases. cAMP response element-binding protein (CREB) interacts with various other proteins to switch a myriad of target genes on and off in different cells. A review by Eung-Gook Kim, Eun-Young Shin and colleagues at Chungbuk National University, Cheongju, South Korea, explores the interplay between CREB and an enzyme called p21-activated kinase 4 (PAK4) in human health and disease. PAK4, for example, has been shown to promote CREB’s gene-activating function in prostate cancer, and PAK4 overexpression is a feature of numerous other tumor types. Disruptions in PAK4-mediated regulation of CREB activity have also been observed in neurons affected by Parkinson’s disease. The authors see strong clinical promise in further exploring the biology of the PAK4-CREB pathway.
Collapse
|
24
|
Tasoulas J, Rodon L, Kaye FJ, Montminy M, Amelio AL. Adaptive Transcriptional Responses by CRTC Coactivators in Cancer. Trends Cancer 2019; 5:111-127. [PMID: 30755304 DOI: 10.1016/j.trecan.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 01/09/2023]
Abstract
Adaptive stress signaling networks directly influence tumor development and progression. These pathways mediate responses that allow cancer cells to cope with both tumor cell-intrinsic and cell-extrinsic insults and develop acquired resistance to therapeutic interventions. This is mediated in part by constant oncogenic rewiring at the transcriptional level by integration of extracellular cues that promote cell survival and malignant transformation. The cAMP-regulated transcriptional coactivators (CRTCs) are a newly discovered family of intracellular signaling integrators that serve as the conduit to the basic transcriptional machinery to regulate a host of adaptive response genes. Thus, somatic alterations that lead to CRTC activation are emerging as key driver events in the development and progression of many tumor subtypes.
Collapse
Affiliation(s)
- Jason Tasoulas
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; These authors contributed equally
| | - Laura Rodon
- Peptide Biology Laboratories, Salk Institute, La Jolla, CA, USA; These authors contributed equally
| | - Frederic J Kaye
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA; UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Marc Montminy
- Peptide Biology Laboratories, Salk Institute, La Jolla, CA, USA
| | - Antonio L Amelio
- Department of Oral and Craniofacial Health Sciences, UNC School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, Cancer Cell Biology Program, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
25
|
Chen F, Chen L, Qin Q, Sun X. Salt-Inducible Kinase 2: An Oncogenic Signal Transmitter and Potential Target for Cancer Therapy. Front Oncol 2019; 9:18. [PMID: 30723708 PMCID: PMC6349817 DOI: 10.3389/fonc.2019.00018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Salt-inducible kinase (SIK), which belongs to the sucrose non-fermenting 1/AMP-activated protein kinase family, was first discovered in the adrenal cortex of a rat on a high-salt diet. As an isoform of the SIK family, SIK2 modulates various biological functions and acts as a signal transmitter in various pathways. Compared with that in adjacent normal tissues, the expression of SIK2 is significantly higher in multiple types of tumors, which indicates its pivotal effect in oncogenesis. Studies on SIK2 have recently underlined its role in several signaling pathways, including the PI3K-Akt-mTOR pathway, the Hippo-YAP pathway, the LKB1-HDAC axis, and the cAMP-PKA axis. Moreover, a few small-molecule SIK2 inhibitors have been found to be able to rescue the oncogenicity of SIK2 during tumor development and reverse its abnormal activation of downstream pathways. In this mini-review, we discuss the results of in vivo and in vitro studies regarding the SIK2 mechanism in different signaling pathways, particularly their regulation of cancer cells. This work may provide new ideas for targeting SIK2 as a novel therapeutic strategy in tumor therapy.
Collapse
Affiliation(s)
- Fangyu Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Liuwei Chen
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qin Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Yun CY, Hong SD, Lee YH, Lee J, Jung DE, Kim GH, Kim SH, Jung JK, Kim KH, Lee H, Hong JT, Han SB, Kim Y. Nuclear Entry of CRTC1 as Druggable Target of Acquired Pigmentary Disorder. Am J Cancer Res 2019; 9:646-660. [PMID: 30809299 PMCID: PMC6376463 DOI: 10.7150/thno.30276] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/21/2018] [Indexed: 12/29/2022] Open
Abstract
Rationale: SOX10 (SRY-related HMG-box 10) and MITF-M (microphthalmia-associated transcription factor M) restrict the expression of melanogenic genes, such as TYR (tyrosinase), in melanocytes. DACE (diacetylcaffeic acid cyclohexyl ester) inhibits melanin production in α-MSH (α-melanocyte stimulating hormone)-activated B16-F0 melanoma cells. In this study, we evaluated the antimelanogenic activity of DACE in vivo and elucidated the molecular basis of its action. Methods: We employed melanocyte cultures and hyperpigmented skin samples for pigmentation assays, and applied chromatin immunoprecipitation, immunoblotting, RT-PCR or siRNA-based knockdown for mechanistic analyses. Results: Topical treatment with DACE mitigated UV-B-induced hyperpigmentation in the skin with attenuated expression of MITF-M and TYR. DACE also inhibited melanin production in α-MSH- or ET-1 (endothelin 1)-activated melanocyte cultures. As a mechanism, DACE blocked the nuclear import of CRTC1 (CREB-regulated co-activator 1) in melanocytes. DACE resultantly inhibited SOX10 induction, and suppressed the transcriptional abilities of CREB/CRTC1 heterodimer and SOX10 at MITF-M promoter, thereby ameliorating facultative melanogenesis. Furthermore, this study unveiled new issues in melanocyte biology that i) KPNA1 (Impα5) escorted CRTC1 as a cargo across the nuclear envelope, ii) SOX10 was inducible in the melanogenic process, and iii) CRTC1 could direct SOX10 induction at the transcription level. Conclusion: We propose the targeting of CRTC1 as a unique strategy in the treatment of acquired pigmentary disorders.
Collapse
|
27
|
Jeter JM, Bowles TL, Curiel-Lewandrowski C, Swetter SM, Filipp FV, Abdel-Malek ZA, Geskin LJ, Brewer JD, Arbiser JL, Gershenwald JE, Chu EY, Kirkwood JM, Box NF, Funchain P, Fisher DE, Kendra KL, Marghoob AA, Chen SC, Ming ME, Albertini MR, Vetto JT, Margolin KA, Pagoto SL, Hay JL, Grossman D, Ellis DL, Kashani-Sabet M, Mangold AR, Markovic SN, Meyskens FL, Nelson KC, Powers JG, Robinson JK, Sahni D, Sekulic A, Sondak VK, Wei ML, Zager JS, Dellavalle RP, Thompson JA, Weinstock MA, Leachman SA, Cassidy PB. Chemoprevention agents for melanoma: A path forward into phase 3 clinical trials. Cancer 2019; 125:18-44. [PMID: 30281145 PMCID: PMC6860362 DOI: 10.1002/cncr.31719] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/10/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022]
Abstract
Recent progress in the treatment of advanced melanoma has led to unprecedented improvements in overall survival and, as these new melanoma treatments have been developed and deployed in the clinic, much has been learned about the natural history of the disease. Now is the time to apply that knowledge toward the design and clinical evaluation of new chemoprevention agents. Melanoma chemoprevention has the potential to reduce dramatically both the morbidity and the high costs associated with treating patients who have metastatic disease. In this work, scientific and clinical melanoma experts from the national Melanoma Prevention Working Group, composed of National Cancer Trials Network investigators, discuss research aimed at discovering and developing (or repurposing) drugs and natural products for the prevention of melanoma and propose an updated pipeline for translating the most promising agents into the clinic. The mechanism of action, preclinical data, epidemiological evidence, and results from available clinical trials are discussed for each class of compounds. Selected keratinocyte carcinoma chemoprevention studies also are considered, and a rationale for their inclusion is presented. These data are summarized in a table that lists the type and level of evidence available for each class of agents. Also included in the discussion is an assessment of additional research necessary and the likelihood that a given compound may be a suitable candidate for a phase 3 clinical trial within the next 5 years.
Collapse
Affiliation(s)
- Joanne M Jeter
- Department of Medicine, Divisions of Genetics and Oncology, The Ohio State University, Columbus, Ohio
| | - Tawnya L Bowles
- Department of Surgery, Intermountain Health Care, Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | | | - Susan M Swetter
- Department of Dermatology, Pigmented Lesion and Melanoma Program, Stanford University Medical Center Cancer Institute, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Fabian V Filipp
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, Merced, California
| | | | - Larisa J Geskin
- Department of Dermatology, Cutaneous Oncology Center, Columbia University Medical Center, New York, New York
| | - Jerry D Brewer
- Department of Dermatologic Surgery, Mayo Clinic Minnesota, Rochester, Minnesota
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
- Division of Dermatology, Veterans Affairs Medical Center, Atlanta, Georgia
| | - Jeffrey E Gershenwald
- Departments of Surgical Oncology and Cancer Biology, Melanoma and Skin Cancer Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emily Y Chu
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - John M Kirkwood
- Melanoma and Skin Cancer Program, Department of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Neil F Box
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Dermatology Service, U.S. Department of Veterans Affairs, Eastern Colorado Health Care System, Denver, Colorado
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kari L Kendra
- Department of Internal Medicine, Medical Oncology Division, The Ohio State University, Columbus, Ohio
| | - Ashfaq A Marghoob
- Memorial Sloan Kettering Skin Cancer Center and Department of Dermatology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Suephy C Chen
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
- Division of Dermatology, Veterans Affairs Medical Center, Atlanta, Georgia
| | - Michael E Ming
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark R Albertini
- Department of Medicine, University of Wisconsin, School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - John T Vetto
- Division of Surgical Oncology, Oregon Health & Science University, Portland, Oregon
| | - Kim A Margolin
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Sherry L Pagoto
- Department of Allied Health Sciences, UConn Institute for Collaboration in Health, Interventions, and Policy, University of Connecticut, Storrs, Connecticut
| | - Jennifer L Hay
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Douglas Grossman
- Departments of Dermatology and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Darrel L Ellis
- Department of Dermatology, Vanderbilt University Medical Center and Division of Dermatology, Vanderbilt Ingram Cancer Center, Nashville, Tennessee
- Department of Medicine, Tennessee Valley Healthcare System, Nashville Veterans Affairs Medical Center, Nashville, Tennessee
| | - Mohammed Kashani-Sabet
- Center for Melanoma Research and Treatment, California Pacific Medical Center, San Francisco, California
| | | | | | | | - Kelly C Nelson
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - June K Robinson
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Debjani Sahni
- Department of Dermatology, Boston Medical Center, Boston, Massachusetts
| | | | - Vernon K Sondak
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
- Departments of Oncologic Sciences and Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Maria L Wei
- Department of Dermatology, University of California, San Francisco, San Francisco, California
- Dermatology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Jonathan S Zager
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
- Department of Sarcoma, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Robert P Dellavalle
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Dermatology Service, U.S. Department of Veterans Affairs, Eastern Colorado Health Care System, Denver, Colorado
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - John A Thompson
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
| | - Martin A Weinstock
- Center for Dermatoepidemiology, Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Dermatology, Brown University, Providence, Rhode Island
- Department of Epidemiology, Brown University, Providence, Rhode Island
- Department of Dermatology, Rhode Island Hospital, Providence, Rhode Island
| | - Sancy A Leachman
- Department of Dermatology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Pamela B Cassidy
- Department of Dermatology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
28
|
Wein MN, Foretz M, Fisher DE, Xavier RJ, Kronenberg HM. Salt-Inducible Kinases: Physiology, Regulation by cAMP, and Therapeutic Potential. Trends Endocrinol Metab 2018; 29:723-735. [PMID: 30150136 PMCID: PMC6151151 DOI: 10.1016/j.tem.2018.08.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Salt-inducible kinases (SIKs) represent a subfamily of AMP-activated protein kinase (AMPK) family kinases. Initially named because SIK1 (the founding member of this kinase family) expression is regulated by dietary salt intake in the adrenal gland, it is now apparent that a major biological role of these kinases is to control gene expression in response to extracellular cues that increase intracellular levels of cAMP. Here, we review four physiologically relevant examples of how cAMP signaling impinges upon SIK cellular function. By focusing on examples of cAMP-mediated SIK regulation in gut myeloid cells, bone, liver, and skin, we highlight recent advances in G protein-coupled receptor (GPCR) signal transduction. New knowledge regarding the role of SIKs in GPCR signaling has led to therapeutic applications of novel small molecule SIK inhibitors.
Collapse
Affiliation(s)
- Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Nguyen NT, Fisher DE. MITF and UV responses in skin: From pigmentation to addiction. Pigment Cell Melanoma Res 2018; 32:224-236. [PMID: 30019545 DOI: 10.1111/pcmr.12726] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Abstract
Ultraviolet radiation (UVR) has numerous effects on skin, including DNA damage, tanning, vitamin D synthesis, carcinogenesis, and immunomodulation. Keratinocytes containing damaged DNA secrete both α-melanocyte-stimulating hormone (α-MSH), which stimulates pigment production by melanocytes, and the opioid β-endorphin, which can trigger addiction-like responses to UVR. The pigmentation (tanning) response is an adaptation that provides some delayed protection against further DNA damage and carcinogenesis, while the opioid response may be an evolutionary adaptation for promoting sun-seeking behavior to prevent vitamin D deficiency. Here, we review the pigmentation response to UVR, driven by melanocytic microphthalmia-associated transcription factor (MITF), and evidence for UVR-induced melanomagenesis and addiction. We also discuss potential applications of a novel approach to generate protective pigmentation in the absence of UVR (sunless tanning) using a topical small-molecule inhibitor of the salt-inducible kinase (SIK) family.
Collapse
Affiliation(s)
- Nhu T Nguyen
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
30
|
Paulo E, Wu D, Wang Y, Zhang Y, Wu Y, Swaney DL, Soucheray M, Jimenez-Morales D, Chawla A, Krogan NJ, Wang B. Sympathetic inputs regulate adaptive thermogenesis in brown adipose tissue through cAMP-Salt inducible kinase axis. Sci Rep 2018; 8:11001. [PMID: 30030465 PMCID: PMC6054673 DOI: 10.1038/s41598-018-29333-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 07/10/2018] [Indexed: 12/11/2022] Open
Abstract
Various physiological stimuli, such as cold environment, diet, and hormones, trigger brown adipose tissue (BAT) to produce heat through sympathetic nervous system (SNS)- and β-adrenergic receptors (βARs). The βAR stimulation increases intracellular cAMP levels through heterotrimeric G proteins and adenylate cyclases, but the processes by which cAMP modulates brown adipocyte function are not fully understood. Here we described that specific ablation of cAMP production in brown adipocytes led to reduced lipolysis, mitochondrial biogenesis, uncoupling protein 1 (Ucp1) expression, and consequently defective adaptive thermogenesis. Elevated cAMP signaling by sympathetic activation inhibited Salt-inducible kinase 2 (Sik2) through protein kinase A (PKA)-mediated phosphorylation in brown adipose tissue. Inhibition of SIKs enhanced Ucp1 expression in differentiated brown adipocytes and Sik2 knockout mice exhibited enhanced adaptive thermogenesis at thermoneutrality in an Ucp1-dependent manner. Taken together, our data indicate that suppressing Sik2 by PKA-mediated phosphorylation is a requisite for SNS-induced Ucp1 expression and adaptive thermogenesis in BAT, and targeting Sik2 may present a novel therapeutic strategy to ramp up BAT thermogenic activity in humans.
Collapse
Affiliation(s)
- Esther Paulo
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Dongmei Wu
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.,Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 52 Haidian Road, Beijing, 100871, China
| | - Yangmeng Wang
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.,Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Yun Zhang
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Yixuan Wu
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.,California Institute for Quantitative Biosciences, QBI, University of California, San Francisco, San Francisco, CA, 94158, USA.,J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Margaret Soucheray
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.,California Institute for Quantitative Biosciences, QBI, University of California, San Francisco, San Francisco, CA, 94158, USA.,J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - David Jimenez-Morales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.,California Institute for Quantitative Biosciences, QBI, University of California, San Francisco, San Francisco, CA, 94158, USA.,J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Ajay Chawla
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.,California Institute for Quantitative Biosciences, QBI, University of California, San Francisco, San Francisco, CA, 94158, USA.,J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Biao Wang
- Cardiovascular Research Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
31
|
Zohrap N, Saatci Ö, Ozes B, Coban I, Atay HM, Battaloglu E, Şahin Ö, Bugra K. SIK2 attenuates proliferation and survival of breast cancer cells with simultaneous perturbation of MAPK and PI3K/Akt pathways. Oncotarget 2018; 9:21876-21892. [PMID: 29774109 PMCID: PMC5955149 DOI: 10.18632/oncotarget.25082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/09/2018] [Indexed: 12/15/2022] Open
Abstract
Salt Inducible Kinase2 (SIK2) has been shown to contribute to tumorigenesis in multiple tumor types in a dichotomous manner. However, little is known about its contribution to breast malignancies. Here, we report SIK2 as a potential tumor suppressor in breast cancer whose expression was reduced in tumor tissues and breast cancer cell lines compared to normal counterparts. In vitro loss- and gain-of-function experiments combined with xenograft studies demonstrated that SIK2-mediated attenuation of proliferation and survival of breast cancer cells with parallel inhibition of both Ras/Erk and PI3K/Akt pathways. Our findings elucidated that SIK2 has also an inhibitory role in migration/invasion ability of breast cancer cells through regulation of epithelial mesenchymal transition. Immunostaining of patient tumors revealed that SIK2 protein level is frequently downregulated in invasive mammary carcinomas and negatively correlated with the mitotic activity of the cells in triple negative breast cancers and hormone positive tumors. Strikingly, patient survival analysis indicated that higher levels of SIK2 are significantly associated with better survival, especially in basal breast cancer cases. Overall, our findings suggest SIK2 as a potential tumor suppressor in the control of breast tumorigenesis, at least in part, via inhibiting PI3K/Akt and Ras/ERK signaling cascades simultaneously and a novel prognostic marker, especially in basal subtypes of breast cancer.
Collapse
Affiliation(s)
- Neslihan Zohrap
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Özge Saatci
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Burcak Ozes
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Ipek Coban
- Department of Pathology, Istanbul Florence-Nightingale Hospital, Istanbul, Turkey
| | - Hasan Murat Atay
- Department of General Surgery, Gayrettepe Florence-Nightingale Hospital, Istanbul, Turkey
| | - Esra Battaloglu
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Özgür Şahin
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Kuyas Bugra
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey.,Life Sciences Center, Bogazici University, Istanbul, Turkey
| |
Collapse
|
32
|
Mujahid N, Liang Y, Murakami R, Choi HG, Dobry AS, Wang J, Suita Y, Weng QY, Allouche J, Kemeny LV, Hermann AL, Roider EM, Gray NS, Fisher DE. A UV-Independent Topical Small-Molecule Approach for Melanin Production in Human Skin. Cell Rep 2018; 19:2177-2184. [PMID: 28614705 PMCID: PMC5549921 DOI: 10.1016/j.celrep.2017.05.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/02/2017] [Accepted: 05/12/2017] [Indexed: 12/30/2022] Open
Abstract
The presence of dark melanin (eumelanin) within human epidermis represents one of the strongest predictors of low skin cancer risk. Topical rescue of eumelanin synthesis, previously achieved in "redhaired" Mc1r-deficient mice, demonstrated significant protection against UV damage. However, application of a topical strategy for human skin pigmentation has not been achieved, largely due to the greater barrier function of human epidermis. Salt-inducible kinase (SIK) has been demonstrated to regulate MITF, the master regulator of pigment gene expression, through its effects on CRTC and CREB activity. Here, we describe the development of small-molecule SIK inhibitors that were optimized for human skin penetration, resulting in MITF upregulation and induction of melanogenesis. When topically applied, pigment production was induced in Mc1r-deficient mice and normal human skin. These findings demonstrate a realistic pathway toward UV-independent topical modulation of human skin pigmentation, potentially impacting UV protection and skin cancer risk.
Collapse
Affiliation(s)
- Nisma Mujahid
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Yanke Liang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ryo Murakami
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hwan Geun Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Allison S Dobry
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yusuke Suita
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Qing Yu Weng
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jennifer Allouche
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lajos V Kemeny
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Andrea L Hermann
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Elisabeth M Roider
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
33
|
Yun CY, Mi Ko S, Pyo Choi Y, Kim BJ, Lee J, Mun Kim J, Kim JY, Song JY, Kim SH, Hwang BY, Tae Hong J, Han SB, Kim Y. α-Viniferin Improves Facial Hyperpigmentation via Accelerating Feedback Termination of cAMP/PKA-Signaled Phosphorylation Circuit in Facultative Melanogenesis. Theranostics 2018; 8:2031-2043. [PMID: 29556371 PMCID: PMC5858515 DOI: 10.7150/thno.24385] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/24/2018] [Indexed: 12/14/2022] Open
Abstract
Rationale: cAMP up-regulates microphthalmia-associated transcription factor subtype M (MITF-M) and tyrosinase (Tyro) in the generation of heavily pigmented melanosomes. Here, we communicate a therapeutic mechanism of hyperpigmented disorder by α-viniferin, an active constituent of Caragana sinica. Methods: We used cAMP-elevated melanocyte cultures or facial hyperpigmented patches for pigmentation assays, and applied immunoprecipitation, immunobloting, RT-PCR or reporter gene for elucidation of the antimelanogenic mechanism. Results:C. sinica or α-viniferin inhibited melanin production in α-melanocyte-stimulating hormone (α-MSH)-, histamine- or cell-permeable cAMP-activated melanocyte cultures. Moreover, topical application with C. sinica containing α-viniferin, a standard in quality control, decreased melanin index on facial melasma and freckles in patients. As a molecular basis, α-viniferin accelerated protein kinase A (PKA) inactivation via the reassociation between catalytic and regulatory subunits in cAMP-elevated melanocytes, a feedback loop in the melanogenic process. α-Viniferin resultantly inhibited cAMP/PKA-signaled phosphorylation of cAMP-responsive element-binding protein (CREB) coupled with dephosphorylation of cAMP-regulated transcriptional co-activator 1 (CRTC1), thus down-regulating expression of MITF-M or Tyro gene with decreased melanin pigmentation. Conclusion: This study assigned PKA inactivation, a feedback termination in cAMP-induced facultative melanogenesis, as a putative target of α-viniferin in the treatment of melanocyte-specific hyperpigmented disorder. Finally, C. sinica containing α-viniferin was approved as an antimelanogenic agent with topical application in skin hyperpigmentation.
Collapse
|
34
|
Kuroi A, Sugimura K, Kumagai A, Kohara A, Nagaoka Y, Kawahara H, Yamahara M, Kawahara N, Takemori H, Fuchino H. The Importance of 11α-OH, 15-oxo, and 16-en Moieties of 11α-Hydroxy-15-oxo-kaur-16-en-19-oic Acid in Its Inhibitory Activity on Melanogenesis. Skin Pharmacol Physiol 2017; 30:205-215. [DOI: 10.1159/000475471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 04/03/2017] [Indexed: 12/18/2022]
|
35
|
D'Orazio JA. Getting a tan without getting SIK. Pigment Cell Melanoma Res 2017; 30:451-453. [PMID: 28677151 DOI: 10.1111/pcmr.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Wein MN, Liang Y, Goransson O, Sundberg TB, Wang J, Williams EA, O'Meara MJ, Govea N, Beqo B, Nishimori S, Nagano K, Brooks DJ, Martins JS, Corbin B, Anselmo A, Sadreyev R, Wu JY, Sakamoto K, Foretz M, Xavier RJ, Baron R, Bouxsein ML, Gardella TJ, Divieti-Pajevic P, Gray NS, Kronenberg HM. SIKs control osteocyte responses to parathyroid hormone. Nat Commun 2016; 7:13176. [PMID: 27759007 PMCID: PMC5075806 DOI: 10.1038/ncomms13176] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 09/09/2016] [Indexed: 12/20/2022] Open
Abstract
Parathyroid hormone (PTH) activates receptors on osteocytes to orchestrate bone formation and resorption. Here we show that PTH inhibition of SOST (sclerostin), a WNT antagonist, requires HDAC4 and HDAC5, whereas PTH stimulation of RANKL, a stimulator of bone resorption, requires CRTC2. Salt inducible kinases (SIKs) control subcellular localization of HDAC4/5 and CRTC2. PTH regulates both HDAC4/5 and CRTC2 localization via phosphorylation and inhibition of SIK2. Like PTH, new small molecule SIK inhibitors cause decreased phosphorylation and increased nuclear translocation of HDAC4/5 and CRTC2. SIK inhibition mimics many of the effects of PTH in osteocytes as assessed by RNA-seq in cultured osteocytes and following in vivo administration. Once daily treatment with the small molecule SIK inhibitor YKL-05-099 increases bone formation and bone mass. Therefore, a major arm of PTH signalling in osteocytes involves SIK inhibition, and small molecule SIK inhibitors may be applied therapeutically to mimic skeletal effects of PTH. Parathyroid hormone (PTH) is an endogenous hormone and osteoporosis therapeutic that suppresses sclerostin activity. Here the authors develop SIK inhibitors as potential therapeutic tools and use them to show that PTH-cAMP signalling in osteocytes inhibits SIK2 from driving Hdac4/5 nuclear shuttling to suppress sclerostin.
Collapse
Affiliation(s)
- Marc N Wein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, USA
| | - Yanke Liang
- Dana Farber Cancer Institute, Department of Biologic Chemistry and Molecular Pharmacology, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Olga Goransson
- Department of Experimental Medical Sciences, Lund University, Box 188, SE-221 00 Lund, Sweden
| | - Thomas B Sundberg
- Center for the Development of Therapeutics, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Jinhua Wang
- Dana Farber Cancer Institute, Department of Biologic Chemistry and Molecular Pharmacology, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Elizabeth A Williams
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, USA
| | - Maureen J O'Meara
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, USA
| | - Nicolas Govea
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, USA
| | - Belinda Beqo
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, USA
| | - Shigeki Nishimori
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, USA
| | - Kenichi Nagano
- Harvard School of Dental Medicine, Department of Oral Medicine, Infection, and Immunity, 188 Longwood Avenue, Boston, Massachusetts 02115, US
| | - Daniel J Brooks
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, USA.,Center for Advanced Orthopaedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Janaina S Martins
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, USA
| | - Braden Corbin
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, USA
| | - Anthony Anselmo
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| | - Joy Y Wu
- Division of Endocrinology, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Dr a175, Stanford, California 94305, USA
| | - Kei Sakamoto
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Marc Foretz
- INSERM U1016, Institut Cochin, CNRS UMR8104, Universite Paris Descartes Sorbonne Pairs Cite, Paris 75013, France
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, USA.,Program in Medical and Population Genetics, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Roland Baron
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, USA.,Harvard School of Dental Medicine, Department of Oral Medicine, Infection, and Immunity, 188 Longwood Avenue, Boston, Massachusetts 02115, US
| | - Mary L Bouxsein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, USA.,Center for Advanced Orthopaedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Thomas J Gardella
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, USA
| | - Paola Divieti-Pajevic
- Henry M. Goldman School of Dental Medicine, Boston University, 100 E Newton Street, Boston, Massachusetts 02118, USA
| | - Nathanael S Gray
- Dana Farber Cancer Institute, Department of Biologic Chemistry and Molecular Pharmacology, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Henry M Kronenberg
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
37
|
Zhou J, Alfraidi A, Zhang S, Santiago-O'Farrill JM, Yerramreddy Reddy VK, Alsaadi A, Ahmed AA, Yang H, Liu J, Mao W, Wang Y, Takemori H, Vankayalapati H, Lu Z, Bast RC. A Novel Compound ARN-3236 Inhibits Salt-Inducible Kinase 2 and Sensitizes Ovarian Cancer Cell Lines and Xenografts to Paclitaxel. Clin Cancer Res 2016; 23:1945-1954. [PMID: 27678456 DOI: 10.1158/1078-0432.ccr-16-1562] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
Purpose: Salt-inducible kinase 2 (SIK2) is a centrosome kinase required for mitotic spindle formation and a potential target for ovarian cancer therapy. Here, we examine the effects of a novel small-molecule SIK2 inhibitor, ARN-3236, on sensitivity to paclitaxel in ovarian cancer.Experimental Design: SIK2 expression was determined in ovarian cancer tissue samples and cell lines. ARN-3236 was tested for its efficiency to inhibit growth and enhance paclitaxel sensitivity in cultures and xenografts of ovarian cancer cell lines. SIK2 siRNA and ARN-3236 were compared for their ability to produce nuclear-centrosome dissociation, inhibit centrosome splitting, block mitotic progression, induce tetraploidy, trigger apoptotic cell death, and reduce AKT/survivin signaling.Results: SIK2 is overexpressed in approximately 30% of high-grade serous ovarian cancers. ARN-3236 inhibited the growth of 10 ovarian cancer cell lines at an IC50 of 0.8 to 2.6 μmol/L, where the IC50 of ARN-3236 was inversely correlated with endogenous SIK2 expression (Pearson r = -0.642, P = 0.03). ARN-3236 enhanced sensitivity to paclitaxel in 8 of 10 cell lines, as well as in SKOv3ip (P = 0.028) and OVCAR8 xenografts. In at least three cell lines, a synergistic interaction was observed. ARN-3236 uncoupled the centrosome from the nucleus in interphase, blocked centrosome separation in mitosis, caused prometaphase arrest, and induced apoptotic cell death and tetraploidy. ARN-3236 also inhibited AKT phosphorylation and attenuated survivin expression.Conclusions: ARN-3236 is the first orally available inhibitor of SIK2 to be evaluated against ovarian cancer in preclinical models and shows promise in inhibiting ovarian cancer growth and enhancing paclitaxel chemosensitivity. Clin Cancer Res; 23(8); 1945-54. ©2016 AACR.
Collapse
Affiliation(s)
- Jinhua Zhou
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Albandri Alfraidi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shu Zhang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Abdulkhaliq Alsaadi
- The Nuffield Department of Obstetrics and Gynecology, University of Oxford, Oxford, United Kingdom
| | - Ahmed A Ahmed
- The Nuffield Department of Obstetrics and Gynecology, University of Oxford, Oxford, United Kingdom
| | - Hailing Yang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Weiqun Mao
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yan Wang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hiroshi Takemori
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | | | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
38
|
Activation of salt-inducible kinase 2 promotes the viability of peritoneal mesothelial cells exposed to stress of peritoneal dialysis. Cell Death Dis 2016; 7:e2298. [PMID: 27441650 PMCID: PMC4973365 DOI: 10.1038/cddis.2016.79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 12/19/2022]
Abstract
Maintaining mesothelial cell viability is critical to long-term successful peritoneal dialysis (PD) treatment. To clarify the viability mechanism of peritoneal mesothelial cells under PD solutions exposure, we examined the mechanisms of cellular response to this stress conditions. Here we report that the proteasome activity is inhibited when treated with PD solutions. Proteasome inhibition-mediated activation of salt-inducible kinase 2 (SIK2), an endoplasmic reticulum-resident protein, is important for mesothelial cell viability. SIK2 is mobilized to promote autophagy and protect the cells from apoptosis under PD solution or MG132 treatment. Immunofluorescence staining showed that SIK2 is colocalized with LC3B in the autophagosomes of mesothelial cells treated with PD solution or derived from patients undergoing PD treatment. SIK2 activation is likely via a two-step mechanism, upstream kinases relieving the autoinhibitory conformation of SIK2 molecule followed by autophosphorylation of Thr175 and activation of kinase activity. These results suggest that activation of SIK2 is required for the cell viability when proteasome activity is inhibited by PD solutions. Maintaining or boosting the activity of SIK2 may promote peritoneal mesothelial cell viability and evolve as a potential therapeutic target for maintaining or restoring peritoneal membrane integrity in PD therapy.
Collapse
|
39
|
Henriksson E, Säll J, Gormand A, Wasserstrom S, Morrice NA, Fritzen AM, Foretz M, Campbell DG, Sakamoto K, Ekelund M, Degerman E, Stenkula KG, Göransson O. SIK2 regulates CRTCs, HDAC4 and glucose uptake in adipocytes. J Cell Sci 2016; 128:472-86. [PMID: 25472719 DOI: 10.1242/jcs.153932] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Salt-inducible kinase 2 (SIK2) is an AMP-activated protein kinase (AMPK) related kinase abundantly expressed in adipose tissue. Our aim was to identify molecular targets and functions of SIK2 in adipocytes, and to address the role of PKA-mediated phosphorylation of SIK2 on Ser358. Modulation of SIK2 in adipocytes resulted in altered phosphorylation of CREB-regulated transcription co-activator 2 (CRTC2), CRTC3 and class IIa histone deacetylase 4 (HDAC4). Furthermore, CRTC2, CRTC3, HDAC4 and protein phosphatase 2A (PP2A) interacted with SIK2, and the binding of CRTCs and PP2A to wild-type but not Ser358Ala SIK2, was reduced by cAMP elevation. Silencing of SIK2 resulted in reduced GLUT4 (also known as SLC2A4) protein levels, whereas cells treated with CRTC2 or HDAC4 siRNA displayed increased levels of GLUT4. Overexpression or pharmacological inhibition of SIK2 resulted in increased and decreased glucose uptake, respectively. We also describe a SIK2–CRTC2–HDAC4 pathway and its regulation in human adipocytes, strengthening the physiological relevance of our findings. Collectively, we demonstrate that SIK2 acts directly on CRTC2, CRTC3 and HDAC4, and that the cAMP–PKA pathway reduces the interaction of SIK2 with CRTCs and PP2A. Downstream, SIK2 increases GLUT4 levels and glucose uptake in adipocytes.
Collapse
|
40
|
Du WQ, Zheng JN, Pei DS. The diverse oncogenic and tumor suppressor roles of salt-inducible kinase (SIK) in cancer. Expert Opin Ther Targets 2015; 20:477-85. [DOI: 10.1517/14728222.2016.1101452] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wen-Qi Du
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China
| | - Jun-Nian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China
| | - Dong-Sheng Pei
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China
| |
Collapse
|
41
|
Yamahara M, Sugimura K, Kumagai A, Fuchino H, Kuroi A, Kagawa M, Itoh Y, Kawahara H, Nagaoka Y, Iida O, Kawahara N, Takemori H, Watanabe H. Callicarpa longissima extract, carnosol-rich, potently inhibits melanogenesis in B16F10 melanoma cells. J Nat Med 2015; 70:28-35. [DOI: 10.1007/s11418-015-0933-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/02/2015] [Indexed: 12/14/2022]
|
42
|
Itoh Y, Sanosaka M, Fuchino H, Yahara Y, Kumagai A, Takemoto D, Kagawa M, Doi J, Ohta M, Tsumaki N, Kawahara N, Takemori H. Salt-inducible Kinase 3 Signaling Is Important for the Gluconeogenic Programs in Mouse Hepatocytes. J Biol Chem 2015; 290:17879-17893. [PMID: 26048985 DOI: 10.1074/jbc.m115.640821] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Indexed: 01/24/2023] Open
Abstract
Salt-inducible kinases (SIKs), members of the 5'-AMP-activated protein kinase (AMPK) family, are proposed to be important suppressors of gluconeogenic programs in the liver via the phosphorylation-dependent inactivation of the CREB-specific coactivator CRTC2. Although a dramatic phenotype for glucose metabolism has been found in SIK3-KO mice, additional complex phenotypes, dysregulation of bile acids, cholesterol, and fat homeostasis can render it difficult to discuss the hepatic functions of SIK3. The aim of this study was to examine the cell autonomous actions of SIK3 in hepatocytes. To eliminate systemic effects, we prepared primary hepatocytes and screened the small compounds suppressing SIK3 signaling cascades. SIK3-KO primary hepatocytes produced glucose more quickly after treatment with the cAMP agonist forskolin than the WT hepatocytes, which was accompanied by enhanced gluconeogenic gene expression and CRTC2 dephosphorylation. Reporter-based screening identified pterosin B as a SIK3 signaling-specific inhibitor. Pterosin B suppressed SIK3 downstream cascades by up-regulating the phosphorylation levels in the SIK3 C-terminal regulatory domain. When pterosin B promoted glucose production by up-regulating gluconeogenic gene expression in mouse hepatoma AML-12 cells, it decreased the glycogen content and stimulated an association between the glycogen phosphorylase kinase gamma subunit (PHKG2) and SIK3. PHKG2 phosphorylated the peptides with sequences of the C-terminal domain of SIK3. Here we found that the levels of active AMPK were higher both in the SIK3-KO hepatocytes and in pterosin B-treated AML-12 cells than in their controls. These results suggest that SIK3, rather than SIK1, SIK2, or AMPKs, acts as the predominant suppressor in gluconeogenic gene expression in the hepatocytes.
Collapse
Affiliation(s)
- Yumi Itoh
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan
| | - Masato Sanosaka
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan
| | - Hiroyuki Fuchino
- Research Center for Medicinal Plant Resources, Tsukuba Division, Ibaraki, 305-0843, Japan
| | - Yasuhito Yahara
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Ayako Kumagai
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan
| | - Daisaku Takemoto
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan; Department of Life Science and Biotechnology, Kansai University, Osaka 564-8680, Japan
| | - Mai Kagawa
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan
| | - Junko Doi
- Department of Food and Nutrition, Senri Kinran University, Osaka, 565-0873 Japan
| | - Miho Ohta
- Department of Nutrition and Health, Faculty of Human Development, Soai University, Osaka, 559-0033, Japan
| | - Noriyuki Tsumaki
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, Tsukuba Division, Ibaraki, 305-0843, Japan
| | - Hiroshi Takemori
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan.
| |
Collapse
|
43
|
Sanosaka M, Fujimoto M, Ohkawara T, Nagatake T, Itoh Y, Kagawa M, Kumagai A, Fuchino H, Kunisawa J, Naka T, Takemori H. Salt-inducible kinase 3 deficiency exacerbates lipopolysaccharide-induced endotoxin shock accompanied by increased levels of pro-inflammatory molecules in mice. Immunology 2015; 145:268-78. [PMID: 25619259 PMCID: PMC4427391 DOI: 10.1111/imm.12445] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/14/2015] [Accepted: 01/20/2015] [Indexed: 12/16/2022] Open
Abstract
Macrophages play important roles in the innate immune system during infection and systemic inflammation. When bacterial lipopolysaccharide (LPS) binds to Toll-like receptor 4 on macrophages, several signalling cascades co-operatively up-regulate gene expression of inflammatory molecules. The present study aimed to examine whether salt-inducible kinase [SIK, a member of the AMP-activated protein kinase (AMPK) family] could contribute to the regulation of immune signal not only in cultured macrophages, but also in vivo. LPS up-regulated SIK3 expression in murine RAW264.7 macrophages and exogenously over-expressed SIK3 negatively regulated the expression of inflammatory molecules [interleukin-6 (IL-6), nitric oxide (NO) and IL-12p40] in RAW264.7 macrophages. Conversely, these inflammatory molecule levels were up-regulated in SIK3-deficient thioglycollate-elicited peritoneal macrophages (TEPM), despite no impairment of the classical signalling cascades. Forced expression of SIK3 in SIK3-deficient TEPM suppressed the levels of the above-mentioned inflammatory molecules. LPS injection (10 mg/kg) led to the death of all SIK3-knockout (KO) mice within 48 hr after treatment, whereas only one mouse died in the SIK1-KO (n = 8), SIK2-KO (n = 9) and wild-type (n = 8 or 9) groups. In addition, SIK3-KO bone marrow transplantation increased LPS sensitivity of the recipient wild-type mice, which was accompanied by an increased level of circulating IL-6. These results suggest that SIK3 is a unique negative regulator that suppresses inflammatory molecule gene expression in LPS-stimulated macrophages.
Collapse
Affiliation(s)
- Masato Sanosaka
- Laboratory of Cell Signalling and Metabolic Disease, National Institute of Biomedical InnovationIbaraki, Osaka, Japan
| | - Minoru Fujimoto
- Laboratory of Immune Signalling, National Institute of Biomedical InnovationIbaraki, Osaka, Japan
| | - Tomoharu Ohkawara
- Laboratory of Immune Signalling, National Institute of Biomedical InnovationIbaraki, Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, National Institute of Biomedical InnovationIbaraki, Osaka, Japan
| | - Yumi Itoh
- Laboratory of Cell Signalling and Metabolic Disease, National Institute of Biomedical InnovationIbaraki, Osaka, Japan
| | - Mai Kagawa
- Laboratory of Cell Signalling and Metabolic Disease, National Institute of Biomedical InnovationIbaraki, Osaka, Japan
| | - Ayako Kumagai
- Laboratory of Cell Signalling and Metabolic Disease, National Institute of Biomedical InnovationIbaraki, Osaka, Japan
| | - Hiroyuki Fuchino
- Research Centre for Medicinal Plant Resources, National Institute of Biomedical InnovationTsukuba, Ibaraki, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, National Institute of Biomedical InnovationIbaraki, Osaka, Japan
| | - Tetsuji Naka
- Laboratory of Immune Signalling, National Institute of Biomedical InnovationIbaraki, Osaka, Japan
| | - Hiroshi Takemori
- Laboratory of Cell Signalling and Metabolic Disease, National Institute of Biomedical InnovationIbaraki, Osaka, Japan
| |
Collapse
|
44
|
Lee CW, Yang FC, Chang HY, Chou H, Tan BCM, Lee SC. Interaction between salt-inducible kinase 2 and protein phosphatase 2A regulates the activity of calcium/calmodulin-dependent protein kinase I and protein phosphatase methylesterase-1. J Biol Chem 2015; 289:21108-19. [PMID: 24841198 DOI: 10.1074/jbc.m113.540229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Salt-inducible kinase 2 (SIK2) is the only AMP-activated kinase (AMPK) family member known to interact with protein phosphatase 2 (PP2A). However, the functional aspects of this complex are largely unknown. Here we report that the SIK2-PP2A complex preserves both kinase and phosphatase activities. In this capacity,SIK2 attenuates the association of the PP2A repressor, the protein phosphatase methylesterase-1 (PME-1), thus preserving the methylation status of the PP2A catalytic subunit. Furthermore, the SIK2-PP2A holoenzyme complex dephosphorylates and inactivates Ca2(+)/calmodulin-dependent protein kinase I (CaMKI), an upstream kinase for phosphorylating PME-1/Ser(15). The functionally antagonistic SIK2-PP2A and CaMKI and PME-1 networks thus constitute a negative feedback loop that modulates the phosphatase activity of PP2A. Depletion of SIK2 led to disruption of the SIK2-PP2A complex, activation of CaMKI, and downstream effects, including phosphorylation of HDAC5/Ser(259), sequestration of HDAC5 in the cytoplasm, and activation of myocyte-specific enhancer factor 2C (MEF2C)-mediated gene expression. These results suggest that the SIK2-PP2A complex functions in the regulation of MEF2C-dependent transcription. Furthermore, this study suggests that the tightly linked regulatory loop comprised of the SIK2-PP2A and CaMKI and PME-1 networks may function in fine-tuning cell proliferation and stress response.
Collapse
|
45
|
Role of the SIK2-p35-PJA2 complex in pancreatic β-cell functional compensation. Nat Cell Biol 2014; 16:234-44. [PMID: 24561619 DOI: 10.1038/ncb2919] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/22/2014] [Indexed: 02/08/2023]
Abstract
Energy sensing by the AMP-activated protein kinase (AMPK) is of fundamental importance in cell biology. In the pancreatic β-cell, AMPK is a central regulator of insulin secretion. The capacity of the β-cell to increase insulin output is a critical compensatory mechanism in prediabetes, yet its molecular underpinnings are unclear. Here we delineate a complex consisting of the AMPK-related kinase SIK2, the CDK5 activator CDK5R1 (also known as p35) and the E3 ligase PJA2 essential for β-cell functional compensation. Following glucose stimulation, SIK2 phosphorylates p35 at Ser 91, to trigger its ubiquitylation by PJA2 and promote insulin secretion. Furthermore, SIK2 accumulates in β-cells in models of metabolic syndrome to permit compensatory secretion; in contrast, β-cell knockout of SIK2 leads to accumulation of p35 and impaired secretion. This work demonstrates that the SIK2-p35-PJA2 complex is essential for glucose homeostasis and provides a link between p35-CDK5 and the AMPK family in excitable cells.
Collapse
|
46
|
Popov S, Takemori H, Tokudome T, Mao Y, Otani K, Mochizuki N, Pires N, Pinho MJ, Franco-Cereceda A, Torielli L, Ferrandi M, Hamsten A, Soares-da-Silva P, Eriksson P, Bertorello AM, Brion L. Lack of salt-inducible kinase 2 (SIK2) prevents the development of cardiac hypertrophy in response to chronic high-salt intake. PLoS One 2014; 9:e95771. [PMID: 24752134 PMCID: PMC3994160 DOI: 10.1371/journal.pone.0095771] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/28/2014] [Indexed: 01/01/2023] Open
Abstract
Cardiac left ventricle hypertrophy (LVH) constitutes a major risk factor for heart failure. Although LVH is most commonly caused by chronic elevation in arterial blood pressure, reduction of blood pressure to normal levels does not always result in regression of LVH, suggesting that additional factors contribute to the development of this pathology. We tested whether genetic preconditions associated with the imbalance in sodium homeostasis could trigger the development of LVH without concomitant increases in blood pressure. The results showed that the presence of a hypertensive variant of α-adducin gene in Milan rats (before they become hypertensive) resulted in elevated expression of genes associated with LVH, and of salt-inducible kinase 2 (SIK2) in the left ventricle (LV). Moreover, the mRNA expression levels of SIK2, α-adducin, and several markers of cardiac hypertrophy were positively correlated in tissue biopsies obtained from human hearts. In addition, we found in cardiac myocytes that α-adducin regulates the expression of SIK2, which in turn mediates the effects of adducin on hypertrophy markers gene activation. Furthermore, evidence that SIK2 is critical for the development of LVH in response to chronic high salt diet (HS) was obtained in mice with ablation of the sik2 gene. Increases in the expression of genes associated with LVH, as well as increases in LV wall thickness upon HS, occurred only in sik2+/+ but not in sik2−/− mice. Thus LVH triggered by HS or the presence of a genetic variant of α-adducin requires SIK2 and is independent of elevated blood pressure. Inhibitors of SIK2 may constitute part of a novel therapeutic regimen aimed at prevention/regression of LVH.
Collapse
Affiliation(s)
- Sergej Popov
- Membrane Signaling Networks, Department of Medicine, Karolinska Institutet, CMM, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Hiroshi Takemori
- Laboratory of Cell Signaling and Metabolism, National Institute for Biomedical Innovation, Osaka, Japan
| | - Takeshi Tokudome
- Department of Biochemistry, National Cerebral and Cardiovascular Research Institute, Osaka, Japan
| | - Yuanjie Mao
- Department of Biochemistry, National Cerebral and Cardiovascular Research Institute, Osaka, Japan
| | - Kentaro Otani
- Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Research Institute, Osaka, Japan
| | - Naoki Mochizuki
- Cell Biology, National Cerebral and Cardiovascular Research Institute, Osaka, Japan
| | - Nuno Pires
- BIAL - Portela & C, S.A., S. Mamede do Coronado, Portugal
| | - Maria João Pinho
- MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lucia Torielli
- Prassis Sigma-Tau Research Institute, Settimo Milanese, Milan, Italy
| | - Mara Ferrandi
- Prassis Sigma-Tau Research Institute, Settimo Milanese, Milan, Italy
| | - Anders Hamsten
- Cardiovascular Genetics and Genomics, Department of Medicine, Karolinska Institutet, CMM, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Patricio Soares-da-Silva
- BIAL - Portela & C, S.A., S. Mamede do Coronado, Portugal
- MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Per Eriksson
- Cardiovascular Genetics and Genomics, Department of Medicine, Karolinska Institutet, CMM, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Alejandro M. Bertorello
- Membrane Signaling Networks, Department of Medicine, Karolinska Institutet, CMM, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Laura Brion
- Membrane Signaling Networks, Department of Medicine, Karolinska Institutet, CMM, Karolinska University Hospital-Solna, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
47
|
Prostaglandin E₂ promotes Th1 differentiation via synergistic amplification of IL-12 signalling by cAMP and PI3-kinase. Nat Commun 2013; 4:1685. [PMID: 23575689 PMCID: PMC3644078 DOI: 10.1038/ncomms2684] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 02/28/2013] [Indexed: 01/08/2023] Open
Abstract
T helper 1 (Th1) cells have critical roles in various autoimmune and proinflammatory diseases. cAMP has long been believed to act as a suppressor of IFN-γ production and Th1 cell-mediated immune inflammation. Here we show that cAMP actively promotes Th1 differentiation by inducing gene expression of cytokine receptors involved in this process. PGE2 signalling through EP2/EP4 receptors mobilizes the cAMP-PKA pathway, which induces CREB- and its co-activator CRTC2-mediated transcription of IL-12Rβ2 and IFN-γR1. Meanwhile, cAMP-mediated suppression of T-cell receptor signalling is overcome by simultaneous activation of PI3-kinase through EP2/EP4 and/or CD28. Loss of EP4 in T cells restricts expression of IL-12Rβ2 and IFN-γR1, and attenuates Th1 cell-mediated inflammation in vivo. These findings clarify the molecular mechanisms and pathological contexts of cAMP-mediated Th1 differentiation and have clinical and therapeutic implications for deployment of cAMP modulators as immunoregulatory drugs.
Collapse
|
48
|
Yang FC, Lin YH, Chen WH, Huang JY, Chang HY, Su SH, Wang HT, Chiang CY, Hsu PH, Tsai MD, Tan BCM, Lee SC. Interaction between salt-inducible kinase 2 (SIK2) and p97/valosin-containing protein (VCP) regulates endoplasmic reticulum (ER)-associated protein degradation in mammalian cells. J Biol Chem 2013; 288:33861-33872. [PMID: 24129571 DOI: 10.1074/jbc.m113.492199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Salt-inducible kinase 2 (SIK2) is an important regulator of cAMP response element-binding protein-mediated gene expression in various cell types and is the only AMP-activated protein kinase family member known to interact with the p97/valosin-containing protein (VCP) ATPase. Previously, we have demonstrated that SIK2 can regulate autophagy when proteasomal function is compromised. Here we report that physical and functional interactions between SIK2 and p97/VCP underlie the regulation of endoplasmic reticulum (ER)-associated protein degradation (ERAD). SIK2 co-localizes with p97/VCP in the ER membrane and stimulates its ATPase activity through direct phosphorylation. Although the expression of wild-type recombinant SIK2 accelerated the degradation and removal of ERAD substrates, the kinase-deficient variant conversely had no effect. Furthermore, down-regulation of endogenous SIK2 or mutation of the SIK2 target site on p97/VCP led to impaired degradation of ERAD substrates and disruption of ER homeostasis. Collectively, these findings highlight a mechanism by which the interplay between SIK2 and p97/VCP contributes to the regulation of ERAD in mammalian cells.
Collapse
Affiliation(s)
- Fu-Chia Yang
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ya-Huei Lin
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wei-Hao Chen
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jing-Yi Huang
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hsin-Yun Chang
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Su-Hui Su
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hsiao-Ting Wang
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chun-Yi Chiang
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Pang-Hung Hsu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Daw Tsai
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | | | - Sheng-Chung Lee
- Institute of Molecular Medicine, National Taiwan University, Taipei 100, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Clinical Medicine, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
49
|
Borgdorff V, Rix U, Winter GE, Gridling M, Müller AC, Breitwieser FP, Wagner C, Colinge J, Bennett KL, Superti-Furga G, Wagner SN. A chemical biology approach identifies AMPK as a modulator of melanoma oncogene MITF. Oncogene 2013; 33:2531-9. [DOI: 10.1038/onc.2013.185] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 01/29/2013] [Accepted: 04/12/2013] [Indexed: 12/12/2022]
|
50
|
Finsterwald C, Carrard A, Martin JL. Role of salt-inducible kinase 1 in the activation of MEF2-dependent transcription by BDNF. PLoS One 2013; 8:e54545. [PMID: 23349925 PMCID: PMC3551851 DOI: 10.1371/journal.pone.0054545] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 12/14/2012] [Indexed: 01/02/2023] Open
Abstract
Substantial evidence supports a role for myocyte enhancer factor 2 (MEF2)-mediated transcription in neuronal survival, differentiation and synaptic function. In developing neurons, it has been shown that MEF2-dependent transcription is regulated by neurotrophins. Despite these observations, little is known about the cellular mechanisms by which neurotrophins activate MEF2 transcriptional activity. In this study, we examined the role of salt-inducible kinase 1 (SIK1), a member of the AMP-activated protein kinase (AMPK) family, in the regulation of MEF2-mediated transcription by the neurotrophin brain-derived neurotrophic factor (BDNF). We show that BDNF increases the expression of SIK1 in primary cultures of rat cortical neurons through the extracellular signal-regulated kinase 1/2 (ERK1/2)-signaling pathway. In addition to inducing SIK1 expression, BDNF triggers the phosphorylation of SIK1 at Thr182 and its translocation from the cytoplasm to the nucleus of cortical neurons. The effects of BDNF on the expression, phosphorylation and, translocation of SIK1 are followed by the phosphorylation and nuclear export of histone deacetylase 5 (HDAC5). Blockade of SIK activity with a low concentration of staurosporine abolished BDNF-induced phosphorylation and nuclear export of HDAC5 in cortical neurons. Importantly, stimulation of HDAC5 phosphorylation and nuclear export by BDNF is accompanied by the activation of MEF2-mediated transcription, an effect that is suppressed by staurosporine. Consistent with these data, BDNF induces the expression of the MEF2 target genes Arc and Nur77, in a staurosporine-sensitive manner. In further support of the role of SIK1 in the regulation of MEF2-dependent transcription by BDNF, we found that expression of wild-type SIK1 or S577A SIK1, a mutated form of SIK1 which is retained in the nucleus of transfected cells, is sufficient to enhance MEF2 transcriptional activity in cortical neurons. Together, these data identify a previously unrecognized mechanism by which SIK1 mediates the activation of MEF2-dependent transcription by BDNF.
Collapse
Affiliation(s)
- Charles Finsterwald
- Center for Psychiatric Neuroscience, Department of Psychiatry-CHUV, Prilly-Lausanne, Switzerland
| | - Anthony Carrard
- Center for Psychiatric Neuroscience, Department of Psychiatry-CHUV, Prilly-Lausanne, Switzerland
| | - Jean-Luc Martin
- Center for Psychiatric Neuroscience, Department of Psychiatry-CHUV, Prilly-Lausanne, Switzerland
| |
Collapse
|