1
|
Chaiphongpachara T, Laojun S, Sumruayphol S, Suwandittakul N, Suwannarong K, Pimsuka S. Investigating the impact of climate and seasonality on mosquito (Diptera: Culicidae) vector populations in the connecting areas of the Tenasserim range forests in Thailand. Acta Trop 2024; 259:107380. [PMID: 39244138 DOI: 10.1016/j.actatropica.2024.107380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/24/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Mosquito-borne diseases pose a significant public health challenge globally. Our study focused on the seasonal diversity of mosquito species in the connecting areas of the Tenasserim (also known as Tanaosri) range forests in Thailand. Additionally, we employed the geometric morphometric technique to assess variations in wing size and shape among five predominant mosquito species. Throughout the study period, we collected a total of 9,522 mosquitoes, encompassing 42 species across eight genera. In these connecting areas of forests, the Simpson index and Shannon species diversity index were recorded at 0.86 and 2.36, respectively, indicating a high level of mosquito diversity. Our analysis using the Analysis of Similarities (ANOSIM) test showed significant seasonal differences in mosquito communities, with an R-value of 0.30 (p < 0.05) in the lower connecting areas and 0.37 (p < 0.05) in the upper connecting areas. Additionally, canonical correspondence analyses showed that the abundance of each mosquito species is influenced by various climate factors. Phenotypic analyses of wing size and shape have deepened our understanding of local adaptation and the seasonal pressures impacting these vectors. Notably, most species exhibited larger wing sizes in the dry season compared to other seasons. Additionally, seasonal assessments of wing shape in five predominant mosquito species revealed significant differences across seasonal populations (p < 0.05). Ongoing monitoring of these populations is crucial to enhancing our understanding of the seasonal effects on mosquito abundance and physiological adaptations. These insights are essential for developing more effective strategies to manage mosquito-borne diseases.
Collapse
Affiliation(s)
- Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Thailand.
| | - Sedthapong Laojun
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Thailand
| | - Suchada Sumruayphol
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Nantana Suwandittakul
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Thailand
| | - Kanokwan Suwannarong
- SUPA71 Co., Ltd, Bangkok, Thailand; Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Siripong Pimsuka
- School of Public Health, Eastern Asia University, Pathumthani, Thailand
| |
Collapse
|
2
|
Montes de Oca-Aguilar AC, Fernández-Figueroa EA, López-Ávila KB, Pavón-Méndez MI, Sosa-Bibiano EI, Rebollar-Téllez EA, Palacio-Vargas JA, García-López B, Rangel-Escareño C, Loría-Cervera EN. Abundance and Leishmania infection patterns of the sand fly Psathyromyia cratifer in Southern Mexico. PLoS Negl Trop Dis 2024; 18:e0012426. [PMID: 39255321 DOI: 10.1371/journal.pntd.0012426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/20/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Localized cutaneous leishmaniasis (LCL) is a serious public health problem in Southern Mexico. Six species of Phlebotominae (Diptera: Psychodidae) have been found to be infected with Leishmania (Leishmania) mexicana, the causative agent of LCL in the region. However, little is known about the biology and potential participation of Psathyromyia cratifer in the Leishmania transmission cycle in Mexico, and the Americas. The present study provides evidence of temporal infection caused by Leishmania in Psathyromyia cratifer as well as data on its population dynamics in a LCL endemic area during the well-known transmission cycle of Leishmania in Southern Mexico. METHODOLOGY/PRINCIPAL FINDINGS Individual specimens of Psathyromyia cratifer were collected in four sites over the course of five months (from November 2020 through March 2021) using animal-baited, human-baited, and light traps. The temporal activity pattern (month + hour) of Psathyromyia cratifer was assessed along with its relationship with environmental variables. Moreover, Leishmania DNA and blood meals were analyzed and detected in female sand flies. This evidenced an infection rate ranging from 8% to 83%, and the record of Homo sapiens and Ototylomys phyllotis as blood hosts of this sand fly species. High abundances of these sand flies in human-baited traps were recorded which revealed the marked anthropophilic behavior of Psathyromyia cratifer. As regards the transmission dynamics of the parasite within the region, it was observed that the potential highest epidemiological risk for Leishmania transmission by Psathyromyia cratifer occurred during the months of January and March. CONCLUSION This is the first contribution ever made to both the population dynamic and the temporal Leishmania prevalence patterns in Psathyromyia cratifer. The resulting findings suggest that this sand fly specimen is the sixth potential vector of L. (L.) mexicana in Southern Mexico. Nonetheless, various biology, behavior, and ecology strands are yet to be addressed. The latter, to determine the role it plays in the transmission dynamics of the parasite within the region, and other areas of the country.
Collapse
Affiliation(s)
- Ana Celia Montes de Oca-Aguilar
- Immunology Laboratory, Regional Research Center "Dr. Hideyo Noguchi", Autonomous University of Yucatan, Merida, Yucatan, Mexico
| | - Edith A Fernández-Figueroa
- Core B for Innovation in Precision Medicine, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Karina B López-Ávila
- Immunology Laboratory, Regional Research Center "Dr. Hideyo Noguchi", Autonomous University of Yucatan, Merida, Yucatan, Mexico
| | - Mariela Isabel Pavón-Méndez
- Immunology Laboratory, Regional Research Center "Dr. Hideyo Noguchi", Autonomous University of Yucatan, Merida, Yucatan, Mexico
| | - Erika I Sosa-Bibiano
- Immunology Laboratory, Regional Research Center "Dr. Hideyo Noguchi", Autonomous University of Yucatan, Merida, Yucatan, Mexico
| | - Eduardo A Rebollar-Téllez
- Medical Entomology Laboratory, Invertebrate Zoology Department; Faculty of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, Mexico
| | - Jorge A Palacio-Vargas
- Directorate of Prevention and Health Protection of Health Services of the State of Yucatan, Merida, Mexico
| | - Brenda García-López
- Core B for Innovation in Precision Medicine, National Institute of Genomic Medicine, Mexico City, Mexico
| | | | - Elsy Nalleli Loría-Cervera
- Immunology Laboratory, Regional Research Center "Dr. Hideyo Noguchi", Autonomous University of Yucatan, Merida, Yucatan, Mexico
| |
Collapse
|
3
|
Blom R, Krol L, Langezaal M, Schrama M, Trimbos KB, Wassenaar D, Koenraadt CJM. Blood-feeding patterns of Culex pipiens biotype pipiens and pipiens/molestus hybrids in relation to avian community composition in urban habitats. Parasit Vectors 2024; 17:95. [PMID: 38424573 PMCID: PMC10902945 DOI: 10.1186/s13071-024-06186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Culex pipiens sensu stricto (s.s.) is considered the primary vector of Usutu virus and West Nile virus, and consists of two morphologically identical but behaviourally distinct biotypes (Cx. pipiens biotype pipiens and Cx. pipiens biotype molestus) and their hybrids. Both biotypes are expected to differ in their feeding behaviour, and pipiens/molestus hybrids are presumed to display intermediate feeding behaviour. However, the evidence for distinct feeding patterns is scarce, and to date no studies have related differences in feeding patterns to differences in host abundance. METHODS Mosquitoes were collected using CO2-baited traps. We collected blood-engorged Cx. pipiens/torrentium specimens from 12 contrasting urban sites, namely six city parks and six residential areas. Blood engorged Cx. pipiens/torrentium mosquitoes were identified to the species and biotype/hybrid level via real-time polymerase chain reaction (PCR). We performed blood meal analysis via PCR and Sanger sequencing. Additionally, avian host communities were surveyed via vocal sounds and/or visual observation. RESULTS We selected 64 blood-engorged Cx. pipiens/torrentium mosquitoes of which we successfully determined the host origin of 55 specimens. Of these, 38 belonged to biotype pipiens, 14 were pipiens/molestus hybrids and the identity of three specimens could not be determined. No blood-engorged biotype molestus or Cx. torrentium specimens were collected. We observed no differences in feeding patterns between biotype pipiens and pipiens/molestus hybrids across different habitats. Avian community composition differed between city parks and residential areas, whereas overall avian abundance did not differ between the two habitat types. CONCLUSIONS Our results show the following: (1) Cx. pipiens s.s. feeding patterns did not differ between city parks and residential areas, regardless of whether individuals were identified as biotype pipiens or pipiens/molestus hybrids. (2) We detected differences in host availability between city parks and residential areas. (3) We show that in both urban habitat types, biotype pipiens and pipiens/molestus hybrids fed on both mammalian and avian hosts. This underscores the potential role in arbovirus transmission of biotype pipiens and pipiens/molestus hybrids.
Collapse
Affiliation(s)
- Rody Blom
- Laboratory of Entomology, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Louie Krol
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
- Deltares, Utrecht, The Netherlands
| | - Melissa Langezaal
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Maarten Schrama
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Krijn B Trimbos
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Daan Wassenaar
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Constantianus J M Koenraadt
- Laboratory of Entomology, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Seechurn N, Herdman MT, Hernandez-Colina A, Vaux AGC, Johnston C, Berrell M, Lopez J, Eckley L, Gonzalez-Olvera M, Gillespie L, Kelly PP, Baylis M, Medlock JM. Field-based assessments of the seasonality of Culex pipiens sensu lato in England: an important enzootic vector of Usutu and West Nile viruses. Parasit Vectors 2024; 17:61. [PMID: 38342888 PMCID: PMC10859028 DOI: 10.1186/s13071-024-06143-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/17/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Usutu virus (USUV), which is closely related to West Nile virus (WNV), sharing a similar ecology and transmission cycle, was first reported in the UK in the southeast of England in 2020. Both USUV and WNV are emerging zoonotic viruses hosted by wild birds. The 2020 finding of USUV in England raised awareness of this virus and highlighted the importance of understanding the seasonality of Culex pipiens sensu lato (Cx. pipiens s.l.), the main enzootic vector of these viruses. Zoos are prime locations for trapping mosquitoes because of their infrastructure, security, and range of vertebrate hosts and aquatic habitats. METHODS Three independent zoo-based case studies at four locations that cover the seasonality of Cx. pipiens s.l. in England were undertaken: (i) London Zoo (Zoological Society London [ZSL]) and surrounding areas, London; (ii) Chester Zoo (Cheshire); (ii) Twycross Zoo (Leicestershire); and (iv) Flamingo Land (zoo; North Yorkshire). Various adult mosquito traps were used to catch adult Cx. pipiens s.l. across seasons. RESULTS High yields of Cx. pipiens s.l./Culex torrentium were observed in Biogents-Mosquitaire and Center for Disease Control and Prevention Gravid traps in all studies where these traps were used. Mosquito counts varied between sites and between years. Observations of adult Cx. pipiens s.l./Cx. torrentium abundance and modelling studies demonstrated peak adult abundance between late July and early August, with active adult female Cx. pipiens s.l./Cx. torrentium populations between May and September. CONCLUSIONS The information collated in this study illustrates the value of multiple mosquito monitoring approaches in zoos to describe the seasonality of this UK vector across multiple sites in England and provides a framework that can be used for ongoing and future surveillance programmes and disease risk management strategies.
Collapse
Affiliation(s)
- Nicola Seechurn
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| | - M Trent Herdman
- Medical Entomology and Zoonoses Ecology Group, UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, UK
- UK Field Epidemiology Training Programme Field Service, South East and London, UK Health Security Agency, London, UK
| | - Arturo Hernandez-Colina
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- North of England Zoological Society (Chester Zoo), Caughall Road, Chester, CH2 1LH, UK
| | - Alexander G C Vaux
- Medical Entomology and Zoonoses Ecology Group, UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, UK
| | - Colin Johnston
- Medical Entomology and Zoonoses Ecology Group, UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, UK
| | - Morgan Berrell
- Medical Entomology and Zoonoses Ecology Group, UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, UK
| | - Javier Lopez
- North of England Zoological Society (Chester Zoo), Caughall Road, Chester, CH2 1LH, UK
| | - Lindsay Eckley
- North of England Zoological Society (Chester Zoo), Caughall Road, Chester, CH2 1LH, UK
| | - Merit Gonzalez-Olvera
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- North of England Zoological Society (Chester Zoo), Caughall Road, Chester, CH2 1LH, UK
| | - Lisa Gillespie
- Twycross Zoo, East Midland Zoological Society, Burton Road, Atherstone, CV9 3PX, UK
| | - Paul Pearce Kelly
- Zoological Society of London, Outer Circle, Regent's Park, London, NW1 4RY, UK
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jolyon M Medlock
- Medical Entomology and Zoonoses Ecology Group, UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, UK
| |
Collapse
|
5
|
Ahmed AM, Alotaibi AM, Al-Qahtani WS, Tripet F, Amer SA. Forensic DNA Analysis of Mixed Mosquito Blood Meals: STR Profiling for Human Identification. INSECTS 2023; 14:insects14050467. [PMID: 37233095 DOI: 10.3390/insects14050467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Mosquito vectors captured at a crime scene are forensically valuable since they feed on human blood, and hence, human DNA can be recovered to help identify the victim and/or the suspect. This study investigated the validity of obtaining the human short tandem repeats (STRs) profile from mixed blood meals of the mosquito, Culex pipiens L. (Diptera, Culicidae). Thus, mosquitoes were membrane-feed on blood from six different sources: a human male, a human female, mixed human male-female blood, mixed human male-mouse blood, mixed human female-mouse blood, and mixed human male-female-mouse blood. DNA was extracted from mosquito blood meals at 2 h intervals up to 72 h post-feeding to amplify 24 human STRs. Data showed that full DNA profiles could be obtained for up to 12 h post-feeding, regardless of the type of blood meal. Complete and partial DNA profiles were obtained up to 24 h and 36 h post-feeding, respectively. The frequencies of STR loci decreased over time after feeding on mixed blood until they became weakly detectable at 48 h post-feeding. This may indicate that a blood meal of human blood mixed with animal blood would contribute to maximizing DNA degradation and thus affects STR identification beyond 36 h post-feeding. These results confirm the feasibility of human DNA identification from mosquito blood meals, even if it is mixed with other types of non-human blood, for up to 36 h post-feeding. Therefore, blood-fed mosquitoes found at the crime scene are forensically valuable, as it is possible to obtain intact genetic profiles from their blood meals to identify a victim, a potential offender, and/or exclude a suspect.
Collapse
Affiliation(s)
- Ashraf Mohamed Ahmed
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amani Mohammed Alotaibi
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh 11587, Saudi Arabia
| | - Wedad Saeed Al-Qahtani
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh 11587, Saudi Arabia
| | - Frederic Tripet
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | - Sayed Amin Amer
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh 11587, Saudi Arabia
| |
Collapse
|
6
|
Geldenhuys M, Weyer J, Kearney T, Markotter W. Host-Associated Distribution of Two Novel Mammarenaviruses in Rodents from Southern Africa. Viruses 2022; 15:99. [PMID: 36680139 PMCID: PMC9861163 DOI: 10.3390/v15010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Mammarenaviruses are hosted by several rodent species, a small number of which have been known to be zoonotic. Host surveillance among small mammals has identified a large diversity of previously undescribed mammarenaviruses. Intensified biosurveillance is warranted to better understand the diversity of these agents. Longitudinal host surveillance involving non-volant small mammals at a site in the Limpopo province, South Africa, was conducted. The study reports on the screening results of 563 samples for the presence of mammarenavirus RNA. PCR-positive samples were subjected to sequencing using Miseq amplicon sequencing. Sequences with close similarity to Mariental and Lunk viruses were identified from two rodent species, Micaelamys namaquensis and Mus minutoides. This represents the first description of these viruses from South Africa. The genomic sequences reported here partially satisfied the requirements put forward by the International Committee on the Taxonomy of Viruses' criteria for species delineation, suggesting that these may be new strains of existing species. The known distribution of these mammarenaviruses is thus expanded further south in Africa.
Collapse
Affiliation(s)
- Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Jacqueline Weyer
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
- Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg 2131, South Africa
| | - Teresa Kearney
- Ditsong National Museum of Natural History, Pretoria 0001, South Africa
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0001, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
7
|
Liang Z, Yao K, Wang S, Yin J, Ma X, Yin X, Wang X, Sun Y. Understanding the research advances on lumpy skin disease: A comprehensive literature review of experimental evidence. Front Microbiol 2022; 13:1065894. [PMID: 36519172 PMCID: PMC9742232 DOI: 10.3389/fmicb.2022.1065894] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 10/28/2023] Open
Abstract
Lumpy skin disease is caused by lumpy skin disease virus (LSDV), which can induce cattle with high fever and extensive nodules on the mucosa or the scarfskin, seriously influencing the cattle industry development and international import and export trade. Since 2013, the disease has spread rapidly and widely throughout the Russia and Asia. In the past few decades, progress has been made in the study of LSDV. It is mainly transmitted by blood-sucking insects, and various modes of transmission with distinct seasonality. Figuring out how the virus spreads will help eradicate LSDV at its source. In the event of an outbreak, selecting the most effective vaccine to block and eliminate the threat posed by LSDV in a timely manner is the main choice for farmers and authorities. At present, a variety of vaccines for LSDV have been developed. The available vaccine products vary in quality, protection rate, safety and side effects. Early detection of LSDV can help reduce the cost of disease. In addition, because LSDV has a huge genome, it is currently also used as a vaccine carrier, forming a new complex with other viral genes through homologous recombination. The vaccine prepared based on this can have a certain preventive effect on many kinds of diseases. Clinical detection of disease including nucleic acid and antigen level. Each method varies in convenience, accuracy, cost, time and complexity of equipment. This article reviews our current understanding of the mode of transmission of LSDV and advances in vaccine types and detection methods, providing a background for further research into various aspects of LSDV in the future.
Collapse
Affiliation(s)
- Zhengji Liang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kaishen Yao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shasha Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Juanbin Yin
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoqin Ma
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangping Yin
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
8
|
Guinn A, Su T, Thieme J, Cheng ML, Brown MQ, Thiemann T. Characterization of the Blood-Feeding Patterns of Culex quinquefasciatus (Diptera: Culicidae) in San Bernardino County, California. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1756-1765. [PMID: 35808969 DOI: 10.1093/jme/tjac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Indexed: 06/15/2023]
Abstract
West Nile virus (WNV) is a zoonotic disease that is endemic in North America and is known to cause a range of symptoms from mild to life threatening in humans. Culex quinquefasciatus is one of the most prominent vectors of WNV in Southern California. The goal of this study was to identify which animal species are most fed upon by these mosquitoes in various habitats in the West Valley area of San Bernardino County, California, and determine the relationship between blood-feeding patterns and WNV activity in the region. Culex quinquefasciatus specimens were collected by West Valley Mosquito and Vector Control District during 2011 from 32 different sites. The bloodmeals of 683 individuals (92.4% of those tested) were identified using the mitochondrial gene cytochrome c oxidase 1 (COI). These bloodmeals comprised 29 vertebrate species across four different habitats. Species richness (ranging from 10 to 17) was not significantly different between habitats when rarified to account for sample size. Across habitats, the highest percentage of avian bloodmeals were taken from house sparrows (18.8-39.1%) and house finches (2.6-31.5%). Bloodmeals were identified from five mammalian species, accounting for 5.1-59.2% of bloodmeals by habitat, including humans (0-4.1%). A seasonal shift towards increased mammalian bloodmeal prevalence, specifically for domestic dog and human bloodmeals, was observed in urban habitats. The WNV activity during 2011 in San Bernardino County occurred mostly in urban and suburban areas as indicated by minimum infection rate (MIR) in Culex quinquefasciatus, notable as all human bloodmeals were identified from these two habitats.
Collapse
Affiliation(s)
| | - Tianyun Su
- West Valley Mosquito and Vector Control District, Ontario, CA, USA
| | - Jennifer Thieme
- West Valley Mosquito and Vector Control District, Ontario, CA, USA
| | - Min-Lee Cheng
- West Valley Mosquito and Vector Control District, Ontario, CA, USA
| | - Michelle Q Brown
- West Valley Mosquito and Vector Control District, Ontario, CA, USA
| | | |
Collapse
|
9
|
Kandel Y, Pinch M, Lamsal M, Martinez N, Hansen IA. Exploratory phosphoproteomics profiling of Aedes aegypti Malpighian tubules during blood meal processing reveals dramatic transition in function. PLoS One 2022; 17:e0271248. [PMID: 35802606 PMCID: PMC9269769 DOI: 10.1371/journal.pone.0271248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
Malpighian tubules, the renal organs of mosquitoes, facilitate the rapid dehydration of blood meals through aquaporin-mediated osmosis. We performed phosphoproteomics analysis of three Malpighian tubule protein-libraries (1000 tubules/sample) from unfed female mosquitoes as well as one and 24 hours after a blood meal. We identified 4663 putative phosphorylation sites in 1955 different proteins. Our exploratory dataset reveals blood meal-induced changes in phosphorylation patterns in many subunits of V-ATPase, proteins of the target of rapamycin signaling pathway, vesicle-mediated protein transport proteins, proteins involved in monocarboxylate transport, and aquaporins. Our phosphoproteomics data suggest the involvement of a variety of new pathways including nutrient-signaling, membrane protein shuttling, and paracellular water flow in the regulation of urine excretion. Our results support a model in which aquaporin channels translocate from intracellular vesicles to the cell membrane of stellate cells and the brush border membrane of principal cells upon blood feeding.
Collapse
Affiliation(s)
- Yashoda Kandel
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Matthew Pinch
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Mahesh Lamsal
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Nathan Martinez
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Immo A. Hansen
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Institute of Applied Biosciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| |
Collapse
|
10
|
Wang Y, Zhao L, Yang J, Shi M, Nie F, Liu S, Wang Z, Huang D, Wu H, Li D, Lin H, Li Y. Analysis of vaccine-like lumpy skin disease virus from flies near the western border of China. Transbound Emerg Dis 2022; 69:1813-1823. [PMID: 34033246 DOI: 10.1111/tbed.14159] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/16/2021] [Indexed: 12/24/2022]
Abstract
Lumpy skin disease (LSD) is a devastating viral disease that occurs in cattle. In China, it was first detected in the Xin-Jiang autonomous region, near the border with Kazakhstan, in August 2019. As there were no new occurrences of LSD in either country following the first detection, the initial introduction of the virus remains unknown. Arthropod vectors were considered as potential vectors. Consequently, to identify the arthropod vectors involved in transmitting LSD virus (LSDV), an insect surveillance campaign was launched at four different sites scattered along the border, and samples from 22 flying insect species were collected and subjected to PCR assays. Following the Agianniotaki LSDV vaccine and Sprygin's general LSDV assays, two kinds of non-biting flies, namely, Musca domestica L and Muscina stabulans, were positive for LSDV. However, all the other insects tested negative. Viral DNA was only detected in wash fluid, implying body surface contamination of the virus. The negative test results suggest that non-biting flies are the dominant insects involved in the observed local epidemic. Three genomic regions encoding RPO30, GPCR, and LW126 were successfully sequenced and subjected to phylogenetic analysis. The sequences shared high homology with LSDV/Russia/Saratov/2017, a recombinant vaccine-like strain formerly identified in Russia, and clustered with LSDV vaccine strains in phylogenetic trees of RPO30 and LW126. However, the GPCR gene was seen to be solely clustered with LSDV field strains, implying differences in host affinity between these closely related vaccine-like strains. Despite this, there is no direct evidence to support cross-border transmission of the vaccine-like LSDV. To our knowledge, this is the first report of vaccine-like LSDV DNA detection in non-biting flies in China.
Collapse
Affiliation(s)
- Yu Wang
- Department of Animal Center, Chongqing Key Laboratory of Pediatrics, and Ministry of Education Key Lab of Child Development and Disorders, and National Clinical Research Center for Child Health and Disorders, and China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Animal Inspection and Quarantine Laboratory, Technical Center of Chong-Qing Custom, Chongqing, China
| | - Li Zhao
- Department of Animal Center, Chongqing Key Laboratory of Pediatrics, and Ministry of Education Key Lab of Child Development and Disorders, and National Clinical Research Center for Child Health and Disorders, and China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Yang
- Animal Inspection and Quarantine Laboratory, Technical Center of Chong-Qing Custom, Chongqing, China
| | - Meimei Shi
- Animal Inspection and Quarantine Laboratory, Technical Center of Chong-Qing Custom, Chongqing, China
| | - Fuping Nie
- Animal Inspection and Quarantine Laboratory, Technical Center of Chong-Qing Custom, Chongqing, China
| | - Shengfen Liu
- Animal Inspection and Quarantine Laboratory, Technical Center of Chong-Qing Custom, Chongqing, China
| | - Zhengbao Wang
- Animal Quarantine Laboratory, Technical Center of Yi-Ning Custom, Yining, China
| | - Daochao Huang
- Department of Animal Center, Chongqing Key Laboratory of Pediatrics, and Ministry of Education Key Lab of Child Development and Disorders, and National Clinical Research Center for Child Health and Disorders, and China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Dandan Li
- Animal Quarantine Laboratory, Technical Center of Haikou Custom, Haikou, China
| | - Hua Lin
- Animal Quarantine Laboratory, Technical Center of Chengdu Custom, Chengdu, China
| | - Yingguo Li
- Animal Inspection and Quarantine Laboratory, Technical Center of Chong-Qing Custom, Chongqing, China
| |
Collapse
|
11
|
Fikrig K, Martin E, Dang S, St Fleur K, Goldsmith H, Qu S, Rosenthal H, Pitcher S, Harrington LC. The Effects of Host Availability and Fitness on Aedes albopictus Blood Feeding Patterns in New York. Am J Trop Med Hyg 2022; 106:320-331. [PMID: 34662859 PMCID: PMC8733534 DOI: 10.4269/ajtmh.21-0157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/05/2021] [Indexed: 01/03/2023] Open
Abstract
Aedes albopictus is a competent vector of numerous pathogens, representing a range of transmission cycles involving unique hosts. Despite the important status of this vector, variation in its feeding patterns is poorly understood. We examined the feeding patterns of Ae. albopictus utilizing resting collections in Long Island, NY, and contextualized blood meal sources with host availability measured by household interviews and camera traps. We identified 90 blood meals, including 29 humans, 22 cats, 16 horses, 12 opossums, 5 dogs, 2 goats, and 1 each of rabbit, rat, squirrel, and raccoon. This is only the third study of Ae. albopictus blood feeding biology that quantitatively assessed domestic host availability and is the first to do so with wild animals. Host feeding indices showed that cats and dogs were fed upon disproportionately often compared with humans. Forage ratios suggested a tendency to feed on cats and opossums and to avoid raccoons, squirrels, and birds. This feeding pattern was different from another published study from Baltimore, where Ae. albopictus fed more often on rats than humans. To understand whether these differences were because of host availability or mosquito population variation, we compared the fitness of New York and Baltimore Ae. albopictus after feeding on rat and human blood. In addition, we examined fitness within the New York population after feeding on human, rat, cat, horse, and opossum blood. Together, our results do not indicate major mosquito fitness differences by blood hosts, suggesting that fitness benefits do not drive Northeastern Ae. albopictus feeding patterns.
Collapse
Affiliation(s)
- Kara Fikrig
- Entomology Department, Cornell University, Ithaca, New York,Address correspondence to Kara Fikrig, Entomology Department, Cornell University, Ithaca, NY 14850. E-mail:
| | | | - Sharon Dang
- Entomology Department, Cornell University, Ithaca, New York
| | | | | | - Sophia Qu
- Entomology Department, Cornell University, Ithaca, New York
| | | | - Sylvie Pitcher
- Entomology Department, Cornell University, Ithaca, New York
| | | |
Collapse
|
12
|
McMahon WC, Coertse J, Kearney T, Keith M, Swanepoel LH, Markotter W. Surveillance of the rabies-related lyssavirus, Mokola in non-volant small mammals in South Africa. Onderstepoort J Vet Res 2021; 88:e1-e13. [PMID: 34342470 PMCID: PMC8424720 DOI: 10.4102/ojvr.v88i1.1911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/14/2021] [Accepted: 06/03/2021] [Indexed: 11/01/2022] Open
Abstract
The reservoir host of Mokola virus (MOKV), a rabies-related lyssavirus species endemic to Africa, remains unknown. Only sporadic cases of MOKV have been reported since its first discovery in the late 1960s, which subsequently gave rise to various reservoir host hypotheses. One particular hypothesis focusing on non-volant small mammals (e.g. shrews, sengis and rodents) is buttressed by previous MOKV isolations from shrews (Crocidura sp.) and a single rodent (Lophuromys sikapusi). Although these cases were only once-off detections, it provided evidence of the first known lyssavirus species has an association with non-volant small mammals. To investigate further, retrospective surveillance was conducted in 575 small mammals collected from South Africa. Nucleic acid surveillance using a pan-lyssavirus quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) assay of 329 brain samples did not detect any lyssavirus ribonucleic acid (RNA). Serological surveillance using a micro-neutralisation test of 246 serum samples identified 36 serum samples that were positive for the presence of MOKV neutralising antibodies (VNAs). These serum samples were all collected from Gerbilliscus leucogaster (Bushveld gerbils) rodents from Meletse in Limpopo province (South Africa). Mokola virus infections in Limpopo province have never been reported before, and the high MOKV seropositivity of 87.80% in these gerbils may indicate a potential rodent reservoir.
Collapse
Affiliation(s)
- William C McMahon
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria.
| | | | | | | | | | | |
Collapse
|
13
|
Seasonality modulates the direct and indirect influences of forest cover on larval anopheline assemblages in western Amazônia. Sci Rep 2021; 11:12721. [PMID: 34135444 PMCID: PMC8208974 DOI: 10.1038/s41598-021-92217-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
Serious concerns have arisen regarding urbanization processes in western Amazônia, which result in the creation of artificial habitats, promoting the colonization of malaria vectors. We used structural equation modelling to investigate direct and indirect effects of forest cover on larval habitats and anopheline assemblages in different seasons. We found 3474 larvae in the dry season and 6603 in the rainy season, totalling ten species and confirming the presence of malaria vectors across all sites. Forest cover had direct and indirect (through limnological variables) effects on the composition of larval anopheline assemblages in the rainy season. However, during the dry season, forest cover directly affected larval distribution and habitat variables (with no indirect affects). Additionally, artificial larval habitats promote ideal conditions for malaria vectors in Amazonia, mainly during the rainy season, with positive consequences for anopheline assemblages. Therefore, the application of integrated management can be carried out during both seasons. However, we suggest that the dry season is the optimal time because larval habitats are more limited, smaller in volume and more accessible for applying vector control techniques.
Collapse
|
14
|
Hernandez-Colina A, Gonzalez-Olvera M, Lomax E, Townsend F, Maddox A, Hesson JC, Sherlock K, Ward D, Eckley L, Vercoe M, Lopez J, Baylis M. Blood-feeding ecology of mosquitoes in two zoological gardens in the United Kingdom. Parasit Vectors 2021; 14:249. [PMID: 34016159 PMCID: PMC8139098 DOI: 10.1186/s13071-021-04735-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Zoological gardens contain unique configurations of exotic and endemic animals and plants that create a diverse range of developing sites and potential sources of blood meals for local mosquitoes. This may imply unusual interspecific pathogen transmission risks involving zoo vertebrates, like avian malaria to captive penguins. Understanding mosquito ecology and host feeding patterns is necessary to improve mosquito control and disease prevention measures in these environments. METHODS Mosquito sampling took place in Chester Zoo for 3 years (2017, 2018, and 2019) and for 1 year in Flamingo Land (2017) using different trapping methods. Blood-fed mosquitoes were identified and their blood meal was amplified by PCR, sequenced, and blasted for host species identification. RESULTS In total, 640 blood-fed mosquitoes were collected [Culex pipiens (n = 497), Culiseta annulata (n = 81), Anopheles maculipennis s.l. (n = 7), An. claviger (n = 1), and unidentifiable (n = 55)]. Successful identification of the host species was achieved from 159 blood-fed mosquitoes. Mosquitoes fed on birds (n = 74), non-human mammals (n = 20), and humans (n = 71). There were mixed blood meals from two hosts (n = 6). The proportions of blood-fed mosquitoes varied across sampling seasons and sites within the zoos. The use of resting traps and aspiration of vegetation were more efficient techniques for capturing blood-fed mosquitoes than traps for host-seeking or gravid mosquitoes. By relating the locations of zoo vertebrates to where fed mosquitoes were trapped, the minimum travelling distances were calculated (13.7 to 366.7 m). Temperature, precipitation, relative humidity, proximity to zoo vertebrate exhibits, and vegetation level were found to be significantly associated with the proportion of captured blood-fed mosquitoes by generalized linear modelling. CONCLUSIONS Mosquito feeding behaviour in zoos is mainly influenced by time, location (sampling area), temperature, and host availability, which highlights the value of mosquito monitoring in complex settings to plan control strategies and potentially reduce inherent disease transmission risks for humans and threatened zoo vertebrates.
Collapse
Affiliation(s)
- Arturo Hernandez-Colina
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK.
- North of England Zoological Society (Chester Zoo), Caughall Road, Chester, CH2 1LH, UK.
| | - Merit Gonzalez-Olvera
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK
- North of England Zoological Society (Chester Zoo), Caughall Road, Chester, CH2 1LH, UK
| | - Emily Lomax
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK
| | - Freya Townsend
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK
| | - Amber Maddox
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK
| | - Jenny C Hesson
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Centre, Uppsala University, 751 23, Uppsala, Sweden
| | - Kenneth Sherlock
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK
| | - Dawn Ward
- Flamingo Land, Kirby Misperton, Malton, YO17 6UX, UK
| | - Lindsay Eckley
- North of England Zoological Society (Chester Zoo), Caughall Road, Chester, CH2 1LH, UK
| | - Mark Vercoe
- North of England Zoological Society (Chester Zoo), Caughall Road, Chester, CH2 1LH, UK
| | - Javier Lopez
- North of England Zoological Society (Chester Zoo), Caughall Road, Chester, CH2 1LH, UK
| | - Matthew Baylis
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK
- Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| |
Collapse
|
15
|
Orta-Pineda G, Abella-Medrano CA, Suzán G, Serrano-Villagrana A, Ojeda-Flores R. Effects of landscape anthropization on sylvatic mosquito assemblages in a rainforest in Chiapas, Mexico. Acta Trop 2021; 216:105849. [PMID: 33524383 DOI: 10.1016/j.actatropica.2021.105849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/14/2022]
Abstract
Global change and ecosystem transformation at regional and local scales during recent decades have facilitated the exponential increase of outbreaks of mosquito-borne diseases. Mosquito-borne pathogens are responsible for millions of infections, mainly in tropical regions where marginalized human populations are located, and where in recent years processes of landscape anthropization have occurred. Anthropogenic landscape transformation is known to change species assemblages. However, the magnitude of these effects is largely unknown, and the effects of anthropogenic landscape transformation on sylvatic mosquito assemblages are poorly known in Mexican ecosystems. We evaluate how mosquito abundance, richness, and diversity change along a gradient of three human-modified landscapes-one highly anthropized, one moderately anthropized, and one slightly anthropized-within a tropical forest matrix in a Protected Natural Area in Chiapas. A total of 4 538 mosquitoes belonging to 23 species were captured and identified at the three sites. We found differences in the structure and abundance of the three mosquito assemblages. The species assemblage of the highly anthropized site was significantly different from the other sites, and the relative abundance of the assemblages increased with landscape anthropization. Our results suggest that landscape anthropization alters the composition and structure of mosquito assemblages, modifying the abundance and species richness of mosquitoes associated with sylvatic ecosystems. This could support the hypothesis of intermediate disturbance that suggests the diversity is maximized when late and early successional species coexist in these ecosystems. This information is essential to understand the ecology of potential sylvatic vectors and the environmental factors that are involved in the emergence and re-emergence of mosquito-borne diseases.
Collapse
|
16
|
Modernizing the Toolkit for Arthropod Bloodmeal Identification. INSECTS 2021; 12:insects12010037. [PMID: 33418885 PMCID: PMC7825046 DOI: 10.3390/insects12010037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/24/2022]
Abstract
Simple Summary The ability to identify the source of vertebrate blood in mosquitoes, ticks, and other blood-feeding arthropod vectors greatly enhances our knowledge of how vector-borne pathogens are spread. The source of the bloodmeal is identified by analyzing the remnants of blood remaining in the arthropod at the time of capture, though this is often fraught with challenges. This review provides a roadmap and guide for those considering modern techniques for arthropod bloodmeal identification with a focus on progress made in the field over the past decade. We highlight genome regions that can be used to identify the vertebrate source of arthropod bloodmeals as well as technological advances made in other fields that have introduced innovative new ways to identify vertebrate meal source based on unique properties of the DNA sequence, protein signatures, or residual molecules present in the blood. Additionally, engineering progress in miniaturization has led to a number of field-deployable technologies that bring the laboratory directly to the arthropods at the site of collection. Although many of these advancements have helped to address the technical challenges of the past, the challenge of successfully analyzing degraded DNA in bloodmeals remains to be solved. Abstract Understanding vertebrate–vector interactions is vitally important for understanding the transmission dynamics of arthropod-vectored pathogens and depends on the ability to accurately identify the vertebrate source of blood-engorged arthropods in field collections using molecular methods. A decade ago, molecular techniques being applied to arthropod blood meal identification were thoroughly reviewed, but there have been significant advancements in the techniques and technologies available since that time. This review highlights the available diagnostic markers in mitochondrial and nuclear DNA and discusses their benefits and shortcomings for use in molecular identification assays. Advances in real-time PCR, high resolution melting analysis, digital PCR, next generation sequencing, microsphere assays, mass spectrometry, and stable isotope analysis each offer novel approaches and advantages to bloodmeal analysis that have gained traction in the field. New, field-forward technologies and platforms have also come into use that offer promising solutions for point-of-care and remote field deployment for rapid bloodmeal source identification. Some of the lessons learned over the last decade, particularly in the fields of DNA barcoding and sequence analysis, are discussed. Though many advancements have been made, technical challenges remain concerning the prevention of sample degradation both by the arthropod before the sample has been obtained and during storage. This review provides a roadmap and guide for those considering modern techniques for arthropod bloodmeal identification and reviews how advances in molecular technology over the past decade have been applied in this unique biomedical context.
Collapse
|
17
|
Targeting Malaria Hotspots to Reduce Transmission Incidence in Senegal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010076. [PMID: 33374228 PMCID: PMC7796302 DOI: 10.3390/ijerph18010076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022]
Abstract
In central Senegal, malaria incidence declined in response to scaling-up of control measures from 2000 to 2010 and has since remained stable, making elimination unlikely in the short term. Additional control measures are needed to reduce transmission. We simulated chemoprophylaxis interventions targeting malaria hotspots using a metapopulation mathematical model, based on a differential-equation framework and incorporating human mobility. The model was fitted to weekly malaria incidence from 45 villages. Three approaches for selecting intervention targets were compared: (a) villages with malaria cases during the low transmission season of the previous year; (b) villages with highest incidence during the high transmission season of the previous year; (c) villages with highest connectivity with adjacent populations. Our results showed that intervention strategies targeting hotspots would be effective in reducing malaria incidence in both targeted and untargeted areas. Regardless of the intervention strategy used, pre-elimination (1-5 cases per 1000 per year) would not be reached without simultaneously increasing vector control by more than 10%. A cornerstone of malaria control and elimination is the effective targeting of strategic locations. Mathematical tools help to identify those locations and estimate the impact in silico.
Collapse
|
18
|
Martínez-de la Puente J, Soriguer R, Senar JC, Figuerola J, Bueno-Mari R, Montalvo T. Mosquitoes in an Urban Zoo: Identification of Blood Meals, Flight Distances of Engorged Females, and Avian Malaria Infections. Front Vet Sci 2020; 7:460. [PMID: 32974390 PMCID: PMC7472536 DOI: 10.3389/fvets.2020.00460] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/23/2020] [Indexed: 11/25/2022] Open
Abstract
Zoological gardens are home to a large number of vertebrate species and as such are suitable sites for both mosquito breeding and maintenance. They are excellent places for entomological studies of mosquito phenology, diversity, and blood-feeding patterns, as well as for xenomonitoring. During 2016, we sampled mosquitoes in Barcelona Zoo and used molecular methods to determine their blood-feeding patterns and the prevalence and diversity of avian malaria parasites. We also estimated the flight distance of engorged mosquitoes in the area. Overall, 1,384 adult Culex pipiens s.l., Culiseta longiareolata, and Aedes albopictus were captured. Birds dominated the diet of Cx. pipiens s.l. (n = 87) and Cs. longiareolata (n = 6), while humans were the only blood-meal source of Ae. albopictus (n = 3). Mosquitoes had a mean flight distance of 95.67 m after feeding on blood (range 38.71–168.51 m). Blood parasites were detected in the abdomen of 13 engorged Cx. pipiens s.l., eight of which had fed on magpies. Four Plasmodium lineages and a single lineage of the malaria-like parasite Haemoproteus were identified. These results suggest that Cx. pipiens s.l. is involved in the local transmission of avian Plasmodium, which potentially affects the circulation of parasites between and within wildlife and enclosed animals. Vigilance regarding possible mosquito breeding sites in this zoo is thus recommended.
Collapse
Affiliation(s)
- Josué Martínez-de la Puente
- Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ramón Soriguer
- Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Juan Carlos Senar
- Evolutionary and Behavioural Ecology Research Unit, Museu de Ciències Naturals de Barcelona, Barcelona, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rubén Bueno-Mari
- Laboratorios Lokímica, Departamento de Investigación y Desarrollo (I+D), Valencia, Spain
| | - Tomás Montalvo
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Agencia de Salud Pública de Barcelona, Consorci Sanitari de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Gray SL, Tiedge TM, Butkus JM, Earp TJ, Lindner SE, Roy R. Determination of human identity from Anopheles stephensi mosquito blood meals using direct amplification and massively parallel sequencing. Forensic Sci Int Genet 2020; 48:102347. [PMID: 32683318 DOI: 10.1016/j.fsigen.2020.102347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023]
Abstract
DNA obtained from biological evidence can link individuals to a crime scene. DNA is typically obtained from body fluids deposited on various substrates such as fabric or common household objects. However, other unusual sources of human biological material can also be used to generate DNA profiles. Here we show that short tandem repeat (STR) DNA profiles can also be obtained from single source and mixtures of human DNA in the blood meals of Anopheles stephensi mosquitoes. Using direct amplification with the PowerPlex® Fusion 6C System, we have determined that full and partial profiles can be obtained by assessing degradation of DNA at various times post-feed up to 20-24 h post-blood meal. Moreover, we can assign donor identity through both STR profiles, as well as through single nucleotide polymorphisms (SNPs) detected using massively parallel sequencing (MPS) with the Precision ID Identity Panel and Ion Chef™/Ion S5™ System up to 24-48 h post-blood meal. Based on the results from a total of 490 mosquitoes fed on 11 different sources of human blood, we conclude that both STR and SNP technologies can be applied to mosquito blood meals as effective forensic approaches to determine the identity of specific individuals and establish the timing of their presence at a crime scene.
Collapse
Affiliation(s)
- Shayna L Gray
- Forensic Science Program, University Park, PA, 16802, USA
| | | | - Joann M Butkus
- Department of Biochemistry and Molecular Biology, the Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tyler J Earp
- Department of Biochemistry and Molecular Biology, the Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, the Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Reena Roy
- Forensic Science Program, University Park, PA, 16802, USA.
| |
Collapse
|
20
|
Pérez-Cutillas P, Muñoz C, Martínez-De La Puente J, Figuerola J, Navarro R, Ortuño M, Bernal LJ, Ortiz J, Soriguer RC, Berriatua E. A spatial ecology study in a high-diversity host community to understand blood-feeding behaviour in Phlebotomus sandfly vectors of Leishmania. MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:164-174. [PMID: 31930740 DOI: 10.1111/mve.12427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/02/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Molecular studies indicate that Phlebotomine sandflies (Diptera: Psychodidae) blood feed on many vertebrate species, of which only a few are proven parasite reservoirs. Investigating sandfly vector feeding preferences is therefore important and requires taking into account the availability and accessibility of host species. In terms of the latter, it is necessary to consider the metabolic cost to the insect of reaching the host and moving on to a suitable breeding site. The present study used statistical modelling to compare the feeding patterns of Phlebotomus perniciosus (n = 150), Phlebotomus papatasi (n = 35) and Phlebotomus ariasi (n = 7) on each of an average of 30 host species in a wildlife park in Murcia, Spain. Sandfly feeding movement costs were estimated as a function of the distance and altitude gradients saved by the insect, assuming that they displayed 'site fidelity'. Most (87%) engorged females were caught <100 m from the host on which they had fed. Although the percentage of bloodmeals was highest on fallow deer (Dama dama) (30%) and red deer (Cervus elaphus) (26%), the predicted feeding probability after considering movement cost was highest for red deer and common eland (Taurotragus oryx), and positively associated with host census. These results suggest that, under similar circumstances, sandflies prefer to feed on some host species more than on others.
Collapse
Affiliation(s)
- P Pérez-Cutillas
- Grupo de Erosión y Conservación de Suelos, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, Spain
- Departamento de Geografía, Universidad de Murcia, Murcia, Spain
| | - C Muñoz
- Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional 'Campus Mare Nostrum', Universidad de Murcia, Murcia, Spain
| | - J Martínez-De La Puente
- Departamentode Etología y Conservación de la Biodiversidad, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (EBD-CSIC), C/ Américo Vespucio, Seville, Spain
- Ciber de Epidemiología y Salud Pública (CIBERESP), Seville, Spain
| | - J Figuerola
- Departamentode Etología y Conservación de la Biodiversidad, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (EBD-CSIC), C/ Américo Vespucio, Seville, Spain
- Ciber de Epidemiología y Salud Pública (CIBERESP), Seville, Spain
| | - R Navarro
- Sección Veterinaria, Parque Zoológico Terra Natura Murcia, C/ Regidor Cayetano Gago, s/n, Murcia, Spain
| | - M Ortuño
- Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional 'Campus Mare Nostrum', Universidad de Murcia, Murcia, Spain
| | - L J Bernal
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional 'Campus Mare Nostrum', Universidad de Murcia, Murcia, Spain
| | - J Ortiz
- Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional 'Campus Mare Nostrum', Universidad de Murcia, Murcia, Spain
| | - R C Soriguer
- Departamentode Etología y Conservación de la Biodiversidad, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (EBD-CSIC), C/ Américo Vespucio, Seville, Spain
- Ciber de Epidemiología y Salud Pública (CIBERESP), Seville, Spain
| | - E Berriatua
- Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional 'Campus Mare Nostrum', Universidad de Murcia, Murcia, Spain
| |
Collapse
|
21
|
Cutajar TP, Rowley JJ. Surveying frogs from the bellies of their parasites: Invertebrate-derived DNA as a novel survey method for frogs. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e00978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
22
|
Tomazatos A, Jöst H, Schulze J, Spînu M, Schmidt-Chanasit J, Cadar D, Lühken R. Blood-meal analysis of Culicoides (Diptera: Ceratopogonidae) reveals a broad host range and new species records for Romania. Parasit Vectors 2020; 13:79. [PMID: 32066493 PMCID: PMC7027113 DOI: 10.1186/s13071-020-3938-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/03/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Culicoides biting midges are potential vectors of different pathogens. However, especially for eastern Europe, there is a lack of knowledge on the host-feeding patterns of this vector group. Therefore, this study aimed to identify Culicoides spp. and their vertebrate hosts collected in a wetland ecosystem. METHODS Culicoides spp. were collected weekly from May to August 2017, using Biogents traps with UV light at four sites in the Danube Delta Biosphere Reserve, Romania. Vectors and hosts were identified with a DNA barcoding approach. The mitochondrial cytochrome c oxidase subunit 1 was used to identify Culicoides spp., while vertebrate hosts were determined targeting cytochrome b or 16S rRNA gene fragments. A maximum likelihood phylogenetic tree was constructed to verify the biting midge identity against other conspecific Palaearctic Culicoides species. A set of unfed midges was used for morphological confirmation of species identification using slide-mounted wings. RESULTS Barcoding allowed the species identification and detection of corresponding hosts for 1040 (82.3%) of the 1264 analysed specimens. Eight Culicoides spp. were identified with Culicoides griseidorsum, Culicoides puncticollis and Culicoides submaritimus as new species records for Romania. For 39 specimens no similar sequences were found in GenBank. This group of unknown Culicoides showed a divergence of 15.6-16.3% from the closest identified species and clustered in a monophyletic clade, i.e. a novel species or a species without reference sequences in molecular libraries. For all Culicoides spp., nine mammalian and 24 avian species were detected as hosts. With the exception of C. riethi (n = 12), at least one avian host was detected for all Culicoides spp., but this host group only dominated for Culicoides kibunensis and the unknown Culicoides sp.. The most common host group were mammals (n = 993, 87.6% of all identified blood sources) dominated by cattle (n = 817, 70.6%). CONCLUSIONS Most Culicoides spp. showed a broad host-feeding pattern making them potential bridge vectors. At the same time, new records of biting midge species for Romania, as well as a potentially unknown Culicoides species, highlight the lack of knowledge regarding the biting midge species and their genetic diversity in eastern Europe.
Collapse
Affiliation(s)
- Alexandru Tomazatos
- WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanna Jöst
- WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jonny Schulze
- WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Marina Spînu
- University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Jonas Schmidt-Chanasit
- WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Hamburg, Germany
| | - Daniel Cadar
- WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Renke Lühken
- WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany. .,Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Hamburg, Germany.
| |
Collapse
|
23
|
Markotter W, Geldenhuys M, Jansen van Vuren P, Kemp A, Mortlock M, Mudakikwa A, Nel L, Nziza J, Paweska J, Weyer J. Paramyxo- and Coronaviruses in Rwandan Bats. Trop Med Infect Dis 2019; 4:tropicalmed4030099. [PMID: 31269631 PMCID: PMC6789848 DOI: 10.3390/tropicalmed4030099] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/27/2023] Open
Abstract
A high diversity of corona- and paramyxoviruses have been detected in different bat species at study sites worldwide, including Africa, however no biosurveillance studies from Rwanda have been reported. In this study, samples from bats collected from caves in Ruhengeri, Rwanda, were tested for the presence of corona- and paramyxoviral RNA using reverse transcription PCR assays. Positive results were further characterized by DNA sequencing and phylogenetic analysis. In addition to morphological identification of bat species, we also did molecular confirmation of species identities, contributing to the known genetic database available for African bat species. We detected a novel Betacoronavirus in two Geoffroy’s horseshoe bats (Rhinolophus clivosus) bats. We also detected several different paramyxoviral species from various insectivorous bats. One of these viral species was found to be homologous to the genomes of viruses belonging to the Jeilongvirus genus. Additionally, a Henipavirus-related sequence was detected in an Egyptian rousette fruit bat (Rousettus aegyptiacus). These results expand on the known diversity of corona- and paramyxoviruses and their geographical distribution in Africa.
Collapse
Affiliation(s)
- Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng 0001, South Africa.
| | - Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng 0001, South Africa
| | - Petrus Jansen van Vuren
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng 0001, South Africa
- Centre for Emerging Zoonotic and Parasitic diseases, National Institute for Communicable Diseases, National Health laboratory Services, Sandringham, Johannesburg 2131, South Africa
| | - Alan Kemp
- Centre for Emerging Zoonotic and Parasitic diseases, National Institute for Communicable Diseases, National Health laboratory Services, Sandringham, Johannesburg 2131, South Africa
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng 0001, South Africa
| | - Antoine Mudakikwa
- Rwanda Development Board, Department of tourism and Conservation, P.O Box 6239, Kigali, Rwanda
| | - Louis Nel
- Centre for Viral Zoonoses, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng 0001, South Africa
| | - Julius Nziza
- Mountain Gorilla Veterinary Project, P.O Box 115, Musanze, Rwanda
| | - Janusz Paweska
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng 0001, South Africa
- Centre for Emerging Zoonotic and Parasitic diseases, National Institute for Communicable Diseases, National Health laboratory Services, Sandringham, Johannesburg 2131, South Africa
| | - Jacqueline Weyer
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng 0001, South Africa
- Centre for Emerging Zoonotic and Parasitic diseases, National Institute for Communicable Diseases, National Health laboratory Services, Sandringham, Johannesburg 2131, South Africa
| |
Collapse
|
24
|
Heym EC, Kampen H, Schäfer M, Walther D. Mosquito bloodmeal preferences in two zoological gardens in Germany. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:203-212. [PMID: 30474300 DOI: 10.1111/mve.12350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/13/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
Because they provide a high density and diversity of vertebrate species, small water pools and shaded environments, zoological gardens offer ideal living conditions for numerous mosquito species. Depending on their host preferences and vector competencies, these species may be able to transmit pathogens between native and non-adapted exotic blood host species, thereby causing morbidity and mortality among valuable zoo animals. To determine the extent to which native mosquito species feed on captive and wild animals, as well as on humans, in two German zoological gardens, mosquitoes were collected over two seasons by trapping and aspirating. A total of 405 blood-fed specimens belonging to 16 mosquito taxa were collected. Genetic bloodmeal analysis revealed 56 host species, mainly representing mammals of the zoo animal population, including exotic species previously not known as blood hosts of the mosquito species collected. These results indicate opportunistic feeding patterns with low host-specificity in the analysed mosquitoes, although these could be grouped, according to their bloodmeals, into 'amphibian-', 'non-human mammal-' and 'non-human mammal and human-' feeding species. As the blood-feeding preferences of vector-competent mosquito species are major determinants of vector capacity, information on the blood-feeding behaviour of mosquitoes in zoos is crucial to the success of targeted vector management.
Collapse
Affiliation(s)
- E C Heym
- Land Use and Governance, Leibniz Centre for Agricultural Landscape Research, Muencheberg, Germany
| | - H Kampen
- Institute of Infectology, Friedrich Loeffler Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - M Schäfer
- Institute of Infectology, Friedrich Loeffler Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - D Walther
- Land Use and Governance, Leibniz Centre for Agricultural Landscape Research, Muencheberg, Germany
| |
Collapse
|
25
|
Sprygin A, Pestova Y, Wallace DB, Tuppurainen E, Kononov AV. Transmission of lumpy skin disease virus: A short review. Virus Res 2019; 269:197637. [PMID: 31152757 DOI: 10.1016/j.virusres.2019.05.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/15/2019] [Accepted: 05/28/2019] [Indexed: 11/15/2022]
Abstract
Lumpy skin disease (LSD) is a viral transboundary disease endemic throughout Africa and of high economic importance that affects cattle and domestic water buffaloes. Since 2012, the disease has spread rapidly and widely throughout the Middle Eastern and Balkan regions, southern Caucasus and parts of the Russian Federation. Before vaccination campaigns took their full effect, the disease continued spreading from region to region, mainly showing seasonal patterns despite implementing control and eradication measures. The disease is capable of appearing several hundred kilometers away from initial (focal) outbreak sites within a short time period. These incursions have triggered a long-awaited renewed scientific interest in LSD resulting in the initiation of novel research into broad aspects of the disease, including epidemiology, modes of transmission and associated risk factors. Long-distance dispersal of LSDV seems to occur via the movement of infected animals, but distinct seasonal patterns indicate that arthropod-borne transmission is most likely responsible for the swift and aggressive short-distance spread of the disease. Elucidating the mechanisms of transmission of LSDV will enable the development of more targeted and effective actions for containment and eradication of the virus. The mode of vector-borne transmission of the disease is most likely mechanical, but there is no clear-cut evidence to confirm or disprove this assumption. To date, the most likely vectors for LSDV transmission are blood-sucking arthropods such as stable flies (Stomoxys calcitrans), mosquitoes (Aedes aegypti), and hard ticks (Rhipicephalus and Amblyomma species). New evidence suggests that the ubiquitous, synanthropic house fly, Musca domestica, may also play a role in LSDV transmission, but this has not yet been tested in a clinical setting. The aim of this review is to compile and discuss the earlier as well as the most recent research data on the transmission of LSDV.
Collapse
Affiliation(s)
- A Sprygin
- Federal Center for Animal Health, Vladimir, Russia.
| | - Ya Pestova
- Federal Center for Animal Health, Vladimir, Russia
| | - D B Wallace
- Agricultural Research Council-Onderstepoort Veterinary Institute, P/Bag X5, Onderstepoort, 0110, South Africa; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X4, Onderstepoort, 0110, South Africa
| | - E Tuppurainen
- Federal Center for Animal Health, Vladimir, Russia; Agricultural Research Council-Onderstepoort Veterinary Institute, P/Bag X5, Onderstepoort, 0110, South Africa; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X4, Onderstepoort, 0110, South Africa
| | - A V Kononov
- Federal Center for Animal Health, Vladimir, Russia
| |
Collapse
|
26
|
Abstract
Background Different mosquito-borne pathogens are circulating in Iran including Sindbis virus, West Nile virus, filarioid worms and malaria parasites. However, the local transmission cycles of these pathogenic agents are poorly understood, especially because ecological data on vector species are scarce and there is limited knowledge about the host range; this understanding could help to direct species-specific vector control measurements or to prioritize research. Methods In the summers of 2015 and 2016, blood-fed mosquitoes were collected at 13 trapping sites on the coast of the Caspian Sea in northern Iran and at an additional trapping site in western Iran. Mosquitoes were generally collected with either a Biogents Sentinel trap or a Heavy Duty Encephalitis Vector Survey trap installed outside. A handheld aspirator was used at the trapping site in western Iran, in addition to a few samplings around the other trapping sites. On average, eight trapping periods were conducted per trapping site. The sources of blood meals were identified using a DNA barcoding approach targeting the cytochrome b or 16S rRNA gene fragment. Results The source of blood meals for 580 blood-fed mosquito specimens of 20 different taxa were determined, resulting in the identification of 13 different host species (9 mammals including humans, 3 birds and 1 reptile), whereby no mixed blood meals were detected. Five mosquito species represented more than 85.8% of all collected blood-fed specimens: Culex pipiens pipiens form pipiens (305 specimens, 55.7% of all mosquito specimens), Cx. theileri (60, 10.9%), Cx. sitiens (51, 9.3%), Cx. perexiguus (29, 5.3%) and Anopheles superpictus (25, 4.6%). The most commonly detected hosts of the four most abundant mosquito species were humans (Homo sapiens; 224 mosquito specimens, 40.9% of all mosquito specimens), cattle (Bos taurus; 171, 31.2%) and ducks (Anas spp.; 75, 13.7%). These four mosquito species had similar host-feeding patterns. The only exceptions were a relatively high proportion of birds for Cx. pipiens pipiens f. pipiens (23.2% of detected blood meal sources) and a high proportion of non-human mammals for Cx. theileri (73.4%). Trapping month, surrounding area, or trapping method had no statistically significant impact on the observed host-feeding patterns of Cx. pipiens pipiens f. pipiens. Conclusions Due to the diverse and overlapping host-feeding patterns, several mosquito species must be considered as potential enzootic and bridge vectors for diverse mosquito-borne pathogens in Iran. Most species can potentially transmit pathogens between mammals as well as between mammals and birds, which might be the result of a similar host selection or a high dependence on the host availability. Electronic supplementary material The online version of this article (10.1186/s13071-018-3237-2) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Alaniz AJ, Carvajal MA, Bacigalupo A, Cattan PE. Global spatial assessment of Aedes aegypti and Culex quinquefasciatus: a scenario of Zika virus exposure. Epidemiol Infect 2018; 147:e52. [PMID: 30474578 PMCID: PMC6518585 DOI: 10.1017/s0950268818003102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/12/2018] [Accepted: 10/27/2018] [Indexed: 02/04/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus transmitted mainly by Aedes aegypti mosquitoes. Recent scientific evidence on Culex quinquefasciatus has suggested its potential as a vector for ZIKV, which may change the current risk zones. We aimed to quantify the world population potentially exposed to ZIKV in a spatially explicit way, considering the primary vector (A. aegypti) and the potential vector (C. quinquefasciatus). Our model combined species distribution modelling of mosquito species with spatially explicit human population data to estimate ZIKV exposure risk. We estimated the potential global distribution of C. quinquefasciatus and estimated its potential interaction zones with A. aegypti. Then we evaluated the risk zones for ZIKV considering both vectors. Finally, we quantified and compared the people under risk associated with each vector by risk level, country and continent. We found that C. quinquefasciatus had a more temperate distribution until 42° in both hemispheres, while the risk involving A. aegypti is concentrated mainly in tropical latitudes until 35° in both hemispheres. Globally, 4.2 billion people are under risk associated with ZIKV. Around 2.6 billon people are under very high risk associated with C. quinquefasciatus and 1 billion people associated with A. aegypti. Several countries could be exposed to ZIKV, which emphasises the need to clarify the competence of C. quinquefasciatus as a potential vector as soon as possible. The models presented here represent a tool for risk management, public health planning, mosquito control and preventive actions, especially to focus efforts on the most affected areas.
Collapse
Affiliation(s)
- Alberto J. Alaniz
- Centro de Estudios en Ecología Espacial y Medio Ambiente – Ecogeografía, Santiago, Chile
- Laboratorio de Ecología, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Mario A. Carvajal
- Centro de Estudios en Ecología Espacial y Medio Ambiente – Ecogeografía, Santiago, Chile
| | - Antonella Bacigalupo
- Laboratorio de Ecología, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Pedro E. Cattan
- Laboratorio de Ecología, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
28
|
Mapping and Modelling Malaria Risk Areas Using Climate, Socio-Demographic and Clinical Variables in Chimoio, Mozambique. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15040795. [PMID: 29671756 PMCID: PMC5923837 DOI: 10.3390/ijerph15040795] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/16/2018] [Accepted: 03/26/2018] [Indexed: 02/02/2023]
Abstract
Background: Malaria continues to be a major public health concern in Africa. Approximately 3.2 billion people worldwide are still at risk of contracting malaria, and 80% of deaths caused by malaria are concentrated in only 15 countries, most of which are in Africa. These high-burden countries have achieved a lower than average reduction of malaria incidence and mortality, and Mozambique is among these countries. Malaria eradication is therefore one of Mozambique’s main priorities. Few studies on malaria have been carried out in Chimoio, and there is no malaria map risk of the area. This map is important to identify areas at risk for application of Public Precision Health approaches. By using GIS-based spatial modelling techniques, the research goal of this article was to map and model malaria risk areas using climate, socio-demographic and clinical variables in Chimoio, Mozambique. Methods: A 30 m × 30 m Landsat image, ArcGIS 10.2 and BioclimData were used. A conceptual model for spatial problems was used to create the final risk map. The risks factors used were: the mean temperature, precipitation, altitude, slope, distance to water bodies, distance to roads, NDVI, land use and land cover, malaria prevalence and population density. Layers were created in a raster dataset. For class value comparisons between layers, numeric values were assigned to classes within each map layer, giving them the same importance. The input dataset were ranked, with different weights according to their suitability. The reclassified outputs of the data were combined. Results: Chimoio presented 96% moderate risk and 4% high-risk areas. The map showed that the central and south-west “Residential areas”, namely, Centro Hipico, Trangapsso, Bairro 5 and 1° de Maio, had a high risk of malaria, while the rest of the residential areas had a moderate risk. Conclusions: The entire Chimoio population is at risk of contracting malaria, and the precise estimation of malaria risk, therefore, has important precision public health implications and for the planning of effective control measures, such as the proper time and place to spray to combat vectors, distribution of bed nets and other control measures.
Collapse
|
29
|
Spatial distribution and habitat characterization of mosquito species during the dry season along the Mara River and its tributaries, in Kenya and Tanzania. Infect Dis Poverty 2018; 7:2. [PMID: 29343279 PMCID: PMC5772712 DOI: 10.1186/s40249-017-0385-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/27/2017] [Indexed: 01/25/2023] Open
Abstract
Background Vector-borne diseases are increasingly becoming a major health problem among communities living along the major rivers of Africa. Although larger water bodies such as lakes and dams have been extensively researched, rivers and their tributaries have largely been ignored. This study sought to establish the spatial distribution of mosquito species during the dry season and further characterize their habitats along the Mara River and its tributaries. Methods In this cross-sectional survey, mosquito larvae were sampled along the Mara River, its two perennial tributaries (Amala and Nyangores), drying streams, and adjacent aquatic habitats (e.g. swamps, puddles that receive direct sunlight [open sunlit puddles], rock pools, hippo and livestock hoof prints, and vegetated pools). Each habitat was dipped 20 times using a standard dipper. Distance between breeding sites and human habitation was determined using global positioning system coordinates. The collected mosquito larvae were identified using standard taxonomic keys. Water physico-chemical parameters were measured in situ using a multiparameter meter. Mean mosquito larvae per habitat type were compared using analysis of variance and chi-square tests, while the relationship between mosquito larvae and physico-chemical parameters was evaluated using a generalized linear mixed model. The Cox-Stuart test was used to detect trends of mosquito larvae distribution. The test allowed for verification of monotonic tendency (rejection of null hypothesis of trend absence) and its variability. Results A total of 4001 mosquito larvae were collected, of which 2712 (67.8%) were collected from river/stream edge habitats and 1289 (32.2%) were sampled from aquatic habitats located in the terrestrial ecosystem about 50 m away from the main river/streams. Anopheles gambiae s.s, An. arabiensis, and An. funestus group, the three most potent vectors of malaria in Sub-Saharan Africa, together with other anopheline mosquitoes, were the most dominant mosquito species (70.3%), followed by Culex quinquefasciatus and Cx. pipiens complex combined (29.5%). Drying streams accounted for the highest number of larvae captured compared to the other habitat types. A stronger relationship between mosquito larvae abundance and dissolved oxygen (Z = 7.37, P ≤ 0.001), temperature (Z = 7.65, P ≤ 0.001), turbidity (Z = −5.25, P ≤ 0.001), and distance to the nearest human habitation (Z = 4.57, P ≤ 0.001), was observed. Conclusions Presence of malaria and non-malaria mosquito larvae within the Mara River basin calls for immediate action to curtail the insurgence of vector-borne diseases within the basin. A vector control program should be conducted during the dry period, targeting drying streams shown to produce the highest number of larval mosquitoes. Electronic supplementary material The online version of this article (10.1186/s40249-017-0385-0) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Oo SZM, Thaung S, Maung YNM, Aye KM, Aung ZZ, Thu HM, Thant KZ, Minakawa N. Effectiveness of a novel long-lasting pyriproxyfen larvicide (SumiLarv®2MR) against Aedes mosquitoes in schools in Yangon, Myanmar. Parasit Vectors 2018; 11:16. [PMID: 29306333 PMCID: PMC5756364 DOI: 10.1186/s13071-017-2603-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/20/2017] [Indexed: 11/16/2022] Open
Abstract
Background Mosquito-borne diseases are prevalent in Myanmar, with the number of dengue cases showing a significant increase in recent years. Dengue vectors have developed resistance to insecticides and currently used larvicides show only short-term effectiveness. As a result, an alternative larvicide is urgently needed. The present study evaluated the larvicidal effectiveness of long-lasting pyriproxyfen resin discs (SumiLarv®2MR) against dengue virus vectors in schools in Hlaing Thar Yar Township, Yangon. Results The proportion of Aedes mosquito-infested containers was significantly reduced in the schools applied with the larvicide (OR: 0.24, 95% CI: 0.12–0.48) while there was little reduction noted in the control schools (OR: 0.97, 95% CI: 0.55–1.72). The density of infested containers was also significantly reduced in the intervention schools (Beta: -1.50, 95% CI: -1.98– -1.04), but there was no significant reduction in density in the control schools (Beta: -0.19, 95% CI: -0.53–0.14). The proportion of adult emergence was less than 20% in the treated water collected from the intervention schools for six months, while the proportion was over 90% in the untreated water. In addition, eight-month-old SumiLarv®2MR resin discs were still 100% effective when tested in the laboratory. More than 50% of the discs disappeared from treated containers within two months of intervention. Conclusions SumiLarv®2MR was effective in reducing Aedes-infested containers at least six months after its application in schools. This new pyriproxyfen formulation has great potential for improving the current dengue vector control program in Myanmar.
Collapse
Affiliation(s)
- Sai Zaw Min Oo
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Department of Medical Research, Ministry of Health and Sports, 11191, Ziwaka Road, Dagon Township, Yangon, Myanmar
| | - Sein Thaung
- Department of Medical Research, Ministry of Health and Sports, 11191, Ziwaka Road, Dagon Township, Yangon, Myanmar
| | - Yan Naung Maung Maung
- Department of Medical Research, Ministry of Health and Sports, 11191, Ziwaka Road, Dagon Township, Yangon, Myanmar
| | - Khin Myo Aye
- Department of Medical Research, Ministry of Health and Sports, 11191, Ziwaka Road, Dagon Township, Yangon, Myanmar
| | - Zar Zar Aung
- Department of Medical Research, Ministry of Health and Sports, 11191, Ziwaka Road, Dagon Township, Yangon, Myanmar
| | - Hlaing Myat Thu
- Department of Medical Research, Ministry of Health and Sports, 11191, Ziwaka Road, Dagon Township, Yangon, Myanmar
| | - Kyaw Zin Thant
- Department of Medical Research, Ministry of Health and Sports, 11191, Ziwaka Road, Dagon Township, Yangon, Myanmar
| | - Noboru Minakawa
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
31
|
A human genotyping trial to estimate the post-feeding time from mosquito blood meals. PLoS One 2017; 12:e0179319. [PMID: 28617865 PMCID: PMC5472291 DOI: 10.1371/journal.pone.0179319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/26/2017] [Indexed: 11/19/2022] Open
Abstract
Mosquitoes occur almost worldwide, and females of some species feed on blood from humans and other animals to support ovum maturation. In warm and hot seasons, such as the summer in Japan, fed mosquitoes are often observed at crime scenes. The current study attempted to estimate the time that elapsed since feeding from the degree of human DNA digestion in mosquito blood meals and also to identify the individual human sources of the DNA using genotyping in two species of mosquito: Culex pipiens pallens and Aedes albopictus. After stereomicroscopic observation, the extracted DNA samples were quantified using a human DNA quantification and quality control kit and were genotyped for 15 short tandem repeats using a commercial multiplexing kit. It took about 3 days for the complete digestion of a blood meal, and genotyping was possible until 2 days post-feeding. The relative peak heights of the 15 STRs and DNA concentrations were useful for estimating the post-feeding time to approximately half a day between 0 and 2 days. Furthermore, the quantitative ratios derived from STR peak heights and the quality control kit (Q129/Q41, Q305/Q41, and Q305/Q129) were reasonably effective for estimating the approximate post-feeding time after 2–3 days. We suggest that this study may be very useful for estimating the time since a mosquito fed from blood meal DNA, although further refinements are necessary to estimate the times more accurately.
Collapse
|
32
|
Börstler J, Jöst H, Garms R, Krüger A, Tannich E, Becker N, Schmidt-Chanasit J, Lühken R. Host-feeding patterns of mosquito species in Germany. Parasit Vectors 2016; 9:318. [PMID: 27259984 PMCID: PMC4893232 DOI: 10.1186/s13071-016-1597-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 05/17/2016] [Indexed: 11/10/2022] Open
Abstract
Background Mosquito-borne pathogens are of growing importance in many countries of Europe including Germany. At the same time, the transmission cycles of most mosquito-borne pathogens (e.g. viruses or filarial parasites) are not completely understood. There is especially a lack of knowledge about the vector capacity of the different mosquito species, which is strongly influenced by their host-feeding patterns. While this kind of information is important to identify the relevant vector species, e.g. to direct efficient control measures, studies about the host-feeding patterns of mosquito species in Germany are scarce and outdated. Methods Between 2012 and 2015, 775 blood-fed mosquito specimens were collected. Sampling was conducted with Heavy Duty Encephalitis Vector Survey traps, Biogents Sentinel traps, gravid traps, hand-held aspirators, sweep nets, and human-bait collection. The host species for each mosquito specimen was identified with polymerase chain reactions and subsequent Sanger sequencing of the cytochrome b gene. Results A total of 32 host species were identified for 23 mosquito species, covering 21 mammalian species (including humans) and eleven bird species. Three mosquito species accounted for nearly three quarters of all collected blood-fed mosquitoes: Aedes vexans (363 specimens, 46.8 % of all mosquito specimens), Culex pipiens pipiens form pipiens (100, 12.9 %) and Ochlerotatus cantans (99, 12.8 %). Non-human mammals dominated the host species (572 specimens, 73.8 % of all mosquito specimens), followed by humans (152, 19.6 %) and birds (51, 6.6 %). The most common host species were roe deer (Capreolus capreolus; 258 mosquito specimens, 33.3 % of all mosquito specimens, 65 % of all mosquito species), humans (Homo sapiens; 152, 19.6 %, 90 %), cattle (Bos taurus; 101, 13.0 %, 60 %), and wild boar (Sus scrofa; 116, 15.0 %, 50 %). There were no statistically significant differences in the spatial-temporal host-feeding patterns of the three most common mosquito species. Conclusions Although the collected blood-fed mosquito species had a strong overlap of host species, two different host-feeding groups were identified with mosquito species feeding on (i) non-human mammals and humans or (ii) birds, non-human mammals, and humans, which make them potential vectors of pathogens only between mammals or between mammals and birds, respectively. Due to the combination of their host-feeding patterns and wide distribution in Germany, Cx. pipiens pipiens form pipiens and Cx. torrentium are potentially most important vectors for pathogens transmitted from birds to humans and the species Ae. vexans for pathogens transmitted from non-human mammals to humans. Finally, the presented study indicated a much broader host range compared to the classifications found in the literature for some of the species, which highlights the need for studies on the host-feeding patterns of mosquitoes to further assess their vector capacity and the disease ecology in Europe. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1597-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica Börstler
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Hamburg, Germany
| | - Rolf Garms
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Andreas Krüger
- Department of Tropical Medicine, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Hamburg, Germany
| | - Norbert Becker
- German Mosquito Control Association (KABS), Institute for Dipterology, Speyer, Germany.,University of Heidelberg, Heidelberg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Hamburg, Germany
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.
| |
Collapse
|
33
|
Schönenberger AC, Wagner S, Tuten HC, Schaffner F, Torgerson P, Furrer S, Mathis A, Silaghi C. Host preferences in host-seeking and blood-fed mosquitoes in Switzerland. MEDICAL AND VETERINARY ENTOMOLOGY 2016; 30:39-52. [PMID: 26685926 DOI: 10.1111/mve.12155] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/22/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
The avian zoonotic agent for West Nile virus (WNV) can cause neuroinvasive disease in horses and humans and is expanding its range in Europe. Analyses of the risk for transmission to these hosts in non-endemic areas are necessary. Host preferences of mosquitoes (Diptera: Culicidae), the main vectors of WNV, were determined in Switzerland using animal-baited trap (horse, chickens) experiments at a natural and a periurban site. This was undertaken on four occasions during May-September 2014. In addition, the hosts of 505 blood-fed mosquitoes collected in a zoo and in the field were determined. Mosquito data obtained in the animal bait experiments were corrected for host weight and body surface area and by Kleiber's scaling factor. Collections of 11-14 different mosquito species were achieved with these approaches. Statistically significant host preferences were identified in three species in both approaches. The other species showed opportunistic feeding behaviours to varying extents. Specifically, the invasive species Hulecoeteomyia japonica (= Aedes japonicus) was identified for the first time as feeding on avians in nature. Abundance data, spatiotemporal activity and laboratory vector competence for WNV suggested that, in addition to the main WNV vector Culex pipiens, H. japonica and Aedimorphus vexans (= Aedes vexans) are the most likely candidate bridge vectors for WNV transmission in Switzerland.
Collapse
Affiliation(s)
- A C Schönenberger
- Vector Entomology Unit, National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| | - S Wagner
- Vector Entomology Unit, National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| | - H C Tuten
- Vector Entomology Unit, National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| | - F Schaffner
- Vector Entomology Unit, National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| | - P Torgerson
- Section of Epidemiology, Vetsuisse, University of Zurich, Zurich, Switzerland
| | - S Furrer
- Zürich Zoologischer Garten (Zoo Zürich), Zurich, Switzerland
| | - A Mathis
- Vector Entomology Unit, National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| | - C Silaghi
- Vector Entomology Unit, National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Resetarits WJ, Silberbush A. Local contagion and regional compression: habitat selection drives spatially explicit, multiscale dynamics of colonisation in experimental metacommunities. Ecol Lett 2015; 19:191-200. [PMID: 26689170 DOI: 10.1111/ele.12553] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/09/2015] [Accepted: 11/03/2015] [Indexed: 11/29/2022]
Abstract
Habitat selection, including oviposition site choice, is an important driver of community assembly in freshwater systems. Factors determining patch quality are assessed by many colonising organisms and affect colonisation rates, spatial distribution and community structure. For many species, the presence/absence of predators is the most important factor affecting female oviposition decisions. However, individual habitat patches exist in complex landscapes linked by processes of dispersal and colonisation, and spatial distribution of factors such as predators has potential effects beyond individual patches. Perceived patch quality and resulting colonisation rates depend both on risk conditions within a given patch and on spatial context. Here we experimentally confirm the role of one context-dependent processes, spatial contagion, functioning at the local scale, and provide the first example of another context-dependent process, habitat compression, functioning at the regional scale. Both processes affect colonisation rates and patterns of spatial distribution in naturally colonised experimental metacommunities.
Collapse
Affiliation(s)
- William J Resetarits
- Department of Biology, The University of Mississippi, University, MS, 38677-1848, USA.,Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Alon Silberbush
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
35
|
Omondi D, Masiga DK, Ajamma YU, Fielding BC, Njoroge L, Villinger J. Unraveling Host-Vector-Arbovirus Interactions by Two-Gene High Resolution Melting Mosquito Bloodmeal Analysis in a Kenyan Wildlife-Livestock Interface. PLoS One 2015; 10:e0134375. [PMID: 26230507 PMCID: PMC4521840 DOI: 10.1371/journal.pone.0134375] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/08/2015] [Indexed: 11/23/2022] Open
Abstract
The blood-feeding patterns of mosquitoes are directly linked to the spread of pathogens that they transmit. Efficient identification of arthropod vector bloodmeal hosts can identify the diversity of vertebrate species potentially involved in disease transmission cycles. While molecular bloodmeal analyses rely on sequencing of cytochrome b (cyt b) or cytochrome oxidase 1 gene PCR products, recently developed bloodmeal host identification based on high resolution melting (HRM) analyses of cyt b PCR products is more cost-effective. To resolve the diverse vertebrate hosts that mosquitoes may potentially feed on in sub-Saharan Africa, we utilized HRM profiles of both cyt b and 16S ribosomal RNA genes. Among 445 blood-fed Aedeomyia, Aedes, Anopheles, Culex, Mansonia, and Mimomyia mosquitoes from Kenya’s Lake Victoria and Lake Baringo regions where many mosquito-transmitted pathogens are endemic, we identified 33 bloodmeal hosts including humans, eight domestic animal species, six peridomestic animal species and 18 wildlife species. This resolution of vertebrate host species was only possible by comparing profiles of both cyt b and 16S markers, as melting profiles of some pairs of species were similar for either marker but not both. We identified mixed bloodmeals in a Culex pipiens from Mbita that had fed on a goat and a human and in two Mansonia africana mosquitoes from Baringo that each had fed on a rodent (Arvicanthis niloticus) in addition to a human or baboon. We further detected Sindbis and Bunyamwera viruses in blood-fed mosquito homogenates by Vero cell culture and RT-PCR in Culex, Aedeomyia, Anopheles and Mansonia mosquitoes from Baringo that had fed on humans and livestock. The observed mosquito feeding on both arbovirus amplifying hosts (including sheep and goats) and possible arbovirus reservoirs (birds, porcupine, baboons, rodents) informs arbovirus disease epidemiology and vector control strategies.
Collapse
Affiliation(s)
- David Omondi
- Martin Lüscher Emerging Infectious Disease (ML-EID) Laboratory, International Centre for Insect Physiology and Ecology, P. O Box 30772-00100, Nairobi, Kenya
- Molecular Biology and Virology Laboratory, Department of Medical Biosciences, University of Western Cape, Private Bag X17, Bellville, 7535, South Africa
- Biochemistry and Molecular Biology Department, Egerton University, P.O Box 536, Egerton, 20115, Kenya
| | - Daniel K. Masiga
- Martin Lüscher Emerging Infectious Disease (ML-EID) Laboratory, International Centre for Insect Physiology and Ecology, P. O Box 30772-00100, Nairobi, Kenya
| | - Yvonne Ukamaka Ajamma
- Martin Lüscher Emerging Infectious Disease (ML-EID) Laboratory, International Centre for Insect Physiology and Ecology, P. O Box 30772-00100, Nairobi, Kenya
| | - Burtram C. Fielding
- Molecular Biology and Virology Laboratory, Department of Medical Biosciences, University of Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Laban Njoroge
- Invertebrates Zoology Section, Zoology Department, National Museums of Kenya, P.O. Box 40658-00100, Nairobi, Kenya
| | - Jandouwe Villinger
- Martin Lüscher Emerging Infectious Disease (ML-EID) Laboratory, International Centre for Insect Physiology and Ecology, P. O Box 30772-00100, Nairobi, Kenya
- * E-mail:
| |
Collapse
|
36
|
Mayagaya VS, Nkwengulila G, Lyimo IN, Kihonda J, Mtambala H, Ngonyani H, Russell TL, Ferguson HM. The impact of livestock on the abundance, resting behaviour and sporozoite rate of malaria vectors in southern Tanzania. Malar J 2015; 14:17. [PMID: 25604150 PMCID: PMC4311485 DOI: 10.1186/s12936-014-0536-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/27/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Increases in the coverage of long-lasting insecticidal nets (LLINs) have significantly reduced the abundance of Anopheles gambiae sensu stricto in several African settings, leaving its more zoophagic sibling species Anopheles arabiensis as the primary vector. This study investigated the impact of livestock ownership at the household level on the ecology and malaria infection rate of vectors in an area of Tanzania where An. arabiensis accounts for most malaria transmission. METHODS Mosquito vectors were collected resting inside houses, animal sheds and in outdoor resting boxes at households with and without livestock over three years in ten villages of the Kilombero Valley, Tanzania. Additionally, the abundance and sporozoite rate of vectors attempting to bite indoors at these households was assessed as an index of malaria exposure. RESULTS The mean abundance of An. gambiae s.l. biting indoors was similar at houses with and without livestock. In all years but one, the relative proportion of An. arabiensis within the An. gambiae s.l. species complex was higher at households with livestock. Livestock presence had a significant impact on malaria vector feeding and resting behaviour. Anopheles arabiensis were generally found resting in cattle sheds where livestock were present, and inside houses when absent. Correspondingly, the human blood index of An. arabiensis and An. funestus s.l. was significant reduced at households with livestock, whereas that of An. gambiae s.s. was unaffected. Whilst there was some evidence that sporozoite rates within the indoor-biting An. gambiae s.l population was significantly reduced at households with livestock, the significance of this effect varied depending on how background spatial variation was accounted for. CONCLUSIONS These results confirm that the presence of cattle at the household level can significantly alter the local species composition, feeding and resting behaviour of malaria vectors. However, the net impact of this livestock-associated variation in mosquito ecology on malaria exposure risk was unclear. Further investigation is required to distinguish whether the apparently lower sporozoite rates observed in An. gambiae s.l. at households with livestock is really a direct effect of cattle presence, or an indirect consequence of reduced risk within areas where livestock keepers choose to live.
Collapse
Affiliation(s)
- Valeriana S Mayagaya
- Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
| | - Gamba Nkwengulila
- Department of Zoology and Wildlife Conservation, University of Dar es Salaam, PO Box 35065, Dar es Salaam, Tanzania.
| | - Issa N Lyimo
- Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
| | - Japheti Kihonda
- Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
| | - Hassan Mtambala
- Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
| | - Hassan Ngonyani
- Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
| | - Tanya L Russell
- Faculty of Medicine, Health and Molecular Sciences, James Cook University, PO Box 6811, Cairns, Queensland, 4870, Australia.
| | - Heather M Ferguson
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G12 8QQ, Glasgow, UK.
| |
Collapse
|
37
|
Zhang C, Cheng P, Liu B, Shi G, Wang H, Liu L, Guo X, Ren H, Gong M. Measure post-bloodmeal dispersal of mosquitoes and duration of radioactivity by using the isotope ³²P. JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:196. [PMID: 25502034 PMCID: PMC5633936 DOI: 10.1093/jisesa/ieu058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 03/01/2014] [Indexed: 06/04/2023]
Abstract
The radioactive isotope (32)P-labeled disodium phosphate (Na₂H(32)PO₄) was injected via the jugular vein into a cow kept in a shed in Maozhuang Village, Cao Township of Shanxian County, China. Over the following 5 d, mosquitoes feeding on the cow were captured at distances up to 400 m to determine dispersal distance. The duration of radioactivity in the cow and marked mosquitoes was 10 d. The results showed that after blood feeding, Anopheles sinensis and Culex tritaeniorhynchus temporarily rested in the cattle shed and then flew outdoors. In contrast, Culex pipiens pallens remained in the cattle shed after feeding. These findings confirmed that local An. sinensis and Cx. tritaeniorhynchus were partially endophilic and tended to rest out of doors, whereas Cx. pipiens pallens was endophilic. For marked An. sinensis and Cx. tritaeniorhynchus, there was a significant tendency for dispersal to be in a northeast and east direction, probably because of the presence of heavy shading by an agricultural field, a small river for mosquito oviposition sites, and locations downwind from the blood source. The furthest flight distances for An. sinensis and Cx. tritaeniorhynchus were 210 and 240 m; therefore, control of these mosquitoes should include resting places indoors and outdoors within a radius of 250 m from confirmed cases.
Collapse
Affiliation(s)
- Chongxing Zhang
- Department of Medical Entomology, Vector Biology Key Laboratory of Medicine and Health Shandong Province, Shandong Institute of Parasitic Diseases, Shandong Academy of Medical Sciences, Jining, Shandong 272033, People's Republic of China
| | - Peng Cheng
- Department of Medical Entomology, Vector Biology Key Laboratory of Medicine and Health Shandong Province, Shandong Institute of Parasitic Diseases, Shandong Academy of Medical Sciences, Jining, Shandong 272033, People's Republic of China
| | - Bo Liu
- Department of Medical Entomology, Vector Biology Key Laboratory of Medicine and Health Shandong Province, Shandong Institute of Parasitic Diseases, Shandong Academy of Medical Sciences, Jining, Shandong 272033, People's Republic of China
| | - Guihong Shi
- Department of Medical Entomology, Vector Biology Key Laboratory of Medicine and Health Shandong Province, Shandong Institute of Parasitic Diseases, Shandong Academy of Medical Sciences, Jining, Shandong 272033, People's Republic of China
| | - Huaiwei Wang
- Department of Medical Entomology, Vector Biology Key Laboratory of Medicine and Health Shandong Province, Shandong Institute of Parasitic Diseases, Shandong Academy of Medical Sciences, Jining, Shandong 272033, People's Republic of China
| | - Lijuan Liu
- Department of Medical Entomology, Vector Biology Key Laboratory of Medicine and Health Shandong Province, Shandong Institute of Parasitic Diseases, Shandong Academy of Medical Sciences, Jining, Shandong 272033, People's Republic of China
| | - Xiuxia Guo
- Department of Medical Entomology, Vector Biology Key Laboratory of Medicine and Health Shandong Province, Shandong Institute of Parasitic Diseases, Shandong Academy of Medical Sciences, Jining, Shandong 272033, People's Republic of China
| | - Huiqing Ren
- Surgical Department, Jining First People's Hospital, Jining, Shandong 272002, People's Republic of China
| | - Maoqing Gong
- Department of Medical Entomology, Vector Biology Key Laboratory of Medicine and Health Shandong Province, Shandong Institute of Parasitic Diseases, Shandong Academy of Medical Sciences, Jining, Shandong 272033, People's Republic of China
| |
Collapse
|
38
|
LUJAN DA, GREENBERG JA, HUNG AS, DIMENNA MA, HOFKIN BV. Evaluation of seasonal feeding patterns of West Nile virus vectors in Bernalillo county, New Mexico, United States: implications for disease transmission. JOURNAL OF MEDICAL ENTOMOLOGY 2014; 51:264-8. [PMID: 24605477 PMCID: PMC3979523 DOI: 10.1603/me13163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Many mosquito species take bloodmeals predominantly from either birds or mammals. Other mosquito species are less host-specific and feed readily on both. Furthermore, some species tend to alter their feeding patterns over the course of the year; early in the mosquito season such species may feed primarily on a particular host type, and subsequently take an increasingly larger proportion of their bloodmeals from an alternative host type as the season progresses. We have examined the feeding patterns of the three mosquito species found in Bernalillo County, NM: Culex quinquefasciatus (Say), Culex tarsalis (Coquillett), and Aedes vexans (Meigen). Specifically, we seek to determine if any of these species displays a seasonal shift in terms of its host utilization pattern. Our analysis focuses on these three species because they are all considered to be competent vectors for the West Nile virus (WNV). Our current data for Cx. quinquefasciatus suggest that unlike elsewhere in its range, this species increases its proportion of avian bloodmeals as the season progresses. Alternatively, Ae. vexans feeds primarily on mammals, whereas Cx. tarsalis appears to feed on both mammals and birds throughout the mosquito season. A more complete understanding of the feeding habits of these three mosquito species may help to clarify the transmission dynamics of WNV in Bernalillo County.
Collapse
Affiliation(s)
- D. A. LUJAN
- Department of Biology, University of New Mexico, 167 Castetter Hall MSC03 2020, Albuquerque, NM 87131-0001
| | - J. A. GREENBERG
- Department of Biology, University of New Mexico, 167 Castetter Hall MSC03 2020, Albuquerque, NM 87131-0001
| | - A. S. HUNG
- Department of Biology, University of New Mexico, 167 Castetter Hall MSC03 2020, Albuquerque, NM 87131-0001
| | - M. A. DIMENNA
- Urban Biology Division, City of Albuquerque Environmental Health Department, P.O. Box 1293, Albuquerque, NM 87103
| | - B. V. HOFKIN
- Department of Biology, University of New Mexico, 167 Castetter Hall MSC03 2020, Albuquerque, NM 87131-0001
| |
Collapse
|
39
|
Baldacchino F, Gardès L, De Stordeur E, Jay-Robert P, Garros C. Blood-feeding patterns of horse flies in the French Pyrenees. Vet Parasitol 2013; 199:283-8. [PMID: 24210525 DOI: 10.1016/j.vetpar.2013.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/10/2013] [Accepted: 10/13/2013] [Indexed: 11/30/2022]
Abstract
Horse flies can mechanically transmit Besnoitia besnoiti, the agent of bovine besnoitiosis. Although previously limited to enzootic areas, especially the French Pyrenees Mountains, bovine besnoitiosis is now considered a re-emerging disease in western Europe. To improve understanding of the role of horse flies as mechanical vectors, this study investigated their blood-feeding ecology in the eastern French Pyrenees, in two high-altitude summer pastures whose main domestic ungulates were cattle, and in a wildlife park with native fauna. Species-specific PCR assays were conducted to identify the sources of blood meals: wild boar, horse, cattle (or bison), sheep (or mouflon), goat, red deer, roe deer and izard (or Pyrenean chamois). In La Mouline pasture, tabanids (N=20) fed on red deer (70%) and cattle (30%). In Mantet pasture, tabanids (N=24) fed on cattle (52%), red deer (20%), wild boar (16%), horse (8%) and sheep (4%). In the wildlife park, Tabanus bromius (N=32), the most abundant species collected, fed on red deer (85%), bison (9%) and wild boar (6%). Despite relatively high densities in both the pastures and in the wildlife park, small wild ungulates (izard, mouflon and roe deer) were not detected as a source of blood meals. Only two mixed blood meals were identified in two specimens of T. bromius: cattle/horse for the specimen collected in the pastures, and bison/wild boar for the specimen collected in the wildlife park. Our findings showed that tabanids display a level of opportunistic feeding behaviour, in addition to a preference for red deer, the latter being particularly true for Philipomyia aprica, the most abundant species collected in the pastures.
Collapse
Affiliation(s)
- F Baldacchino
- UMR 5175, Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Université Paul-Valéry (UM3), 34199 Montpellier Cedex 5, France.
| | - L Gardès
- UMR 1309 CMAEE, CIRAD, INRA, 34398 Montpellier, France
| | - E De Stordeur
- UMR 5175, Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Université Paul-Valéry (UM3), 34199 Montpellier Cedex 5, France
| | - P Jay-Robert
- UMR 5175, Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Université Paul-Valéry (UM3), 34199 Montpellier Cedex 5, France
| | - C Garros
- UMR 1309 CMAEE, CIRAD, INRA, 34398 Montpellier, France
| |
Collapse
|
40
|
Testing fungus impregnated cloths for the control of adult Aedes aegypti under natural conditions. Parasit Vectors 2013; 6:256. [PMID: 24010874 PMCID: PMC3848359 DOI: 10.1186/1756-3305-6-256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/01/2013] [Indexed: 11/25/2022] Open
Abstract
Background Entomopathogenic fungi could be useful tools for reducing populations of the dengue mosquito Aedes aegypti. Here the efficiency of fungus (Metarhizium anisopliae) impregnated cloths (with and without imidacloprid [IMI]) was evaluated against adult A. aegypti in simulated human dwellings. Behaviour of mosquitoes in the presence of black cloths was also investigated. Findings When mosquitoes were released into the test rooms, the lowest survival rates (38%) were seen when five black cloths impregnated with conidia of ESALQ 818 + 10 ppm IMI were fixed under tables and chairs. This result was significantly lower than the survival rate recorded when cloths were impregnated with ESALQ 818 alone (44%) or ESALQ 818 + 0.1 ppm IMI (43%). Blood fed A. aegypti had lower landing frequencies on black cloths than sucrose fed insects during the first 24 h following feeding, which may have been due to reduced flight activity. Few mosquitoes (4-5%) were observed to land on the cloths during the hours of darkness. The landing pattern of sucrose-fed mosquitoes on non-treated and fungus-treated cloths was similar. Conclusion The synergism between M. anisopliae and IMI significantly reduced Aedes survival in simulated field conditions. The use of fungus impregnated cloths is a promising point source application method for the control of adult A. aegypti.
Collapse
|
41
|
Greenberg JA, Lujan DA, DiMenna MA, Wearing HJ, Hofkin BV. Identification of blood meal sources in Aedes vexans and Culex quinquefasciatus in Bernalillo County, New Mexico. JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:75. [PMID: 24224615 PMCID: PMC3835048 DOI: 10.1673/031.013.7501] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 10/10/2012] [Indexed: 05/27/2023]
Abstract
Culex quinquefasciatus Say (Diptera: Culicidae) and Aedes vexans Meigen are two of the most abundant mosquitoes in Bernalillo County, New Mexico, USA. In this study, a polymerase chain reaction based methodology was used to identify the sources of blood meals taken by these two species. Ae. vexans was found to take a large proportion of its meals from mammals. Although less specific in terms of its blood meal preferences, Cx. quinquefasciatus was found to feed more commonly on birds. The results for Ae. vexans are similar to those reported for this species in other parts of their geographic range. Cx. quinquefasciatus appears to be more variable in terms of its host feeding under different environmental or seasonal circumstances. The implications of these results for arbovirus transmission are discussed.
Collapse
Affiliation(s)
- Jacob A. Greenberg
- Department of Biology, University of New Mexico, 167 Castetter Hall MSC03 2020, Albuquerque, New Mexico 87131-0001
| | - Daniel A. Lujan
- Department of Biology, University of New Mexico, 167 Castetter Hall MSC03 2020, Albuquerque, New Mexico 87131-0001
| | - Mark A. DiMenna
- Urban Biology Division, City of Albuquerque Environmental Health Department, P.O. Box 1293, Albuquerque, New Mexico 87103
| | - Helen J. Wearing
- Department of Biology, University of New Mexico, 167 Castetter Hall MSC03 2020, Albuquerque, New Mexico 87131-0001
| | - Bruce V. Hofkin
- Department of Biology, University of New Mexico, 167 Castetter Hall MSC03 2020, Albuquerque, New Mexico 87131-0001
| |
Collapse
|