1
|
Kassim FM. Acute caffeine administration impaired spatial working memory in habitual coffee/tea drinkers: A randomized, placebo-controlled, double-blind study. Clin Nutr ESPEN 2024; 64:21-25. [PMID: 39244155 DOI: 10.1016/j.clnesp.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Although coffee consumption is widespread worldwide, a recent study showed that acute intake of caffeine negatively affects working memory (WM) performance on n-back tasks among habitual caffeine consumers. However, there is a scarcity of double-blind, placebo-controlled studies that assess the spatial WM (SWM) effects of caffeine using spatial span tasks. Therefore, the present study aimed to examine the effects of acute caffeine administration (200 mg, PO) on SWM and verbal WM (VWM) among habitual caffeine consumers. METHODS The effects of caffeine on working memory (WM) was evaluated through the administration of backward digit span and spatial span tasks under a delay-dependent condition (0, 4, 8, and 6 s) in a randomized, double-blind, placebo-controlled study involving 18 healthy participants. This data is derived from our previous published study. The total scores obtained and the maximum scores achieved were the primary outcome variables of the study. RESULTS Caffeine had a significant impact on SWM (maximum obtained, p = 0.013; for total scored, p = 0.007) in a delay-independent manner. However, there were no significant main effects of caffeine on VWM (p = 0.82 for maximum obtained, p = 0.56 for total scored). CONCLUSION Overall, the present findings contradict the commonly held belief that caffeine improves cognitive performance and suggest that acute administration of caffeine may impair SWM in habitual coffee/tea drinkers. CLINICAL TRIAL REGISTRATION NUMBER CT-2018-CTN-02561 (Therapeutic Goods Administration Clinical Trial Registry) and ACTRN12618001292268 (The Australian New Zealand Clinical Trials Registry).
Collapse
Affiliation(s)
- Faiz Mohammed Kassim
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Psychopharmacology Research Unit, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
2
|
Stoppel H, Harvey BH, Wolmarans DW. Adult Offspring of Deer Mouse Breeding Pairs Selected for Normal and Compulsive-Like Large Nesting Expression Invariably Show the Same Behavior Without Prior In-Breeding. Dev Psychobiol 2024; 66:e22533. [PMID: 39106336 DOI: 10.1002/dev.22533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/09/2024]
Abstract
Obsessive-compulsive disorder is a neuropsychiatric condition with notable genetic involvement. Against this background, laboratory-housed deer mice of both sexes varyingly present with excessive and persistent large nesting behavior (LNB), which has been validated for its resemblance of clinical compulsivity. Although LNB differs from normal nesting behavior (NNB) on both a biological and cognitive level, it is unknown to what extent the expression of LNB and NNB is related to familial background. Here, we randomly selected 14 NNB- and 14 LNB-expressing mice (equally distributed between sexes) to constitute 7 breeding pairs of each phenotype. Pairs were allowed to breed two successive generations of offspring, which were raised until adulthood (12 weeks) and assessed for nesting expression. Remarkably, our findings show that offspring from LNB-expressing pairs build significantly larger nests compared to offspring from NNB-expressing pairs and the nesting expression of the offspring of each breeding pair, irrespective of parental phenotype or litter, is family specific. Collectively, the results of this investigation indicate that LNB can be explored for its potential to shed light on heritable neurocognitive mechanisms that may underlie the expression of specific persistent behavioral phenotypes.
Collapse
Affiliation(s)
- Heike Stoppel
- Department of Pharmacology, Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Brian H Harvey
- Department of Pharmacology, Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
- Department of Psychiatry and Neuroscience Institute, South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Rondebosch, South Africa
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University and Barwon Health, Geelong, Australia
| | - De Wet Wolmarans
- Department of Pharmacology, Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Torres-Rubio L, Reguilón MD, Mellado S, Pascual M, Rodríguez-Arias M. Effects of Ketogenic Diet on Increased Ethanol Consumption Induced by Social Stress in Female Mice. Nutrients 2024; 16:2814. [PMID: 39275131 PMCID: PMC11397041 DOI: 10.3390/nu16172814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Stress is a critical factor in the development of mental disorders such as addiction, underscoring the importance of stress resilience strategies. While the ketogenic diet (KD) has shown efficacy in reducing alcohol consumption in male mice without cognitive impairment, its impact on the stress response and addiction development, especially in females, remains unclear. This study examined the KD's effect on increasing ethanol intake due to vicarious social defeat (VSD) in female mice. Sixty-four female OF1 mice were divided into two dietary groups: standard diet (n = 32) and KD (n = 32). These were further split based on exposure to four VSD or exploration sessions, creating four groups: EXP-STD (n = 16), VSD-STD (n = 16), EXP-KD (n = 16), and VSD-KD (n = 16). KD-fed mice maintained ketosis from adolescence until the fourth VSD/EXP session, after which they switched to a standard diet. The Social Interaction Test was performed 24 h after the last VSD session. Three weeks post-VSD, the Drinking in the Dark test and Oral Ethanol Self-Administration assessed ethanol consumption. The results showed that the KD blocked the increase in ethanol consumption induced by VSD in females. Moreover, among other changes, the KD increased the expression of the ADORA1 and CNR1 genes, which are associated with mechanisms modulating neurotransmission. Our results point to the KD as a useful tool to increase resilience to social stress in female mice.
Collapse
Affiliation(s)
- Laura Torres-Rubio
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Marina D Reguilón
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Susana Mellado
- Department of Physiology, School of Medicine, Universitat de Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain
| | - María Pascual
- Department of Physiology, School of Medicine, Universitat de Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain
| | - Marta Rodríguez-Arias
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| |
Collapse
|
4
|
Dorogan M, Namballa HK, Harding WW. Natural Product-Inspired Dopamine Receptor Ligands. J Med Chem 2024; 67:12463-12484. [PMID: 39038276 PMCID: PMC11320586 DOI: 10.1021/acs.jmedchem.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Due to their evolutionary bias as ligands for biologically relevant drug targets, natural products offer a unique opportunity as lead compounds in drug discovery. Given the involvement of dopamine receptors in various physiological and behavioral functions, they are linked to numerous diseases and disorders such as Parkinson's disease, schizophrenia, and substance use disorders. Consequently, ligands targeting dopamine receptors hold considerable therapeutic and investigative promise. As this perspective will highlight, dopamine receptor targeting natural products play a pivotal role as scaffolds with unique and beneficial pharmacological properties, allowing for natural product-inspired drug design and lead optimization. As such, dopamine receptor targeting natural products still have untapped potential to aid in the treatment of disorders and diseases related to central nervous system (CNS) and peripheral nervous system (PNS) dysfunction.
Collapse
Affiliation(s)
- Michael Dorogan
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
| | - Hari K. Namballa
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
| | - Wayne W. Harding
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
- Program
in Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United States
- Program
in Chemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United
States
| |
Collapse
|
5
|
Ren H, Ou Q, Pu Q, Lou Y, Yang X, Han Y, Liu S. Comprehensive Review on Bimolecular Fluorescence Complementation and Its Application in Deciphering Protein-Protein Interactions in Cell Signaling Pathways. Biomolecules 2024; 14:859. [PMID: 39062573 PMCID: PMC11274695 DOI: 10.3390/biom14070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Signaling pathways are responsible for transmitting information between cells and regulating cell growth, differentiation, and death. Proteins in cells form complexes by interacting with each other through specific structural domains, playing a crucial role in various biological functions and cell signaling pathways. Protein-protein interactions (PPIs) within cell signaling pathways are essential for signal transmission and regulation. The spatiotemporal features of PPIs in signaling pathways are crucial for comprehending the regulatory mechanisms of signal transduction. Bimolecular fluorescence complementation (BiFC) is one kind of imaging tool for the direct visualization of PPIs in living cells and has been widely utilized to uncover novel PPIs in various organisms. BiFC demonstrates significant potential for application in various areas of biological research, drug development, disease diagnosis and treatment, and other related fields. This review systematically summarizes and analyzes the technical advancement of BiFC and its utilization in elucidating PPIs within established cell signaling pathways, including TOR, PI3K/Akt, Wnt/β-catenin, NF-κB, and MAPK. Additionally, it explores the application of this technology in revealing PPIs within the plant hormone signaling pathways of ethylene, auxin, Gibberellin, and abscisic acid. Using BiFC in conjunction with CRISPR-Cas9, live-cell imaging, and ultra-high-resolution microscopy will enhance our comprehension of PPIs in cell signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (H.R.); (Q.O.); (Q.P.); (Y.L.); (X.Y.); (Y.H.)
| |
Collapse
|
6
|
Mercante F, Micioni Di Bonaventura E, Pucci M, Botticelli L, Cifani C, D'Addario C, Micioni Di Bonaventura MV. Repeated binge-like eating episodes in female rats alter adenosine A 2A and dopamine D2 receptor genes regulation in the brain reward system. Int J Eat Disord 2024; 57:1433-1446. [PMID: 38650547 DOI: 10.1002/eat.24216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE Binge-eating disorder is an eating disorder characterized by recurrent binge-eating episodes, during which individuals consume excessive amounts of highly palatable food (HPF) in a short time. This study investigates the intricate relationship between repeated binge-eating episode and the transcriptional regulation of two key genes, adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R), in selected brain regions of rats. METHOD Binge-like eating behavior on HPF was induced through the combination of food restrictions and frustration stress (15 min exposure to HPF without access to it) in female rats, compared to control rats subjected to only restriction or only stress or none of these two conditions. After chronic binge-eating episodes, nucleic acids were extracted from different brain regions, and gene expression levels were assessed through real-time quantitative PCR. The methylation pattern on genes' promoters was investigated using pyrosequencing. RESULTS The analysis revealed A2AAR upregulation in the amygdala and in the ventral tegmental area (VTA), and D2R downregulation in the nucleus accumbens in binge-eating rats. Concurrently, site-specific DNA methylation alterations at gene promoters were identified in the VTA for A2AAR and in the amygdala and caudate putamen for D2R. DISCUSSION The alterations on A2AAR and D2R genes regulation highlight the significance of epigenetic mechanisms in the etiology of binge-eating behavior, and underscore the potential for targeted therapeutic interventions, to prevent the development of this maladaptive feeding behavior. These findings provide valuable insights for future research in the field of eating disorders. PUBLIC SIGNIFICANCE Using an animal model with face, construct, and predictive validity, in which cycles of food restriction and frustration stress evoke binge-eating behavior, we highlight the significance of epigenetic mechanisms on adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R) genes regulation. They could represent new potential targets for the pharmacological management of eating disorders characterized by this maladaptive feeding behavior.
Collapse
Affiliation(s)
- Francesca Mercante
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Mariangela Pucci
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Luca Botticelli
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
7
|
Mirchandani-Duque M, Choucri M, Hernández-Mondragón JC, Crespo-Ramírez M, Pérez-Olives C, Ferraro L, Franco R, Pérez de la Mora M, Fuxe K, Borroto-Escuela DO. Membrane Heteroreceptor Complexes as Second-Order Protein Modulators: A Novel Integrative Mechanism through Allosteric Receptor-Receptor Interactions. MEMBRANES 2024; 14:96. [PMID: 38786931 PMCID: PMC11122807 DOI: 10.3390/membranes14050096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Bioluminescence and fluorescence resonance energy transfer (BRET and FRET) together with the proximity ligation method revealed the existence of G-protein-coupled receptors, Ionotropic and Receptor tyrosine kinase heterocomplexes, e.g., A2AR-D2R, GABAA-D5R, and FGFR1-5-HT1AR heterocomplexes. Molecular integration takes place through allosteric receptor-receptor interactions in heteroreceptor complexes of synaptic and extra-synaptic regions. It involves the modulation of receptor protomer recognition, signaling and trafficking, as well as the modulation of behavioral responses. Allosteric receptor-receptor interactions in hetero-complexes give rise to concepts like meta-modulation and protein modulation. The introduction of receptor-receptor interactions was the origin of the concept of meta-modulation provided by Katz and Edwards in 1999, which stood for the fine-tuning or modulation of nerve cell transmission. In 2000-2010, Ribeiro and Sebastiao, based on a series of papers, provided strong support for their view that adenosine can meta-modulate (fine-tune) synaptic transmission through adenosine receptors. However, another term should also be considered: protein modulation, which is the key feature of allosteric receptor-receptor interactions leading to learning and consolidation by novel adapter proteins to memory. Finally, it must be underlined that allosteric receptor-receptor interactions and their involvement both in brain disease and its treatment are of high interest. Their pathophysiological relevance has been obtained, especially for major depressive disorder, cocaine use disorder, and Parkinson's disease.
Collapse
Affiliation(s)
- Marina Mirchandani-Duque
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, 29010 Málaga, Spain;
| | - Malak Choucri
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| | - Juan C. Hernández-Mondragón
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Minerva Crespo-Ramírez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Catalina Pérez-Olives
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08007 Barcelona, Spain;
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products University of Ferrara, 44121 Ferrara, Italy; (L.F.); (R.F.)
| | - Rafael Franco
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products University of Ferrara, 44121 Ferrara, Italy; (L.F.); (R.F.)
| | - Miguel Pérez de la Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| | - Dasiel O. Borroto-Escuela
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, 29010 Málaga, Spain;
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| |
Collapse
|
8
|
Kelleni MT. Repurposing metformin to manage idiopathic or long COVID Tinnitus: self-report adopting a pathophysiological and pharmacological approach. Inflammopharmacology 2024; 32:945-948. [PMID: 38294616 PMCID: PMC11006725 DOI: 10.1007/s10787-023-01421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/24/2023] [Indexed: 02/01/2024]
Abstract
Chronic tinnitus is a common neurological disorder that affects millions of patients globally with no available successful pharmacotherapy. It can be extremely bothersome to some patients to the extent that it occasionally qualifies as a disability that can hinder them from leading a normal life. In this short communication, the author discusses how he suffered from idiopathic tinnitus and how he managed to adopt a combined pathophysiological and pharmacological approach to the reason for the first time in the medical literature that low-dose metformin might be safely and effectively repurposed to manage at least a subset of tinnitus patients while discussing the potential role of adenosine receptor agonists as potential future tinnitus therapeutics.
Collapse
Affiliation(s)
- Mina T Kelleni
- Pharmacology Department, College of Medicine, Minia University, Minya, 61111, Egypt.
| |
Collapse
|
9
|
Bauer N, Liu D, Nguyen T, Wang B. Unraveling the Interplay of Dopamine, Carbon Monoxide, and Heme Oxygenase in Neuromodulation and Cognition. ACS Chem Neurosci 2024; 15:400-407. [PMID: 38214656 PMCID: PMC10853931 DOI: 10.1021/acschemneuro.3c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
The dopaminergic system plays important roles in neuromodulation, including prominent roles in complex neurological functions such as cognition, reward, motivation, and memory. Understandably, the highly complex nature of such physiological functions means that their regulation is intertwined with other signaling pathways, as has been demonstrated by numerous studies. Contrary to its public perception of being poisonous at all concentrations, carbon monoxide (CO) is produced endogenously from heme degradation by heme oxygenase (HO) as part of the physiological process of red blood cell turnover. Physiological concentrations of CO can reach high micromolar ranges in the hemoglobin bound form. Low-dose CO has shown therapeutic effects in numerous animal models, including traumatic brain injury via engaging various hemoprotein targets. As such, the HO-CO axis has been shown to offer beneficial effects in organ protection, anti-inflammation, and neuroprotection, among many others. Further, a large number of publications have shown the interactions among CO, HO, and the dopaminergic system. In this review, we critically examine such experimental evidence in a holistic fashion and in the context of a possible dopamine-HO-CO signaling axis. We hope that this Perspective will stimulate additional investigations into the molecular connectivity related to this possible axis and open doors to the development of novel therapeutics that impact the dopaminergic system.
Collapse
Affiliation(s)
- Nicola Bauer
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Dongning Liu
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - TanPhat Nguyen
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
10
|
Zhai S, Cui Q, Simmons DV, Surmeier DJ. Distributed dopaminergic signaling in the basal ganglia and its relationship to motor disability in Parkinson's disease. Curr Opin Neurobiol 2023; 83:102798. [PMID: 37866012 PMCID: PMC10842063 DOI: 10.1016/j.conb.2023.102798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023]
Abstract
The degeneration of mesencephalic dopaminergic neurons that innervate the basal ganglia is responsible for the cardinal motor symptoms of Parkinson's disease (PD). It has been thought that loss of dopaminergic signaling in one basal ganglia region - the striatum - was solely responsible for the network pathophysiology causing PD motor symptoms. While our understanding of dopamine (DA)'s role in modulating striatal circuitry has deepened in recent years, it also has become clear that it acts in other regions of the basal ganglia to influence movement. Underscoring this point, examination of a new progressive mouse model of PD shows that striatal dopamine DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. This review summarizes recent advances in the effort to understand basal ganglia circuitry, its modulation by DA, and how its dysfunction drives PD motor symptoms.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qiaoling Cui
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - DeNard V Simmons
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
11
|
Surmeier DJ, Zhai S, Cui Q, Simmons DV. Rethinking the network determinants of motor disability in Parkinson's disease. Front Synaptic Neurosci 2023; 15:1186484. [PMID: 37448451 PMCID: PMC10336242 DOI: 10.3389/fnsyn.2023.1186484] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
For roughly the last 30 years, the notion that striatal dopamine (DA) depletion was the critical determinant of network pathophysiology underlying the motor symptoms of Parkinson's disease (PD) has dominated the field. While the basal ganglia circuit model underpinning this hypothesis has been of great heuristic value, the hypothesis itself has never been directly tested. Moreover, studies in the last couple of decades have made it clear that the network model underlying this hypothesis fails to incorporate key features of the basal ganglia, including the fact that DA acts throughout the basal ganglia, not just in the striatum. Underscoring this point, recent work using a progressive mouse model of PD has shown that striatal DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. Given the broad array of discoveries in the field, it is time for a new model of the network determinants of motor disability in PD.
Collapse
Affiliation(s)
- Dalton James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | | | | |
Collapse
|
12
|
Saaiman D, Brand L, de Brouwe G, Janse van Rensburg H, Terre'Blanche G, Legoabe L, Krahe T, Wolmarans D. Striatal adenosine A 2A receptor involvement in normal and large nest building deer mice: perspectives on compulsivity and anxiety. Behav Brain Res 2023; 449:114492. [PMID: 37172739 DOI: 10.1016/j.bbr.2023.114492] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Obsessive-compulsive disorder (OCD) is characterized by recurring obsessive thoughts and repetitive behaviors that are often associated with anxiety and perturbations in cortico-striatal signaling. Given the suboptimal response of OCD to current serotonergic interventions, there is a need to better understand the psychobiological mechanisms that may underlie the disorder. In this regard, investigations into adenosinergic processes might be fruitful. Indeed, adenosine modulates both anxiety- and motor behavioral output. Thus, we aimed to explore the potential associations between compulsive-like large nest building (LNB) behavior in deer mice, anxiety and adenosinergic processes. From an initial pool of 120 adult deer mice, 34 normal nest building (NNB)- and 32 LNB-expressing mice of both sexes were selected and exposed to either a normal water (wCTRL) or vehicle control (vCTRL), lorazepam (LOR) or istradefylline (ISTRA) for 7- (LOR) or 28 days after which nesting assessment was repeated and animals screened for anxiety-like behavior in an anxiogenic open field. Mice were then euthanized, the striatal tissue removed on ice and the adenosine A2A receptor expression quantified. Our findings indicate that NNB and LNB behavior are not distinctly associated with measures of generalized anxiety and that ISTRA-induced changes in nesting expression are dissociated from changes in anxiety scores. Further, data from this investigation show that nesting in deer mice is directly related to striatal adenosine signaling, and that LNB is founded upon a lower degree of adenosinergic A2A stimulation.
Collapse
Affiliation(s)
- D Saaiman
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - L Brand
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - G de Brouwe
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - H Janse van Rensburg
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, North-West University, Potchefstroom, South Africa
| | - G Terre'Blanche
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, North-West University, Potchefstroom, South Africa
| | - L Legoabe
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, North-West University, Potchefstroom, South Africa
| | - T Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - D Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
13
|
Nagaoka K, Asaoka N, Nagayasu K, Shirakawa H, Kaneko S. Enhancement of adenosine A 2A signaling improves dopamine D 2 receptor antagonist-induced dyskinesia via β-arrestin signaling. Front Neurosci 2023; 16:1082375. [PMID: 36760795 PMCID: PMC9902764 DOI: 10.3389/fnins.2022.1082375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
Repeated administration of dopamine D2 receptor (D2R) antagonists, which is the treatment for psychosis, often causes tardive dyskinesia (TD). Despite notable clinical demand, effective treatment for TD has not been established yet. The neural mechanism involving the hyperinhibition of indirect pathway medium spiny neurons (iMSNs) in the striatum is considered one of the main causes of TD. In this study, we focused on adenosine A2A receptors (A2ARs) expressed in iMSNs and investigated whether pharmacological activation of A2ARs improves dyskinetic symptoms in a TD mouse model. A 21-day treatment with haloperidol increased the number of vacuous chewing movements (VCMs) and decreased the number of c-Fos+/ppENK+ iMSNs in the dorsal striatum. Haloperidol-induced VCMs were reduced by acute intraperitoneal administration of an A2AR agonist, CGS 21680A. Consistently, haloperidol-induced VCMs and decrease in the number of c-Fos+/ppENK+ iMSNs were also mitigated by intrastriatal injection of CGS 21680A. The effects of intrastriatal CGS 21680A were not observed when it was concomitantly administered with a β-arrestin inhibitor, barbadin. Finally, intrastriatal injection of an arrestin-biased D2R agonist, UNC9994, also inhibited haloperidol-induced VCMs. These results suggest that A2AR agonists mitigate TD symptoms by activating striatal iMSNs via β-arrestin signaling.
Collapse
Affiliation(s)
- Koki Nagaoka
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Nozomi Asaoka
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan,Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan,*Correspondence: Shuji Kaneko,
| |
Collapse
|
14
|
Wiprich MT, Altenhofen S, Gusso D, Vasques RDR, Zanandrea R, Kist LW, Bogo MR, Bonan CD. Modulation of adenosine signaling reverses 3-nitropropionic acid-induced bradykinesia and memory impairment in adult zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110602. [PMID: 35843370 DOI: 10.1016/j.pnpbp.2022.110602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder, characterized by motor dysfunction, psychiatric disturbance, and cognitive decline. In the early stage of HD, occurs a decrease in dopamine D2 receptors and adenosine A2A receptors (A2AR), while in the late stage also occurs a decrease in dopamine D1 receptors and adenosine A1 receptors (A1R). Adenosine exhibits neuromodulatory and neuroprotective effects in the brain and is involved in motor control and memory function. 3-Nitropropionic acid (3-NPA), a toxin derived from plants and fungi, may reproduce HD behavioral phenotypes and biochemical characteristics. This study investigated the effects of acute exposure to CPA (A1R agonist), CGS 21680 (A2AR agonist), caffeine (non-selective of A1R and A2AR antagonist), ZM 241385 (A2AR antagonist), DPCPX (A1R antagonist), dipyridamole (inhibitor of nucleoside transporters) and EHNA (inhibitor of adenosine deaminase) in an HD pharmacological model induced by 3-NPA in adult zebrafish. CPA, CGS 21680, caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA were acutely administered via i.p. in zebrafish after 3-NPA (at dose 60 mg/kg) chronic treatment. Caffeine and ZM 241385 reversed the bradykinesia induced by 3-NPA, while CGS 21680 potentiated the bradykinesia caused by 3-NPA. Moreover, CPA, caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA reversed the 3-NPA-induced memory impairment. Together, these data support the hypothesis that A2AR antagonists have an essential role in modulating locomotor function, whereas the activation of A1R and blockade of A2AR and A1R and modulation of adenosine levels may reduce the memory impairment, which could be a potential pharmacological strategy against late-stage symptoms HD.
Collapse
Affiliation(s)
- Melissa Talita Wiprich
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Darlan Gusso
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Rafaela da Rosa Vasques
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo Zanandrea
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza Wilges Kist
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Genômica e Celular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mauricio Reis Bogo
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Genômica e Celular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil.
| |
Collapse
|
15
|
The Role of the Adenosine System on Emotional and Cognitive Disturbances Induced by Ethanol Binge Drinking in the Immature Brain and the Beneficial Effects of Caffeine. Pharmaceuticals (Basel) 2022; 15:ph15111323. [DOI: 10.3390/ph15111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Binge drinking intake is the most common pattern of ethanol consumption by adolescents, which elicits emotional disturbances, mainly anxiety and depressive symptoms, as well as cognitive alterations. Ethanol exposure may act on the adenosine neuromodulation system by increasing adenosine levels, consequently increasing the activation of adenosine receptors in the brain. The adenosine modulation system is involved in the control of mood and memory behavior. However, there is a gap in the knowledge about the exact mechanisms related to ethanol exposure’s hazardous effects on the immature brain (i.e., during adolescence) and the role of the adenosine system thereupon. The present review attempts to provide a comprehensive picture of the role of the adenosinergic system on emotional and cognitive disturbances induced by ethanol during adolescence, exploring the potential benefits of caffeine administration in view of its action as a non-selective antagonist of adenosine receptors.
Collapse
|
16
|
Transcriptome Profiling Reveals Differential Expression of Circadian Behavior Genes in Peripheral Blood of Monozygotic Twins Discordant for Parkinson's Disease. Cells 2022; 11:cells11162599. [PMID: 36010675 PMCID: PMC9406852 DOI: 10.3390/cells11162599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. Investigating individuals with the most identical genetic background is optimal for minimizing the genetic contribution to gene expression. These individuals include monozygotic twins discordant for PD. Monozygotic twins have the same genetic background, age, sex, and often similar environmental conditions. The aim of this study was to carry out a transcriptome analysis of the peripheral blood of three pairs of monozygotic twins discordant for PD. We identified the metabolic process “circadian behavior” as a priority process for further study. Different expression of genes included in the term “circadian behavior” confirms that this process is involved in PD pathogenesis. We found increased expression of three genes associated with circadian behavior, i.e., PTGDS, ADORA2A, and MTA1, in twins with PD. These genes can be considered as potential candidate genes for this disease.
Collapse
|
17
|
Emmi A, Antonini A, Sandre M, Baldo A, Contran M, Macchi V, Guidolin D, Porzionato A, De Caro R. Topography and distribution of adenosine A2A and dopamine D2 receptors in the human Subthalamic Nucleus. Front Neurosci 2022; 16:945574. [PMID: 36017181 PMCID: PMC9396224 DOI: 10.3389/fnins.2022.945574] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The human Subthalamic Nucleus (STh) is a diencephalic lens-shaped structure located ventrally to the thalamus and functionally implicated in the basal ganglia circuits. Despite recent efforts to characterize the neurochemical and functional anatomy of the STh, little to no information is available concerning the expression and distribution of receptors belonging to the dopaminergic and purinergic system in the human STh. Both systems are consistently implicated in basal ganglia physiology and pathology, especially in Parkinson’s Disease, and represent important targets for the pharmacological treatment of movement disorders. Here, we investigate the topography and distribution of A2A adenosine and D2 dopamine receptors in the human basal ganglia and subthalamic nucleus. Our findings indicate a peculiar topographical distribution of the two receptors throughout the subthalamic nucleus, while colocalization between the receptors opens the possibility for the presence of A2AR- D2R heterodimers within the dorsal and medial aspects of the structure. However, further investigation is required to confirm these findings.
Collapse
Affiliation(s)
- Aron Emmi
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
- Movement Disorders Unit, Neurology Clinic, University Hospital of Padova, Padua, Italy
| | - Angelo Antonini
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
- Movement Disorders Unit, Neurology Clinic, University Hospital of Padova, Padua, Italy
| | - Michele Sandre
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
- Movement Disorders Unit, Neurology Clinic, University Hospital of Padova, Padua, Italy
| | - Andrea Baldo
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Martina Contran
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Veronica Macchi
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Diego Guidolin
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Andrea Porzionato
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
- *Correspondence: Andrea Porzionato,
| | - Raffaele De Caro
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| |
Collapse
|
18
|
The mGlu 5 Receptor Protomer-Mediated Dopamine D 2 Receptor Trans-Inhibition Is Dependent on the Adenosine A 2A Receptor Protomer: Implications for Parkinson's Disease. Mol Neurobiol 2022; 59:5955-5969. [PMID: 35829830 PMCID: PMC9463353 DOI: 10.1007/s12035-022-02946-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/28/2022] [Indexed: 11/01/2022]
Abstract
The adenosine A2A receptor (A2AR), dopamine D2 receptor (D2R) and metabotropic glutamate receptor type 5 (mGluR5) form A2AR-D2R-mGluR5 heteroreceptor complexes in living cells and in rat striatal neurons. In the current study, we present experimental data supporting the view that the A2AR protomer plays a major role in the inhibitory modulation of the density and the allosteric receptor-receptor interaction within the D2R-mGluR5 heteromeric component of the A2AR-D2R-mGluR5 complex in vitro and in vivo. The A2AR and mGluR5 protomers interact and modulate D2R protomer recognition and signalling upon forming a trimeric complex from these receptors. Expression of A2AR in HEK293T cells co-expressing D2R and mGluR5 resulted in a significant and marked increase in the formation of the D2R-mGluR5 heteromeric component in both bioluminescence resonance energy transfer and proximity ligation assays. A highly significant increase of the the high-affinity component of D2R (D2RKi High) values was found upon cotreatment with the mGluR5 and A2AR agonists in the cells expressing A2AR, D2R and mGluR5 with a significant effect observed also with the mGluR5 agonist alone compared to cells expressing only D2R and mGluR5. In cells co-expressing A2AR, D2R and mGluR5, stimulation of the cells with an mGluR5 agonist like or D2R antagonist fully counteracted the D2R agonist-induced inhibition of the cAMP levels which was not true in cells only expressing mGluR5 and D2R. In agreement, the mGluR5-negative allosteric modulator raseglurant significantly reduced the haloperidol-induced catalepsy in mice, and in A2AR knockout mice, the haloperidol action had almost disappeared, supporting a functional role for mGluR5 and A2AR in enhancing D2R blockade resulting in catalepsy. The results represent a relevant example of integrative activity within higher-order heteroreceptor complexes.
Collapse
|
19
|
Fan Y, Li J, Huang L, Wang K, Zhao M. 7-Methylxanthine Influences the Behavior of ADORA2A-DRD2 Heterodimers in Human Retinal Pigment Epithelial Cells. Ophthalmic Res 2022; 65:678-684. [PMID: 35724635 DOI: 10.1159/000525563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The goal of this study was to investigate the presence of ADORA2A-DRD2 heterodimers in human retinal pigment epithelial (RPE) cells; determine if 7-methylxanthine (7-MX), a nonselective adenosine receptor antagonist which was used to control myopia progression, can influence the behavior of RPE cells through the ADORA2A-DRD2 receptor pathway; and assess the changes in the expression of signaling molecules during cellular signal transduction. METHODS Human RPE cells were cultured in vitro in the presence or absence of 7-MX. Cell proliferation was evaluated with the CCK-8 assay. Apoptosis and necrosis rates were determined by annexin V-FITC/propidium iodide staining and flow cytometry. Immunofluorescence and coimmunoprecipitation were used to examine the protein expression and colocalization of ADORA2A and DRD2 in RPE cells. ADORA2A and DRD2 were knocked down with small interfering RNAs (siRNAs). Changes in the protein expression of ERK1/2 and phospho-ERK1/2 (pERK 1/2), which are signaling molecules downstream of dopamine receptors, were evaluated by Western blot analysis. RESULTS Immunofluorescence and coimmunoprecipitation showed that ADORA2A and DRD2 were colocalized in RPE cells. The expression of ADORA2A in RPE cells was inhibited by treatment with 50 µmol/L 7-MX for 48 h, and the expression of DRD2, ERK1/2, and pERK1/2 was increased after treatment with 50 µmol/L 7-MX for 48 h. After siRNA-mediated knockdown of DRD2 in RPE cells and further treatment with 50 µmol/L 7-MX for 48 h, the expression of DRD2 was nearly restored to the level observed in the native control. At the experimental concentrations, 7-MX and siRNAs did not affect the proliferation or apoptosis of human RPE cells. CONCLUSIONS ADORA2A and DRD2 heterodimers were present in RPE cells. 7-MX may affect the behaviors of RPE cells through the ADORA2A-DRD2 receptor pathway. 7-MX is an inhibitor of ADORA2A receptors that can prevent inhibition of the DRD2 receptor pathway and increase DRD2 receptor pathway activity. This phenomenon may explain the mechanism of action through which 7-MX can control myopia progression.
Collapse
Affiliation(s)
- Yuzhuo Fan
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China, .,Department of Ophthalmology & Clinical Center of Optometry, Peking University People's Hospital, Beijing, China, .,College of Optometry, Peking University Health Science Center, Beijing, China, .,Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China, .,Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China,
| | - Jiarui Li
- Department of Ophthalmology & Clinical Center of Optometry, Peking University People's Hospital, Beijing, China.,College of Optometry, Peking University Health Science Center, Beijing, China.,Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Lvzhen Huang
- Department of Ophthalmology & Clinical Center of Optometry, Peking University People's Hospital, Beijing, China.,College of Optometry, Peking University Health Science Center, Beijing, China.,Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Kai Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Ophthalmology & Clinical Center of Optometry, Peking University People's Hospital, Beijing, China.,College of Optometry, Peking University Health Science Center, Beijing, China.,Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Mingwei Zhao
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Ophthalmology & Clinical Center of Optometry, Peking University People's Hospital, Beijing, China.,College of Optometry, Peking University Health Science Center, Beijing, China.,Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| |
Collapse
|
20
|
Ortinski PI, Reissner KJ, Turner J, Anderson TA, Scimemi A. Control of complex behavior by astrocytes and microglia. Neurosci Biobehav Rev 2022; 137:104651. [PMID: 35367512 PMCID: PMC9119927 DOI: 10.1016/j.neubiorev.2022.104651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Evidence that glial cells influence behavior has been gaining a steady foothold in scientific literature. Out of the five main subtypes of glial cells in the brain, astrocytes and microglia have received an outsized share of attention with regard to shaping a wide spectrum of behavioral phenomena and there is growing appreciation that the signals intrinsic to these cells as well as their interactions with surrounding neurons reflect behavioral history in a brain region-specific manner. Considerable regional diversity of glial cell phenotypes is beginning to be recognized and may contribute to behavioral outcomes arising from circuit-specific computations within and across discrete brain nuclei. Here, we summarize current knowledge on the impact of astrocyte and microglia activity on behavioral outcomes, with a specific focus on brain areas relevant to higher cognitive control, reward-seeking, and circadian regulation.
Collapse
Affiliation(s)
- P I Ortinski
- Department of Neuroscience, University of Kentucky, USA
| | - K J Reissner
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, USA
| | - J Turner
- Department of Pharmaceutical Sciences, University of Kentucky, USA
| | - T A Anderson
- Department of Neuroscience, University of Kentucky, USA
| | - A Scimemi
- Department of Biology, State University of New York at Albany, USA
| |
Collapse
|
21
|
Guidolin D, Tortorella C, Marcoli M, Maura G, Agnati LF. Intercellular Communication in the Central Nervous System as Deduced by Chemical Neuroanatomy and Quantitative Analysis of Images: Impact on Neuropharmacology. Int J Mol Sci 2022; 23:5805. [PMID: 35628615 PMCID: PMC9145073 DOI: 10.3390/ijms23105805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
In the last decades, new evidence on brain structure and function has been acquired by morphological investigations based on synergic interactions between biochemical anatomy approaches, new techniques in microscopy and brain imaging, and quantitative analysis of the obtained images. This effort produced an expanded view on brain architecture, illustrating the central nervous system as a huge network of cells and regions in which intercellular communication processes, involving not only neurons but also other cell populations, virtually determine all aspects of the integrative function performed by the system. The main features of these processes are described. They include the two basic modes of intercellular communication identified (i.e., wiring and volume transmission) and mechanisms modulating the intercellular signaling, such as cotransmission and allosteric receptor-receptor interactions. These features may also open new possibilities for the development of novel pharmacological approaches to address central nervous system diseases. This aspect, with a potential major impact on molecular medicine, will be also briefly discussed.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Manuela Marcoli
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (G.M.)
| | - Guido Maura
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
22
|
Ródenas-González F, Blanco-Gandía MC, Miñarro J, Rodríguez-Arias M. Effects of ketosis on cocaine-induced reinstatement in male mice. Neurosci Lett 2022; 778:136619. [PMID: 35395325 DOI: 10.1016/j.neulet.2022.136619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
In recent years, the benefits of the ketogenic diet (KD) on different psychiatric disorders have been gaining attention, but the substance abuse field is still unexplored. Some studies have reported that palatable food can modulate the rewarding effects of cocaine, but the negative metabolic consequences rule out the recommendation of using it as a complementary treatment. Thus, the main aim of this study was to evaluate the effects of the KD on cocaine conditioned place preference (CPP) during acquisition, extinction, and reinstatement. 41 OF1 male mice were employed to assess the effects of the KD on a 10 mg/kg cocaine-induced CPP. Animals were divided into three groups: SD, KD, and KD after the Post-Conditioning test. The results revealed that, while access to the KD did not block CPP acquisition, it did significantly reduce the number of sessions required to extinguish the drug-associated memories and it blocked the priming-induced reinstatement.
Collapse
Affiliation(s)
- Francisco Ródenas-González
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - M Carmen Blanco-Gandía
- Departamento de Psicología y Sociología, Facultad de Ciencias Sociales y Humanas, Universidad de Zaragoza, Teruel, Spain
| | - José Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Marta Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Valencia, Spain.
| |
Collapse
|
23
|
Lambertucci C, Marucci G, Catarzi D, Colotta V, Francucci B, Spinaci A, Varano F, Volpini R. A2A Adenosine Receptor Antagonists and their Potential in Neurological Disorders. Curr Med Chem 2022; 29:4780-4795. [PMID: 35184706 DOI: 10.2174/0929867329666220218094501] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022]
Abstract
Endogenous nucleoside adenosine modulates a number of physiological effects through interaction with P1 purinergic receptors. All of them are G protein coupled receptors and, to date, four subtypes have been characterized and named A1, A2A, A2B, and A3. In recent years adenosine receptors, particularly the A2A subtype, have become attractive targets for the treatment of several neurodegenerative disorders, known to involve neuroinflammation, like Parkinson's and Alzheimer's diseases, multiple sclerosis and neuropsychiatric conditions. In fact, it has been demonstrated that inhibition of A2A adenosine receptors exerts neuroprotective effects counteracting neuroinflammatory processes and astroglial and microglial activation. The A2A adenosine receptor antagonist istradefylline, developed by Kyowa Hakko Kirin Inc., was approved in Japan as adjunctive therapy for the treatment of Parkinson's disease and very recently it was approved also by the US Food and Drug Administration. These findings pave the way for new therapeutic opportunities, so, in this review, a summary of the most relevant and promising A2A adenosine receptor antagonists will be presented along with their preclinical and clinical studies in neuroinflammation related diseases.
Collapse
Affiliation(s)
- Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy
| | - Gabriella Marucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy
| | - Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, 50019 Sesto Fiorentino (FI), Italy
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, 50019 Sesto Fiorentino (FI), Italy
| | - Beatrice Francucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy
| | - Andrea Spinaci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, 50019 Sesto Fiorentino (FI), Italy
| | - Rosaria Volpini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
24
|
Mao LM, Demehri S, Wang JQ. Upregulation of Src Family Tyrosine Kinases in the Rat Striatum by Adenosine A 2A Receptors. J Mol Neurosci 2022; 72:802-811. [PMID: 35041190 PMCID: PMC8986616 DOI: 10.1007/s12031-021-01961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
Adenosine A2A receptors are Golf-coupled receptors and are predominantly expressed in the striatum of mammalian brains. As a mostly postsynaptic receptor, A2A receptors are implicated in the regulation of a variety of intracellular signaling pathways in striatopallidal output neurons and are linked to the pathogenesis of various neuropsychiatric and neurological disorders. This study investigated the possible role of A2A receptors in the modulation of the Src family kinase (SFK) in the adult rat striatum. In acutely prepared striatal slices, adding the A2A receptor agonist PSB-0777 induced a significant increase in phosphorylation of SFKs at a conserved autophosphorylation site (Y416) in the caudate putamen (CPu). This increase was also seen in the nucleus accumbens (NAc). Another A2A agonist CGS-21680 showed the similar ability to elevate SFK Y416 phosphorylation in the striatum. Treatment with the A2A receptor antagonist KW-6002 blocked the effect of PSB-0777 on SFK Y416 phosphorylation. In addition, PSB-0777 enhanced kinase activity of two key SFK members (Src and Fyn) immunoprecipitated from the striatum. These data demonstrate a positive linkage from A2A receptors to the SFK signaling pathway in striatal neurons. Activation of A2A receptors leads to the upregulation of phosphorylation of SFKs (Src and Fyn) at an activation-associated autophosphorylation site and kinase activity of these SFK members.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Shannon Demehri
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA.
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA.
| |
Collapse
|
25
|
Elevated endogenous GDNF induces altered dopamine signalling in mice and correlates with clinical severity in schizophrenia. Mol Psychiatry 2022; 27:3247-3261. [PMID: 35618883 PMCID: PMC9708553 DOI: 10.1038/s41380-022-01554-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022]
Abstract
Presynaptic increase in striatal dopamine is the primary dopaminergic abnormality in schizophrenia, but the underlying mechanisms are not understood. Here, we hypothesized that increased expression of endogenous GDNF could induce dopaminergic abnormalities that resemble those seen in schizophrenia. To test the impact of GDNF elevation, without inducing adverse effects caused by ectopic overexpression, we developed a novel in vivo approach to conditionally increase endogenous GDNF expression. We found that a 2-3-fold increase in endogenous GDNF in the brain was sufficient to induce molecular, cellular, and functional changes in dopamine signalling in the striatum and prefrontal cortex, including increased striatal presynaptic dopamine levels and reduction of dopamine in prefrontal cortex. Mechanistically, we identified adenosine A2a receptor (A2AR), a G-protein coupled receptor that modulates dopaminergic signalling, as a possible mediator of GDNF-driven dopaminergic abnormalities. We further showed that pharmacological inhibition of A2AR with istradefylline partially normalised striatal GDNF and striatal and cortical dopamine levels in mice. Lastly, we found that GDNF levels are increased in the cerebrospinal fluid of first episode psychosis patients, and in post-mortem striatum of schizophrenia patients. Our results reveal a possible contributor for increased striatal dopamine signalling in a subgroup of schizophrenia patients and suggest that GDNF-A2AR crosstalk may regulate dopamine function in a therapeutically targetable manner.
Collapse
|
26
|
Kosmowska B, Wardas J. The Pathophysiology and Treatment of Essential Tremor: The Role of Adenosine and Dopamine Receptors in Animal Models. Biomolecules 2021; 11:1813. [PMID: 34944457 PMCID: PMC8698799 DOI: 10.3390/biom11121813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Essential tremor (ET) is one of the most common neurological disorders that often affects people in the prime of their lives, leading to a significant reduction in their quality of life, gradually making them unable to independently perform the simplest activities. Here we show that current ET pharmacotherapy often does not sufficiently alleviate disease symptoms and is completely ineffective in more than 30% of patients. At present, deep brain stimulation of the motor thalamus is the most effective ET treatment. However, like any brain surgery, it can cause many undesirable side effects; thus, it is only performed in patients with an advanced disease who are not responsive to drugs. Therefore, it seems extremely important to look for new strategies for treating ET. The purpose of this review is to summarize the current knowledge on the pathomechanism of ET based on studies in animal models of the disease, as well as to present and discuss the results of research available to date on various substances affecting dopamine (mainly D3) or adenosine A1 receptors, which, due to their ability to modulate harmaline-induced tremor, may provide the basis for the development of new potential therapies for ET in the future.
Collapse
Affiliation(s)
| | - Jadwiga Wardas
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Kraków, Poland;
| |
Collapse
|
27
|
Borgus JR, Wang Y, DiScenza DJ, Venton BJ. Spontaneous Adenosine and Dopamine Cotransmission in the Caudate-Putamen Is Regulated by Adenosine Receptors. ACS Chem Neurosci 2021; 12:4371-4379. [PMID: 34783243 DOI: 10.1021/acschemneuro.1c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Transient changes in adenosine and dopamine have been measured in vivo, but no studies have examined if these transient changes occur simultaneously. In this study, we characterized spontaneous adenosine and dopamine transients in anesthetized mice, examining coincident release in the caudate-putamen for the first time. We found that in C57B mice, most of the dopamine transients (77%) were coincident with adenosine, but fewer adenosine transients (12%) were coincident with a dopamine transient. On average, the dopamine transient started 200 ms before its coincident adenosine transient, so they occurred concurrently. There was a positive correlation (r = 0.7292) of adenosine and dopamine concentrations during coincident release. ATP is quickly broken down to adenosine in the extracellular space, and the coincident events may be due to corelease, where dopaminergic vesicles are packaged with ATP, or cotransmission, where ATP is packaged in different vesicles released simultaneously with dopamine. The high frequency of adenosine transients compared to that of dopamine transients suggests that adenosine is also released from nondopaminergic vesicles. We investigated how A1 and A2A adenosine receptors regulate adenosine and dopamine transients using A1 and A2AKO mice. In A1KO mice, the frequency of adenosine and dopamine transients increased, while in A2AKO mice, the frequency of adenosine alone increased. Adenosine receptors modulate coincident transients and could be drug targets to modulate both dopamine and adenosine release. Many spontaneous dopamine transients have coincident adenosine release, and regulating adenosine and dopamine cotransmission could be important for designing treatments for dopamine diseases, such as Parkinson's or addiction.
Collapse
Affiliation(s)
- Jason R. Borgus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
| | - Ying Wang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
| | - Dana J. DiScenza
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
| |
Collapse
|
28
|
Shang P, Baker M, Banks S, Hong SI, Choi DS. Emerging Nondopaminergic Medications for Parkinson's Disease: Focusing on A2A Receptor Antagonists and GLP1 Receptor Agonists. J Mov Disord 2021; 14:193-203. [PMID: 34399565 PMCID: PMC8490190 DOI: 10.14802/jmd.21035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disease characterized by classic motor features associated with the loss of dopaminergic neurons and appearance of Lewy bodies in the substantia nigra. Due to the complexity of PD, a definitive diagnosis in the early stages and effective management of symptoms in later stages are difficult to achieve in clinical practice. Previous research has shown that colocalization of A2A receptors (A2AR) and dopamine D2 receptors (D2R) may induce an antagonistic interaction between adenosine and dopamine. Clinical trials have found that the A2AR antagonist istradefylline decreases dyskinesia in PD and could be used as an adjuvant to levodopa treatment. Meanwhile, the incretin hormone glucagon-like peptide 1 (GLP1) mainly facilitates glucose homeostasis and insulin signaling. Preclinical experiments and clinical trials of GLP1 receptor (GLP1R) agonists show that they may be effective in alleviating neuroinflammation and sustaining cellular functions in the central nervous system of patients with PD. In this review, we summarize up-to-date findings on the usefulness of A2AR antagonists and GLP1R agonists in PD management. We explain the molecular mechanisms of these medications and their interactions with other neurotransmitter receptors. Furthermore, we discuss the efficacy and limitations of A2AR antagonists and GLP1R agonists in clinical practice.
Collapse
Affiliation(s)
- Pei Shang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Matthew Baker
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Samantha Banks
- Department of Neurology, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Sa-Ik Hong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, College of Medicine, Rochester, MN, USA
- Department of Neuroscience Program, Mayo Clinic, College of Medicine, Rochester, MN, USA
| |
Collapse
|
29
|
Mao LM, Wang JQ. Roles of adenosine A 1 receptors in the regulation of SFK activity in the rat forebrain. Brain Behav 2021; 11:e2254. [PMID: 34156168 PMCID: PMC8413746 DOI: 10.1002/brb3.2254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine A1 receptors are widely expressed in the mammalian brain. Through interacting with Gαi/o -coupled A1 receptors, the neuromodulator adenosine modulates a variety of cellular and synaptic activities. To determine the linkage from A1 receptors to a key intracellular signaling pathway, we investigated the impact of blocking A1 receptors on a subfamily of nonreceptor tyrosine kinases, that is, the Src family kinase (SFK), in different rat brain regions in vivo. We found that pharmacological blockade of A1 receptors by a single systemic injection of the A1 selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) induced an increase in autophosphorylation of SFKs at a consensus activation site, tyrosine 416 (Y416), in the two subdivisions of the striatum, the caudate putamen and nucleus accumbens. DPCPX also increased SFK Y416 phosphorylation in the medial prefrontal cortex (mPFC) but not the hippocampus. The DPCPX-induced Y416 phosphorylation was time dependent and reversible. In immunopurified Fyn and Src proteins from the striatum, DPCPX elevated SFK Y416 phosphorylation and tyrosine kinase activity in Fyn but not in Src proteins. In the mPFC, DPCPX enhanced Y416 phosphorylation and tyrosine kinase activity in both Fyn and Src immunoprecipitates. DPCPX had no effect on expression of total Fyn and Src proteins in the striatum, mPFC, and hippocampus. These results demonstrate a tonic inhibitory linkage from A1 receptors to SFKs in the striatum and mPFC. Blocking this inhibitory tone could significantly enhance constitutive SFK Y416 phosphorylation in the rat brain in a region- and time-dependent manner.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA.,Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
30
|
Valenti O, Zambon A, Boehm S. Orchestration of Dopamine Neuron Population Activity in the Ventral Tegmental Area by Caffeine: Comparison With Amphetamine. Int J Neuropsychopharmacol 2021; 24:832-841. [PMID: 34278424 PMCID: PMC8538898 DOI: 10.1093/ijnp/pyab049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/30/2021] [Accepted: 07/16/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Among psychostimulants, the dopamine transporter ligands amphetamine and cocaine display the highest addictive potential; the adenosine receptor antagonist caffeine is most widely consumed but less addictive. Psychostimulant actions of amphetamine were correlated with its ability to orchestrate ventral tegmental dopamine neuron activity with contrasting shifts in firing after single vs repeated administration. Whether caffeine might impinge on dopamine neuron activity has remained elusive. METHODS Population activity of ventral tegmental area dopamine neurons was determined by single-unit extracellular recordings and set in relation to mouse behavior in locomotion and conditioned place preference experiments, respectively. RESULTS A single dose of caffeine reduced population activity as did amphetamine and the selective adenosine A2A antagonist KW-6002, but not the A1 antagonist DPCPX. Repeated administration of KW-6002 or amphetamine led to drug-conditioned place preference and to unaltered or even enhanced population activity. Recurrent injection of caffeine or DPCPX, in contrast, failed to cause conditioned place preference and persistently reduced population activity. Subsequent to repetitive drug administration, re-exposure to amphetamine or KW-6002, but not to caffeine or DPCPX, was able to reduce population activity. CONCLUSIONS Behavioral sensitization to amphetamine is attributed to persistent activation of ventral tegmental area dopamine neurons via the ventral hippocampus. Accordingly, a switch from acute A2A receptor-mediated reduction of dopamine neuron population activity to enduring A1 receptor-mediated suppression is correlated with tolerance rather than sensitization in response to repeated caffeine intake.
Collapse
Affiliation(s)
- Ornella Valenti
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria,Correspondence: Assoc. Prof. Ornella Valenti, Schwarzspanierstrasse 17, 1090 Vienna, Austria ()
| | - Alice Zambon
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| | - Stefan Boehm
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| |
Collapse
|
31
|
Oyagawa CRM, Grimsey NL. Cannabinoid receptor CB 1 and CB 2 interacting proteins: Techniques, progress and perspectives. Methods Cell Biol 2021; 166:83-132. [PMID: 34752341 DOI: 10.1016/bs.mcb.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cannabinoid receptors 1 and 2 (CB1 and CB2) are implicated in a range of physiological processes and have gained attention as promising therapeutic targets for a number of diseases. Protein-protein interactions play an integral role in modulating G protein-coupled receptor (GPCR) expression, subcellular distribution and signaling, and the identification and characterization of these will not only improve our understanding of GPCR function and biology, but may provide a novel avenue for therapeutic intervention. A variety of techniques are currently being used to investigate GPCR protein-protein interactions, including Förster/fluorescence and bioluminescence resonance energy transfer (FRET and BRET), proximity ligation assay (PLA), and bimolecular fluorescence complementation (BiFC). However, the reliable application of these methodologies is dependent on the use of appropriate controls and the consideration of the physiological context. Though not as extensively characterized as some other GPCRs, the investigation of CB1 and CB2 interacting proteins is a growing area of interest, and a range of interacting partners have been identified to date. This review summarizes the current state of the literature regarding the cannabinoid receptor interactome, provides commentary on the methodologies and techniques utilized, and discusses future perspectives.
Collapse
Affiliation(s)
- Caitlin R M Oyagawa
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
32
|
Verduzco-Mendoza A, Carrillo-Mora P, Avila-Luna A, Gálvez-Rosas A, Olmos-Hernández A, Mota-Rojas D, Bueno-Nava A. Role of the Dopaminergic System in the Striatum and Its Association With Functional Recovery or Rehabilitation After Brain Injury. Front Neurosci 2021; 15:693404. [PMID: 34248494 PMCID: PMC8264205 DOI: 10.3389/fnins.2021.693404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
Disabilities are estimated to occur in approximately 2% of survivors of traumatic brain injury (TBI) worldwide, and disability may persist even decades after brain injury. Facilitation or modulation of functional recovery is an important goal of rehabilitation in all patients who survive severe TBI. However, this recovery tends to vary among patients because it is affected by the biological and physical characteristics of the patients; the types, doses, and application regimens of the drugs used; and clinical indications. In clinical practice, diverse dopaminergic drugs with various dosing and application procedures are used for TBI. Previous studies have shown that dopamine (DA) neurotransmission is disrupted following moderate to severe TBI and have reported beneficial effects of drugs that affect the dopaminergic system. However, the mechanisms of action of dopaminergic drugs have not been completely clarified, partly because dopaminergic receptor activation can lead to restoration of the pathway of the corticobasal ganglia after injury in brain structures with high densities of these receptors. This review aims to provide an overview of the functionality of the dopaminergic system in the striatum and its roles in functional recovery or rehabilitation after TBI.
Collapse
Affiliation(s)
- Antonio Verduzco-Mendoza
- Ph.D. Program in Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City, Mexico
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Paul Carrillo-Mora
- Division of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Alberto Avila-Luna
- Division of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Arturo Gálvez-Rosas
- Division of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Antonio Bueno-Nava
- Division of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| |
Collapse
|
33
|
Blanco-Gandía MDC, Ródenas-González F, Pascual M, Reguilón MD, Guerri C, Miñarro J, Rodríguez-Arias M. Ketogenic Diet Decreases Alcohol Intake in Adult Male Mice. Nutrients 2021; 13:nu13072167. [PMID: 34202492 PMCID: PMC8308435 DOI: 10.3390/nu13072167] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 01/26/2023] Open
Abstract
The classic ketogenic diet is a diet high in fat, low in carbohydrates, and well-adjusted proteins. The reduction in glucose levels induces changes in the body’s metabolism, since the main energy source happens to be ketone bodies. Recent studies have suggested that nutritional interventions may modulate drug addiction. The present work aimed to study the potential effects of a classic ketogenic diet in modulating alcohol consumption and its rewarding effects. Two groups of adult male mice were employed in this study, one exposed to a standard diet (SD, n = 15) and the other to a ketogenic diet (KD, n = 16). When a ketotic state was stable for 7 days, animals were exposed to the oral self-administration paradigm to evaluate the reinforcing and motivating effects of ethanol. Rt-PCR analyses were performed evaluating dopamine, adenosine, CB1, and Oprm gene expression. Our results showed that animals in a ketotic state displayed an overall decrease in ethanol consumption without changes in their motivation to drink. Gene expression analyses point to several alterations in the dopamine, adenosine, and cannabinoid systems. Our results suggest that nutritional interventions may be a useful complementary tool in treating alcohol-use disorders.
Collapse
Affiliation(s)
| | - Francisco Ródenas-González
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
| | - María Pascual
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain;
- Department of Physiology, School of Medicine, Universitat de Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain
| | - Marina Daiana Reguilón
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain;
| | - José Miñarro
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
| | - Marta Rodríguez-Arias
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
- Correspondence: ; Tel.: +34-963864637
| |
Collapse
|
34
|
de Brouwer G, Engelbrecht J, Mograbi DC, Legoabe L, Steyn SF, Wolmarans DW. Stereotypy and spontaneous alternation in deer mice and its response to anti-adenosinergic intervention. J Neurosci Res 2021; 99:2706-2720. [PMID: 34115897 DOI: 10.1002/jnr.24867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
Abstract
Repetitive behavioral phenotypes are a trait of several neuropsychiatric disorders, including obsessive-compulsive disorder (OCD). Such behaviors are typified by complex interactions between cognitive and neurobiological processes which most likely contribute to the suboptimal treatment responses often observed. To this end, exploration of the adenosinergic system may be useful, since adenosine-receptor modulation has previously shown promise to restore control over voluntary behavior and improve cognition in patients presenting with motor repetition. Here, we employed the deer mouse (Peromyscus maniculatus bairdii) model of compulsive-like behavioral persistence, seeking to investigate possible associations between stereotypic motor behavior and cognitive flexibility as measured in the T-maze continuous alternation task (T-CAT). The effect of istradefylline, a selective adenosine A2A receptor antagonist at two doses (10 and 20 mg kg-1 day-1 ) on the expression of stereotypy and T-CAT performance in high (H) and non-(N) stereotypical animals, was investigated in comparison to a control intervention (six groups; n = 8 or 9 per group). No correlation between H behavior and T-CAT performance was found. However, H but not N animals presented with istradefylline-sensitive spontaneous alternation and stereotypy, in that istradefylline at both doses significantly improved the spontaneous alternation scores and attenuated the stereotypical expression of H animals. Thus, evidence is presented that anti-adenosinergic drug action improves repetitive behavior and spontaneous alternation in stereotypical deer mice, putatively pointing to a shared psychobiological construct underlying naturalistic stereotypy and alterations in cognitive flexibility in deer mice.
Collapse
Affiliation(s)
- Geoffrey de Brouwer
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Jaco Engelbrecht
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Daniel C Mograbi
- Department of Psychology, Pontifícia Universidade Católica - Rio (PUC-Rio), Rio de Janeiro, Brazil.,Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Lesetja Legoabe
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Stephan F Steyn
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
35
|
Feng Y, Lu Y. Immunomodulatory Effects of Dopamine in Inflammatory Diseases. Front Immunol 2021; 12:663102. [PMID: 33897712 PMCID: PMC8063048 DOI: 10.3389/fimmu.2021.663102] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Dopamine (DA) receptor, a significant G protein-coupled receptor, is classified into two families: D1-like (D1 and D5) and D2-like (D2, D3, and D4) receptor families, with further formation of homodimers, heteromers, and receptor mosaic. Increasing evidence suggests that the immune system can be affected by the nervous system and neurotransmitters, such as dopamine. Recently, the role of the DA receptor in inflammation has been widely studied, mainly focusing on NLRP3 inflammasome, NF-κB pathway, and immune cells. This article provides a brief review of the structures, functions, and signaling pathways of DA receptors and their relationships with inflammation. With detailed descriptions of their roles in Parkinson disease, inflammatory bowel disease, rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis, this article provides a theoretical basis for drug development targeting DA receptors in inflammatory diseases.
Collapse
Affiliation(s)
- Yifei Feng
- Department of Dermatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Lu
- Department of Dermatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
D’Angelo V, Giorgi M, Paldino E, Cardarelli S, Fusco FR, Saverioni I, Sorge R, Martella G, Biagioni S, Mercuri NB, Pisani A, Sancesario G. A2A Receptor Dysregulation in Dystonia DYT1 Knock-Out Mice. Int J Mol Sci 2021; 22:2691. [PMID: 33799994 PMCID: PMC7962104 DOI: 10.3390/ijms22052691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/01/2021] [Indexed: 01/28/2023] Open
Abstract
We aimed to investigate A2A receptors in the basal ganglia of a DYT1 mouse model of dystonia. A2A was studied in control Tor1a+/+ and Tor1a+/- knock-out mice. A2A expression was assessed by anti-A2A antibody immunofluorescence and Western blotting. The co-localization of A2A was studied in striatal cholinergic interneurons identified by anti-choline-acetyltransferase (ChAT) antibody. A2A mRNA and cyclic adenosine monophosphate (cAMP) contents were also assessed. In Tor1a+/+, Western blotting detected an A2A 45 kDa band, which was stronger in the striatum and the globus pallidus than in the entopeduncular nucleus. Moreover, in Tor1a+/+, immunofluorescence showed A2A roundish aggregates, 0.3-0.4 μm in diameter, denser in the neuropil of the striatum and the globus pallidus than in the entopeduncular nucleus. In Tor1a+/-, A2A Western blotting expression and immunofluorescence aggregates appeared either increased in the striatum and the globus pallidus, or reduced in the entopeduncular nucleus. Moreover, in Tor1a+/-, A2A aggregates appeared increased in number on ChAT positive interneurons compared to Tor1a+/+. Finally, in Tor1a+/-, an increased content of cAMP signal was detected in the striatum, while significant levels of A2A mRNA were neo-expressed in the globus pallidus. In Tor1a+/-, opposite changes of A2A receptors' expression in the striatal-pallidal complex and the entopeduncular nucleus suggest that the pathophysiology of dystonia is critically dependent on a composite functional imbalance of the indirect over the direct pathway in basal ganglia.
Collapse
Affiliation(s)
- Vincenza D’Angelo
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (V.D.); (R.S.); (G.M.); (N.B.M.)
| | - Mauro Giorgi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (S.C.); (I.S.); (S.B.)
| | - Emanuela Paldino
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (E.P.); (F.R.F.)
| | - Silvia Cardarelli
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (S.C.); (I.S.); (S.B.)
| | | | - Ilaria Saverioni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (S.C.); (I.S.); (S.B.)
| | - Roberto Sorge
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (V.D.); (R.S.); (G.M.); (N.B.M.)
| | - Giuseppina Martella
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (V.D.); (R.S.); (G.M.); (N.B.M.)
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (E.P.); (F.R.F.)
| | - Stefano Biagioni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (S.C.); (I.S.); (S.B.)
| | - Nicola B. Mercuri
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (V.D.); (R.S.); (G.M.); (N.B.M.)
| | - Antonio Pisani
- IRCCS Mondino Foundation, 27100 Pavia, Italy;
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giuseppe Sancesario
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy; (V.D.); (R.S.); (G.M.); (N.B.M.)
| |
Collapse
|
37
|
Gomes JI, Farinha-Ferreira M, Rei N, Gonçalves-Ribeiro J, Ribeiro JA, Sebastião AM, Vaz SH. Of adenosine and the blues: The adenosinergic system in the pathophysiology and treatment of major depressive disorder. Pharmacol Res 2020; 163:105363. [PMID: 33285234 DOI: 10.1016/j.phrs.2020.105363] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) is the foremost cause of global disability, being responsible for enormous personal, societal, and economical costs. Importantly, existing pharmacological treatments for MDD are partially or totally ineffective in a large segment of patients. As such, the search for novel antidepressant drug targets, anchored on a clear understanding of the etiological and pathophysiological mechanisms underpinning MDD, becomes of the utmost importance. The adenosinergic system, a highly conserved neuromodulatory system, appears as a promising novel target, given both its regulatory actions over many MDD-affected systems and processes. With this goal in mind, we herein review the evidence concerning the role of adenosine as a potential player in pathophysiology and treatment of MDD, combining data from both human and animal studies. Altogether, evidence supports the assertions that the adenosinergic system is altered in both MDD patients and animal models, and that drugs targeting this system have considerable potential as putative antidepressants. Furthermore, evidence also suggests that modifications in adenosine signaling may have a key role in the effects of several pharmacological and non-pharmacological antidepressant treatments with demonstrated efficacy, such as electroconvulsive shock, sleep deprivation, and deep brain stimulation. Lastly, it becomes clear from the available literature that there is yet much to study regarding the role of the adenosinergic system in the pathophysiology and treatment of MDD, and we suggest several avenues of research that are likely to prove fruitful.
Collapse
Affiliation(s)
- Joana I Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Farinha-Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
38
|
Short-term nicotine deprivation alters dorsal anterior cingulate glutamate concentration and concomitant cingulate-cortical functional connectivity. Neuropsychopharmacology 2020; 45:1920-1930. [PMID: 32559759 PMCID: PMC7608204 DOI: 10.1038/s41386-020-0741-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/20/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
Abstract
Most cigarette smokers who wish to quit too often relapse within the first few days of abstinence, primarily due to the aversive aspects of the nicotine withdrawal syndrome (NWS), which remains poorly understood. Considerable research has suggested that the dorsal anterior cingulate cortex (dACC) plays a key role in nicotine dependence, with its functional connections between other brain regions altered as a function of trait addiction and state withdrawal. The flow of information between dACC and fronto-striatal regions is secured through different pathways, the vast majority of which are glutamatergic. As such, we investigated dACC activity using resting state functional connectivity (rsFC) with functional magnetic resonance imaging (fMRI) and glutamate (Glu) concentration with magnetic resonance spectroscopy (MRS). We also investigated the changes in adenosine levels in plasma during withdrawal as a surrogate for brain adenosine, which plays a role in fine-tuning synaptic glutamate transmission. Using a double-blind, placebo-controlled, randomized crossover design, nontreatment seeking smoking participants (N = 30) completed two imaging sessions, one while nicotine sated and another after 36 h nicotine abstinence. We observed reduced dACC Glu (P = 0.029) along with a significant reduction in plasma adenosine (P = 0.03) and adenosine monophosphate (AMP; P < 0.0001) concentrations during nicotine withdrawal in comparison with nicotine sated state. This withdrawal state manipulation also led to an increase in rsFC strength (P < 0.05) between dACC and several frontal cortical regions, including left superior frontal gyrus (LSFG), and right middle frontal gyrus (RMFG). Moreover, the state-trait changes in dACC Glu and rsFC strength between the dACC and both SFG and MFG were positively correlated (P = 0.012, and P = 0.007, respectively). Finally, the change in circuit strength between dACC and LSFG was negatively correlated with the change in withdrawal symptom manifestations as measured by the Wisconsin Smoking Withdrawal Scale (P = 0.04) and Tobacco Craving Questionnaire (P = 0.014). These multimodal imaging-behavioral findings reveal the complex cascade of changes induced by acute nicotine deprivation and call for further investigation into the potential utility of adenosine- and glutamate-signaling as novel therapeutic targets to treat the NWS.
Collapse
|
39
|
Gonçalves MCB, Glaser T, Oliveira SLBD, Ulrich H. Adenosinergic-Dopaminergic Signaling in Mood Disorders: A Mini-Review. J Caffeine Adenosine Res 2020. [DOI: 10.1089/caff.2020.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Talita Glaser
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Underlying Susceptibility to Eating Disorders and Drug Abuse: Genetic and Pharmacological Aspects of Dopamine D4 Receptors. Nutrients 2020; 12:nu12082288. [PMID: 32751662 PMCID: PMC7468707 DOI: 10.3390/nu12082288] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
The dopamine D4 receptor (DRD4) has a predominant expression in the prefrontal cortex (PFC), brain area strictly involved in the modulation of reward processes related to both food and drug consumption. Additionally, the human DRD4 gene is characterized by a variable number of tandem repeats (VNTR) in the exon 3 and, among the polymorphic variants, the 7-repeat (7R) allele appears as a contributing factor in the neurobiological mechanisms underlying drug abuse, aberrant eating behaviors and related comorbidities. The 7R variant encodes for a receptor with a blunted intracellular response to dopamine, and carriers of this polymorphism might be more tempted to enhance dopamine levels in the brain, through the overconsumption of drugs of abuse or palatable food, considering their reinforcing properties. Moreover, the presence of this polymorphism seems to increase the susceptibility of individuals to engage maladaptive eating patterns in response to negative environmental stimuli. This review is focused on the role of DRD4 and DRD4 genetic polymorphism in these neuropsychiatric disorders in both clinical and preclinical studies. However, further research is needed to better clarify the complex DRD4 role, by using validated preclinical models and novel compounds more selective for DRD4.
Collapse
|
41
|
Załuski M, Schabikowski J, Jaśko P, Bryła A, Olejarz-Maciej A, Kaleta M, Głuch-Lutwin M, Brockmann A, Hinz S, Zygmunt M, Kuder K, Latacz G, Vielmuth C, Müller CE, Kieć-Kononowicz K. 8-Benzylaminoxanthine scaffold variations for selective ligands acting on adenosine A 2A receptors. Design, synthesis and biological evaluation. Bioorg Chem 2020; 101:104033. [PMID: 32629282 DOI: 10.1016/j.bioorg.2020.104033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 11/24/2022]
Abstract
A library of 34 novel compounds based on a xanthine scaffold was explored in biological studies for interaction with adenosine receptors (ARs). Structural modifications of the xanthine core were introduced in the 8-position (benzylamino and benzyloxy substitution) as well as at N1, N3, and N7 (small alkyl residues), thereby improving affinity and selectivity for the A2A AR. The compounds were characterized by radioligand binding assays, and our study resulted in the development of the potent A2A AR ligands including 8-((6-chloro-2-fluoro-3-methoxybenzyl)amino)-1-ethyl-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione (12d; Ki human A2AAR: 68.5 nM) and 8-((2-chlorobenzyl)amino)-1-ethyl-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione (12h; Ki human A2AAR: 71.1 nM). Moreover, dual A1/A2AAR ligands were identified in the group of 1,3-diethyl-7-methylxanthine derivatives. Compound 14b displayed Ki values of 52.2 nM for the A1AR and 167 nM for the A2AAR. Selected A2AAR ligands were further evaluated as inactive for inhibition of monoamine oxidase A, B and isoforms of phosphodiesterase-4B1, -10A, which represent classical targets for xanthine derivatives. Therefore, the developed 8-benzylaminoxanthine scaffold seems to be highly selective for AR activity and relevant for potent and selective A2A ligands. Compound 12d with high selectivity for ARs, especially for the A2AAR subtype, evaluated in animal models of inflammation has shown anti-inflammatory activity. Investigated compounds were found to display high selectivity and may therefore be of high interest for further development as drugs for treating cancer or neurodegenerative diseases.
Collapse
Affiliation(s)
- Michał Załuski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Jakub Schabikowski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Piotr Jaśko
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Adrian Bryła
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Maria Kaleta
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Andreas Brockmann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Małgorzata Zygmunt
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Kamil Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Christin Vielmuth
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland.
| |
Collapse
|
42
|
Adenosine A1 receptor agonist induces visceral antinociception via 5-HT1A, 5-HT2A, dopamine D1 or cannabinoid CB1 receptors, and the opioid system in the central nervous system. Physiol Behav 2020; 220:112881. [DOI: 10.1016/j.physbeh.2020.112881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023]
|
43
|
Adenosine A 2AReceptors in Substance Use Disorders: A Focus on Cocaine. Cells 2020; 9:cells9061372. [PMID: 32492952 PMCID: PMC7348840 DOI: 10.3390/cells9061372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022] Open
Abstract
Several psychoactive drugs can evoke substance use disorders (SUD) in humans and animals, and these include psychostimulants, opioids, cannabinoids (CB), nicotine, and alcohol. The etiology, mechanistic processes, and the therapeutic options to deal with SUD are not well understood. The common feature of all abused drugs is that they increase dopamine (DA) neurotransmission within the mesocorticolimbic circuitry of the brain followed by the activation of DA receptors. D2 receptors were proposed as important molecular targets for SUD. The findings showed that D2 receptors formed heteromeric complexes with other GPCRs, which forced the addiction research area in new directions. In this review, we updated the view on the brain D2 receptor complexes with adenosine (A)2A receptors (A2AR) and discussed the role of A2AR in different aspects of addiction phenotypes in laboratory animal procedures that permit the highly complex syndrome of human drug addiction. We presented the current knowledge on the neurochemical in vivo and ex vivo mechanisms related to cocaine use disorder (CUD) and discussed future research directions for A2AR heteromeric complexes in SUD.
Collapse
|
44
|
Multiple Adenosine-Dopamine (A2A-D2 Like) Heteroreceptor Complexes in the Brain and Their Role in Schizophrenia. Cells 2020; 9:cells9051077. [PMID: 32349279 PMCID: PMC7290895 DOI: 10.3390/cells9051077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
In the 1980s and 1990s, the concept was introduced that molecular integration in the Central Nervous System could develop through allosteric receptor–receptor interactions in heteroreceptor complexes presents in neurons. A number of adenosine–dopamine heteroreceptor complexes were identified that lead to the A2A-D2 heteromer hypothesis of schizophrenia. The hypothesis is based on strong antagonistic A2A-D2 receptor–receptor interactions and their presence in the ventral striato-pallidal GABA anti-reward neurons leading to reduction of positive symptoms. Other types of adenosine A2A heteroreceptor complexes are also discussed in relation to this disease, such as A2A-D3 and A2A-D4 heteroreceptor complexes as well as higher order A2A-D2-mGluR5 and A2A-D2-Sigma1R heteroreceptor complexes. The A2A receptor protomer can likely modulate the function of the D4 receptors of relevance for understanding cognitive dysfunction in schizophrenia. A2A-D2-mGluR5 complex is of interest since upon A2A/mGluR5 coactivation they appear to synergize in producing strong inhibition of the D2 receptor protomer. For understanding the future of the schizophrenia treatment, the vulnerability of the current A2A-D2like receptor complexes will be tested in animal models of schizophrenia. A2A-D2-Simag1R complexes hold the highest promise through Sigma1R enhancement of inhibition of D2R function. In line with this work, Lara proposed a highly relevant role of adenosine for neurobiology of schizophrenia.
Collapse
|
45
|
Acute cocaine treatment enhances the antagonistic allosteric adenosine A2A-dopamine D2 receptor-receptor interactions in rat dorsal striatum without increasing significantly extracellular dopamine levels. Pharmacol Rep 2020; 72:332-339. [PMID: 32124388 DOI: 10.1007/s43440-020-00069-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Antagonistic adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) receptor-receptor interactions have previously been demonstrated in A2AR-D2R heteroreceptor complexes in the rat dorsal striatum. They mainly involve a reduction of affinity in the high-affinity component of the D2R agonist binding site upon activation in vivo of the A2AR by an A2AR agonist. Upon cocaine self-administration, this antagonistic A2AR-D2R interaction disappeared in the dorsal striatum. METHODS In the current experiments, it was tested whether such modifications in the antagonistic A2AR-D2R receptor-receptor interactions can develop also after an acute systemic injection of a low cocaine dose (1 mg/kg; sc). RESULTS Microdialysis experiments indicated that acute cocaine did not significantly alter the extracellular dopamine levels in the dorsal striatum of the awake Wistar rats. Competition dopamine receptor binding experiments demonstrated that in the acute cocaine group, the A2AR agonist CGS-21680 produced significantly larger increases in the D2R Ki, High values (reduction of high-affinity) versus the saline-injected (i.e. control) group. Furthermore, in the dorsal striatum membrane preparation from acute cocaine-injected rats, CGS-21680 also produced significant increases in the D2R Ki, Low values (reduction of low-affinity) and in the proportion of D2Rs in the high-affinity state (RH). Such significant effects were not observed with CGS-21680 in the control group. CONCLUSIONS The molecular mechanism involved in the acute cocaine-induced increase in the antagonistic allosteric A2AR-D2R receptor-receptor interactions may be an increased formation of higher-order complexes A2AR-D2R-sigma1R in which cocaine by binding to the sigma1R protomer also allosterically enhances the inhibitory A2AR-D2R interaction in this receptor complex.
Collapse
|
46
|
Byeon JJ, Park MH, Shin SH, Park Y, Lee BI, Choi JM, Kim N, Park SJ, Park MJ, Lim JH, Na YG, Shin YG. In Vitro, In Silico, and In Vivo Assessments of Pharmacokinetic Properties of ZM241385. Molecules 2020; 25:molecules25051106. [PMID: 32131453 PMCID: PMC7179144 DOI: 10.3390/molecules25051106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease is one of the most common neurodegenerative diseases. Adenosine regulates the response to other neurotransmitters in the brain regions related to motor function. In the several subtypes of adenosine receptors, especially, adenosine 2A receptors (A2ARs) are involved in neurodegenerative conditions. ZM241385 is one of the selective non-xanthine A2AR antagonists with high affinity in the nanomolar range. This study describes the in vitro and in vivo pharmacokinetic properties of ZM241385 in rats. A liquid chromatography-quadrupole time-of-flight mass spectrometric (LC-qToF MS) method was developed for the determination of ZM241385 in rat plasma. In vivo IV administration studies showed that ZM241385 was rapidly eliminated in rats. However, the result of in vitro metabolic stability studies showed that ZM241385 had moderate clearance, suggesting that there is an extra clearance pathway in addition to hepatic clearance. In addition, in vivo PO administration studies demonstrated that ZM241385 had low exposure in rats. The results of semi-mass balance studies and the in silico PBPK modeling studies suggested that the low bioavailability of ZM241385 after oral administration in rats was due to the metabolism and by liver, kidney, and gut.
Collapse
|
47
|
Mao LM, Wang JQ. Upregulation of AMPA receptor GluA1 phosphorylation by blocking adenosine A 1 receptors in the male rat forebrain. Brain Behav 2020; 10:e01543. [PMID: 31994358 PMCID: PMC7066349 DOI: 10.1002/brb3.1543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/09/2019] [Accepted: 01/04/2020] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The adenosine A1 receptor is a Gαi/o protein-coupled receptor and inhibits upon activation cAMP formation and protein kinase A (PKA) activity. As a widely expressed receptor in the mammalian brain, A1 receptors are implicated in the modulation of a variety of neuronal and synaptic activities. In this study, we investigated the role of A1 receptors in the regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the adult rat brain in vivo. METHODS Adult male Wistar rats were used in this study. After a systemic injection of the A1 antagonist DPCPX, rats were sacrificed and several forebrain regions were collected for assessing changes in phosphorylation of AMPA receptors using Western blots. RESULTS A systemic injection of the A1 antagonist DPCPX induced an increase in phosphorylation of AMPA receptor GluA1 subunits at a PKA-dependent site, serine 845 (S845), in the two subdivisions of the striatum, the caudate putamen, and nucleus accumbens. DPCPX also increased S845 phosphorylation in the medial prefrontal cortex (mPFC) and hippocampus. The DPCPX-stimulated S845 phosphorylation was a transient and reversible event. Blockade of Gαs/olf -coupled dopamine D1 receptors with a D1 antagonist SCH23390 abolished the responses of S845 phosphorylation to DPCPX in the striatum, mPFC, and hippocampus. DPCPX had no significant impact on phosphorylation of GluA1 at serine 831 and on expression of total GluA1 proteins in all forebrain regions surveyed. CONCLUSION These data demonstrate that adenosine A1 receptors maintain an inhibitory tone on GluA1 S845 phosphorylation under normal conditions. Blocking this inhibitory tone leads to the upregulation of GluA1 S845 phosphorylation in the striatum, mPFC, and hippocampus via a D1 -dependent manner.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA.,Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
48
|
Exercise-Induced Adaptations to the Mouse Striatal Adenosine System. Neural Plast 2020; 2020:5859098. [PMID: 32399024 PMCID: PMC7204111 DOI: 10.1155/2020/5859098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Adenosine acts as a key regulator of striatum activity, in part, through the antagonistic modulation of dopamine activity. Exercise can increase adenosine activity in the brain, which may impair dopaminergic functions in the striatum. Therefore, long-term repeated bouts of exercise may subsequently generate plasticity in striatal adenosine systems in a manner that promotes dopaminergic activity. This study investigated the effects of long-term voluntary wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor protein expression in adult mouse dorsal and ventral striatum structures using immunohistochemistry. In addition, equilibrative nucleoside transporter 1 (ENT1) protein expression was examined after wheel running, as ENT1 regulates the bidirectional flux of adenosine between intra- and extracellular space. The results suggest that eight weeks of running wheel access spared age-related increases of A1R and A2AR protein concentrations across the dorsal and ventral striatal structures. Wheel running mildly reduced ENT1 protein levels in ventral striatum subregions. Moreover, wheel running mildly increased D2R protein density within striatal subregions in the dorsal medial striatum, nucleus accumbens core, and the nucleus accumbens shell. However, D1R protein expression in the striatum was unchanged by wheel running. These data suggest that exercise promotes adaptations to striatal adenosine systems. Exercise-reduced A1R and A2AR and exercise-increased D2R protein levels may contribute to improved dopaminergic signaling in the striatum. These findings may have implications for cognitive and behavioral processes, as well as motor and psychiatric diseases that involve the striatum.
Collapse
|
49
|
Guidolin D, Marcoli M, Tortorella C, Maura G, Agnati LF. Adenosine A 2A-dopamine D 2 receptor-receptor interaction in neurons and astrocytes: Evidence and perspectives. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 169:247-277. [PMID: 31952688 DOI: 10.1016/bs.pmbts.2019.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The discovery of receptor-receptor interactions in the early 1980s, together with a more accurate focusing of allosteric mechanisms in proteins, expanded the knowledge on the G protein-coupled receptor (GPCR)-mediated signaling processes. GPCRs were seen to operate not only as monomers, but also as quaternary structures shaped by allosteric interactions. These integrative mechanisms can change the function of the GPCRs involved, leading to a sophisticated dynamic of the receptor assembly in terms of modulation of recognition and signaling. In this context, the heterodimeric complex formed by the adenosine A2A and the dopamine D2 receptors likely represents a prototypical example. The pharmacological evidence obtained, together with the tissue distribution of the A2A-D2 heteromeric complexes, suggested they could represent a target for new therapeutic strategies addressing significant disorders of the central nervous system. The research findings and the perspectives they offer from the therapeutic standpoint are the focus of the here presented discussion.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, Padova, Italy.
| | - Manuela Marcoli
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, Padova, Italy
| | - Guido Maura
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - Luigi F Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
50
|
Mateus JM, Ribeiro FF, Alonso-Gomes M, Rodrigues RS, Marques JM, Sebastião AM, Rodrigues RJ, Xapelli S. Neurogenesis and Gliogenesis: Relevance of Adenosine for Neuroregeneration in Brain Disorders. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Joana M. Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa F. Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Alonso-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rui S. Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana M. Marques
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo J. Rodrigues
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|