1
|
He XY, Yang YS, Zheng YX, Xia QJ, Yu HZ, Zhao XM, Wang TH. Scutellarin combined with lidocaine exerts antineoplastic effect in human glioma associated with repression of epidermal growth factor receptor signaling. PLoS One 2025; 20:e0318031. [PMID: 39888904 PMCID: PMC11785270 DOI: 10.1371/journal.pone.0318031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/08/2025] [Indexed: 02/02/2025] Open
Abstract
PURPOSE Glioma is the most common primary intracranial tumors. Although great achievements have been made in the treatment, the efficacy is still unsatisfactory, which imposes a hefty burden on patients and society. Therefore, the exploration of new and effective anti-glioma drugs is urgent. METHODS Human glioma cell lines U251 and LN229 were included in the study. Cell proliferation was detected by cell counting kit-8 (CCK8), plate clone formation assay, EdU incorporation assay and xCELLigence real-time cell analyzer. Cell apoptosis was evaluated by TUNEL assay and flow cytometry. Then, transwell assay was used for assessing the migration. Moreover, tumor xenograft model was established to examine the effect of scutellarin (SCU) and lidocaine on the growth of glioma in vivo. Lastly, western blot was performed to detect the protein level of epidermal growth factor receptor (EGFR). RESULTS In present study, we found that SCU and lidocaine suppressed the proliferation and migration, and induced the apoptosis of human glioma cell lines, including U251 and LN229 cells, in a dose-dependent manner in vitro. Moreover, the combination of SCU and lidocaine further restrained the proliferation and migration ability of U251 and LN229 cells, while induced their apoptosis in vitro. Additionally, SCU and lidocaine also inhibited the growth of glioma in vivo, and the effect of the combination was better. Above all, the toxicity of SCU and its combination with lidocaine was low to normal astrocytes and neurons. Mechanistically, the effect of SCU and its combination with lidocaine on glioma cells was partially associated with the repression of EGFR signaling. CONCLUSIONS Scutellarin and lidocaine exerted a synergistic effect on suppressing the proliferation and migration and inducing the apoptosis of glioma cells, which was partly associated with the repression of EGFR signaling.
Collapse
Affiliation(s)
- Xiu-Ying He
- Department of Anesthesiology, Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yui-Si Yang
- School of Integrated Traditional Chinese and Western medicine, Southwest Medical University, Luzhou, China
| | - Yue-Xiang Zheng
- School of Integrated Traditional Chinese and Western medicine, Southwest Medical University, Luzhou, China
| | - Qing-Jie Xia
- Department of Anesthesiology, Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Hong-Zhou Yu
- Department of Anesthesiology, Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Ming Zhao
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Ting-Hua Wang
- Department of Anesthesiology, Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Mamadalieva R, Xujayev V, Sharopov FS, Wink M. UHPLC-MS characterisation of principal triterpene glycosides and biological activities of different solvent extracts of Allochrusa gypsophiloides (Caryophyllaceae). Nat Prod Res 2024; 38:3818-3822. [PMID: 37740590 DOI: 10.1080/14786419.2023.2260068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
A crude methanol extract of the roots of Allochrusa gypsophiloides (syn. Acanthophyllum gypsophiloides) (collected from the Tashkent region of Uzbekistan) was chemically characterised by UHPLC-ESI-QTOF-MS/MS analysis. The results indicate the presence of six major bisdesmosidic saponins derived from gypsogenin, gypsogenic and quillaic acids, including five compounds reported for the first time for this species. The chloroform, methanol and water extracts of A. gypsophiloides showed weak antioxidant and anthelmintic activities. Among the tested extracts, the water extract exhibited the highest level of cytotoxicity in CCRF-CEM and CEM/ADR5000 cell lines with IC50 values of 23.6 and 31.9 µg/mL, respectively.
Collapse
Affiliation(s)
| | | | - Farukh S Sharopov
- Research Institution "Chinese-Tajik Innovation Center for Natural Products," National Academy of Sciences of Tajikistan, Dushanbe, Tajikistan
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
3
|
Noor G, Badruddeen, Akhtar J, Singh B, Ahmad M, Khan MI. An outlook on the target-based molecular mechanism of phytoconstituents as immunomodulators. Phytother Res 2023; 37:5058-5079. [PMID: 37528656 DOI: 10.1002/ptr.7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
The immune system is one of the essential defense mechanisms. Immune system inadequacy increases the risk of infections and cancer diseases, whereas over-activation of the immune system causes allergies or autoimmune disorders. Immunomodulators have been used in the treatment of immune-related diseases. There is growing interest in using herbal medicines as multicomponent agents to modulate the complex immune system in immune-related diseases. Many therapeutic phytochemicals showed immunomodulatory effects by various mechanisms. This mechanism includes stimulation of lymphoid cell, phagocytosis, macrophage, and cellular immune function enhancement. In addition increased antigen-specific immunoglobulin production, total white cell count, and inhibition of TNF-α, IFN-γ, NF-kB, IL-2, IL-6, IL-1β, and other cytokines that influenced the immune system. This review aims to overview, widely investigated plant-derived phytoconstituents by targeting cells to modulate cellular and humoral immunity in in vivo and in vitro. However, further high-quality research is needed to confirm the clinical efficacy of plant-based immunomodulators.
Collapse
Affiliation(s)
- Gazala Noor
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Badruddeen
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Juber Akhtar
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Bhuwanendra Singh
- Department of Pharmacognosy, S.D. College of Pharmacy and Vocational Studies, Muzaffarnagar, India
| | - Mohammad Ahmad
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohammad Irfan Khan
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
4
|
Wang Z, Chitama BYA, Suganuma K, Yamano Y, Sugimoto S, Kawakami S, Kaneko O, Otsuka H, Matsunami K. Two New Cytotoxic Sesquiterpene-Amino Acid Conjugates and a Coumarin-Glucoside from Crossostephium chinense. Molecules 2023; 28:4696. [PMID: 37375252 DOI: 10.3390/molecules28124696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The Asteraceae family is a promising source of bioactive compounds, such as the famous Asteraceae plants Tanacetum cinerariifolium (pyrethrin) and Artemisia annua (artemisinin). As a result of our series of phytochemical studies of the subtropical plants, two novel sesquiterpenes, named crossoseamines A and B in this study (1 and 2, respectively), one undescribed coumarin-glucoside (3), and eighteen known compounds (4-21) were isolated from the aerial part of Crossostephium chinense (Asteraceae). The structures of isolated compounds were elucidated by spectroscopic methods, including 1D and 2D NMR experiments (1H, 13C, DEPT, COSY, HSQC, HMBC, and NOESY), IR spectrum, circular dichroism spectrum (CD), and high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS). All isolated compounds were evaluated for their cytotoxic activities against Leishmania major, Plasmodium falciparum, Trypanosoma brucei (gambiense and rhodesiense), and human lung cancer cell line A549 because of the high demand for the discovery of new drug leads to overcome the present side effects and emerging drug-resistant strains. As a result, the new compounds (1 and 2) showed significant activities against A549 (IC50, 1: 3.3 ± 0.3; 2: 12.3 ± 1.0 μg/mL), L. major (IC50, 1: 6.9 ± 0.6; 2: 24.9 ± 2.2 μg/mL), and P. falciparum (IC50, 1: 12.1 ± 1.1; 2: 15.6 ± 1.2 μg/mL).
Collapse
Affiliation(s)
- Zhichao Wang
- Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ben-Yeddy Abel Chitama
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Japan
| | - Yoshi Yamano
- Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Sachiko Sugimoto
- Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Susumu Kawakami
- Graduate School of Pharmacy, Yasuda Women's University, Hiroshima 731-0153, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Hideaki Otsuka
- Graduate School of Pharmacy, Yasuda Women's University, Hiroshima 731-0153, Japan
| | - Katsuyoshi Matsunami
- Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
5
|
Kim MA, Min KS. Combined effect of apigenin and reduced graphene oxide against Enterococcus faecalis biofilms. J Oral Sci 2023:22-0459. [PMID: 37211399 DOI: 10.2334/josnusd.22-0459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
PURPOSE Enterococcus faecalis (E. faecalis) is one of the major microorganisms that causes failure of endodontic treatment. This study aimed to investigate the antibacterial activity of apigenin and its synergistic effect with reduced graphene oxide (RGO) in treating E. faecalis biofilms. METHODS The antibacterial activities were characterized by viability analysis including colony forming units and confocal laser scanning microscopy (CLSM) analyses. The effect on biofilm biomass was measured using a crystal violet staining method. Live and dead bacteria bio-volumes were determined by CLSM analysis, and the morphology of E. faecalis biofilm after treatment with apigenin and apigenin + RGO was observed by scanning electron microscopy (SEM). RESULTS The viability of E. faecalis in biofilms decreased by apigenin treatment in a dose-dependent manner. While apigenin alone did not significantly affect the biofilm biomass, apigenin + RGO reduced the biomass in an apigenin concentration-dependent manner. Likewise, the bio-volume of live bacteria decreased and the bio-volume of dead bacteria increased in apigenin-treated biofilms. According to SEM images, apigenin + RGO-treated samples showed less E. faecalis in biofilms than apigenin-only treated samples. CONCLUSION The results suggested that the combined use of apigenin and RGO could be a potential strategy for effective endodontic disinfection.
Collapse
Affiliation(s)
- Mi-Ah Kim
- Department of Conservative Dentistry, School of Dentistry, Jeonbuk National University
| | - Kyung-San Min
- Department of Conservative Dentistry, School of Dentistry, Jeonbuk National University
- Research Institute of Clinical Medicine of Jeonbuk National University
- Biomedical Research Institute of Jeonbuk National University Hospital
| |
Collapse
|
6
|
Zhai C, Fan J, Zhang R. Scutellarein treats neuroblastoma by regulating the expression of multiple targets. IBRAIN 2023; 10:345-355. [PMID: 39346787 PMCID: PMC11427791 DOI: 10.1002/ibra.12100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 10/01/2024]
Abstract
The aim of this study is to investigate the effect of scutellarein on the proliferation of neuroblastoma cells and the underlying mechanism. Six cell lines were used with drug intervention. Cell Counting Kit-8 was used to select the best, namely, SH-SY5Y, and then its IC50 value was determined. To further investigate the mechanism of scutellarin affecting SH-SY5Y proliferation, quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of 11 factors. Scutellarin administration with 300 μM significantly reduced the number of SH-SY5Y, especially on the 3rd day of exposure to scutellarin. The IC50 value of scutellarin in SH-SY5Y cells was determined to be 117.8 μM. But the practical results showed that 300 μM was the optimal concentration of scutellarin. qRT-PCR further detected upregulated maternally expressed gene 3 (MEG3), oncogene c-Fos (c-FOS), and c-jun and downregulated M2 isoform of pyruvate kinase (PKM2), non-SMC Condensin I Complex Subunit H (NCAPH), epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1, and TGF-α, suggesting that scutellarin with 300 μM volume inhibited the survival of SH-SY5Y by regulating the expression of these 8 factors. Scutellarin could be a novel drug for the treatment of neuroblastoma, and its underlying mechanism may be related to the upregulated levels of MEG3, c-FOS, and c-jun and downregulated the expression of PKM2, NCAPH, EGFR, TGF-β1, and TGF-α.
Collapse
Affiliation(s)
- Chen‐Yang Zhai
- Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Ji‐Sheng Fan
- School of Pharmacy and Medical Sciences, Division of Health SciencesUniversity of South AustraliaAdelaideAustralia
| | - Rong‐Ping Zhang
- Faculty of PharmacyKunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
7
|
Bouyahya A, Taha D, Benali T, Zengin G, El Omari N, El Hachlafi N, Khalid A, Abdalla AN, Ardianto C, Tan CS, Ming LC, Sahib N. Natural sources, biological effects, and pharmacological properties of cynaroside. Biomed Pharmacother 2023; 161:114337. [PMID: 36812715 DOI: 10.1016/j.biopha.2023.114337] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Cynaroside is a flavonoid, isolated from several species belonging to the Apiaceae, Poaceae, Lamiaceae, Solanaceae, Zingiberaceae, Compositae and other families and it can be extracted from seeds, roots, stems, leaves, barks, flowers, fruits, aerial parts, and the whole plant of these species. This paper discloses the current state of knowledge on the biological/pharmacological effects and mode of action to better understand the numerous health benefits of cynaroside. Several research works revealed that cynaroside could have beneficial effects on various human pathologies. Indeed, this flavonoid exerts antibacterial, antifungal, antileishmanial, antioxidant, hepatoprotective, antidiabetic, anti-inflammatory, and anticancer effects. Additionally, cynaroside exhibits its anticancer effects by blocking MET/AKT/mTOR axis by decreasing the phosphorylation level of AKT, mTOR, and P70S6K. For antibacterial activity, cynaroside reduces biofilm development of Pseudomonas aeruginosa and Staphylococcus aureus. Moreover, the incidence of mutations leading to ciprofloxacin resistance in Salmonella typhimurium was reduced after the treatment with cynaroside. In addition, cynaroside inhibited the production of reactive oxygen species (ROS), which reduced the damage to mitochondrial membrane potential caused by hydrogen peroxide (H2O2). It also enhanced the expression of the anti-apoptotic protein Bcl-2 and lowered that of the pro-apoptotic protein Bax. Cynaroside abrogated the up-regulation of c-Jun N-terminal kinase (JNK) and p53 protein expression triggered by H2O2. All these findings suggest that cynaroside could be used to prevent certain human diseases.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Douae Taha
- Laboratory of Spectroscopy, Molecular Modelling Materials, Nanomaterials Water and Environment-CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakesh-Safi 46030, Morocco.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42250, Turkey.
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V. University in Rabat, B.P. 6203, Rabat 10000, Morocco.
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Fez B.P. 2626, Morocco.
| | - Asaad Khalid
- 7 Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2404, Khartoum, Sudan.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, 71800 Nilai, Malaysia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam; School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia.
| | - Narjis Sahib
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Mohammed Premier University, Oujda 60000, Morocco.
| |
Collapse
|
8
|
Zorzi G, Gambini S, Negri S, Guzzo F, Commisso M. Untargeted Metabolomics Analysis of the Orchid Species Oncidium sotoanum Reveals the Presence of Rare Bioactive C-Diglycosylated Chrysin Derivatives. PLANTS (BASEL, SWITZERLAND) 2023; 12:655. [PMID: 36771739 PMCID: PMC9920315 DOI: 10.3390/plants12030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Plants are valuable sources of secondary metabolites with pharmaceutical properties, but only a small proportion of plant life has been actively exploited for medicinal purposes to date. Underexplored plant species are therefore likely to contain novel bioactive compounds. In this study, we investigated the content of secondary metabolites in the flowers, leaves and pseudobulbs of the orchid Oncidium sotoanum using an untargeted metabolomics approach. We observed the strong accumulation of C-diglycosylated chrysin derivatives, which are rarely found in nature. Further characterization revealed evidence of antioxidant activity (FRAP and DPPH assays) and potential activity against neurodegenerative disorders (MAO-B inhibition assay) depending on the specific molecular structure of the metabolites. Natural product bioprospecting in underexplored plant species based on untargeted metabolomics can therefore help to identify novel chemical structures with diverse pharmaceutical properties.
Collapse
Affiliation(s)
- Gianluca Zorzi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Sofia Gambini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Stefano Negri
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
9
|
Gu S, Zhou Z, Zhang S, Cai Y. Advances in Anti-Diabetic Cognitive Dysfunction Effect of Erigeron Breviscapus (Vaniot) Hand-Mazz. Pharmaceuticals (Basel) 2022; 16:ph16010050. [PMID: 36678547 PMCID: PMC9867432 DOI: 10.3390/ph16010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetic cognitive dysfunction (DCD) is the decline in memory, learning, and executive function caused by diabetes. Although its pathogenesis is unclear, molecular biologists have proposed various hypotheses, including insulin resistance, amyloid β hypothesis, tau protein hyperphosphorylation hypothesis, oxidative stress and neuroinflammation. DCD patients have no particular treatment options and current pharmacological regimens are suboptimal. In recent years, Chinese medicine research has shown that herbs with multi-component, multi-pathway and multi-target synergistic activities can prevent and treat DCD. Yunnan is home to the medicinal herb Erigeron breviscapus (Vant.) Hand-Mazz. (EBHM). Studies have shown that EBHM and its active components have a wide range of pharmacological effects and applications in cognitive disorders. EBHM's anti-DCD properties have been seldom reviewed. Through a literature study, we were able to evaluate the likely pathophysiology of DCD, prescribe anti-DCD medication and better grasp EBHM's therapeutic potential. EBHM's pharmacological mechanism and active components for DCD treatment were also summarized.
Collapse
Affiliation(s)
- Shanye Gu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziyi Zhou
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shijie Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
| | - Yefeng Cai
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
- Correspondence: ; Tel.: +86-136-3133-3842
| |
Collapse
|
10
|
Li C, Dai T, Chen J, Chen M, Liang R, Liu C, Du L, McClements DJ. Modification of flavonoids: methods and influences on biological activities. Crit Rev Food Sci Nutr 2022; 63:10637-10658. [PMID: 35687361 DOI: 10.1080/10408398.2022.2083572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Flavonoids are important active ingredients in plant-based food, which have many beneficial effects on health. But the low solubility, poor oral bioavailability, and inferior stability of many flavonoids may limit their applications in the food, cosmetics, and pharmaceutical industries. Structural modification can overcome these shortcomings to improve and extend the application of flavonoids. The study of how to modify flavonoids and the influence of various modifications on biological activity have drawn great interest in the current literature. In this review, the working principles and operating conditions of modification methods were summarized along with their potential and limitations in terms of operational safety, cost, and productivity. The influence of various modifications on biological activities and the structure-activity relationships of flavonoids derivatives were discussed and highlighted, which may give guidance for the synthesis of highly effective active agents. In addition, the safety of flavonoids derivatives is reviewed, and future research directions of flavonoid modification research are discussed.
Collapse
Affiliation(s)
- Changhong Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Guangxi Academy of Agricultural Sciences, Agro-food Science and Technology Research Institute, Nanning, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mingshun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ruihong Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqing Du
- China Academy of Tropical Agricultural Sciences, South Subtropical Crop Research Institute, Zhanjiang China
| | | |
Collapse
|
11
|
Milutinović VM, Matić IZ, Stanojković TP, Soković MD, Ćirić AD, Ušjak LJ, Niketić MS, Petrović SD. Antimicrobial and Cytotoxic Activities of Selected Hieracium L. s. str. (Asteraceae) Extracts and Isolated Sesquiterpene Lactones. Chem Biodivers 2022; 19:e202200326. [PMID: 35621325 DOI: 10.1002/cbdv.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022]
Abstract
Antimicrobial and cytotoxic activities were tested for dried MeOH extracts of Hieracium calophyllum (CAL), H. coloriscapum (COL), H. pseudoschenkii (PSE), H. valdepilosum (VAL) and H. glabratum (GLA) herbs (flowering aerial parts), their 2 sesquiterpene lactones (SLs) 8-epiixerisamine A and crepiside E, and dried CH2 Cl2 extract of H. scheppigianum (SCH) herb. In microdilution test, extracts showed activity on all tested microorganisms (8 bacteria, 10 fungi). The best effect was exhibited by SCH and CAL on Salmonella Typhimurium (MIC=1.7-2.5 mg/mL MBC=3.4-5.0 mg/mL), and SCH and VAL on Candida albicans (MIC=2.5 mg/mL MFC=5.0 mg/mL). SLs showed notable effect on all tested fungi Aspergillus ochraceus, Penicillium funiculosum, C. albicans and C. krusei (MIC=0.15-0.4 mg/mL MFC=0.3-0.8 mg/mL). In MTT test, extracts inhibited growth of all tested cancer cells (HeLa, LS174 and A549), with the best effect on HeLa (IC50 =148.1 μg/mL for SCH, and 152.3-303.2 μg/mL for MeOH extracts); both SLs were active against HeLa cells (IC50 =46.2 μg/mL for crepiside E and 103.8 μg/mL for 8-epiixerisamine A). Extracts and SLs showed good safety profile on normal MRC-5 cells.
Collapse
Affiliation(s)
- Violeta M Milutinović
- Department of Pharmacognosy, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Ivana Z Matić
- Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| | - Tatjana P Stanojković
- Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| | - Marina D Soković
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research 'Siniša Stanković' -, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000, Belgrade, Serbia
| | - Ana D Ćirić
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research 'Siniša Stanković' -, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000, Belgrade, Serbia
| | - Ljuboš J Ušjak
- Department of Pharmacognosy, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Marjan S Niketić
- Natural History Museum, Njegoševa 51, 11000, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Kneza Mihaila 35/II, 11000, Belgrade, Serbia
| | - Silvana D Petrović
- Department of Pharmacognosy, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
12
|
Dong X, Qu S. Erigeron breviscapus (Vant.) Hand-Mazz.: A Promising Natural Neuroprotective Agent for Alzheimer's Disease. Front Pharmacol 2022; 13:877872. [PMID: 35559239 PMCID: PMC9086453 DOI: 10.3389/fphar.2022.877872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease and is characterized by progressive cognitive dysfunction and memory loss in the elderly, which seriously affects the quality of their lives. Currently, the pathogenesis of AD remains unclear. Molecular biologists have proposed a variety of hypotheses, including the amyloid-β hypothesis, tau hyperphosphorylation hypothesis, cholinergic neuron injury, inflammation caused by an abnormal immune response, and gene mutation. Drugs based on these pathological studies, including cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists, have achieved a certain level of efficacy but are far from meeting clinical needs. In the recent years, some important advances have been made in the traditional Chinese medicine treatment of AD. Erigeron breviscapus (Vant.) Hand-Mazz. (EBHM) is an important medicinal plant distributed in Yunnan Province, China. Studies have shown that EBHM and its active ingredients have a variety of pharmacological effects with good therapeutic effects and wide application prospects for cognitive disability-related diseases. However, to our best knowledge, only few review articles have been published on the anti-AD effects of EBHM. Through a literature review, we identified the possible pathogenesis of AD, discussed the cultivation and phytochemistry of EBHM, and summarized the pharmacological mechanism of EBHM and its active ingredients in the treatment of AD to provide suggestions regarding anti-AD therapy as well as a broader insight into the therapeutic potential of EBHM.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Nazar N, Howard C, Slater A, Sgamma T. Challenges in Medicinal and Aromatic Plants DNA Barcoding-Lessons from the Lamiaceae. PLANTS (BASEL, SWITZERLAND) 2022; 11:137. [PMID: 35009140 PMCID: PMC8747715 DOI: 10.3390/plants11010137] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The potential value of DNA barcoding for the identification of medicinal plants and authentication of traded plant materials has been widely recognized; however, a number of challenges remain before DNA methods are fully accepted as an essential quality control method by industry and regulatory authorities. The successes and limitations of conventional DNA barcoding are considered in relation to important members of the Lamiaceae. The mint family (Lamiaceae) contains over one thousand species recorded as having a medicinal use, with many more exploited in food and cosmetics for their aromatic properties. The family is characterized by a diversity of secondary products, most notably the essential oils (EOs) produced in external glandular structures on the aerial parts of the plant that typify well-known plants of the basil (Ocimum), lavender (Lavandula), mint (Mentha), thyme (Thymus), sage (Salvia) and related genera. This complex, species-rich family includes widely cultivated commercial hybrids and endangered wild-harvested traditional medicines, and examples of potential toxic adulterants within the family are explored in detail. The opportunities provided by next generation sequencing technologies to whole plastome barcoding and nuclear genome sequencing are also discussed with relevant examples.
Collapse
Affiliation(s)
- Nazia Nazar
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| | - Caroline Howard
- Tree of Life Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK;
| | - Adrian Slater
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| | - Tiziana Sgamma
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| |
Collapse
|
14
|
Butala S, Suvarna V, Mallya R, Khan T. An insight into cytotoxic activity of flavonoids and sesquiterpenoids from selected plants of Asteraceae species. Chem Biol Drug Des 2021; 98:1116-1130. [PMID: 34626448 DOI: 10.1111/cbdd.13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 11/26/2022]
Abstract
Cancer continues to be a disease that is difficult to cure and the current therapeutic regimen is associated with severe side effects and the issue of emerging drug resistance. According to the World Health Organization fact sheet 2017, cancer is the second major cause of morbidity and death and a 70% rise in new cases is expected over the next 20 years. The quest for new anticancer chemical entities is a thrust area identified by many government agencies and industry research and development groups. Nature-derived entities have played a very important role in therapeutics especially cancer Asteraceae is a large family consisting of around 1700 genera and more than 24,000 species. Several genera belonging to this family have ethnopharmacological uses such as cytotoxicity, antidiabetic, hepatoprotective and antioxidant. This review highlights the cytotoxic potential of structurally novel flavonoids and sesquiterpenes isolated from some selected species of Asteraceae plants native to Asia, Europe, parts of Africa and America. The existing literature suggests that sesquiterpenes and flavonoids from various species of Asteraceae represent a viable class of secondary metabolites with strong cytotoxic potential. These have demonstrated potent activity in cell cycle arrest, inhibition of neoangiogenesis and induction of apoptosis. The sesquiterpenoids exhibiting potent cytotoxic activity were found to contain an α- methylene-butyrolactone conjugated with an exomethylene group and the flavonoids obtained from various plant species of Blumea suggest that a dihydroxy ring system present in structure is essential for activity. Most of the published literature contains in vitro data of extracts/secondary metabolites with very few in vivo studies. Additionally, there is dearth of knowledge on mechanisms of cytotoxic activity and molecular targets impacted by the active secondary metabolites. This review hopes to fuel interest in researchers to take up detailed investigations on these scaffolds that could contribute significantly as potential leads in anticancer drug development.
Collapse
Affiliation(s)
- Sahil Butala
- Department of Quality Assurance, Indoco Remedies, Rabale, Navi Mumbai, India
| | - Vasanti Suvarna
- Department of Pharmaceutical Chemistry & QA, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Rashmi Mallya
- Department of Pharmacognosy, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & QA, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
15
|
He XY, Xu Y, Xia QJ, Zhao XM, Li S, He XQ, Wang RR, Wang TH. Combined Scutellarin and C 18H 17NO 6 Imperils the Survival of Glioma: Partly Associated With the Repression of PSEN1/PI3K-AKT Signaling Axis. Front Oncol 2021; 11:663262. [PMID: 34568005 PMCID: PMC8460401 DOI: 10.3389/fonc.2021.663262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023] Open
Abstract
Glioma, the most common intracranial tumor, harbors great harm. Since the treatment for it has reached the bottleneck stage, the development of new drugs becomes a trend. Therefore, we focus on the effect of scutellarin (SCU) and its combination with C18H17NO6 (abbreviated as combination) on glioma and its possible mechanism in this study. Firstly, SCU and C18H17NO6 both suppressed the proliferation of U251 and LN229 cells in a dose-dependent manner, and C18H17NO6 augmented the inhibition effect of SCU on U251 and LN229 cells in vitro. Moreover, there was an interactive effect between them. Secondly, SCU and C18H17NO6 decreased U251 cells in G2 phase and LN229 cells in G2 and S phases but increased U251 cells in S phase, respectively. Meanwhile, the combination could further reduce U251 cells in G2 phase and LN229 cells in G2 and S phases. Thirdly, SCU and C18H17NO6 both induced the apoptosis of U251 and LN229. The combination further increased the apoptosis rate of both cells compared with the two drugs alone. Furthermore, SCU and C18H17NO6 both inhibited the lateral and vertical migration of both cells, which was further repressed by the combination. More importantly, the effect of SCU and the combination was better than positive control-temozolomide, and the toxicity was low. Additionally, SCU and C18H17NO6 could suppress the growth of glioma in vivo, and the effect of the combination was better. Finally, SCU and the combination upregulated the presenilin 1 (PSEN1) level but inactivated the phosphatidylinositol 3−kinase (PI3K)-protein kinase B (AKT) signaling in vitro and in vivo. Accordingly, we concluded that scutellarin and its combination with C18H17NO6 suppressed the proliferation/growth and migration and induced the apoptosis of glioma, in which the mechanism might be associated with the repression of PSEN1/PI3K-AKT signaling axis.
Collapse
Affiliation(s)
- Xiu-Ying He
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Xu
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing-Jie Xia
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Ming Zhao
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Li
- Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| | - Xiao-Qiong He
- School of Public Health, Kunming Medical University, Kunming, China
| | - Ru-Rong Wang
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| |
Collapse
|
16
|
Oliveira-Alves SC, Andrade F, Prazeres I, Silva AB, Capelo J, Duarte B, Caçador I, Coelho J, Serra AT, Bronze MR. Impact of Drying Processes on the Nutritional Composition, Volatile Profile, Phytochemical Content and Bioactivity of Salicornia ramosissima J. Woods. Antioxidants (Basel) 2021; 10:1312. [PMID: 34439560 PMCID: PMC8389250 DOI: 10.3390/antiox10081312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
Salicornia ramosissima J. Woods is a halophyte plant recognized as a promising natural ingredient and will eventually be recognized a salt substitute (NaCl). However, its shelf-life and applicability in several food matrices requires the use of drying processes, which may have an impact on its nutritional and functional value. The objective of this study was to evaluate the effect of oven and freeze-drying processes on the nutritional composition, volatile profile, phytochemical content, and bioactivity of S. ramosissima using several analytical tools (LC-DAD-ESI-MS/MS and SPME-GC-MS) and bioactivity assays (ORAC, HOSC, and ACE inhibition and antiproliferative effect on HT29 cells). Overall, results show that the drying process changes the chemical composition of the plant. When compared to freeze-drying, the oven-drying process had a lower impact on the nutritional composition but the phytochemical content and antioxidant capacity were significantly reduced. Despite this, oven-dried and freeze-dried samples demonstrated similar antiproliferative (17.56 mg/mL and 17.24 mg/mL, respectively) and antihypertensive (24.56 mg/mL and 18.96 mg/mL, respectively) activities. The volatile composition was also affected when comparing fresh and dried plants and between both drying processes: while for the freeze-dried sample, terpenes corresponded to 57% of the total peak area, a decrease to 17% was observed for the oven-dried sample. The oven-dried S. ramosissima was selected to formulate a ketchup and the product formulated with 2.2% (w/w) of the oven-dried plant showed a good consumer acceptance score. These findings support the use of dried S. ramosissima as a promising functional ingredient that can eventually replace the use of salt.
Collapse
Affiliation(s)
- Sheila C. Oliveira-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
| | - Fábio Andrade
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
| | - Inês Prazeres
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
| | - Andreia B. Silva
- DCFM, Departamento de Ciências Farmacêuticas e do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Av. das Forças Armadas, 1649-003 Lisboa, Portugal;
- iMed ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Jorge Capelo
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Av. da República, 2780-505 Oeiras, Portugal;
| | - Bernardo Duarte
- MARE, Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 749-016 Lisboa, Portugal
| | - Isabel Caçador
- MARE, Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 749-016 Lisboa, Portugal
| | - Júlio Coelho
- Horta da Ria Lda., Rua de São Rui, 3830-362 Gafanha Nazaré, Portugal;
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria R. Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
- iMed ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
17
|
Discrimination of the Essential Oils Obtained from Four Apiaceae Species Using Multivariate Analysis Based on the Chemical Compositions and Their Biological Activity. PLANTS 2021; 10:plants10081529. [PMID: 34451574 PMCID: PMC8401412 DOI: 10.3390/plants10081529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 01/17/2023]
Abstract
The chemical composition of the essential oils obtained from the aerial parts of four Apiaceae species, namely Elaeosticta allioides (EA), E. polycarpa (EP), Ferula clematidifolia (FC), and Hyalolaena intermedia (HI), were determined using gas chromatography. Altogether, 100 volatile metabolites representing 78.97, 81.03, 85.78, and 84.49% of the total components present in EA, EP, FC, and HI oils, respectively, were reported. allo-Ocimene (14.55%) was the major component in FC, followed by D-limonene (9.42%). However, in EA, germacrene D (16.09%) was present in a high amount, while heptanal (36.89%) was the predominant compound in HI. The gas chromatographic data were subjected to principal component analysis (PCA) to explore the correlations between these species. Fortunately, the PCA score plot could differentiate between the species and correlate Ferula to Elaeosticta species. Additionally, the antioxidant activity was evaluated in vitro using the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and the ferric reducing power (FRAP) assays. In addition, the antimicrobial activity using the agar diffusion method was assessed, and the minimum inhibitory concentrations (MICs) were determined. Furthermore, the cell viability MTT assay was performed to evaluate the cytotoxicity of the essential oils against hepatic (HepG-2) and cervical (HeLa) cancer cell lines. In the DPPH assay, FC exhibited the maximum activity against all the antioxidant assays with IC50 values of 19.8 and 23.0 μg/mL for the DPPH and ABTS assays, respectively. Ferula showed superior antimicrobial and cytotoxic activities as well. Finally, a partial least square regression model was constructed to predict the antioxidant capacity by utilizing the metabolite profiling data. The model showed excellent predictive ability by applying the ABTS assay.
Collapse
|
18
|
An updated review on the versatile role of chrysin in neurological diseases: Chemistry, pharmacology, and drug delivery approaches. Biomed Pharmacother 2021; 141:111906. [PMID: 34328092 DOI: 10.1016/j.biopha.2021.111906] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/29/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Neurological diseases are responsible for a large number of morbidities and mortalities in the world. Flavonoids are phytochemicals that possess various health-promoting impacts. Chrysin, a natural flavonoid isolated from diverse fruits, vegetables, and even mushrooms, has several pharmacological activities comprising antioxidant, anti-inflammatory, antiapoptotic, anticancer, and neuroprotective effects. The current study was designed to review the relationship between chrysin administration and neurological complications by discussing the feasible mechanism and signaling pathways. Herein, we mentioned the sources, pharmacological properties, chemistry, and drug delivery systems associated with chrysin pharmacotherapy. The role of chrysin was discussed in depression, anxiety, neuroinflammation, Alzheimer's disease, Parkinson's disease, Huntington's disease, epilepsy, cerebral ischemia, spinal cord injury, neuropathy, Multiple Sclerosis, and Guillain-Barré Syndrome. The findings indicate that chrysin has protective effects against neurological conditions by modulating oxidative stress, inflammation, and apoptosis in animal models. However, more studies should be done to clear the neuroprotective effects of chrysin.
Collapse
|
19
|
Laka K, Mapheto K, Mbita Z. Selective in vitro cytotoxicity effect of Drimia calcarata bulb extracts against p53 mutant HT-29 and p53 wild-type Caco-2 colorectal cancer cells through STAT5B regulation. Toxicol Rep 2021; 8:1265-1279. [PMID: 34195018 PMCID: PMC8233163 DOI: 10.1016/j.toxrep.2021.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer is the fourth leading cause of oncological-related deaths and the third most diagnosed malignancy, worldwide. The emergence of chemoresistance is a fundamental drawback of colorectal cancer therapies and there is an urgent need for novel plant-derived therapeutics. In this regard, other compounds are needed to improve the efficacy of treatment against colorectal cancer. Medicinal plants have been effectively used by traditional doctors for decades to treat various ailments with little to no side effects. Drimia calcarata (D. calcarata) is one of the plants used by Pedi people in South Africa to treat a plethora of ailments. However, the anticancer therapeutic use of D. calcarata is less understood. Thus, this study was aimed at evaluating the potential anticancer activities of D. calcarata extracts against human colorectal cancer cells. The phytochemical analysis and antioxidant activity were analysed using LC-MS, DPPH, and FRAP. The inhibitory effects and IC50 values of D. calcarata extracts were determined using the MTT assay. Induction of cellular apoptosis was assessed using fluorescence microscopy, the Muse® Cell Analyser, and gene expression analysis by Polymerase Chain Reaction (PCR). Water extract (WE) demonstrated high phenolic, tannin, and flavonoid contents than the methanol extract (ME). LC-MS data demonstrated strong differences between the ME and WE. Moreover, WE showed the best antioxidant activity than ME. The MTT data showed that both ME and WE had no significant activity against human embryonic kidney Hek 293 cell line that served as non-cancer control cells. Caco-2 cells demonstrated high sensitivity to the ME and demonstrated resistance toward the WE, while HT-29 cells exhibited sensitivity to both D. calcarata extracts. The expression of apoptosis regulatory genes assessed by PCR revealed an upregulation of p53 by ME, accompanied by downregulation of Bcl-2 and high expression of Bax after treatment with curcumin. The Bax gene was undetected in HT-29 cells. The methanol extract induced mitochondrial-mediated apoptosis in colorectal Caco-2 and HT-29 cells and WE induced the extrinsic apoptotic pathway in HT-29 cells. ME downregulated STAT1, 3, and 5B in HT-29 cells. The D. calcarata bulb extracts, therefore, contain potential anticancer agents that can be further targeted for cancer therapeutics.
Collapse
Affiliation(s)
- K. Laka
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa
| | - K.B.F. Mapheto
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa
| | - Z. Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa
| |
Collapse
|
20
|
Pei L, Le Y, Chen H, Feng J, Liu Z, Zhu J, Wang C, Chen L, Dou X, Lu D. Cynaroside prevents macrophage polarization into pro-inflammatory phenotype and alleviates cecal ligation and puncture-induced liver injury by targeting PKM2/HIF-1α axis. Fitoterapia 2021; 152:104922. [PMID: 33984439 DOI: 10.1016/j.fitote.2021.104922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
The treatment of sepsis is still challenging and the liver is an important target of sepsis-related injury. Macrophages are important innate immune cells in liver, and modulation of macrophages M1/M2 polarization may be a promising strategy for septic liver injury treatment. Macrophage polarization and inflammation of liver tissue has been shown regulated by pyruvate kinase M2 (PKM2)-mediated aerobic glycolysis and immune inflammatory pathways. Therefore, modulating PKM2-mediated immunometabolic reprogramming presents a novel strategy for inflammation-associated diseases. In this study, cynaroside, a flavonoid compound, promoted macrophage phenotypic transition from pro-inflammatory M1 to anti-inflammatory M2, and mitigated sepsis-associated liver inflammatory damage. We established that cynaroside reduced binding of PKM2 to hypoxia-inducible factor-1α (HIF-1α) by abolishing translocation of PKM2 to the nucleus and promoting PKM2 tetramer formation, as well as suppressing phosphorylation of PKM2 at Y105 in vivo and in vitro. Moreover, cynaroside restored pyruvate kinase activity, inhibited glycolysis-related proteins including PFKFB3, HK2 and HIF-1α, and inhibited glycolysis-related hyperacetylation of HMGB1 in septic liver. Therefore, this study reports a novel function of cynaroside in hepatic macrophage polarization, and cecum ligation and puncture-induced liver injury in septic mice. The findings provide crucial information with regard to therapeutic efficacy of cynaroside in the treatment of sepsis.
Collapse
Affiliation(s)
- Liuhua Pei
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Yifei Le
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Hang Chen
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Jiafan Feng
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Zhijun Liu
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Ji Zhu
- Clinical Laboratory, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 330106 Hangzhou, China
| | - Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Lin Chen
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China
| | - Xiaobing Dou
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China.
| | - Dezhao Lu
- College of Life Science, Zhejiang Chinese Medical University, 310053 Hangzhou, China.
| |
Collapse
|
21
|
Yan Z, Liqiong S, Yingduo Y, Jin Q, Boyang Y. Application of multi-dimensional and multi-informational (MD-MI) integrated xanthine oxidase and superoxide anion fingerprint in quality evaluation of Scutellariae Radix. J Pharm Biomed Anal 2020; 191:113595. [PMID: 32905858 DOI: 10.1016/j.jpba.2020.113595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/02/2020] [Accepted: 08/23/2020] [Indexed: 10/23/2022]
Abstract
A multi-hyphenated analytical method that was successfully established in previous research was applied to quality evaluation of traditional Chinese medicine (TCM) to verify its feasibility in complex systems. Scutellariae Radix (SR), which significantly protects against oxidative damage from ischemia and reperfusion, was selected as the TCM for this study. A dual-activity detection system based on xanthine oxidase (XOD) inhibition and superoxide anion (O2-) scavenging activity was used to generate a multi-dimensional-multi-informational (MD-MI) integrated fingerprint of SR. Combined with HPLC-ESI-Q-TOF-MS analysis, 17 active compounds in SR were tentatively identified by comparison with reference substances or literature data. The quality of SR from different habitats was comprehensively and systematically evaluated in respect of chemical composition, XOD inhibition and O2- scavenging activity. It was confirmed that SR contains many antioxidants and XOD inhibitory substances with diverse functions. Among them, baicalin, norwogonin-7-O-glucuronide and baicalein are the main contributors to direct antioxidant activity. Acteoside, 5,7,2',5'-tetrahydroxy-8,6'-dimethoxy flavone, baicalin and baicalein are the main XOD inhibitory components of SR. Comprehensive analysis found that the antioxidant activity of SR from Gansu Province was superior to that from other provinces in terms of both XOD inhibition and O2- scavenging activity. It has been demonstrated that the method is capable of analyzing complex TCM matrices, and can provide a useful reference for establishing quality control of TCM from the perspective of MD-MI.
Collapse
Affiliation(s)
- Zhu Yan
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Sun Liqiong
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yang Yingduo
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Qi Jin
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Yu Boyang
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
22
|
Gharari Z, Bagheri K, Derakhshani B, Sharafi A. HPLC-DAD-ESI/MSn analysis of phenolic components of Scutellaria araxensis, S. bornmuelleri and S. orientalis. Nat Prod Res 2020; 36:2440-2445. [DOI: 10.1080/14786419.2020.1837810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Zahra Gharari
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Khadijeh Bagheri
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Behnam Derakhshani
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
23
|
Jing N, Song J, Liu Z, Wang L, Jiang G. Glycosylation of anthocyanins enhances the apoptosis of colon cancer cells by handicapping energy metabolism. BMC Complement Med Ther 2020; 20:312. [PMID: 33059637 PMCID: PMC7566133 DOI: 10.1186/s12906-020-03096-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND While anthocyanins are proven to be effective in inhibiting tumour cell proliferation, the underlying mechanisms remain unclear. This research aims to explore the glycosylation of anthocyanins in the tumour inhibitory effects and the potential mechanism. METHODS The tumour inhibitory effect on mouse colon cancer cells (MC38) was examined by MTT and flow cytometric analyses. The inhibitory pathway of anthocyanin was explored by assessment of tumour cell mitochondrial membrane potential (MMP), the caspase-3 and caspase-9 activity, as well as the cell energy metabolism in terms of the glucose uptake, the NAD+/NADH ratio and the ATP level. RESULTS We found that 500 μM bilberry anthocyanins extract (BAE) induced 48.1% mitochondrial damage, activated the downstream caspase cascade to form apoptotic bodies (caspase-3 activity increased by 169%, caspase-9 activity increased by 186%), and inhibited cell proliferation (survival rate: 55.97%, 24 h). In contrast, the same concentration of anthocyanidin (cyanidin) led to marginal mitochondrial damage (only 9.85%) and resulted in little inhibition of MC38 cells (survival rate: 86.84%, 24 h). For cells incubated with 500 μM BAE, reactive oxygen species (ROS) decreased by 53.8%, but the ratio of NAD+/NADH increased to 3.67, demonstrating that the mitochondrial damage was induced by blocking energy metabolism. Furthermore, cell energy metabolism is related to glucose uptake since the presence of 200 μM GLUT1 inhibitor substantially enhanced the inhibitory effects of cyanidin-3-O-glucoside (Cy-3-Glu) at 500 μM (survival rate: 51.08%, 24 h). CONCLUSIONS The study suggested that the glycosides of anthocyanins might handicap glucose transport and inhibit energy metabolism, which, in turn, led to mitochondrial damage and apoptosis of tumour cells.
Collapse
Affiliation(s)
- Nan Jing
- Key Lab of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Jiaxing Song
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Zheng Liu
- Key Lab of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Luoyang Wang
- Key Lab of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.
- Department of Chemical Engineering, Tsinghua University, Beijing, China.
| | - Guoqiang Jiang
- Key Lab of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.
- Department of Chemical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
24
|
Establishment of in vitro genetically engineered cultures in Scutellaria orientalis and S. araxensis. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00540-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Lachowicz S, Kapusta I, Świeca M, Stinco CM, Meléndez-Martínez AJ, Bieniek A. In Vitro Biological Activities of Fruits and Leaves of Elaeagnus multiflora Thunb. and Their Isoprenoids and Polyphenolics Profile. Antioxidants (Basel) 2020; 9:antiox9050436. [PMID: 32429578 PMCID: PMC7278795 DOI: 10.3390/antiox9050436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022] Open
Abstract
The objective of this study was in-depth identification of carotenoids and polyphenolic compounds in leaves and fruits of Elaeagnus multiflora Thunb. An additional aim was to assay their antioxidant and in vitro biological activities (the ability to inhibit pancreatic lipase, α-amylase, and α-glucosidase activity) of two cultivars: ‘Sweet Scarlet’ and ‘Jahidka’. Study results showed the presence of 70 bioactive compounds, including 20 isoprenoids and 50 polyphenols. The profile of identified bioactive compounds had not been examined in this respect until now. The total carotenoid, chlorophyll, and polyphenol levels and antioxidant activity of the foliar samples were virtually identical in both cultivars and clearly higher relative to those in the fruits. On the other hand, the ability to inhibit pancreatic lipase, α-amylase, and α-glucosidase activity of the fruits was clearly higher as compared to the leaves. The highest amount of phenolic acids, flavonols, and polymeric procyanidins was in the ‘Sweet Scarlet’ for fruit and leaves, while the highest amount of chlorophylls and carotenoids was in the ‘Jahidka’. The inhibition of α-amylase, α-glucosidase, and pancreatic lipase activities appeared to be better correlated with the carotenoid content, which warrants further studies of the possible anti-diabetic and anti-obesity actions of the major carotenoids found in the fruits (lycopene, phytoene, and lutein). In addition, strong correlation between antioxidant activity and phenols of E. multiflora Thunb. components can be effective in removing reactive oxygen species. The results of our study show that both the fruits and leaves of E. multiflora Thunb. can be important for health promotion through the diet and for innovating in the industry of functional food and (nutri)cosmetics.
Collapse
Affiliation(s)
- Sabina Lachowicz
- Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Science, Chełmońskiego 37, 51-630 Wroclaw, Poland
- Correspondence:
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, Faculty of Biology and Agriculture, Rzeszow University, Zelwerowicza 4, 35-601 Rzeszow, Poland;
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin Skromna 8, 20-704 Lublin, Poland;
| | - Carla M. Stinco
- Food Colour & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain; (C.M.S.); (A.J.M.-M.)
| | - Antonio J. Meléndez-Martínez
- Food Colour & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain; (C.M.S.); (A.J.M.-M.)
| | - Anna Bieniek
- Department of Horticulture, University of Warmia and Mazury, Prawocheńskiego 21, 10-720 Olsztyn, Poland;
| |
Collapse
|
26
|
Dhanasekaran D, Latha S, Suganya P, Panneerselvam A, Senthil Kumar T, Alharbi NS, Arunachalam C, Alharbi SA, Thajuddin N. Taxonomic identification and bioactive compounds characterization of Psilocybe cubensis DPT1 to probe its antibacterial and mosquito larvicidal competency. Microb Pathog 2020; 143:104138. [PMID: 32173495 DOI: 10.1016/j.micpath.2020.104138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
Mushrooms have an important role in sustainability since they have long been used as valuable food source and traditional medicine around the world. Regrettably, they are among the most rigorously affected populations, along with several plants and animals, due to the destructive activities of mankind. Thus the authentication and conservation of mushroom species are constantly needed to exploit the remarkable potential in them. In this perspective, an attempt has been made to identify and assess the biological attributes of psychedelic mushrooms collected from Kodaikanal, Tamil Nadu, India. The macromorphological features of the psychedelic mushroom DPT1 helped its presumptive identification and the molecular characters depicted by DNA marker revealed its close relationship with the genus Psilocybe. Accordingly, the psychedelic mushroom was identified as Psilocybe cubensis DPT1 and its crude ethyl acetate extract on analysis revealed the occurrence of phytoconstituents like alkaloids, flavonoids, tannins, saponins and carbohydrates. Moreover, it exhibited 80% larvicidal activity against Culex quinquefasciatus mosquito at 800 ppm concentration and an array of antibacterial effects with utmost susceptibility of Proteus vulgaris, and the identification of bioactive compounds by different analytical techniques substantiate that the bioactivities might be due to the presence of phytochemicals. The results of the study indicated that the extract of P. cubensis DPT1 having notable antibacterial and mosquito larvicidal efficacies which could be probed further for the isolation of medicinally important as well as bio-control compounds.
Collapse
Affiliation(s)
- Dharumadhurai Dhanasekaran
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| | - Selvanathan Latha
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; Department of Petrochemical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Packkrisamy Suganya
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Annamalai Panneerselvam
- P.G. and Research Department of Botany and Microbiology, A.V.V.M. Sri Pushpam College (Autonomous), Poondi, 613 503, Thanjavur, Tamil Nadu, India
| | | | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Chinnathambi Arunachalam
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nooruddin Thajuddin
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
27
|
Gecibesler IH, Erdogan M. A new nutraceutical resource from a rare native plant growing in Turkey and for its spectro-chemical and biological insights: Endemic Diplotaenia bingolensis (Apiaceae). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117358. [PMID: 31306964 DOI: 10.1016/j.saa.2019.117358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/18/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
The present study designed to investigate the quantitative distributions in the secondary metabolites and biological activity of sub-fractions obtained successively from water and methanol: dichloromethane (rate 1:1; v:v) solvent decoction of Diplotenia bingolensis aerial parts. The crude extracts were obtained from the aerial parts of the endemic D. bingolensis species refluxing with water and organic solvents. Sub-fractions of water extract were obtained by successive fractionation of the water extract with hexane (WH), dichloromethane (WD), ethyl acetate (WE) and n-butanol (WB), respectively. Sub-fractions of organic solvent were obtained by fractionation of the organic crude extract with hexane (OH), dichloromethane (OD), ethyl acetate (OE), n-butanol (OB) and water (OW), respectively. The total amount of phenols and flavonoids contained in each sub-fraction was analyzed by UV-VIS spectrophotometer, analysis of lipophilic components by GC-MS spectrometer, and quantitative analysis of hydrophilic components by HPLC-TOF/MS spectrophotometer. Furthermore, the biological activity of each sub-fraction was compared with different antioxidant activities such as DPPH radical scavenging activity and ferric ion reduction capacity. Sub-fraction WD (137.1 ± 2.1 μg QE/mg DI) and OE (127.1 ± 5.2 μg QE/mg DI) in terms of flavonoid content, sub-fraction WD (665.8 ± 47.6 μg GAE/mg DI) and OE (724.6 ± 43.6 μg GAE/mg DI) were the richest isolates in terms of total phenol content. Sub-fractions OH and OD contained linoleic acid (17.0 and 11.0%, respectively) and linolenic acid (22.1 and 18.5%, respectively). It was revealed that sub-fractions were rich in terms of rutin (1.2-47.2 μg HC/mg DI) and chlorogenic acid (0.1-12.1 μg HC/mg DI). Sub-fractions WD and OE were showed the highest DPPH radical scavenging activity with 46.4 ± 1.4 and 47.6 ± 10.0 μg/mL EC50 values, respectively. This study is the first to demonstrate biological insight of the potential antioxidant activity of D. bingolensis. These findings warrant the popular use of the endemic D. bingolensis and highlight the potential of its active constituents in the development of new antioxidative drugs.
Collapse
Affiliation(s)
- Ibrahim Halil Gecibesler
- Bingol University, Faculty of Health Sciences, Department of Occupational Health and Safety, Laboratory of Natural Product Research, 12000 Bingol, Turkey.
| | - Mehmet Erdogan
- Bingol University, Faculty of Science and Art, Department of Chemistry, 12000 Bingol, Turkey
| |
Collapse
|
28
|
A Review on Flavonoid Apigenin: Dietary Intake, ADME, Antimicrobial Effects, and Interactions with Human Gut Microbiota. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7010467. [PMID: 31737673 PMCID: PMC6817918 DOI: 10.1155/2019/7010467] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/25/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022]
Abstract
Apigenin is a flavonoid of low toxicity and multiple beneficial bioactivities. Published reviews all focused on the findings using eukaryotic cells, animal models, or epidemiological studies covering the pharmacokinetics, cancer chemoprevention, and drug interactions of apigenin; however, no review is available on the antimicrobial effects of apigenin. Research proves that dietary apigenin passes through the upper gastrointestinal tract and reaches the colon after consumption. For that reason, it is worthwhile to study the potential interactions between apigenin and human gut microbiota. This review summarizes studies on antimicrobial effects of apigenin as well as what has been reported on apigenin and human gut microbiota. Various levels of effectiveness have been reported on apigenin's antibacterial, antifungal, and antiparasitic capability. It has been shown that apigenin or its glycosides are degraded into smaller metabolites by certain gut bacteria which can regulate the human body after absorption. How apigenin contributes to the structural and functional changes in human gut microbiota as well as the bioactivities of apigenin bacterial metabolites are worth further investigation.
Collapse
|
29
|
Smiljković M, Kostić M, Stojković D, Glamočlija J, Soković M. Could Flavonoids Compete with Synthetic Azoles in Diminishing Candida albicans Infections? A Comparative Review Based on In Vitro Studies. Curr Med Chem 2019; 26:2536-2554. [PMID: 29956609 DOI: 10.2174/0929867325666180629133218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022]
Abstract
Flavonoids are polyphenolic compounds with already confirmed various health benefits. This review will shed light on flavonoids as potential antifungals in Candida albicans infections. C. albicans is an opportunistic pathogen able to cause serious health issues due to numerous virulence factors amplifying its pathogenicity. One of the most important virulence factors is Candida ability to form biofilms which are highly resistant to the treatment of antifungal drugs; making diminishing of this pathogen even more challenging. This review will focus on current knowledge on individual flavonoid compounds having the potential to deal with C. albicans in vitro, with special turn on antibiofilm potential and insight into the mode of action, where available. Majority of the commercial drugs for the treatment of candidiasis belong to azole class, so the activity of flavonoids will be compared with the activity of newly synthetized azole compounds, as well as with azole drugs that are already on the market as official therapeutics. This literature review will provide pros and cons for pushing future research towards exploring novel synthetic azoles or further examination of a wide pallet of natural flavonoids.
Collapse
Affiliation(s)
- Marija Smiljković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Kostić
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Jasmina Glamočlija
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
30
|
Boniface PK, Elizabeth FI. Flavonoid-derived Privileged Scaffolds in anti-Trypanosoma brucei Drug Discovery. Curr Drug Targets 2019; 20:1295-1314. [PMID: 31215385 DOI: 10.2174/1389450120666190618114857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Human African Trypanosomiasis (HAT), also known as sleeping sickness is one of the 20 neglected tropical diseases listed by the World Health Organization, which lead to death if left untreated. This disease is caused by Trypanosoma brucei gambiense, which is the chronic form of the disease present in western and central Africa, and by T. brucei rhodesiense, which is the acute form of the disease located in eastern and southern Africa. Many reports have highlighted the effectiveness of flavonoid-based compounds against T. brucei. OBJECTIVE The present review summarizes the current standings and perspectives for the use of flavonoids as lead compounds for the potential treatment of HAT. METHODS A literature search was conducted for naturally occurring and synthetic anti-T brucei flavonoids by referencing textbooks and scientific databases (SciFinder, PubMed, Science Direct, Wiley, ACS, SciELO, Google Scholar, Springer, among others) from their inception until February 2019. RESULTS Flavonoids isolated from different parts of plants and species were reported to exhibit moderate to high in vitro antitrypanosomal activity against T. brucei. In addition, synthetic flavonoids revealed anti-T. brucei activity. Molecular interactions of bioactive flavonoids with T. brucei protein targets showed promising results. CONCLUSION According to in vitro anti-T brucei studies, there is evidence that flavonoids might be lead compounds for the potential treatment of HAT. However, toxicological studies, as well as the mechanism of action of the in vitro active flavonoids are needed to support their use as potential leads for the treatment of HAT.
Collapse
Affiliation(s)
- Pone Kamdem Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira Igne Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
31
|
Huang XW, Xu Y, Sui X, Lin H, Xu JM, Han D, Ye DD, Lv GF, Liu YX, Qu XB, Duan MH. Scutellarein suppresses Aβ-induced memory impairment via inhibition of the NF-κB pathway in vivo and in vitro. Oncol Lett 2019; 17:5581-5589. [PMID: 31186780 PMCID: PMC6507344 DOI: 10.3892/ol.2019.10274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 02/22/2019] [Indexed: 12/26/2022] Open
Abstract
The flavonoid compound scutellarin (Scu) is a traditional Chinese medicine used to treat a variety of diseases; however, the use of scutellarein (Scue), the hydrolysate of Scu, and its mechanisms of action in Alzheimer's disease (AD) have not been fully elucidated. In the present study, the effects of Scue on amyloid β (Aβ)-induced AD-like pathology were investigated. An in vitro model of inflammation and an aged rat model were used to confirm the effects of Scue. In vitro MTT assays and flow cytometry were used to assess the effects of Scue on cell viability and apoptosis, respectively. A Morris water maze was used to evaluate spatial learning and memory, and the levels of Aβ deposition, superoxide dismutase, malondialdehyde, apoptosis, neuro-inflammatory factors and nuclear factor-κB (NF-κB) activation in hippocampal tissues in vivo were measured to determine the effect of Scue in AD. Scue may be protective, as it decreased the apoptosis of hippocampal cells in vitro, inhibited Aβ-induced cognitive impairment, suppressed hippocampal neuro-inflammation and suppressed activation of NF-κB in vivo. Therefore, Scue may be a useful agent for the treatment of Aβ-associated pathology in the central nervous system through inhibition of the protein kinase B/NF-κB signaling pathway and thus, future studies are required to investigate the efficacy of Scue in patients with AD.
Collapse
Affiliation(s)
- Xiao-Wei Huang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Yan Xu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Xin Sui
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - He Lin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Jia-Ming Xu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Dong Han
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Dou-Dan Ye
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Guang-Fu Lv
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Yue-Xin Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Xiao-Bo Qu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Ming-Hua Duan
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| |
Collapse
|
32
|
Phytochemistry, Chemotaxonomy, Ethnopharmacology, and Nutraceutics of Lamiaceae. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64185-4.00004-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Ashour ML, Youssef FS, Gad HA, El-Readi MZ, Bouzabata A, Abuzeid RM, Sobeh M, Wink M. Evidence for the anti-inflammatory activity of Bupleurum marginatum (Apiaceae) extracts using in vitro and in vivo experiments supported by virtual screening. J Pharm Pharmacol 2018; 70:952-963. [PMID: 29611204 DOI: 10.1111/jphp.12904] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/10/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVES To explore the potential anti-inflammatory activity of Bupleurum marginatum extracts using in vitro and in vivo studies supported by virtual screening. METHODS Antioxidant activity was assessed using the DPPH˙ and inhibition of 2-deoxyribose degradation assays. Anti-inflammatory activity was determined in vitro by measuring the suppression of prostaglandin E2 release (PGE2 ) in pancreatic cancer cells (MIA-PaCa-2) and the inhibition of 5-lipoxygenase whereas the rat paw oedema was used in vivo. The major constituents were docked in 5-lipoxygenase and cyclooxygenase-II active sites. KEY FINDINGS Methanol and dichloromethane (DCM) extracts showed IC50 of 46.99 and 162.99 μg/ml in the DPPH˙, 1.52 and 2.12 μg/ml in inhibition of 2-deoxyribose degradation assays, respectively. They reduced PGE2 release by 41.33 and 52.85% at 25 μg/ml and inhibited 5-lipoxygenase with IC50 of 45.28 and 25.92 μg/ml, respectively. 50 and 70% reduction in the diameter of the carrageenan-induced rat paws with methanol and DCM extracts, respectively, with a marked decline in the inflammation score was observed. Rutin, a predominating compound, showed a strong interaction with the key amino acids in 5-LOX active site with interaction energy of -74.59 kcal/mol. CONCLUSIONS Our study provides evidence for an interesting anti-inflammatory activity of B. marginatum aerial parts offering a natural anti-inflammatory agent.
Collapse
Affiliation(s)
- Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.,Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Haidy A Gad
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Mahmoud Z El-Readi
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany.,Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Abdia, 21955, Makkah, Saudi Arabia
| | - Amel Bouzabata
- Laboratory of Pharmacognosy and Organic Synthesis, Faculty of Science, Badji-Mokhtar University, 23000, Annaba, Algeria
| | - Riham M Abuzeid
- Department of Pathology, Faculty of Medicine, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Mansour Sobeh
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
34
|
Karimov AM, Botirov EK. Structural Diversity and State of Knowledge of Flavonoids of the Scutellaria L. Genus. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162017070068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Chledzik S, Strawa J, Matuszek K, Nazaruk J. Pharmacological Effects of Scutellarin, An Active Component of Genus Scutellaria and Erigeron: A Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:319-337. [PMID: 29433387 DOI: 10.1142/s0192415x18500167] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Flavonoid compound scutellarin (Scu) is quite frequently met in the plant kingdom, particularly in the genus Scutellaria (Lamiaceae) and Erigeron (Asteraceae). The extract of the herb of Erigeron breviscapus, containing this component in high amount, has been used for many years in traditional Chinese medicine. In recent years, studies have made great progress on the usefulness of Scu for treating various diseases by testing its mechanism of action. They support the traditional use of Scu rich plant in heart and cerebral ischemia. Scu can potentially be applied in Alzheimer's disease, Helicobacter pylori infection, vascular complications of diabetes and as an inhibitor of certain carcinomas. Various methods were designed to improve its isolation from plant material, solubility, absorption and bioavailability. On the basis of recent studies, it is suggested that Scu could be a promising candidate for new natural drug and deserves particular attention in further research and development.
Collapse
Affiliation(s)
- Sebastian Chledzik
- 1 Department of Pharmacognosy, Medical University of Bialystok, Bialystok, Poland
| | - Jakub Strawa
- 1 Department of Pharmacognosy, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Matuszek
- 1 Department of Pharmacognosy, Medical University of Bialystok, Bialystok, Poland
| | - Jolanta Nazaruk
- 1 Department of Pharmacognosy, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
36
|
Characterization of metabolite profiles from the leaves of green perilla ( Perilla frutescens ) by ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry and screening for their antioxidant properties. J Food Drug Anal 2017; 25:776-788. [PMID: 28987353 PMCID: PMC9328887 DOI: 10.1016/j.jfda.2016.09.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022] Open
Abstract
The objective of this research was to access the determination of metabolite profiles and antioxidant properties in the leaves of green perilla (Perilla frutescens), where these are considered functional and nutraceutical substances in Korea. A total of 25 compositions were confirmed as six phenolic acids, two triterpenoids, eight flavonoids, seven fatty acids, and two glucosides using an ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) technique from the methanol extract of this species. The individual and total compositions exhibited significant differences, especially rosmarinic acid (10), and linolenic acids (22 and 23) were detected as the predominant metabolites. Interestingly, rosmarinic acid (10) was observed to have considerable differences with various concentrations in three samples (Doryong, 6.38 μg/g; Sinseong, 317.60 μg/g; Bongmyeong, 903.53 μg/g) by UPLC analysis at 330 nm. The scavenging properties against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radicals also showed potent effects with remarkable differences at a concentration of 100 μg/mL, and their abilities were as follows: Sinseong (DPPH, 86%; ABTS, 90%) > Bongmyeong (71% and 84%, respectively) > Doryong (63% and 73%, respectively). Our results suggest that the antioxidant activities of green perilla leaves are correlated with metabolite contents, especially the five major compositions 10 and 22–25. Moreover, this study may be useful in evaluating the relationship between metabolite composition and antioxidant activity.
Collapse
|
37
|
|
38
|
Potential of Terpenoids and Flavonoids from Asteraceae as Anti-Inflammatory, Antitumor, and Antiparasitic Agents. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6196198. [PMID: 28785291 PMCID: PMC5529648 DOI: 10.1155/2017/6196198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 11/24/2022]
|
39
|
Smiljkovic M, Stanisavljevic D, Stojkovic D, Petrovic I, Marjanovic Vicentic J, Popovic J, Golic Grdadolnik S, Markovic D, Sankovic-Babice S, Glamoclija J, Stevanovic M, Sokovic M. Apigenin-7-O-glucoside versus apigenin: Insight into the modes of anticandidal and cytotoxic actions. EXCLI JOURNAL 2017; 16:795-807. [PMID: 28827996 PMCID: PMC5547395 DOI: 10.17179/excli2017-300] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/18/2017] [Indexed: 12/31/2022]
Abstract
Bioactive potential of apigenin derivative apigenin-7-O-glucoside related to its antifungal activity on Candida spp. and cytotoxic effect on colon cancer cells was studied and compared with bioactive potential of apigenin. Antifungal activity was tested on 14 different isolates of Candida spp. using membrane permeability assay, measuring inhibition of reactive oxidative species and inhibition of CYP51 C. albicans enzyme. Cytotoxic potential of apigenin-7-O-glucoside was tested on colon cancer HCT116 cells by measuring cell viability, apoptosis rate and apoptosis- and colon cancer-related gene expression. Obtained results indicated considerable antifungal activity of apigenin-7-O-glucoside towards all Candida isolates. Breakdown of C. albicans plasma membrane was achieved upon treatment with apigenin-7-O-glucoside for shorter period of time then with apigenin. Reduction of intra- and extracellular reactive oxidative species was achieved with minimum inhibitory concentrations of both compounds, suggesting that reactive oxidative species inhibition could be a mechanism of antifungal action. None of the compounds exhibited binding affinity to C. albicans CYP51 protein. Besides, apigenin-7-O-glucoside was more effective compared to apigenin in reduction of cell's viability and induction of cell death of HCT116 cells. Treatment with both compounds resulted in chromatin condensation, apoptotic bodies formation and apoptotic genes expression in HCT116 cells, but the apigenin-7-O-glucoside required a lower concentration to achieve the same effect. Compounds apigenin-7-O-glucoside and apigenin displayed prominent antifungal potential and cytotoxic effect on HCT116 cells. However, our results showed that apigenin-7-O-glucoside has more potent activity compared to apigenin in all assays that we used.
Collapse
Affiliation(s)
- Marija Smiljkovic
- Department of Plant Physiology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Danijela Stanisavljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO Box 23, 11010 Belgrade, Serbia
| | - Dejan Stojkovic
- Department of Plant Physiology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Isidora Petrovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO Box 23, 11010 Belgrade, Serbia
| | - Jelena Marjanovic Vicentic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO Box 23, 11010 Belgrade, Serbia
| | - Jelena Popovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO Box 23, 11010 Belgrade, Serbia
| | - Simona Golic Grdadolnik
- Laboratory of Biomolecular Structure, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Dejan Markovic
- Clinic for Pediatric and Preventative Dentistry, Faculty of Dental Medicine, Rankeova 4, Belgrade
| | | | - Jasmina Glamoclija
- Department of Plant Physiology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO Box 23, 11010 Belgrade, Serbia
| | - Marina Sokovic
- Department of Plant Physiology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
40
|
Kharazian N, Hashemi M. Chemotaxonomy and Morphological Studies in Five Marrubium L. Species in Iran. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE 2017. [DOI: 10.1007/s40995-017-0202-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Xiao J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit Rev Food Sci Nutr 2017; 57:1874-1905. [PMID: 26176651 DOI: 10.1080/10408398.2015.1032400] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dietary flavonoids, especially their glycosides, are the most vital phytochemicals in diets and are of great general interest due to their diverse bioactivity. The natural flavonoids almost all exist as their O-glycoside or C-glycoside forms in plants. In this review, we summarized the existing knowledge on the different biological benefits and pharmacokinetic behaviors between flavonoid aglycones and their glycosides. Due to various conclusions from different flavonoid types and health/disease conditions, it is very difficult to draw general or universally applicable comments regarding the impact of glycosylation on the biological benefits of flavonoids. It seems as though O-glycosylation generally reduces the bioactivity of these compounds - this has been observed for diverse properties including antioxidant activity, antidiabetes activity, anti-inflammation activity, antibacterial, antifungal activity, antitumor activity, anticoagulant activity, antiplatelet activity, antidegranulating activity, antitrypanosomal activity, influenza virus neuraminidase inhibition, aldehyde oxidase inhibition, immunomodulatory, and antitubercular activity. However, O-glycosylation can enhance certain types of biological benefits including anti-HIV activity, tyrosinase inhibition, antirotavirus activity, antistress activity, antiobesity activity, anticholinesterase potential, antiadipogenic activity, and antiallergic activity. However, there is a lack of data for most flavonoids, and their structures vary widely. There is also a profound lack of data on the impact of C-glycosylation on flavonoid biological benefits, although it has been demonstrated that in at least some cases C-glycosylation has positive effects on properties that may be useful in human healthcare such as antioxidant and antidiabetes activity. Furthermore, there is a lack of in vivo data that would make it possible to make broad generalizations concerning the influence of glycosylation on the benefits of flavonoids for human health. It is possible that the effects of glycosylation on flavonoid bioactivity in vitro may differ from that seen in vivo. With in vivo (oral) treatment, flavonoid glycosides showed similar or even higher antidiabetes, anti-inflammatory, antidegranulating, antistress, and antiallergic activity than their flavonoid aglycones. Flavonoid glycosides keep higher plasma levels and have a longer mean residence time than those of aglycones. We should pay more attention to in vivo benefits of flavonoid glycosides, especially C-glycosides.
Collapse
Affiliation(s)
- Jianbo Xiao
- a Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau , Taipa , Macau.,b Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg , Am Hubland , Würzburg , Germany
| |
Collapse
|
42
|
Mamadalieva NZ, Akramov DK, Ovidi E, Tiezzi A, Nahar L, Azimova SS, Sarker SD. Aromatic Medicinal Plants of the Lamiaceae Family from Uzbekistan: Ethnopharmacology, Essential Oils Composition, and Biological Activities. MEDICINES 2017; 4:medicines4010008. [PMID: 28930224 PMCID: PMC5597069 DOI: 10.3390/medicines4010008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 01/24/2017] [Accepted: 02/04/2017] [Indexed: 01/04/2023]
Abstract
Plants of the Lamiaceae family are important ornamental, medicinal, and aromatic plants, many of which produce essential oils that are used in traditional and modern medicine, and in the food, cosmetics, and pharmaceutical industry. Various species of the genera Hyssopus, Leonurus, Mentha, Nepeta, Origanum, Perovskia, Phlomis, Salvia, Scutellaria, and Ziziphora are widespread throughout the world, are the most popular plants in Uzbek traditional remedies, and are often used for the treatment of wounds, gastritis, infections, dermatitis, bronchitis, and inflammation. Extensive studies of the chemical components of these plants have led to the identification of many compounds, as well as essentials oils, with medicinal and other commercial values. The purpose of this review is to provide a critical overview of the literature surrounding the traditional uses, ethnopharmacology, biological activities, and essential oils composition of aromatic plants of the family Lamiaceae, from the Uzbek flora.
Collapse
Affiliation(s)
- Nilufar Z Mamadalieva
- Laboratory of Chemistry of Glycosides, Institute of the Chemistry of Plant Substances AS RUz, Tashkent 100170, Uzbekistan.
| | - Davlat Kh Akramov
- Laboratory of Chemistry of Glycosides, Institute of the Chemistry of Plant Substances AS RUz, Tashkent 100170, Uzbekistan.
| | - Elisa Ovidi
- Department for the Innovation in Biological, Agro-food and Forestal Systems, Tuscia University, Viterbo 01100, Italy.
| | - Antonio Tiezzi
- Department for the Innovation in Biological, Agro-food and Forestal Systems, Tuscia University, Viterbo 01100, Italy.
| | - Lutfun Nahar
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, UK.
| | - Shahnoz S Azimova
- Laboratory of Chemistry of Glycosides, Institute of the Chemistry of Plant Substances AS RUz, Tashkent 100170, Uzbekistan.
| | - Satyajit D Sarker
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, UK.
| |
Collapse
|
43
|
Fernández-Calienes Valdés A, Monzote Fidalgo L, Sariego Ramos I, Marrero Delange D, Morales Rico CL, Mendiola Martínez J, Cuéllar AC. Antiprotozoal screening of the Cuban native plant Scutellaria havanensis. PHARMACEUTICAL BIOLOGY 2016; 54:3197-3202. [PMID: 27564587 DOI: 10.1080/13880209.2016.1216130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 04/21/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Scutellaria havanensis Jacq. (Lamiaceae) is a native medicinal herb with a history of use in Cuba. OBJECTIVE This study screens the antiprotozoal activity of S. havanensis. MATERIALS AND METHODS Chloroform and methanol extracts from leaves and stems were evaluated in vitro at doses between 0.015 and 200 μg/mL against protozoan parasites: Plasmodium berghei, Trichomonas vaginalis and Leishmania amazonensis. Chloroform and methanol extracts were characterized by GC/MS. Cytotoxicity against mouse peritoneal macrophages was tested in parallel. RESULTS Scutellaria havanensis extracts exhibited IC50 values between 7.7 and 32.2 μg/mL against trophozoites of P. berghei and T. vaginalis; while the extracts were inactive against L. amazonensis promastigotes. Trichomonicidal activity of methanol extract exhibited the best selectivity but chloroform extract showed the highest antiplasmodial, trichomonicidal and cytotoxic activity. The majority of compounds in the chloroform extract were hydroxy and/or methoxyflavones (77.96%), in particular, wogonin (48.27%). In methanol extract, wogonin (5.89%) was detected. Trichomonicidal effect of wogonin was moderate (IC50 = 56 μM) and unspecific with respect to macrophages (SI = 2). On the contrary, antiplasmodial activity of wogonin were particularly active (IC50 = 15 μM) demonstrating a higher selectivity index (SI = 7.4). CONCLUSIONS Wogonin is an active principle compound of the chloroform extract of S. havanensis against P. berghei and T. vaginalis trophozoites, whereas the methanol extract of S. havanensis should be investigated more deeply as a trichomonicide. Our findings suggest that wogonin is potentially useful for the development of antimalarial alternative treatments.
Collapse
Affiliation(s)
| | - Lianet Monzote Fidalgo
- a Department of Parasitology , Institute of Tropical Medicine "Pedro Kourí" , La Lisa , Havana , Cuba
| | - Idalia Sariego Ramos
- a Department of Parasitology , Institute of Tropical Medicine "Pedro Kourí" , La Lisa , Havana , Cuba
| | | | | | - Judith Mendiola Martínez
- a Department of Parasitology , Institute of Tropical Medicine "Pedro Kourí" , La Lisa , Havana , Cuba
| | - Armando Cuéllar Cuéllar
- c Department of Pharmacy , Institute of Pharmacy and Foods, University of Havana , Havana , Cuba
| |
Collapse
|
44
|
Besbes Hlila M, Mosbah H, Majouli K, Ben Nejma A, Ben Jannet H, Mastouri M, Aouni M, Selmi B. Antimicrobial Activity ofScabiosa arenariaForssk. Extracts and Pure Compounds Using Bioguided Fractionation. Chem Biodivers 2016; 13:1262-1272. [DOI: 10.1002/cbdv.201600028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/03/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Malek Besbes Hlila
- Laboratory of Transmissible Diseases and Biological Active Substances; Faculty of Pharmacy; University of Monastir; Avenue Avicenne 5000 Monastir Tunisia
| | - Habib Mosbah
- Laboratory of Bioresources, Integrative Biology and Exploiting; Higher Institute of Biotechnology of Monastir; Taher Hadded Avenue 5000 Monastir Tunisia
| | - Kaouther Majouli
- Laboratory of Biochemistry, Cell Signaling and Disease; Research Unit; UR 12ES08; Faculty of Medicine of Monastir; Avenue Avicenne, 5019 Monastir Tunisia
| | - Aymen Ben Nejma
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity; Team: Medicinal Chemistry and Natural Products; Faculty of Sciences of Monastir; University of Monastir; Avenue de l’Environnement 5019 Monastir Tunisia
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity; Team: Medicinal Chemistry and Natural Products; Faculty of Sciences of Monastir; University of Monastir; Avenue de l’Environnement 5019 Monastir Tunisia
| | - Maha Mastouri
- Laboratory of Transmissible Diseases and Biological Active Substances; Faculty of Pharmacy; University of Monastir; Avenue Avicenne 5000 Monastir Tunisia
| | - Mahjoub Aouni
- Laboratory of Transmissible Diseases and Biological Active Substances; Faculty of Pharmacy; University of Monastir; Avenue Avicenne 5000 Monastir Tunisia
| | - Boulbaba Selmi
- Laboratory of Bioresources, Integrative Biology and Exploiting; Higher Institute of Biotechnology of Monastir; Taher Hadded Avenue 5000 Monastir Tunisia
| |
Collapse
|
45
|
7-O-Glucosides of Norwogonin and Isoscutellarein from the Aerial Part of Scutellaria adenostegia. Chem Nat Compd 2016. [DOI: 10.1007/s10600-016-1811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Mamadalieva NZ, Sharopov F, Satyal P, Azimova SS, Wink M. Composition of the essential oils of three Uzbek Scutellaria species (Lamiaceae) and their antioxidant activities. Nat Prod Res 2016; 31:1172-1176. [DOI: 10.1080/14786419.2016.1222383] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Farukh Sharopov
- Department of Biology, Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, Heidelberg, Germany
| | - Prabodh Satyal
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, USA
| | - Shahnoz Sadykovna Azimova
- Laboratory of the Chemistry of GlycosidesInstitute of the Chemistry of Plant Substances, Tashkent, Uzbekistan
| | - Michael Wink
- Department of Biology, Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, Heidelberg, Germany
| |
Collapse
|
47
|
Pollio A, Zarrelli A, Romanucci V, Di Mauro A, Barra F, Pinto G, Crescenzi E, Roscetto E, Palumbo G. Polyphenolic Profile and Targeted Bioactivity of Methanolic Extracts from Mediterranean Ethnomedicinal Plants on Human Cancer Cell Lines. Molecules 2016; 21:395. [PMID: 27023497 PMCID: PMC6274438 DOI: 10.3390/molecules21040395] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/03/2016] [Accepted: 03/16/2016] [Indexed: 12/16/2022] Open
Abstract
The methanol extracts of the aerial part of four ethnomedicinal plants of Mediterranean region, two non-seed vascular plants, Equisetum hyemale L. and Phyllitis scolopendrium (L.) Newman, and two Spermatophyta, Juniperus communis L. (J. communis) and Cotinus coggygria Scop. (C. coggygria), were screened against four human cells lines (A549, MCF7, TK6 and U937). Only the extracts of J. communis and C. coggygria showed marked cytotoxic effects, affecting both cell morphology and growth. A dose-dependent effect of these two extracts was also observed on the cell cycle distribution. Incubation of all the cell lines in a medium containing J. communis extract determined a remarkable accumulation of cells in the G2/M phase, whereas the C. coggygria extract induced a significant increase in the percentage of G1 cells. The novelty of our findings stands on the observation that the two extracts, consistently, elicited coherent effects on the cell cycle in four cell lines, independently from their phenotype, as two of them have epithelial origin and grow adherent and two are lymphoblastoid and grow in suspension. Even the expression profiles of several proteins regulating cell cycle progression and cell death were affected by both extracts. LC-MS investigation of methanol extract of C. coggygria led to the identification of twelve flavonoids (compounds 1–11, 19) and eight polyphenols derivatives (12–18, 20), while in J. communis extract, eight flavonoids (21–28), a α-ionone glycoside (29) and a lignin (30) were found. Although many of these compounds have interesting individual biological activities, their natural blends seem to exert specific effects on the proliferation of cell lines either growing adherent or in suspension, suggesting potential use in fighting cancer.
Collapse
Affiliation(s)
- Antonino Pollio
- Department of Biology, University of Naples "Federico II", Complesso di MS Angelo, 80126 Naples, Italy.
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples "Federico II", Complesso di MS Angelo, 80126 Naples, Italy.
| | - Valeria Romanucci
- Consorzio Interuniversitario Sannio Tech, P.zza San G. Moscati 8, SS Appia km 256, 82030 Apollosa (BN), Italy.
| | - Alfredo Di Mauro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131 Naples, Italy.
| | - Federica Barra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131 Naples, Italy.
| | - Gabriele Pinto
- Department of Biology, University of Naples "Federico II", Complesso di MS Angelo, 80126 Naples, Italy.
| | - Elvira Crescenzi
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Via S. Pansini 5, 80131 Naples, Italy.
| | - Emanuela Roscetto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131 Naples, Italy.
| | - Giuseppe Palumbo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
48
|
Online screening of nitric oxide scavengers in natural products using high performance liquid chromatography coupled with tandem diode array and fluorescence detection. J Chromatogr A 2015; 1425:106-15. [DOI: 10.1016/j.chroma.2015.10.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 12/24/2022]
|
49
|
López-Cobo A, Gómez-Caravaca AM, Švarc-Gajić J, Segura-Carretero A, Fernández-Gutiérrez A. Determination of phenolic compounds and antioxidant activity of a Mediterranean plant: The case of Satureja montana subsp. kitaibelii. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.10.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
50
|
Nabavi SF, Braidy N, Habtemariam S, Orhan IE, Daglia M, Manayi A, Gortzi O, Nabavi SM. Neuroprotective effects of chrysin: From chemistry to medicine. Neurochem Int 2015; 90:224-31. [PMID: 26386393 DOI: 10.1016/j.neuint.2015.09.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 12/16/2022]
Abstract
The World Health Organization estimated that the proportion of older people (over 60 years) will increase from 11% to 22% during next 40 years throughout the world. With respect to this, the morbidity and mortality rates of age-related diseases will increase. Mental diseases are the most common and important health problems among elderly people. Therefore, much attention has been paid to the discovery of neuroprotective drugs with high efficacy and negligible adverse effects. A growing body of scientific evidence has shown that phytochemicals possess neuroprotective effects and also mitigate neurodegeneration under both in vivo and in vitro conditions. Polyphenolic compounds, especially flavonoids, are known as most common chemical class of phytochemicals which possess a multiple range of health promoting effects. Chrysin, belonging to the flavone class, is one of the most important bioactive constituents of different fruits, vegetables and even mushrooms. Chrysin possesses potent neuroprotective effects and suppress neuroinflammation. In addition, chrysin improves cognitive decline and possesses a potent anti-amyloidogenic and neurotrophic effects. Furthermore, beneficial effects of chrysin on both depression and epilepsy have been reported. The present paper aimed to critically review the available literature data regarding the neuroprotective effects of chrysin as well as its chemistry, sources and bioavailability.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Kent, UK
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Olga Gortzi
- Department of Food Technology, Technological Educational Institution of Thessaly Terma N. Temponera Str. Greece
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|