1
|
Taheri S, González MA, Ruiz-López MJ, Magallanes S, Delacour-Estrella S, Lucientes J, Bueno-Marí R, Martínez-de la Puente J, Bravo-Barriga D, Frontera E, Polina A, Martinez-Barciela Y, Pereira JM, Garrido J, Aranda C, Marzal A, Ruiz-Arrondo I, Oteo JA, Ferraguti M, Gutíerrez-López R, Estrada R, Miranda MÁ, Barceló C, Morchón R, Montalvo T, Gangoso L, Goiri F, García-Pérez AL, Ruiz S, Fernandez-Martinez B, Gómez-Barroso D, Figuerola J. Modelling the spatial risk of malaria through probability distribution of Anopheles maculipennis s.l. and imported cases. Emerg Microbes Infect 2024; 13:2343911. [PMID: 38618930 PMCID: PMC11073426 DOI: 10.1080/22221751.2024.2343911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Malaria remains one of the most important infectious diseases globally due to its high incidence and mortality rates. The influx of infected cases from endemic to non-endemic malaria regions like Europe has resulted in a public health concern over sporadic local outbreaks. This is facilitated by the continued presence of competent Anopheles vectors in non-endemic countries.We modelled the potential distribution of the main malaria vector across Spain using the ensemble of eight modelling techniques based on environmental parameters and the Anopheles maculipennis s.l. presence/absence data collected from 2000 to 2020. We then combined this map with the number of imported malaria cases in each municipality to detect the geographic hot spots with a higher risk of local malaria transmission.The malaria vector occurred preferentially in irrigated lands characterized by warm climate conditions and moderate annual precipitation. Some areas surrounding irrigated lands in northern Spain (e.g. Zaragoza, Logroño), mainland areas (e.g. Madrid, Toledo) and in the South (e.g. Huelva), presented a significant likelihood of A. maculipennis s.l. occurrence, with a large overlap with the presence of imported cases of malaria.While the risk of malaria re-emergence in Spain is low, it is not evenly distributed throughout the country. The four recorded local cases of mosquito-borne transmission occurred in areas with a high overlap of imported cases and mosquito presence. Integrating mosquito distribution with human incidence cases provides an effective tool for the quantification of large-scale geographic variation in transmission risk and pinpointing priority areas for targeted surveillance and prevention.
Collapse
Affiliation(s)
- Shirin Taheri
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
| | - Mikel Alexander González
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - María José Ruiz-López
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sergio Magallanes
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sarah Delacour-Estrella
- The Agrifood Institute of Aragón (IA2), Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - Javier Lucientes
- The Agrifood Institute of Aragón (IA2), Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - Rubén Bueno-Marí
- Center of Excellence in Vector Control, Rentokil Initial, València, Spain
- Grupo de Investigación Parásitos y Salud, Universitat de València, València, Spain
| | - Josué Martínez-de la Puente
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Departamento de Parasitología, Universidad de Granada, Granada, Spain
| | - Daniel Bravo-Barriga
- Departamento de Salud Animal, Grupo de Investigación en Salud Animal y Zoonosis (GISAZ), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Eva Frontera
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura (UEx), Cáceres, Spain
| | - Alejandro Polina
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Pontevedra, Spain
| | | | - José Manuel Pereira
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, A Coruña, Spain
| | - Josefina Garrido
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Pontevedra, Spain
| | - Carles Aranda
- Servei de Control de Mosquits del Baix Llobregat, Sant Feliu del Llobregat, Barcelona, Spain
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alfonso Marzal
- Facultad de Biología, Universidad de Extremadura, Badajoz, Spain
- Grupo de Investigaciones en Fauna Silvestre, Universidad Nacional de San Martín, Tarapoto, Perú
| | - Ignacio Ruiz-Arrondo
- Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, La Rioja, Logroño, Spain
| | - José Antonio Oteo
- Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, La Rioja, Logroño, Spain
| | - Martina Ferraguti
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rafael Gutíerrez-López
- Centro Nacional de Microbiología (CNM-ISCIII), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Rosa Estrada
- The Agrifood Institute of Aragón (IA2), Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - Miguel Ángel Miranda
- Universitat de les Illes Balears (UIB), Zoología Aplicada y de la Conservación, Palma, Spain
| | - Carlos Barceló
- Universitat de les Illes Balears (UIB), Zoología Aplicada y de la Conservación, Palma, Spain
| | - Rodrigo Morchón
- Zoonotic Diseases and One Health Group, Faculty of Pharmacy, Universidad de Salamanca, Salamanca, Spain
| | - Tomas Montalvo
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Agencia de Salut Publica de Barcelona, Barcelona, Spain
| | | | - Fátima Goiri
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Spain
| | | | - Santiago Ruiz
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Servicio de Control de Mosquitos de la Diputación de Huelva, Huelva, Spain
| | - Beatriz Fernandez-Martinez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Centro Nacional de Epidemiologia (CNE-ISCIII), Madrid, Spain
| | - Diana Gómez-Barroso
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Centro Nacional de Epidemiologia (CNE-ISCIII), Madrid, Spain
| | - Jordi Figuerola
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
2
|
Stein M, Martin ME, Ramírez PG, Etchepare EG, Oria GI, Rossi GC, Kuruc J, Estallo EL. Updated Anopheles mosquitos abundance and distribution in north-eastern malaria-free area of Argentina. AN ACAD BRAS CIENC 2024; 95:e20220956. [PMID: 38198397 DOI: 10.1590/0001-3765202320220956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/05/2023] [Indexed: 01/12/2024] Open
Abstract
Malaria is the most important parasitic disease worldwide. In 2019, more than 679,441 cases of malaria were reported in the American region. During this study, Argentina was in malaria pre-elimination autochthonous transmission phase with the aim of being declared as malaria-free country. The aim of this work was to assess the influence of remote sensing spectral indices (NDVI, NDWI) and climatic variables (temperature, relative humidity and precipitation) on the distribution and abundance of Anopheles mosquitoes, in four localities with different degrees of anthropogenic disturbance and with previous malaria cases records located , in a historical malarious area in northeastern of Argentina. Between June 2012 and July 2014, mosquitoes were collected. We collected 535 Anopheles adult mosquitoes. Anopheles strodei s.l. was the most abundant species. The greatest richness, diversity and abundance of species were registered in wild and semi-urban environments. The abundance of Anopheles presented a negative association with relative humidity and mean temperature, but positive with mean maximum temperature. The most important variables determining Anopheles total abundance and distribution were NDWI Index and distance to vegetation. The abundance of An. strodei s.l., was positive associated with water areas whereas the NDVI Index was negatively associated.
Collapse
Affiliation(s)
- Marina Stein
- Universidad Nacional del Nordeste (UNNE), Instituto de Medicina Regional, Av. Las Heras 727, 3500, Resistencia, Chaco, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina
- Ministerio de Salud de la Nación, Coordinación Nacional de Control de Vectores, Av. 9 de Julio 192, C1073ACA, Buenos Aires, Argentina
| | - Mía E Martin
- Universidad Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Facultad de Ciencias Exactas, Físicas y Naturales, CONICET, Av. Vélez Sarsfield, 1611, 5016, Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina
| | - Patricia G Ramírez
- UNNE, Facultad de Ciencias Exactas, Naturales y Agrimensura, Av. Libertad, 5460, 3400, Corrientes, Corrientes, Argentina
| | - Eduardo G Etchepare
- Universidad Tecnológica Nacional, Departamento de Básicas, Facultad Regional de Concordia, Salta 227, 3200, Concordia, Entre Ríos, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina
| | - Griselda I Oria
- Universidad Nacional del Nordeste (UNNE), Instituto de Medicina Regional, Av. Las Heras 727, 3500, Resistencia, Chaco, Argentina
| | - Gustavo C Rossi
- Universidad Nacional de La Plata, Centro de Estudios Parasitológicos y de Vectores (CEPAVE), CCT La Plata, CONICET, Calle 2 584, B1902CHX, La Plata, Buenos Aires, Argentina
| | - Jorge Kuruc
- Ministerio de Salud de la Nación, Coordinación Nacional de Control de Vectores, Av. 9 de Julio 192, C1073ACA, Buenos Aires, Argentina
| | - Elizabet L Estallo
- Universidad Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), Facultad de Ciencias Exactas, Físicas y Naturales, CONICET, Av. Vélez Sarsfield, 1611, 5016, Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina
| |
Collapse
|
3
|
Wang F, Zhu Y, Zhang H, Fan J, Leng P, Zhou J, Yao S, Yang D, Liu Y, Wang J, Yao J, Zhou Y, Zhao T. Spatial and temporal analyses of the influences of meteorological and environmental factors on Aedes albopictus (Diptera: Culicidae) population dynamics during the peak abundance period at a city scale. Acta Trop 2023:106964. [PMID: 37307888 DOI: 10.1016/j.actatropica.2023.106964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
Aedes albopictus (Diptera: Culicidae) is a major vector of multiple diseases. While vaccines have been developed, preventing these Aedes-borne diseases continues to primarily depend on monitoring and controlling the vector population. Despite increasing research on the impacts of various factors on Ae. albopictus population dynamics, there is still no consensus on how meteorological or environmental factors affect vector distribution. In this study, the relationships between mosquito abundance and meteorological and environmental indicators were examined at the town level based on data collected from July to September, the peak abundance period of 2019 in Shanghai. In addition to performing Poisson regression, we employed the geographically weighted Poisson regression model to account for spatial dependency and heterogeneity. The result showed that the environmental factors (notably human population density, the Normalized Difference Vegetation Index (NDVI), socioeconomic deprivation, and road density) had more significant impacts than the meteorological variables in accounting for the spatial variation of mosquito abundance at a city scale. The dominant environmental variable differed in urban and rural places. Furthermore, our findings indicated that deprived townships are more susceptible to higher vector densities compared to non-deprived townships. Therefore, it is crucial not only to allocate more resources but also to increase attention towards controlling the vectors responsible for their transmission in these townships.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Hongkou District Center for Disease Control and Prevention, Shanghai 200082, China
| | - Yiyi Zhu
- Department of Infectious Disease Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Hengduan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Junhua Fan
- Department of Infectious Disease Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Peien Leng
- Department of Infectious Disease Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Ji Zhou
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai, 200030, China
| | - Shenjun Yao
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Dandan Yang
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai, 200030, China
| | - Yao Liu
- Department of Infectious Disease Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jingjing Wang
- Department of Infectious Disease Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Juanyi Yao
- Department of Infectious Disease Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Yibin Zhou
- Minhang District Center for Disease Control and Prevention, Shanghai 201011, China.
| | - Tongyan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| |
Collapse
|
4
|
Tong Y, Jiang H, Xu N, Wang Z, Xiong Y, Yin J, Huang J, Chen Y, Jiang Q, Zhou Y. Global Distribution of Culex tritaeniorhynchus and Impact Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4701. [PMID: 36981610 PMCID: PMC10048298 DOI: 10.3390/ijerph20064701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Culex tritaeniorhynchus is the primary vector of Japanese encephalitis (JE) and has a wide global distribution. However, the current and future geographic distribution maps of Cx. tritaeniorhynchus in global are still incomplete. Our study aims to predict the potential distribution of Cx. tritaeniorhynchus in current and future conditions to provide a guideline for the formation and implementation of vector control strategies all over the world. We collected and screened the information on the occurrence of Cx. tritaeniorhynchus by searching the literature and online databases and used ten algorithms to investigate its global distribution and impact factors. Cx. tritaeniorhynchus had been detected in 41 countries from 5 continents. The final ensemble model (TSS = 0.864 and AUC = 0.982) indicated that human footprint was the most important factor for the occurrence of Cx. tritaeniorhynchus. The tropics and subtropics, including southeastern Asia, Central Africa, southeastern North America and eastern South America, showed high habitat suitability for Cx. tritaeniorhynchus. Cx. tritaeniorhynchus is predicted to have a wider distribution in all the continents, especially in Western Europe and South America in the future under two extreme emission scenarios (SSP5-8.5 and SSP1-2.6). Targeted strategies for the control and prevention of Cx. tritaeniorhynchus should be further strengthened.
Collapse
Affiliation(s)
- Yixin Tong
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Honglin Jiang
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Ning Xu
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Zhengzhong Wang
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Ying Xiong
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Jiangfan Yin
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Junhui Huang
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Crescent, Ottawa, ON K1G 5Z3, Canada
| | - Qingwu Jiang
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| | - Yibiao Zhou
- School of Public Health, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Building 8, 130 Dong’an Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, Building 8, 130 Dong’an Road, Shanghai 200032, China
| |
Collapse
|
5
|
Ekpa DE, Salubi EA, Olusola JA, Akintade D. Spatio-temporal analysis of environmental and climatic factors impacts on malaria morbidity in Ondo State, Nigeria. Heliyon 2023; 9:e14005. [PMID: 36915558 PMCID: PMC10006711 DOI: 10.1016/j.heliyon.2023.e14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
This study examined the spatio-temporal dynamics of malaria epidemiological patterns considering environmental(vegetation, water bodies, slope, elevation) and climatic factors (rainfall, temperature and relative humidity) in Ondo State, Nigeria, from 2013 to 2017 using ArcGIS 10.4 and QGIS software. The factors influencing malaria were studied using a multi-criteria analysis (Analytical Hierarchical Process-AHP). The trend analysis revealed an increase in cases over time, indicating a significant increase in the occurrence of malaria in all study areas. The most important climatic variable impacting malaria transmission in the study was temperature. Nevertheless, other environmental and climatic factors causing transmission include vegetation, water bodies, slopes, elevation, rainfall, and relative humidity. With the exception of Okitipupa, the study identified high-risk locations (vulnerable areas/hot spots) in almost all of the local government areas, while Ondo East, Akure South, Akoko South West, and Owo are the most vulnerable areas. The findings reveal that the malaria incidence is high in the developed LGAs having more towns where temperature is higher due to several anthropogenesis activities, high population and increased land-use. Thus, in-depth epidemiological studies on malaria should be undertaken in Ondo State and other regions of Nigeria considering environmental factors impacting malaria incidence as this will enable one to ascertain the major factors influencing the disease, thereby taking adequate measures to curb the increase in incidence.
Collapse
Affiliation(s)
- Dave Eleojo Ekpa
- Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Ile Ife, Nigeria
- Corresponding author.
| | - Eunice A. Salubi
- Geography and Environmental Management, Faculty of Environment, University of Waterloo, Canada
| | - Johnson Adedeji Olusola
- Department of Geography and Planning Science, Ekiti State University, Ado Ekiti, Nigeria
- Corresponding author.
| | - Dare Akintade
- College of Medicine and Health Sciences, Baze University, Abuja, Nigeria
| |
Collapse
|
6
|
Li C, Managi S. Global malaria infection risk from climate change. ENVIRONMENTAL RESEARCH 2022; 214:114028. [PMID: 35940231 DOI: 10.1016/j.envres.2022.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/19/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
As a long-standing public health issue, malaria still severely affects many parts of the world, especially Africa. With greenhouse gas emissions, temperatures continue to rise. Based on diverse shared socioeconomic pathways (SSPs), future temperatures can be estimated. However, the impacts of climate change on malaria infection rates in all epidemic regions are unknown. Here, we estimate the differences in global malaria infection rates predicted under different SSPs during several periods as well as malaria infection case changes (MICCs) resulting from those differences. Our results indicate that the global MICCs resulting from the conversion from SSP1-2.6 to SSP2-4.5, to SSP3-7.0, and to SSP5-8.5 are 6.506 (with a 95% uncertainty interval [UI] of 6.150-6.861) million, 3.655 (3.416-3.894) million, and 2.823 (2.635-3.012) million, respectively, from 2021 to 2040; these values represent increases of 2.699%, 1.517%, and 1.171%, respectively, compared to the 241 million infection cases reported in 2020. Temperatures increases will adversely affect malaria the most in Africa during the 2021-2040 period. From 2081 to 2100, the MICCs obtained for the three scenario shifts listed above are -79.109 (-83.626 to -74.591) million, -238.337 (-251.920 to -0.141) million, and -162.692 (-174.628 to -150.757) million, corresponding to increases of -32.825%, -98.895%, and -67.507%, respectively. Climate change will increase the danger and risks associated with malaria in the most vulnerable regions in the near term, thus aggravating the difficulty of eliminating malaria. Reducing GHG emissions is a potential pathway to protecting people from malaria.
Collapse
Affiliation(s)
- Chao Li
- Urban Institute, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shunsuke Managi
- Urban Institute, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
7
|
Bertola M, Mazzucato M, Pombi M, Montarsi F. Updated occurrence and bionomics of potential malaria vectors in Europe: a systematic review (2000-2021). Parasit Vectors 2022; 15:88. [PMID: 35292106 PMCID: PMC8922938 DOI: 10.1186/s13071-022-05204-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/14/2022] [Indexed: 01/09/2023] Open
Abstract
Despite the eradication of malaria across most European countries in the 1960s and 1970s, the anopheline vectors are still present. Most of the malaria cases that have been reported in Europe up to the present time have been infections acquired in endemic areas by travelers. However, the possibility of acquiring malaria by locally infected mosquitoes has been poorly investigated in Europe, despite autochthonous malaria cases having been occasionally reported in several European countries. Here we present an update on the occurrence of potential malaria vector species in Europe. Adopting a systematic review approach, we selected 288 papers published between 2000 and 2021 for inclusion in the review based on retrieval of accurate information on the following Anopheles species: An. atroparvus, An. hyrcanus sensu lato (s.l.), An. labranchiae, An. maculipennis sensu stricto (s.s.), An. messeae/daciae, An. sacharovi, An. superpictus and An. plumbeus. The distribution of these potential vector species across Europe is critically reviewed in relation to areas of major presence and principal bionomic features, including vector competence to Plasmodium. Additional information, such as geographical details, sampling approaches and species identification methods, are also reported. We compare the information on each species extracted from the most recent studies to comparable information reported from studies published in the early 2000s, with particular reference to the role of each species in malaria transmission before eradication. The picture that emerges from this review is that potential vector species are still widespread in Europe, with the largest diversity in the Mediterranean area, Italy in particular. Despite information on their vectorial capacity being fragmentary, the information retrieved suggests a re-definition of the relative importance of potential vector species, indicating An. hyrcanus s.l., An. labranchiae, An. plumbeus and An. sacharovi as potential vectors of higher importance, while An. messeae/daciae and An. maculipennis s.s. can be considered to be moderately important species. In contrast, An. atroparvus and An. superpictus should be considered as vectors of lower importance, particularly in relation to their low anthropophily. The presence of gaps in current knowledge of vectorial systems in Europe becomes evident in this review, not only in terms of vector competence but also in the definition of sampling approaches, highlighting the need for further research to adopt the appropriate surveillance system for each species.
Collapse
Affiliation(s)
- Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy
| | - Matteo Mazzucato
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy
| | - Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma "Sapienza", P.le Aldo Moro 5, 00185, Roma, Italy.
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy.,Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma "Sapienza", P.le Aldo Moro 5, 00185, Roma, Italy
| |
Collapse
|
8
|
Alenou LD, Etang J. Airport Malaria in Non-Endemic Areas: New Insights into Mosquito Vectors, Case Management and Major Challenges. Microorganisms 2021; 9:2160. [PMID: 34683481 PMCID: PMC8540862 DOI: 10.3390/microorganisms9102160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the implementation of preventive measures in airports and aircrafts, the risk of importing Plasmodium spp. infected mosquitoes is still present in malaria-free countries. Evidence suggests that mosquitoes have found a new alliance with the globalization of trade and climate change, leading to an upsurge of malaria parasite transmission around airports. The resulting locally acquired form of malaria is called Airport malaria. However, piecemeal information is available, regarding its epidemiological and entomological patterns, as well as the challenges in the diagnosis, treatment, and prevention. Understanding these issues is a critical step towards a better implementation of control strategies. To cross reference this information, we conducted a systematic review on 135 research articles published between 1969 (when the first cases of malaria in airports were reported) and 2020 (i.e., 51 years later). It appears that the risk of malaria transmission by local mosquito vectors in so called malaria-free countries is not zero; this risk is more likely to be fostered by infected vectors coming from endemic countries by air or by sea. Furthermore, there is ample evidence that airport malaria is increasing in these countries. From 2010 to 2020, the number of cases in Europe was 7.4 times higher than that recorded during the 2000-2009 decade. This increase may be associated with climate change, increased international trade, the decline of aircraft disinsection, as well as delays in case diagnosis and treatment. More critically, current interventions are weakened by biological and operational challenges, such as drug resistance in malaria parasites and vector resistance to insecticides, and logistic constraints. Therefore, there is a need to strengthen malaria prevention and treatment for people at risk of airport malaria, and implement a rigorous routine entomological and epidemiological surveillance in and around airports.
Collapse
Affiliation(s)
- Leo Dilane Alenou
- Malaria Research Laboratory, Yaoundé Research Institute (IRY), Organization for the Coordination of Endemic Diseases’ Control in Central Africa (OCEAC), Yaoundé P.O. Box 288, Cameroon;
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala P.O. Box 2701, Cameroon
| | - Josiane Etang
- Malaria Research Laboratory, Yaoundé Research Institute (IRY), Organization for the Coordination of Endemic Diseases’ Control in Central Africa (OCEAC), Yaoundé P.O. Box 288, Cameroon;
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala P.O. Box 2701, Cameroon
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Faculty 09—Agricultural Sciences, Nutritional Sciences and Environmental Management, Justus-Liebig-University Gießen, Winchester Str. 2, 35394 Giessen, Germany
| |
Collapse
|
9
|
Serrano D, Santos-Reis A, Silva C, Dias A, Dias B, Toscano C, Conceição C, Baptista-Fernandes T, Nogueira F. Imported Malaria in Portugal: Prevalence of Polymorphisms in the Anti-Malarial Drug Resistance Genes pfmdr1 and pfk13. Microorganisms 2021; 9:microorganisms9102045. [PMID: 34683365 PMCID: PMC8538333 DOI: 10.3390/microorganisms9102045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 02/04/2023] Open
Abstract
Malaria is one of the ‘big three’ killer infectious diseases, alongside tuberculosis and HIV. In non-endemic areas, malaria may occur in travelers who have recently been to or visited endemic regions. The number of imported malaria cases in Portugal has increased in recent years, mostly due to the close relationship with the community of Portuguese language countries. Samples were collected from malaria-infected patients attending Centro Hospitalar Lisboa Ocidental (CHLO) or the outpatient clinic of Instituto de Higiene e Medicina Tropical (IHMT-NOVA) between March 2014 and May 2021. Molecular characterization of Plasmodium falciparum pfk13 and pfmdr1 genes was performed. We analyzed 232 imported malaria cases. The majority (68.53%) of the patients came from Angola and only three patients travelled to a non-African country; one to Brazil and two to Indonesia. P. falciparum was diagnosed in 81.47% of the cases, P. malariae in 7.33%, P. ovale 6.47% and 1.72% carried P. vivax. No mutations were detected in pfk13. Regarding pfmdr1, the wild-type haplotype (N86/Y184/D1246) was also the most prevalent (64.71%) and N86/184F/D1246 was detected in 26.47% of the cases. The typical imported malaria case was middle-aged male, traveling from Angola, infected with P. falciparum carrying wild type pfmdr1 and pfk13. Our study highlights the need for constant surveillance of malaria parasites imported into Portugal as an important pillar of public health.
Collapse
Affiliation(s)
- Debora Serrano
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
| | - Ana Santos-Reis
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
| | - Clemente Silva
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
| | - Ana Dias
- Laboratório de Microbiologia Clínica e Biologia Molecular, Serviço de Patologia Clínica, Centro Hospitalar Lisboa Ocidental (CHLO), Rua da Junqueira 126, 1349-019 Lisboa, Portugal; (A.D.); (C.T.); (T.B.-F.)
| | - Brigite Dias
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
| | - Cristina Toscano
- Laboratório de Microbiologia Clínica e Biologia Molecular, Serviço de Patologia Clínica, Centro Hospitalar Lisboa Ocidental (CHLO), Rua da Junqueira 126, 1349-019 Lisboa, Portugal; (A.D.); (C.T.); (T.B.-F.)
| | - Cláudia Conceição
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
| | - Teresa Baptista-Fernandes
- Laboratório de Microbiologia Clínica e Biologia Molecular, Serviço de Patologia Clínica, Centro Hospitalar Lisboa Ocidental (CHLO), Rua da Junqueira 126, 1349-019 Lisboa, Portugal; (A.D.); (C.T.); (T.B.-F.)
| | - Fatima Nogueira
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (IHMT-NOVA), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (D.S.); (A.S.-R.); (C.S.); (B.D.); (C.C.)
- Correspondence: ; Tel.: +351-213652600
| |
Collapse
|
10
|
Kim Y, Métras R, Dommergues L, Youssouffi C, Combo S, Le Godais G, Pfeiffer DU, Cêtre-Sossah C, Cardinale E, Filleul L, Youssouf H, Subiros M, Fournié G. The role of livestock movements in the spread of Rift Valley fever virus in animals and humans in Mayotte, 2018-19. PLoS Negl Trop Dis 2021; 15:e0009202. [PMID: 33684126 PMCID: PMC7939299 DOI: 10.1371/journal.pntd.0009202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/03/2021] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever (RVF) is a vector-borne viral disease of major animal and public health importance. In 2018–19, it caused an epidemic in both livestock and human populations of the island of Mayotte. Using Bayesian modelling approaches, we assessed the spatio-temporal pattern of RVF virus (RVFV) infection in livestock and human populations across the island, and factors shaping it. First, we assessed if (i) livestock movements, (ii) spatial proximity from communes with infected animals, and (iii) livestock density were associated with the temporal sequence of RVFV introduction into Mayotte communes’ livestock populations. Second, we assessed whether the rate of human infection was associated with (a) spatial proximity from and (b) livestock density of communes with infected animals. Our analyses showed that the temporal sequence of RVFV introduction into communes’ livestock populations was associated with livestock movements and spatial proximity from communes with infected animals, with livestock movements being associated with the best model fit. Moreover, the pattern of human cases was associated with their spatial proximity from communes with infected animals, with the risk of human infection sharply increasing if livestock in the same or close communes were infected. This study highlights the importance of understanding livestock movement networks in informing the design of risk-based RVF surveillance programs. Rift Valley fever (RVF) is a vector-borne zoonotic disease, endemic in many sub-Saharan Africa regions with substantial outbreaks. RVF virus (RVFV) is transmitted to animals primarily by the bite of infected mosquitos, whereas direct or indirect contact with infected animals forms the primary route of RVFV transmission to humans. In 2018–19, Mayotte, an archipelago in the Indian Ocean between Madagascar and the coast of Eastern Africa, experienced an RVF epidemic in both livestock and humans. In this study, we investigated factors shaping the spatio-temporal pattern of RVFV infection in livestock and human populations across Mayotte. The diffusion of RVFV through Mayotte’s livestock population was associated with livestock movements and, potentially to a lesser extent, spatial proximity from communes with infected animals. Moreover, the pressure of infection on humans was the highest if nearby livestock were infected. This study highlights the value of accounting for the structure of livestock movement networks in the surveillance of zoonotic diseases at the human-animal interface, and the need for One Health approaches.
Collapse
Affiliation(s)
- Younjung Kim
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- * E-mail:
| | - Raphaëlle Métras
- INSERM, Sorbonne Université, Institut Pierre Louis d’Épidémiologie et de Santé Publique (UMRS-1136), Paris, France
| | | | | | - Soihibou Combo
- Direction de l’Alimentation, de l’Agriculture et de la Forêt de Mayotte, Mamoudzou, France
| | - Gilles Le Godais
- Direction de l’Alimentation, de l’Agriculture et de la Forêt de Mayotte, Mamoudzou, France
| | - Dirk U. Pfeiffer
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- Veterinary Epidemiology, Economics and Public Health group, Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, United Kingdom
| | - Catherine Cêtre-Sossah
- CIRAD, UMR ASTRE, Sainte Clotilde, La Réunion, France
- ASTRE, CIRAD, Univ Montpellier, INRAE, Montpellier, France
| | - Eric Cardinale
- CIRAD, UMR ASTRE, Sainte Clotilde, La Réunion, France
- ASTRE, CIRAD, Univ Montpellier, INRAE, Montpellier, France
| | | | | | | | - Guillaume Fournié
- Veterinary Epidemiology, Economics and Public Health group, Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
11
|
Brugueras S, Fernández-Martínez B, Martínez-de la Puente J, Figuerola J, Porro TM, Rius C, Larrauri A, Gómez-Barroso D. Environmental drivers, climate change and emergent diseases transmitted by mosquitoes and their vectors in southern Europe: A systematic review. ENVIRONMENTAL RESEARCH 2020; 191:110038. [PMID: 32810503 DOI: 10.1016/j.envres.2020.110038] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/02/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Mosquito borne diseases are a group of infections that affect humans. Emerging or reemerging diseases are those that (re)occur in regions, groups or hosts that were previously free from these diseases: dengue virus; chikungunya virus; Zika virus; West Nile fever and malaria. In Europe, these infections are mostly imported; however, due to the presence of competent mosquitoes and the number of trips both to and from endemic areas, these pathogens are potentially emergent or re-emergent. Present and future climatic conditions, as well as meteorological, environmental and demographic aspects are risk factors for the distribution of different vectors and/or diseases. This review aimed to identify and analyze the existing literature on the transmission of mosquito borne diseases and those factors potentially affecting their transmission risk of them in six southern European countries with similar environmental conditions: Croatia, France, Greece, Italy, Portugal and Spain. In addition, we would identify those factors potentially affecting the (re)introduction or spread of mosquito vectors. This task has been undertaken with a focus on the environmental and climatic factors, including the effects of climate change. We undertook a systematic review of the vectors, diseases and their associations with climactic and environmental factors in European countries of the Mediterranean region. We followed the PRISMA guidelines and used explicit and systematic methods to identify, select and critically evaluate the studies which were relevant to the topic. We identified 1302 articles in the first search of the databases. Of those, 160 were selected for full-text review. The final data set included 61 articles published between 2000 and 2017.39.3% of the papers were related with dengue, chikungunya and Zika virus or their vectors. Temperature, precipitation and population density were key factors among others. 32.8% studied West Nile virus and its vectors, being temperature, precipitation and NDVI the most frequently used variables. Malaria have been studied in 23% of the articles, with temperature, precipitation and presence of water indexes as the most used variables. The number of publications focused on mosquito borne diseases is increasing in recent years, reflecting the increased interest in that diseases in southern European countries. Climatic and environmental variables are key factors on mosquitoes' distribution and to show the risk of emergence and/or spread of emergent diseases and to study the spatial changes in that distributions.
Collapse
Affiliation(s)
- Silvia Brugueras
- Agencia de Salud Pública de Barcelona, Pl. Lesseps, 1, 08023, Barcelona, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Beatriz Fernández-Martínez
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Calle Monforte de Lemos 5, 28029, Madrid, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Josué Martínez-de la Puente
- Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio, 26, E-41092, Sevilla, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio, 26, E-41092, Sevilla, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Tomas Montalvo Porro
- Agencia de Salud Pública de Barcelona, Pl. Lesseps, 1, 08023, Barcelona, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Cristina Rius
- Agencia de Salud Pública de Barcelona, Pl. Lesseps, 1, 08023, Barcelona, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Amparo Larrauri
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Calle Monforte de Lemos 5, 28029, Madrid, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Diana Gómez-Barroso
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Calle Monforte de Lemos 5, 28029, Madrid, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain.
| |
Collapse
|
12
|
Arisco NJ, Rice BL, Tantely LM, Girod R, Emile GN, Randriamady HJ, Castro MC, Golden CD. Variation in Anopheles distribution and predictors of malaria infection risk across regions of Madagascar. Malar J 2020; 19:348. [PMID: 32993669 PMCID: PMC7526177 DOI: 10.1186/s12936-020-03423-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/20/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Deforestation and land use change is widespread in Madagascar, altering local ecosystems and creating opportunities for disease vectors, such as the Anopheles mosquito, to proliferate and more easily reach vulnerable, rural populations. Knowledge of risk factors associated with malaria infections is growing globally, but these associations remain understudied across Madagascar's diverse ecosystems experiencing rapid environmental change. This study aims to uncover socioeconomic, demographic, and ecological risk factors for malaria infection across regions through analysis of a large, cross-sectional dataset. METHODS The objectives were to assess (1) the ecological correlates of malaria vector breeding through larval surveys, and (2) the socioeconomic, demographic, and ecological risk factors for malaria infection in four ecologically distinct regions of rural Madagascar. Risk factors were determined using multilevel models for the four regions included in the study. RESULTS The presence of aquatic agriculture (both within and surrounding communities) is the strongest predictive factor of habitats containing Anopheles larvae across all regions. Ecological and socioeconomic risk factors for malaria infection vary dramatically across study regions and range in their complexity. CONCLUSIONS Risk factors for malaria transmission differ dramatically across regions of Madagascar. These results may help stratifying current malaria control efforts in Madagascar beyond the scope of existing interventions.
Collapse
Affiliation(s)
- Nicholas J Arisco
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 329, Boston, MA, 02115, USA.
| | - Benjamin L Rice
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, USA
| | - Luciano M Tantely
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Romain Girod
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Gauthier N Emile
- Madagascar Health and Environmental Research (MAHERY), Antananarivo, Madagascar
| | | | - Marcia C Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 329, Boston, MA, 02115, USA
| | - Christopher D Golden
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 329, Boston, MA, 02115, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, USA
| |
Collapse
|
13
|
Frake AN, Peter BG, Walker ED, Messina JP. Leveraging big data for public health: Mapping malaria vector suitability in Malawi with Google Earth Engine. PLoS One 2020; 15:e0235697. [PMID: 32750051 PMCID: PMC7402481 DOI: 10.1371/journal.pone.0235697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/21/2020] [Indexed: 12/22/2022] Open
Abstract
In an era of big data, the availability of satellite-derived global climate, terrain, and land cover imagery presents an opportunity for modeling the suitability of malaria disease vectors at fine spatial resolutions, across temporal scales, and over vast geographic extents. Leveraging cloud-based geospatial analytical tools, we present an environmental suitability model that considers water resources, flow accumulation areas, precipitation, temperature, vegetation, and land cover. In contrast to predictive models generated using spatially and temporally discontinuous mosquito presence information, this model provides continuous fine-spatial resolution information on the biophysical drivers of suitability. For the purposes of this study the model is parameterized for Anopheles gambiae s.s. in Malawi for the rainy (December-March) and dry seasons (April-November) in 2017; however, the model may be repurposed to accommodate different mosquito species, temporal periods, or geographical boundaries. Final products elucidate the drivers and potential habitat of Anopheles gambiae s.s. Rainy season results are presented by quartile of precipitation; Quartile four (Q4) identifies areas most likely to become inundated and shows 7.25% of Malawi exhibits suitable water conditions (water only) for Anopheles gambiae s.s., approximately 16% for water plus another factor, and 8.60% is maximally suitable, meeting suitability thresholds for water presence, terrain characteristics, and climatic conditions. Nearly 21% of Malawi is suitable for breeding based on land characteristics alone and 28.24% is suitable according to climate and land characteristics. Only 6.14% of the total land area is suboptimal. Dry season results show 25.07% of the total land area is suboptimal or unsuitable. Approximately 42% of Malawi is suitable based on land characteristics alone during the dry season, and 13.11% is suitable based on land plus another factor. Less than 2% meets suitability criteria for climate, water, and land criteria. Findings illustrate environmental drivers of suitability for malaria vectors, providing an opportunity for a more comprehensive approach to malaria control that includes not only modeled species distributions, but also the underlying drivers of suitability for a more effective approach to environmental management.
Collapse
Affiliation(s)
- April N. Frake
- Department of Geography, The University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Brad G. Peter
- Department of Geography, The University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Edward D. Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Joseph P. Messina
- College of Arts and Sciences, The University of Alabama, Tuscaloosa, Alabama, United States of America
| |
Collapse
|
14
|
Birnberg L, Aranda C, Talavera S, Núñez AI, Escosa R, Busquets N. Laboratory colonization and maintenance of Anopheles atroparvus from the Ebro Delta, Spain. Parasit Vectors 2020; 13:394. [PMID: 32746901 PMCID: PMC7398269 DOI: 10.1186/s13071-020-04268-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/29/2020] [Indexed: 11/25/2022] Open
Abstract
Background Historically, Anopheles atroparvus has been considered one of the most important malaria vectors in Europe. Since malaria was eradicated from the European continent, the interest in studying its vectors reduced significantly. Currently, to better assess the potential risk of malaria resurgence on the continent, there is a growing need to update the data on susceptibility of indigenous Anopheles populations to imported Plasmodium species. In order to do this, as a first step, an adequate laboratory colony of An. atroparvus is needed. Methods Anopheles atroparvus mosquitoes were captured in rice fields from the Ebro Delta (Spain). Field-caught specimens were maintained in the laboratory under simulated field-summer conditions. Adult females were artificially blood-fed on fresh whole rabbit blood for oviposition. First- to fourth-instar larvae were fed on pulverized fish and turtle food. Adults were maintained with a 10% sucrose solution ad libitum. Results An An. atroparvus population from the Ebro Delta was successfully established in the laboratory. During the colonization process, feeding and hatching rates increased, while a reduction in larval mortality rate was observed. Conclusions The present study provides a detailed rearing and maintenance protocol for An. atroparvus and a publicly available reference mosquito strain within the INFRAVEC2 project for further research studies involving vector-parasite interactions. ![]()
Collapse
Affiliation(s)
- Lotty Birnberg
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), Barcelona, Spain
| | - Carles Aranda
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), Barcelona, Spain.,Servei de Control de Mosquits del Consell Comarcal del Baix Llobregat, Barcelona, Spain
| | - Sandra Talavera
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), Barcelona, Spain
| | - Ana I Núñez
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), Barcelona, Spain
| | - Raúl Escosa
- Consorci de Polítiques Ambientals de les Terres de l'Ebre (COPATE), Tarragona, Spain
| | - Núria Busquets
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), Barcelona, Spain.
| |
Collapse
|
15
|
Espinosa-Vélez Y, Altamiranda-Saavedra M, Correa MM. Potential distribution of main malaria vector species in the endemic Colombian Pacific region. Trop Med Int Health 2020; 25:861-873. [PMID: 32279390 DOI: 10.1111/tmi.13399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To assess the existing fundamental niche, potential distribution and degree of niche overlap for the three main Colombian malaria vectors Anopheles albimanus, Anopheles darlingi and Anopheles nuneztovari in the major malaria endemic Pacific region. METHODS We used models based on presence records and Normalised Difference Vegetation Index (NDVI) data, created using the maximum entropy algorithm. RESULTS The three vector species occupied heterogeneous environments, and their NDVI values differed. Anopheles albimanus had the largest niche amplitude and was distributed mainly on coastal areas. Environmentally suitable areas for An. albimanus and An. nuneztovari were the dry forest of inter-Andean Valleys in south-western Colombia, as confirmed for An. albimanus during model validation. There was a slight degree of niche overlap between An. darlingi and An. nuneztovari, and the species co-occurred in humid forests, predominantly in riparian zones of the San Juan and Atrato rivers. CONCLUSION The information obtained may be used for the implementation of vector control interventions in selected priority areas to reduce malaria risk in this region while optimising resources.
Collapse
Affiliation(s)
- Yilmar Espinosa-Vélez
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Mariano Altamiranda-Saavedra
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia.,Grupo de investigación en Comunidad de Aprendizaje Currículo y Didáctica, Politécnico Colombiano Jaime Isaza Cadavid, Medellín, Colombia
| | - Margarita M Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
16
|
López Calderón C, Balbontín Arenas J, Hobson KA, Møller AP. Age-dependent carry-over effects in a long-distance migratory bird. Sci Rep 2019; 9:12032. [PMID: 31427594 PMCID: PMC6700079 DOI: 10.1038/s41598-019-47374-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/03/2019] [Indexed: 11/09/2022] Open
Abstract
Migratory birds usually respond to climate change by modifying breeding and/or wintering areas, as well as by reproducing earlier. In addition, changes in winter habitat use or breeding phenology could have important carry-over effects on subsequent breeding success. Here, we studied age- and sex-dependent carry-over effects from wintering to the breeding stage of a small aerial insectivorous long-distance migratory bird, the barn swallows (Hirundo rustica) breeding in Denmark during 1984-2013. First, we used stable isotope analyses combined with ringing recoveries to identify wintering areas. Second, we found that environmental conditions as inferred by Normalized Differential Vegetation Index (NDVI) have deteriorated at the wintering grounds. Third, we used confirmatory path analysis to quantify the indirect effect of winter conditions on subsequent breeding success. Females advanced onset of breeding, laid more eggs and raised more fledglings in the first brood when ecological conditions during the previous winter improved. This response was age dependent, since yearlings did not respond to this environmental cue but the response was increasingly stronger as females aged. Males showed a similar response to winter conditions, although not statistically significant. These results highlight the importance of studying carry-over effects within the context of climate change, especially in relation to age of individuals.
Collapse
Affiliation(s)
- Cosme López Calderón
- Department of Zoology, Faculty of Biology, Green Building, Avenue Reina Mercedes, E-41012, Seville, Spain.
| | - Javier Balbontín Arenas
- Department of Zoology, Faculty of Biology, Green Building, Avenue Reina Mercedes, E-41012, Seville, Spain
| | - Keith A Hobson
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405, Orsay Cedex, France
| |
Collapse
|
17
|
Spatial susceptibility analysis of vector-borne diseases in KMC using geospatial technique and MCDM approach. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40808-019-00586-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Livestock trade network: potential for disease transmission and implications for risk-based surveillance on the island of Mayotte. Sci Rep 2018; 8:11550. [PMID: 30069063 PMCID: PMC6070536 DOI: 10.1038/s41598-018-29999-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/18/2018] [Indexed: 01/11/2023] Open
Abstract
The island of Mayotte is a department of France, an outermost region of the European Union located in the Indian Ocean between Madagascar and the coast of Eastern Africa. Due to its close connection to the African mainland and neighbouring islands, the island is under constant threat of introduction of infectious diseases of both human and animal origin. Here, using social network analysis and mathematical modelling, we assessed potential implications of livestock movements between communes in Mayotte for risk-based surveillance. Our analyses showed that communes in the central region of Mayotte acted as a hub in the livestock movement network. The majority of livestock movements occurred between communes in the central region and from communes in the central region to those in the outer region. Also, communes in the central region were more likely to be infected earlier than those in the outer region when the spread of an exotic infectious disease was simulated on the livestock movement network. The findings of this study, therefore, suggest that communes in the central region would play a major role in the spread of infectious diseases via livestock movements, which needs to be considered in the design of risk-based surveillance systems in Mayotte.
Collapse
|
19
|
Altamiranda-Saavedra M, Arboleda S, Parra JL, Peterson AT, Correa MM. Potential distribution of mosquito vector species in a primary malaria endemic region of Colombia. PLoS One 2017; 12:e0179093. [PMID: 28594942 PMCID: PMC5464628 DOI: 10.1371/journal.pone.0179093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/23/2017] [Indexed: 11/18/2022] Open
Abstract
Rapid transformation of natural ecosystems changes ecological conditions for important human disease vector species; therefore, an essential task is to identify and understand the variables that shape distributions of these species to optimize efforts toward control and mitigation. Ecological niche modeling was used to estimate the potential distribution and to assess hypotheses of niche similarity among the three main malaria vector species in northern Colombia: Anopheles nuneztovari, An. albimanus, and An. darlingi. Georeferenced point collection data and remotely sensed, fine-resolution satellite imagery were integrated across the Urabá -Bajo Cauca-Alto Sinú malaria endemic area using a maximum entropy algorithm. Results showed that An. nuneztovari has the widest geographic distribution, occupying almost the entire study region; this niche breadth is probably related to the ability of this species to colonize both, natural and disturbed environments. The model for An. darlingi showed that most suitable localities for this species in Bajo Cauca were along the Cauca and Nechí river. The riparian ecosystems in this region and the potential for rapid adaptation by this species to novel environments, may favor the establishment of populations of this species. Apparently, the three main Colombian Anopheles vector species in this endemic area do not occupy environments either with high seasonality, or with low seasonality and high NDVI values. Estimated overlap in geographic space between An. nuneztovari and An. albimanus indicated broad spatial and environmental similarity between these species. An. nuneztovari has a broader niche and potential distribution. Dispersal ability of these species and their ability to occupy diverse environmental situations may facilitate sympatry across many environmental and geographic contexts. These model results may be useful for the design and implementation of malaria species-specific vector control interventions optimized for this important malaria region.
Collapse
Affiliation(s)
| | - Sair Arboleda
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín, Colombia
| | - Juan L. Parra
- Grupo de Ecología y Evolución de Vertebrados, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - A. Townsend Peterson
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Margarita M. Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
20
|
Marcantonio M, Metz M, Baldacchino F, Arnoldi D, Montarsi F, Capelli G, Carlin S, Neteler M, Rizzoli A. First assessment of potential distribution and dispersal capacity of the emerging invasive mosquito Aedes koreicus in Northeast Italy. Parasit Vectors 2016; 9:63. [PMID: 26842546 PMCID: PMC4739402 DOI: 10.1186/s13071-016-1340-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/26/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Invasive alien species represent a growing threat for natural systems, economy and human health. Active surveillance and responses that readily suppress newly established colonies are effective actions to mitigate the noxious consequences of biological invasions. However, when an exotic species establishes a viable population in a new area, predicting its potential spread is the most effective way to implement adequate control actions. Emerging invasive species, despite monitoring efforts, are poorly known in terms of behaviour and capacity to adapt to the new invaded range. Therefore, tools that provide information on their spread by maximising the available data, are critical. METHODS We apply three different approaches to model the potential distribution of an emerging invasive mosquito, Aedes koreicus, in Northeast Italy: 1) an automatic statistical approach based on information theory, 2) a statistical approach integrated with prior knowledge, and 3) a GIS physiology-based approach. Each approach possessed benefits and limitations, and the required ecological information increases on a scale from 1 to 3. We validated the model outputs using the only other known invaded area in Europe. Finally, we applied a road network analysis to the suitability surface with the highest prediction power to highlight those areas with the highest likelihood of invasion. RESULTS The GIS physiological-based model had the highest prediction power. It showed that localities currently occupied by Aedes koreicus represent only a small fraction of the potentially suitable area. Furthermore, the modelled niche included areas as high as 1500 m a.s.l., only partially overlapping with Aedes albopictus distribution. CONCLUSIONS The simulated spread indicated that all of the suitable portion of the study area is at risk of invasion in a relatively short period of time if no control policies are implemented. Stochastic events may further boost the invasion process, whereas competition with Aedes albopictus may limit it. According to our analysis, some of the major cities in the study area may have already been invaded. Further monitoring is needed to confirm this finding. The developed models and maps represent valuable tools to inform policies aimed at eradicating or mitigating Aedes koreicus invasion in Northeast Italy and Central Europe.
Collapse
Affiliation(s)
- Matteo Marcantonio
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, S. Michele all'Adige, Italy.
| | - Markus Metz
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, S. Michele all'Adige, Italy.
| | - Frédéric Baldacchino
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, S. Michele all'Adige, Italy.
| | - Daniele Arnoldi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, S. Michele all'Adige, Italy.
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, Padova, Italy.
| | - Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, Padova, Italy.
| | - Sara Carlin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, Padova, Italy.
| | - Markus Neteler
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, S. Michele all'Adige, Italy.
| | - Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, S. Michele all'Adige, Italy.
| |
Collapse
|
21
|
Reiner RC, Geary M, Atkinson PM, Smith DL, Gething PW. Seasonality of Plasmodium falciparum transmission: a systematic review. Malar J 2015; 14:343. [PMID: 26370142 PMCID: PMC4570512 DOI: 10.1186/s12936-015-0849-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 08/10/2015] [Indexed: 11/23/2022] Open
Abstract
Background Although Plasmodium falciparum transmission frequently exhibits seasonal patterns, the drivers of malaria seasonality are often unclear. Given the massive variation in the landscape upon which transmission acts, intra-annual fluctuations are likely influenced by different factors in different settings. Further, the presence of potentially substantial inter-annual variation can mask seasonal patterns; it may be that a location has “strongly seasonal” transmission and yet no single season ever matches the mean, or synoptic, curve. Accurate accounting of seasonality can inform efficient malaria control and treatment strategies. In spite of the demonstrable importance of accurately capturing the seasonality of malaria, data required to describe these patterns is not universally accessible and as such localized and regional efforts at quantifying malaria seasonality are disjointed and not easily generalized. Methods The purpose of this review was to audit the literature on seasonality of P. falciparum and quantitatively summarize the collective findings. Six search terms were selected to systematically compile a list of papers relevant to the seasonality of P. falciparum transmission, and a questionnaire was developed to catalogue the manuscripts. Results and discussion 152 manuscripts were identified as relating to the seasonality of malaria transmission, deaths due to malaria or the population dynamics of mosquito vectors of malaria. Among these, there were 126 statistical analyses and 31 mechanistic analyses (some manuscripts did both). Discussion Identified relationships between temporal patterns in malaria and climatological drivers of malaria varied greatly across the globe, with different drivers appearing important in different locations. Although commonly studied drivers of malaria such as temperature and rainfall were often found to significantly influence transmission, the lags between a weather event and a resulting change in malaria transmission also varied greatly by location. Conclusions The contradicting results of studies using similar data and modelling approaches from similar locations as well as the confounding nature of climatological covariates underlines the importance of a multi-faceted modelling approach that attempts to capture seasonal patterns at both small and large spatial scales. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0849-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert C Reiner
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA. .,Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA. .,Department of Entomology, University of California, Davis, CA, USA.
| | - Matthew Geary
- Department of Biological Sciences, University of Chester, Chester, UK.
| | - Peter M Atkinson
- Faculty of Science and Technology, Engineering Building, Lancaster University, Lancaster, LA1 4YR, UK. .,Faculty of Geosciences, University of Utrecht, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands. .,School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, Belfast, BT7 1NN, Northern Ireland, UK. .,Geography and Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - David L Smith
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA. .,Center for Disease Dynamics, Economics and Policy, Washington, DC, USA. .,Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, UK.
| | - Peter W Gething
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Dantur Juri MJ, Estallo E, Almirón W, Santana M, Sartor P, Lamfri M, Zaidenberg M. Satellite-derived NDVI, LST, and climatic factors driving the distribution and abundance of Anopheles mosquitoes in a former malarious area in northwest Argentina. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2015; 40:36-45. [PMID: 26047182 DOI: 10.1111/jvec.12130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/25/2014] [Indexed: 06/04/2023]
Abstract
Distribution and abundance of disease vectors are directly related to climatic conditions and environmental changes. Remote sensing data have been used for monitoring environmental conditions influencing spatial patterns of vector-borne diseases. The aim of this study was to analyze the effect of the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS), and climatic factors (temperature, humidity, wind velocity, and accumulated rainfall) on the distribution and abundance of Anopheles species in northwestern Argentina using Poisson regression analyses. Samples were collected from December, 2001 to December, 2005 at three localities, Aguas Blancas, El Oculto and San Ramón de la Nueva Orán. We collected 11,206 adult Anopheles species, with the major abundance observed at El Oculto (59.11%), followed by Aguas Blancas (22.10%) and San Ramón de la Nueva Orán (18.79%). Anopheles pseudopunctipennis was the most abundant species at El Oculto, Anopheles argyritarsis predominated in Aguas Blancas, and Anopheles strodei in San Ramón de la Nueva Orán. Samples were collected throughout the sampling period, with the highest peaks during the spring seasons. LST and mean temperature appear to be the most important variables determining the distribution patterns and major abundance of An. pseudopunctipennis and An. argyritarsis within malarious areas.
Collapse
Affiliation(s)
- María Julia Dantur Juri
- Instituto Superior de Entomología "Dr. Abraham Willink", Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, CP 4000 Tucumán, Argentina.
- IAMRA, Universidad Nacional de Chilecito, 9 de Julio 22, CP 5360 Chilecito, La Rioja, Argentina.
| | - Elizabet Estallo
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT)-CONICET and Universidad Nacional de Córdoba. Centro de Investigaciones Entomológicas de Córdoba (CIEC), Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, CP 5016, Córdoba, Argentina
| | - Walter Almirón
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT)-CONICET and Universidad Nacional de Córdoba. Centro de Investigaciones Entomológicas de Córdoba (CIEC), Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, CP 5016, Córdoba, Argentina
| | - Mirta Santana
- Cátedra de Bioestadística, Facultad de Medicina, Universidad Nacional de Tucumán, Lamadrid 875, CP 4000 Tucumán, Argentina
| | - Paolo Sartor
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT)-CONICET and Universidad Nacional de Córdoba. Centro de Investigaciones Entomológicas de Córdoba (CIEC), Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, CP 5016, Córdoba, Argentina
| | - Mario Lamfri
- Instituto de Altos Estudios Espaciales Mario Gulich, Centro Espacial Teófilo Tabanera, CP 5187 Córdoba, Argentina
| | - Mario Zaidenberg
- Coordinación Nacional de Control de Vectores, Ministerio de Salud de la Nación, Güemes 125, CP 4400 Salta, Argentina
| |
Collapse
|
23
|
Ferreira CAC, de Pinho Mixão V, Novo MTLM, Calado MMP, Gonçalves LAP, Belo SMD, de Almeida APG. First molecular identification of mosquito vectors of Dirofilaria immitis in continental Portugal. Parasit Vectors 2015; 8:139. [PMID: 25886610 PMCID: PMC4369802 DOI: 10.1186/s13071-015-0760-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/20/2015] [Indexed: 11/12/2022] Open
Abstract
Background Canine dirofilariasis due to Dirofilaria immitis is known to be endemic in continental Portugal. However, information about the transmitting mosquito species is still scarce, with only Culex theileri identified to date, albeit with L1-2, through dissection. This study was carried out to investigate the potential vectors of Dirofilaria spp. in continental Portugal. Methods Mosquitoes were collected in three distinct seasons (Summer, Autumn and Spring), 2011–2013, in three districts. CDC traps and indoor resting collections were carried out in the vicinity of kennels. Mosquitoes were kept under controlled conditions for 7 days to allow the development of larval stages of Dirofilaria spp.. DNA extraction was performed separately for both head+thorax and abdomen in order to differentiate infective and infected specimens, respectively, in pools, grouped according to the species and collection site (1–40 specimen parts/pool), and examined by PCR using pan-filarial specific primers. Mosquito densities were compared using non-parametric tests. Dirofilaria development units (DDU) were estimated. Results In total, 9156 female mosquitoes, from 11 different species, were captured. Mosquito densities varied among the 3 districts, according to capture method, and were generally higher in the second year of collections. From 5866 specimens screened by PCR, 23 head+thorax and 41 abdomens pools, corresponding to 54 mosquitoes were found positive for D. immitis DNA. These belonged to 5 species: Culex (Cux) theileri (estimated rate of infection (ERI)=0.71%), Cx. (Cux) pipiens f. pipiens and f. molestus (ERI=0.5%), Anopheles (Ano) maculipennis s.l. (ERI=3.12%), including An. (Ano) atroparvus, Aedes (Och) caspius (ERI=3.73%) and Ae. (Och) detritus s.l. (ERI=4.39%). All but Cx. pipiens, had at least one infective specimen. No D. repens infected specimens were found. Infection rates were: 3.21% in Coimbra, 1.22% in Setúbal and 0.54% in Santarém. DDU were at least 117/year in the study period. Conclusions Culex theileri, Cx. pipiens, An. maculipennis s.l. An. atroparvus, Ae.caspius and Ae. detritus s.l. were identified as potential vectors of D. immitis in three districts of Portugal, from Spring to Autumn, in 5 of the 6 collection dates in 2011–2013. Implications for transmission, in the context of climate changes, and need for prophylactic measures, are discussed.
Collapse
Affiliation(s)
- Cátia Alexandra Costa Ferreira
- Medical Parasitology Unit, Medical Parasitology & Microbiology Unit-UPMM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisboa, Portugal.
| | - Verónica de Pinho Mixão
- Medical Parasitology Unit, Medical Parasitology & Microbiology Unit-UPMM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisboa, Portugal.
| | - Maria Teresa Lourenço Marques Novo
- Medical Parasitology Unit, Medical Parasitology & Microbiology Unit-UPMM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisboa, Portugal.
| | - Maria Manuela Palmeiro Calado
- Medical Parasitology Unit, Medical Parasitology & Microbiology Unit-UPMM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisboa, Portugal.
| | - Luzia Augusta Pires Gonçalves
- International Public Health and Biostatistics Unit, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisboa, Portugal. .,Centro de Estatística e Aplicações da Universidade de Lisboa, Faculdade de Ciências da Universidade de Lisboa, Bloco C6 - Piso 4, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Silvana Maria Duarte Belo
- Medical Parasitology Unit, Medical Parasitology & Microbiology Unit-UPMM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisboa, Portugal.
| | - António Paulo Gouveia de Almeida
- Medical Parasitology Unit, Medical Parasitology & Microbiology Unit-UPMM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisboa, Portugal. .,Zoonosis Research Unit, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
24
|
Ren Z, Wang D, Hwang J, Bennett A, Sturrock HJW, Ma A, Huang J, Xia Z, Feng X, Wang J. Spatial-temporal variation and primary ecological drivers of Anopheles sinensis human biting rates in malaria epidemic-prone regions of China. PLoS One 2015; 10:e0116932. [PMID: 25611483 PMCID: PMC4303435 DOI: 10.1371/journal.pone.0116932] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/26/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Robust malaria vector surveillance is essential for optimally selecting and targeting vector control measures. Sixty-two vector surveillance sites were established between 2005 and 2008 by the national malaria surveillance program in China to measure Anopheles sinensis human biting rates. Using these data to determine the primary ecological drivers of malaria vector human biting rates in malaria epidemic-prone regions of China will allow better targeting of vector control resources in space and time as the country aims to eliminate malaria. METHODS We analyzed data from 62 malaria surveillance sentinel sites from 2005 to 2008. Linear mixed effects models were used to identify the primary ecological drivers for Anopheles sinensis human biting rates as well as to explore the spatial-temporal variation of relevant factors at surveillance sites throughout China. RESULTS Minimum semimonthly temperature (β = 2.99; 95% confidence interval (CI) 2.07- 3.92), enhanced vegetation index (β =1.07; 95% CI 0.11-2.03), and paddy index (the percentage of rice paddy field in the total cultivated land area of each site) (β = 0.86; 95% CI 0.17-1.56) were associated with greater An. Sinensis human biting rates, while increasing distance to the nearest river was associated with lower An. Sinensis human biting rates (β = -1.47; 95% CI -2.88, -0.06). The temporal variation (σ(s0)(2) = 0.83) in biting rates was much larger than the spatial variation (σ(t)(2) = 1.35), with 19.3% of temporal variation attributable to differences in minimum temperature and enhanced vegetation index and 16.9% of spatial variance due to distance to the nearest river and the paddy index. DISCUSSION Substantial spatial-temporal variation in An. Sinensis human biting rates exists in malaria epidemic-prone regions of China, with minimum temperature and enhanced vegetation index accounting for the greatest proportion of temporal variation and distance to nearest river and paddy index accounting for the greatest proportion of spatial variation amongst observed ecological drivers. CONCLUSIONS Targeted vector control measures based on these findings can support the ongoing malaria elimination efforts in China more effectively.
Collapse
Affiliation(s)
- Zhoupeng Ren
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Science and Natural Resource Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Duoquan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People’s Republic of China
| | - Jimee Hwang
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California, United States of America
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California, United States of America
| | - Hugh J. W. Sturrock
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California, United States of America
| | - Aimin Ma
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Science and Natural Resource Research, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
- College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing, China
| | - Jixia Huang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Science and Natural Resource Research, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
- Center of 3S Technology and Mapping, Beijing Forestry University, Beijing, China
| | - Zhigui Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People’s Republic of China
| | - Xinyu Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People’s Republic of China
| | - Jinfeng Wang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Science and Natural Resource Research, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
25
|
Mapping infectious disease landscapes: unmanned aerial vehicles and epidemiology. Trends Parasitol 2014; 30:514-9. [PMID: 25443854 DOI: 10.1016/j.pt.2014.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/20/2022]
Abstract
The potential applications of unmanned aerial vehicles (UAVs), or drones, have generated intense interest across many fields. UAVs offer the potential to collect detailed spatial information in real time at relatively low cost and are being used increasingly in conservation and ecological research. Within infectious disease epidemiology and public health research, UAVs can provide spatially and temporally accurate data critical to understanding the linkages between disease transmission and environmental factors. Using UAVs avoids many of the limitations associated with satellite data (e.g., long repeat times, cloud contamination, low spatial resolution). However, the practicalities of using UAVs for field research limit their use to specific applications and settings. UAVs fill a niche but do not replace existing remote-sensing methods.
Collapse
|
26
|
Wiman NG, Walton VM, Dalton DT, Anfora G, Burrack HJ, Chiu JC, Daane KM, Grassi A, Miller B, Tochen S, Wang X, Ioriatti C. Integrating temperature-dependent life table data into a matrix projection model for Drosophila suzukii population estimation. PLoS One 2014; 9:e106909. [PMID: 25192013 PMCID: PMC4156384 DOI: 10.1371/journal.pone.0106909] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022] Open
Abstract
Temperature-dependent fecundity and survival data was integrated into a matrix population model to describe relative Drosophila suzukii Matsumura (Diptera: Drosophilidae) population increase and age structure based on environmental conditions. This novel modification of the classic Leslie matrix population model is presented as a way to examine how insect populations interact with the environment, and has application as a predictor of population density. For D. suzukii, we examined model implications for pest pressure on crops. As case studies, we examined model predictions in three small fruit production regions in the United States (US) and one in Italy. These production regions have distinctly different climates. In general, patterns of adult D. suzukii trap activity broadly mimicked seasonal population levels predicted by the model using only temperature data. Age structure of estimated populations suggest that trap and fruit infestation data are of limited value and are insufficient for model validation. Thus, we suggest alternative experiments for validation. The model is advantageous in that it provides stage-specific population estimation, which can potentially guide management strategies and provide unique opportunities to simulate stage-specific management effects such as insecticide applications or the effect of biological control on a specific life-stage. The two factors that drive initiation of the model are suitable temperatures (biofix) and availability of a suitable host medium (fruit). Although there are many factors affecting population dynamics of D. suzukii in the field, temperature-dependent survival and reproduction are believed to be the main drivers for D. suzukii populations.
Collapse
Affiliation(s)
- Nik G. Wiman
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| | - Vaughn M. Walton
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| | - Daniel T. Dalton
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| | - Gianfranco Anfora
- Research and Innovation Centre and Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Hannah J. Burrack
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Joanna C. Chiu
- Department of Entomology and Nematology, University of California Davis, Davis, California, United States of America
| | - Kent M. Daane
- Department of Environmental Science, Policy & Management, University of California, Berkeley, California, United States of America
| | - Alberto Grassi
- Research and Innovation Centre and Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Betsey Miller
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| | - Samantha Tochen
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| | - Xingeng Wang
- Department of Environmental Science, Policy & Management, University of California, Berkeley, California, United States of America
| | - Claudio Ioriatti
- Research and Innovation Centre and Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| |
Collapse
|
27
|
The historical distribution of main malaria foci in Spain as related to water bodies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:7896-917. [PMID: 25101771 PMCID: PMC4143839 DOI: 10.3390/ijerph110807896] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/04/2014] [Accepted: 07/25/2014] [Indexed: 11/23/2022]
Abstract
The possible connectivity between the spatial distribution of water bodies suitable for vectors of malaria and endemic malaria foci in Southern Europe is still not well known. Spain was one of the last countries in Western Europe to be declared free of malaria by the World Health Organization (WHO) in 1964. This study combines, by means of a spatial-temporal analysis, the historical data of patients and deceased with the distribution of water bodies where the disease-transmitting mosquitos proliferate. Therefore, data from historical archives with a Geographic Information System (GIS), using the Inverse Distance Weighted (IDW) interpolation method, was analyzed with the aim of identifying regional differences in the distribution of malaria in Spain. The reasons, why the risk of transmission is concentrated in specific regions, are related to worse socioeconomic conditions (Extremadura), the presence of another vector (Anopheles labranchiae) besides A. atroparvus (Levante) or large areas of water bodies in conditions to reproduce theses vectors (La Mancha and Western Andalusia). In the particular case of Western Andalusia, in 1913, the relatively high percentage of 4.73% of the surface, equal to 202362 ha, corresponds to wetlands and other unhealthy water bodies. These wetlands have been reduced as a result of desiccation policies and climate change such as the Little Ice Age and Global Climate Change. The comprehension of the main factors of these wetland changes in the past can help us interpret accurately the future risk of malaria re-emergence in temperate latitudes, since it reveals the crucial role of unhealthy water bodies on the distribution, endemicity and eradication of malaria in southern Europe.
Collapse
|