1
|
Cabodevilla X, Malo JE, Aguirre de Cárcer D, Zurdo J, Chaboy-Cansado R, Rastrojo A, García FJ, Traba J. Zoonotic potential of urban wildlife faeces, assessed through metabarcoding. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175866. [PMID: 39222816 DOI: 10.1016/j.scitotenv.2024.175866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Monitoring zoonoses in urban environments is of great relevance, where the incidence of certain pathogens may be higher and where population density makes the spread of any contagious disease more likely. In this study we applied a metabarcoding approach to study potentially zoonotic pathogens in faecal samples of 9 urban vertebrate species. We applied this methodology with two objectives. Firstly, to obtain information on potential pathogens present in the urban fauna of a large European city (Madrid, Spain) and to determine which are their main reservoirs. In addition, we tested for differences in the prevalence of these potential pathogens between urban and rural European rabbits, used as ubiquitous species. Additionally, based on the results obtained, we evaluated the effectiveness of metabarcoding as a tool for monitoring potential pathogen. Our results revealed the presence of potentially zoonotic bacterial genera in all studied host species, 10 of these genera with zoonotic species of mandatory monitoring in the European Union. Based on these results, urban birds (especially house sparrows and pigeons) and bats are the species posing the greatest potential risk, with Campylobacter and Listeria genera in birds and of Chlamydia and Vibrio cholerae in bats as most relevant pathogens. This information highlights the risk associated with fresh faeces from urban wildlife. In addition, we detected Campylobacter in >50 % of the urban rabbit samples, while we only detected it in 11 % of the rural rabbit samples. We found that urban rabbits have a higher prevalence of some pathogens relative to rural rabbits, which could indicate increased risk of pathogen transmission to humans. Finally, our results showed that metabarcoding can be an useful tool to quickly obtain a first screening of potentially zoonotic organisms, necessary information to target the monitoring efforts on the most relevant pathogens and host species.
Collapse
Affiliation(s)
- Xabier Cabodevilla
- Terrestrial Ecology Group (TEG-UAM), Department of Ecology, Universidad Autónoma de Madrid, Madrid, Spain; Conservation Biology Group, Landscape Dynamics and Biodiversity Program, Forest Science and Technology Centre of Catalonia (CTFC), Solsona, Spain; Department of Zoology and Animal Cell Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Alava, Spain
| | - Juan E Malo
- Terrestrial Ecology Group (TEG-UAM), Department of Ecology, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid (CIBC-UAM), Madrid, Spain
| | - Daniel Aguirre de Cárcer
- Microbial and Environmental Genomics Group, Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julia Zurdo
- Terrestrial Ecology Group (TEG-UAM), Department of Ecology, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid (CIBC-UAM), Madrid, Spain
| | - Rubén Chaboy-Cansado
- Microbial and Environmental Genomics Group, Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Rastrojo
- Microbial and Environmental Genomics Group, Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco J García
- Biodiversity Monitoring Group, Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Jose Antonio Novais, 12, Madrid, 28040, Spain
| | - Juan Traba
- Terrestrial Ecology Group (TEG-UAM), Department of Ecology, Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid (CIBC-UAM), Madrid, Spain.
| |
Collapse
|
2
|
Morales-Cortés S, Sala-Comorera L, Gómez-Gómez C, Muniesa M, García-Aljaro C. CrAss-like phages are suitable indicators of antibiotic resistance genes found in abundance in fecally polluted samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124713. [PMID: 39134166 DOI: 10.1016/j.envpol.2024.124713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Antibiotic resistance genes (ARGs) have been extensively observed in bacterial DNA, and more recently, in phage particles from various water sources and food items. The pivotal role played by ARG transmission in the proliferation of antibiotic resistance and emergence of new resistant strains calls for a thorough understanding of the underlying mechanisms. The aim of this study was to assess the suitability of the prototypical p-crAssphage, a proposed indicator of human fecal contamination, and the recently isolated crAssBcn phages, both belonging to the Crassvirales group, as potential indicators of ARGs. These crAss-like phages were evaluated alongside specific ARGs (blaTEM, blaCTX-M-1, blaCTX-M-9, blaVIM, blaOXA-48, qnrA, qnrS, tetW and sul1) within the total DNA and phage DNA fractions in water and food samples containing different levels of fecal pollution. In samples with high fecal load (>103 CFU/g or ml of E. coli or somatic coliphages), such as wastewater and sludge, positive correlations were found between both types of crAss-like phages and ARGs in both DNA fractions. The strongest correlation was observed between sul1 and crAssBcn phages (rho = 0.90) in sludge samples, followed by blaCTX-M-9 and p-crAssphage (rho = 0.86) in sewage samples, both in the phage DNA fraction. The use of crAssphage and crAssBcn as indicators of ARGs, considered to be emerging environmental contaminants of anthropogenic origin, is supported by their close association with the human gut. Monitoring ARGs can help to mitigate their dissemination and prevent the emergence of new resistant bacterial strains, thus safeguarding public health.
Collapse
Affiliation(s)
- Sara Morales-Cortés
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Prevosti Building Floor 0, E-08028, Barcelona, Spain.
| | - Laura Sala-Comorera
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Prevosti Building Floor 0, E-08028, Barcelona, Spain.
| | - Clara Gómez-Gómez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Prevosti Building Floor 0, E-08028, Barcelona, Spain.
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Prevosti Building Floor 0, E-08028, Barcelona, Spain.
| | - Cristina García-Aljaro
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Prevosti Building Floor 0, E-08028, Barcelona, Spain.
| |
Collapse
|
3
|
Stevenson EM, Rushby-Jones O, Buckling A, Cole M, Lindeque PK, Murray AK. Selective colonization of microplastics, wood and glass by antimicrobial-resistant and pathogenic bacteria. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001506. [PMID: 39405105 PMCID: PMC11477370 DOI: 10.1099/mic.0.001506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
The Plastisphere is a novel niche whereby microbial communities attach to plastic debris, including microplastics. These communities can be distinct from those found in the surrounding environment or those attached to natural substrates and may serve as a reservoir of both pathogenic and antimicrobial-resistant (AMR) bacteria. Owing to the frequent omission of appropriate comparator particles (e.g. natural substrates) in previous studies, there is a lack of empirical evidence supporting the unique risks posed by microplastics in terms of enrichment and spread of AMR pathogens. This study investigated selective colonization by a sewage community on environmentally sampled microplastics with three different polymers, sources and morphologies, alongside natural substrate (wood), inert substrate (glass) and free-living/planktonic community controls. Culture and molecular methods (quantitative polymerase chain reaction (qPCR)) were used to ascertain phenotypic and genotypic AMR prevalence, respectively, and multiplex colony PCR was used to identify extra-intestinal pathogenic Escherichia coli (ExPECs). From this, polystyrene and wood particles were found to significantly enrich AMR bacteria, whereas sewage-sourced bio-beads significantly enriched ExPECs. Polystyrene and wood were the least smooth particles, and so the importance of particle roughness on AMR prevalence was then directly investigated by comparing the colonization of virgin vs artificially weathered polyethylene particles. Surface weathering did not have a significant effect on the AMR prevalence of colonized particles. Our results suggest that the colonization of plastic and non-plastic particles by AMR and pathogenic bacteria may be enhanced by substrate-specific traits.
Collapse
Affiliation(s)
- Emily M. Stevenson
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Faculty of Health and Life Sciences, Penryn Campus, Cornwall, UK
- Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH, UK
| | - Owen Rushby-Jones
- Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
| | - Angus Buckling
- Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
| | - Matthew Cole
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH, UK
| | - Penelope K. Lindeque
- Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH, UK
| | - Aimee K. Murray
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Faculty of Health and Life Sciences, Penryn Campus, Cornwall, UK
| |
Collapse
|
4
|
Carmo dos Santos M, Cerqueira Silva AC, dos Reis Teixeira C, Pinheiro Macedo Prazeres F, Fernandes dos Santos R, de Araújo Rolo C, de Souza Santos E, Santos da Fonseca M, Oliveira Valente C, Saraiva Hodel KV, Moraes dos Santos Fonseca L, Sampaio Dotto Fiuza B, de Freitas Bueno R, Bittencourt de Andrade J, Aparecida Souza Machado B. Wastewater surveillance for viral pathogens: A tool for public health. Heliyon 2024; 10:e33873. [PMID: 39071684 PMCID: PMC11279281 DOI: 10.1016/j.heliyon.2024.e33873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
A focus on water quality has intensified globally, considering its critical role in sustaining life and ecosystems. Wastewater, reflecting societal development, profoundly impacts public health. Wastewater-based epidemiology (WBE) has emerged as a surveillance tool for detecting outbreaks early, monitoring infectious disease trends, and providing real-time insights, particularly in vulnerable communities. WBE aids in tracking pathogens, including viruses, in sewage, offering a comprehensive understanding of community health and lifestyle habits. With the rise in global COVID-19 cases, WBE has gained prominence, aiding in monitoring SARS-CoV-2 levels worldwide. Despite advancements in water treatment, poorly treated wastewater discharge remains a threat, amplifying the spread of water-, sanitation-, and hygiene (WaSH)-related diseases. WBE, serving as complementary surveillance, is pivotal for monitoring community-level viral infections. However, there is untapped potential for WBE to expand its role in public health surveillance. This review emphasizes the importance of WBE in understanding the link between viral surveillance in wastewater and public health, highlighting the need for its further integration into public health management.
Collapse
Affiliation(s)
- Matheus Carmo dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Ana Clara Cerqueira Silva
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carine dos Reis Teixeira
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Filipe Pinheiro Macedo Prazeres
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rosângela Fernandes dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carolina de Araújo Rolo
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Emanuelle de Souza Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Maísa Santos da Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Camila Oliveira Valente
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Larissa Moraes dos Santos Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Bianca Sampaio Dotto Fiuza
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rodrigo de Freitas Bueno
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | - Jailson Bittencourt de Andrade
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
- Centro Interdisciplinar de Energia e Ambiente – CIEnAm, Federal University of Bahia, Salvador, 40170-115, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
| |
Collapse
|
5
|
Murei A, Kamika I, Momba MNB. Selection of a diagnostic tool for microbial water quality monitoring and management of faecal contamination of water sources in rural communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167484. [PMID: 37804981 DOI: 10.1016/j.scitotenv.2023.167484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
The aim of the current study was to evaluate, validate and select microbial water quality monitoring tools to establish their suitability and feasibility for use in rural communities. The monitoring of water quality was performed at three different levels: i) basic level focusing on sanitary inspection and hydrogen sulphide (H2S) test; ii) intermediate level via enumeration of faecal indicator bacteria (faecal coliforms, Escherichia coli, Enterococcus spp. and Clostridium perfringens); and iii) advanced level based on qPCR detecting host-associated genetic markers (BacHum, BacCow, Cytb, Pig-2-Bac, and BacCan) and pathogens (Vibrio cholerae, Escherichia coli O157:H7, and Shiga toxin-producing Escherichia coli). A positive correlation was recorded between sanitary risk and faecal coliforms (r = 0.613 and p < 0.002), E. coli (r = 0.589 and p < 0.003), and Enterococcus spp. (r = 0.625 and p < 0.003). The H2S test showed positive correlations with sanitary risk score (r = 0.623; p < 0.003), faecal coliforms (r = 0.809; p < 0.001), E. coli (r = 0.779; p < 0.001) and Enterococcus spp. (r = 0.799; p < 0.001). Similar correlation patterns were also found with advanced techniques used for detecting host-associated genetic markers, excepted between Clostridium perfringens, and Pig-2-Bac (pig), BacCan (dog), and V. cholerae. The H2S test and sanitary inspections are therefore suitable and cost-effective tools to capacitate rural areas at household level for the monitoring of faecal contamination and management of water sources.
Collapse
Affiliation(s)
- Arinao Murei
- Tshwane University of Technology, Department of Environmental, Water and Earth Sciences, Arcadia Campus, P/B X 680, Pretoria 0001, South Africa.
| | - Ilunga Kamika
- Institute for Nanotechnology and Water Sustainability, School of Science, College of Science, Engineering and Technology, Florida Campus, University of South Africa, P.O Box 392, Florida, Roodepoort 1710, South Africa.
| | - Maggy Ndombo Benteke Momba
- Tshwane University of Technology, Department of Environmental, Water and Earth Sciences, Arcadia Campus, P/B X 680, Pretoria 0001, South Africa.
| |
Collapse
|
6
|
Shi B, Zhao R, Su G, Liu B, Liu W, Xu J, Li Q, Meng J. Metagenomic surveillance of antibiotic resistome in influent and effluent of wastewater treatment plants located on the Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:162031. [PMID: 36740063 DOI: 10.1016/j.scitotenv.2023.162031] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
As hotspots for the dissemination of antibiotic resistance genes (ARGs), wastewater treatment plants (WWTPs) have attracted global attention. However, there lacks a sufficient metagenomic surveillance of antibiotic resistome in the WWTPs located on the Qinghai-Tibet Plateau. Here, metagenomic approaches were used to comprehensively investigate the occurrence, mobility potential, and bacterial hosts of ARGs in influent and effluent of 18 WWTPs located on the Qinghai-Tibet Plateau. The total ARG relative abundances and diversity were significantly decreased from influent to effluent across the WWTPs. Multidrug, bacitracin, sulfonamide, aminoglycoside, and beta-lactam ARGs generally consisted of the main ARG types in effluent samples, which were distinct from influent samples. A group of 72 core ARGs accounting for 61.8-95.8 % of the total ARG abundances were shared by all samples. Clinically relevant ARGs mainly conferring resistance to beta-lactams were detected in influent (277 ARGs) and effluent (178 ARGs). Metagenomic assembly revealed that the genetic location of an ARG on a plasmid or a chromosome was related to its corresponding ARG type, demonstrating the distinction in the mobility potential of different ARG types. The abundance of plasmid-mediated ARGs accounted for a much higher proportion than that of chromosome-mediated ARGs in both influent and effluent. Moreover, the ARGs co-occurring with diverse mobile genetic elements in the effluent exhibited a comparable mobility potential with the influent. Furthermore, 137 metagenome-assembled genomes (MAGs) assigned to 13 bacterial phyla were identified as the ARG hosts, which could be effectively treated in most WWTPs. Notably, 46 MAGs were found to carry multiple ARG types and the potential pathogens frequently exhibited multi-antibiotic resistance. Some ARG types tended to be carried by certain bacteria, showing a specific host-resistance association pattern. This study highlights the necessity for metagenomic surveillance and will facilitate risk assessment and control of antibiotic resistome in WWTPs located on the vulnerable area.
Collapse
Affiliation(s)
- Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renxin Zhao
- School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingyue Liu
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Wenxiu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Eifan S, Maniah K, Nour I, Hanif A, Yassin MT, Al-Ashkar I, Abid I. Pepper Mild Mottle Virus as a Potential Indicator of Fecal Contamination in Influents of Wastewater Treatment Plants in Riyadh, Saudi Arabia. Microorganisms 2023; 11:1038. [PMID: 37110461 PMCID: PMC10144068 DOI: 10.3390/microorganisms11041038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Several indicators of fecal pollution in water resources are continuously monitored for their reliability and, of particular interest, their correlation to human enteric viruses-not justified by traditional bacterial indicators. Pepper mild mottle virus (PMMoV) has recently been proposed as a successful viral surrogate of human waterborne viruses; however, in Saudi Arabia there are no available data in terms of its prevalence and concentration in water bodies. The concentration of PMMoV in three different wastewater treatment plants (King Saud University (KSU), Manfoha (MN), and Embassy (EMB) wastewater treatment plants (WWTP)) was measured using qRT-PCR during a one-year period and compared to the human adenovirus (HAdV), which is highly persistent and considered an indicator for viral-mediated fecal contamination. PMMoV was found in ~94% of the entire wastewater samples (91.6-100%), with concentrations ranging from 62 to 3.5 × 107 genome copies/l (GC/l). However, HAdV was detected in 75% of raw water samples (~67-83%). The HAdV concentration ranged between 1.29 × 103 GC/L and 1.26 × 107 GC/L. Higher positive correlation between PMMoV and HAdV concentrations was detected at MN-WWTP (r = 0.6148) than at EMB-WWTP (r = 0.207). Despite the lack of PMMoV and HAdV seasonality, a higher positive correlation (r = 0.918) of PMMoV to HAdV was recorded at KSU-WWTP in comparison to EMB-WWTP (r = 0.6401) around the different seasons. Furthermore, meteorological factors showed no significant influence on PMMoV concentrations (p > 0.05), thus supporting the use of PMMoV as a possible fecal indicator of wastewater contamination and associated public health issues, particularly at MN-WWTP. However, a continuous monitoring of the PMMoV distribution pattern and concentration in other aquatic environments, as well as its correlation to other significant human enteric viruses, is essential for ensuring its reliability and reproducibility as a fecal pollution indicator.
Collapse
Affiliation(s)
- Saleh Eifan
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (A.H.); (M.T.Y.); (I.A.)
| | - Khalid Maniah
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (A.H.); (M.T.Y.); (I.A.)
| | - Islam Nour
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (A.H.); (M.T.Y.); (I.A.)
| | - Atif Hanif
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (A.H.); (M.T.Y.); (I.A.)
| | - Mohamed Taha Yassin
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (A.H.); (M.T.Y.); (I.A.)
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Islem Abid
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (A.H.); (M.T.Y.); (I.A.)
| |
Collapse
|
8
|
Dos Santos DRL, Silva-Sales M, Fumian TM, Maranhão AG, Malta FC, Ferreira FC, Pimenta MM, Miagostovich MP. Investigation of Human and Animal Viruses in Water Matrices from a Rural Area in Southeastern Region of Brazil and Their Potential Use as Microbial Source-Tracking Markers. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:21-31. [PMID: 36629977 DOI: 10.1007/s12560-022-09544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
This study assessed the sources of contamination of water matrices in a rural area using detection of a host-specific virus (human adenovirus [HAdV], porcine adenovirus [PAdV] and bovine polyomaviruses [BoPyV]) as potential microbial source-tracking tool, and rotavirus A [RVA], given its epidemiological importance in Brazil. From July 2017 to June 2018, 92 samples were collected from eight points (P1-P8) of surface and raw waters in southeastern region of Brazil. Fifty-five (59.8%) were positive for HAdV, 41 (44.5%) for RVA, 10 (10.9%) for PAdV and four (4.3%) for BoPyV. HAdV and RVA were detected at all sites, and over the entire sampling period, PAdV was detected at a porcine breeding area and at Guarda River site, presenting high concentrations up to 2.6 × 109 genome copies per liter [GC/L], and viral concentrations ranging from 9.6 × 101 to 7.1 × 107, while BoPyV (1.5 × 104 GC/L-9.2 × 105 GC/L) was only detected in samples from the bovine breeding areas. The combination of human and animal virus circulation presents a potential impact in the environment due to raw sewage discharge from regional communities, as well as potential hazard to human and animal health.
Collapse
Affiliation(s)
- Debora Regina Lopes Dos Santos
- Department of Veterinary Microbiology and Immunology, Universidade Federal Rural Do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil.
| | - Marcelle Silva-Sales
- Institute of Public Health and Tropical Pathology, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Adriana Gonçalves Maranhão
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Fábio Correia Malta
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Fernando César Ferreira
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Marcia Maria Pimenta
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Suarez P, Alonso JL, Gómez G, Vidal G. Performance of sewage treatment technologies for the removal of Cryptosporidium sp. and Giardia sp.: Toward water circularity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116320. [PMID: 36183529 DOI: 10.1016/j.jenvman.2022.116320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Cryptosporidium sp. and Giardia sp. are parasites that cause diseases in the population. Most of parasite diseases regarding the consumption of drinking water polluted with sewage are caused by Cryptosporidium sp. or Giardia sp. it is because of the incomplete disinfection of the wastewater treatment. Therefore, in this work the removal or inactivation efficiency of different treatment technologies presented by around 40 scientific studies was evaluated, with a view to water circularity. For Cryptosporidium sp., we conclude that the most efficient secondary technologies are aerobic technologies, which remove between 0.00 and 2.17 log units (Ulog), with activated sludge presenting the greatest efficiency, and that the tertiary technologies with the greatest removal are those that use ultrasound, which reach removal values of 3.17 Ulog. In the case of Giardia sp., the secondary technologies with the greatest removal are anaerobic technologies, with values between 0.00 and 3.80 Ulog, and the tertiary technologies with the greatest removal are those that combine filtration with UV or a chemical disinfection agent. Despite the removal values obtained, the greatest concern remains detecting and quantifying the infectious forms of both parasites in effluents; therefore, although the technologies perform adequately, discharge effluents must be monitored with more sensitive techniques, above all aiming for circularity of the treated water in a context of the water scarcity that affects some parts of the world.
Collapse
Affiliation(s)
- Pilar Suarez
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile
| | - José Luis Alonso
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camino de Vera 14, P.O. Box 46022, Valencia, Spain
| | - Gloria Gómez
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile
| | - Gladys Vidal
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile.
| |
Collapse
|
10
|
Martins WMBS, Cino J, Lenzi MH, Sands K, Portal E, Hassan B, Dantas PP, Migliavacca R, Medeiros EA, Gales AC, Toleman MA. Diversity of lytic bacteriophages against XDR Klebsiella pneumoniae sequence type 16 recovered from sewage samples in different parts of the world. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156074. [PMID: 35623509 DOI: 10.1016/j.scitotenv.2022.156074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Bacteriophages (phages) are viruses considered to be natural bacterial predators and widely detected in aquatic environments. Sewage samples are an important source of phage isolation since high density and diversity of bacterial cells are present, due to human, animal and household fluids. This study aims to investigate and characterise phages against an extremely drug-resistant (XDR) lineage, Klebsiella pneumoniae ST16, using sewage samples from different parts of the World. Sewage samples from Brazil, Bangladesh, Saudi Arabia, Thailand and the United Kingdom were collected and used to investigate phages against ten K. pneumoniae ST16 (hosts) recovered from infection sites. The phages were microbiological and genetically characterised by double-agar overlay (DLA), transmission electron microscopy and Illumina WGS. The host range against K. pneumoniae belonging to different sequence types was evaluated at different temperatures by spot test. Further phage characterisation, such as efficiency of plating, optimal phage temperature, and pH/temperature susceptibility, were conducted. Fourteen lytic phages were isolated, belonging to Autographiviridae, Ackermannviridae, Demerecviridae, Drexlerviridae, and Myoviridae families, from Brazil, Bangladesh, Saudi Arabia and Thailand and demonstrated a great genetic diversity. The viruses had good activity against our collection of clinical K. pneumoniae ST16 at room temperature and 37 °C, but also against other important Klebsiella clones such as ST11, ST15, and ST258. Temperature assays showed lytic activity in different temperatures, except for PWKp18 which only had activity at room temperature. Phages were stable between pH 5 and 10 with minor changes in phage activity, and 70 °C was the temperature able to kill all phages in this study. Using sewage from different parts of the World allowed us to have a set of highly efficient phages against an K. pneumoniae ST16 that can be used in the future to develop new tools to combat infections in humans or animals caused by this pathogen.
Collapse
Affiliation(s)
- Willames M B S Martins
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom; Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil.
| | - Juliana Cino
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Michael H Lenzi
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Kirsty Sands
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom; Department of Zoology, University of Oxford, United Kingdom
| | - Edward Portal
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Brekhna Hassan
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Priscila P Dantas
- Universidade Federal de São Paulo, Hospital Epidemiology Committee, Hospital São Paulo, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, São Paulo, Brazil
| | - Roberta Migliavacca
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Microbiology and Clinical Microbiology, University of Pavia, 27100 Pavia, Italy
| | - Eduardo A Medeiros
- Universidade Federal de São Paulo, Hospital Epidemiology Committee, Hospital São Paulo, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, São Paulo, Brazil
| | - Ana C Gales
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Mark A Toleman
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
11
|
Williams NLR, Siboni N, McLellan SL, Potts J, Scanes P, Johnson C, James M, McCann V, Seymour JR. Rainfall leads to elevated levels of antibiotic resistance genes within seawater at an Australian beach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119456. [PMID: 35561796 DOI: 10.1016/j.envpol.2022.119456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic waste streams can be major sources of antibiotic resistant microbes within the environment, creating a potential risk to public health. We examined patterns in the occurrence of a suite of antibiotic resistance genes (ARGs) and their links to enteric bacteria at a popular swimming beach in Australia that experiences intermittent contamination by sewage, with potential points of input including stormwater drains and a coastal lagoon. Samples were collected throughout a significant rainfall event (40.8 mm over 3 days) and analysed using both qPCR and 16S rRNA amplicon sequencing. Before the rainfall event, low levels of faecal indicator bacteria and a microbial source tracking human faeces (sewage) marker (Lachno3) were observed. These levels increased over 10x following rainfall. Within lagoon, drain and seawater samples, levels of the ARGs sulI, dfrA1 and qnrS increased by between 1 and 2 orders of magnitude after 20.4 mm of rain, while levels of tetA increased by an order of magnitude after a total of 40.8 mm. After 40.8 mm of rain sulI, tetA and qnrS could be detected 300 m offshore with levels remaining high five days after the rain event. Highest levels of sewage markers and ARGs were observed adjacent to the lagoon (when opened) and in-front of the stormwater drains, pinpointing these as the points of ARG input. Significant positive correlations were observed between all ARGs, and a suite of Amplicon Sequence Variants that were identified as stormwater drain indicator taxa using 16S rRNA amplicon sequencing data. Of note, some stormwater drain indicator taxa, which exhibited correlations to ARG abundance, included the human pathogens Arcobacter butzleri and Bacteroides fragilis. Given that previous research has linked high levels of ARGs in recreationally used environments to antimicrobial resistant pathogen infections, the observed patterns indicate a potentially elevated human health risk at a popular swimming beach following significant rainfall events.
Collapse
Affiliation(s)
- Nathan L R Williams
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Nachshon Siboni
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Sandra L McLellan
- University of Wisconsin-Milwaukee, School of Freshwater Sciences, 600 E Greenfield Ave, Milwaukee, WI, USA
| | - Jaimie Potts
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Peter Scanes
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Colin Johnson
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Melanie James
- Central Coast Council, Hely Street, Wyong, NSW, 2259, Australia
| | - Vanessa McCann
- Central Coast Council, Hely Street, Wyong, NSW, 2259, Australia
| | - Justin R Seymour
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Anderson-Coughlin BL, Shearer AEH, Omar AN, Litt PK, Bernberg E, Murphy M, Anderson A, Sauble L, Ames B, Damminger O, Ladman BS, Dowling TF, Wommack KE, Kniel KE. Coordination of SARS-CoV-2 wastewater and clinical testing of university students demonstrates the importance of sampling duration and collection time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154619. [PMID: 35306079 PMCID: PMC8925087 DOI: 10.1016/j.scitotenv.2022.154619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 03/12/2022] [Indexed: 05/04/2023]
Abstract
Wastewater surveillance has been a useful tool complementing clinical testing during the COVID-19 pandemic. However, transitioning surveillance approaches to small populations, such as dormitories and assisted living facilities poses challenges including difficulties with sample collection and processing. Recently, the need for reliable and timely data has coincided with the need for precise local forecasting of the trajectory of COVID-19. This study compared wastewater and clinical data from the University of Delaware (Fall 2020 and Spring 2021 semesters), and evaluated wastewater collection practices for enhanced virus detection sensitivity. Fecal shedding of SARS-CoV-2 is known to occur in infected individuals. However, shedding concentrations and duration has been shown to vary. Therefore, three shedding periods (14, 21, and 30 days) were presumed and included for analysis of wastewater data. SARS-CoV-2 levels detected in wastewater correlated with clinical virus detection when a positive clinical test result was preceded by fecal shedding of 21 days (p< 0.05) and 30 days (p < 0.05), but not with new cases (p = 0.09) or 14 days of shedding (p = 0.17). Discretely collected wastewater samples were compared with 24-hour composite samples collected at the same site. The discrete samples (n = 99) were composited examining the influence of sampling duration and time of day on SARS-CoV-2 detection. SARS-CoV-2 detection varied among dormitory complexes and sampling durations of 3-hour, 12-hour, and 24-hour (controls). Collection times frequently showing high detection values were between the hours of 03:00 to 05:00 and 23:00 to 08:00. In each of these times of day 33% of samples (3/9) were significantly higher (p < 0.05) than the control sample. The remainder (6/9) of the collection times (3-hour and 12-hour) were not different (p > 0.05) from the control. This study provides additional framework for continued methodology development for microbiological wastewater surveillance as the COVID-19 pandemic progresses and in preparation for future epidemiological efforts.
Collapse
Affiliation(s)
- Brienna L Anderson-Coughlin
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States; Center for Environmental and Wastewater-based Epidemiological Research, University of Delaware, Newark, DE, United States
| | - Adrienne E H Shearer
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States; Center for Environmental and Wastewater-based Epidemiological Research, University of Delaware, Newark, DE, United States
| | - Alexis N Omar
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States; Center for Environmental and Wastewater-based Epidemiological Research, University of Delaware, Newark, DE, United States
| | - Pushpinder K Litt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States; Center for Environmental and Wastewater-based Epidemiological Research, University of Delaware, Newark, DE, United States
| | - Erin Bernberg
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Marcella Murphy
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States; University of Delaware Poultry Health System, University of Delaware, Newark, DE, United States
| | - Amy Anderson
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Lauren Sauble
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States; University of Delaware Poultry Health System, University of Delaware, Newark, DE, United States
| | - Bri Ames
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Oscar Damminger
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Brian S Ladman
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States; University of Delaware Poultry Health System, University of Delaware, Newark, DE, United States
| | - Timothy F Dowling
- Student Health Services, University of Delaware, Newark, DE, United States
| | - K Eric Wommack
- Center for Environmental and Wastewater-based Epidemiological Research, University of Delaware, Newark, DE, United States; Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States; Center for Environmental and Wastewater-based Epidemiological Research, University of Delaware, Newark, DE, United States.
| |
Collapse
|
13
|
Ranjbaran M, Verma MS. Microfluidics at the interface of bacteria and fresh produce. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Microbial Source Tracking as a Method of Determination of Beach Sand Contamination. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137934. [PMID: 35805592 PMCID: PMC9265816 DOI: 10.3390/ijerph19137934] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023]
Abstract
Beach sand may act as a reservoir for numerous microorganisms, including enteric pathogens. Several of these pathogens originate in human or animal feces, which may pose a public health risk. In August 2019, high levels of fecal indicator bacteria (FIB) were detected in the sand of the Azorean beach Prainha, Terceira Island, Portugal. Remediation measures were promptly implemented, including sand removal and the spraying of chlorine to restore the sand quality. To determine the source of the fecal contamination, during the first campaign, supratidal sand samples were collected from several sites along the beach, followed by microbial source tracking (MST) analyses of Bacteroides marker genes for five animal species, including humans. Some of the sampling sites revealed the presence of marker genes from dogs, seagulls, and ruminants. Making use of the information on biological sources originating partially from dogs, the municipality enforced restrictive measures for dog-walking at the beach. Subsequent sampling campaigns detected low FIB contamination due to the mitigation and remediation measures that were undertaken. This is the first case study where the MST approach was used to determine the contamination sources in the supratidal sand of a coastal beach. Our results show that MST can be an essential tool to determine sources of fecal contamination in the sand. This study shows the importance of holistic management of beaches that should go beyond water quality monitoring for FIB, putting forth evidence for beach sand monitoring.
Collapse
|
15
|
Espinosa MF, Verbyla ME, Vassalle L, Leal C, Leroy-Freitas D, Machado E, Fernandes L, Rosa-Machado AT, Calábria J, Chernicharo C, Mota Filho CR. Reduction and liquid-solid partitioning of SARS-CoV-2 and adenovirus throughout the different stages of a pilot-scale wastewater treatment plant. WATER RESEARCH 2022; 212:118069. [PMID: 35077942 PMCID: PMC8759026 DOI: 10.1016/j.watres.2022.118069] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 05/04/2023]
Abstract
Investigating waterborne viruses is of great importance to minimizing risks to public health. Viruses tend to adsorb to sludge particles from wastewater processes by electrostatic and hydrophobic interactions between virus, aquatic matrix, and particle surface. Sludge is often re-used in agriculture; therefore, its evaluation is also of great interest to public health. In the present study, a pilot scale system treating real domestic wastewater from a large city in Brazil was used to evaluate the removal, the overall reduction, and liquid-solid partitioning of human adenovirus (HAdV), the novel coronavirus (SARS-CoV-2) and fecal indicators (F-specific coliphages and E. coli). The system consists of a high-rate algal pond (HRAP) post-treating the effluent of an upflow anaerobic sludge blanket (UASB) reactor. Samples were collected from the influent and effluent of each unit, as well as from the sludge of the UASB and from the microalgae biomass in the HRAP. Pathogens and indicators were quantified by quantitative polymerase chain reaction (qPCR) (for HAdV), qPCR with reverse transcription (RTqPCR) (for SARS-CoV-2), the double agar plaque assay (for coliphages), and the most probable number (MPN) method (for E. coli). The removal and overall reduction of HAdV and SARS-CoV-2 was greater than 1-log10. Almost 60% of remaining SARS-CoV-2 RNA and more than 70% of remaining HAdV DNA left the system in the sludge, demonstrating that both viruses may have affinity for solids. Coliphages showed a much lower affinity to solids, with only 3.7% leaving the system in the sludge. The system performed well in terms of the removal of organic matter and ammoniacal nitrogen, however tertiary treatment would be necessary to provide further pathogen reduction, if the effluent is to be reused in agriculture. To our knowledge, this is the first study that evaluated the reduction and partitioning of SARS-CoV-2 and HAdV through the complete cycle of a wastewater treatment system consisting of a UASB reactor followed by HRAPs.
Collapse
Affiliation(s)
| | | | - Lucas Vassalle
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Cintia Leal
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Elayne Machado
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luyara Fernandes
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Juliana Calábria
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Carlos Chernicharo
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | |
Collapse
|
16
|
Zhi S, Banting G, Neumann NF. Development of a qPCR assay for the detection of naturalized wastewater E. coli strains. JOURNAL OF WATER AND HEALTH 2022; 20:727-736. [PMID: 35482388 DOI: 10.2166/wh.2022.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We recently demonstrated the presence of naturalized populations of Escherichia coli in municipal sewage. We wanted to develop a quantitative polymerase chain reaction (qPCR) assay targeting the uspC-IS30-flhDC marker of naturalized wastewater E. coli and assess the prevalence of these naturalized strains in wastewater. The limit of detection for the qPCR assay was 3.0 × 10-8 ng of plasmid DNA template with 100% specificity. This strain was detected throughout the wastewater treatment process, including treated effluents. We evaluated the potential of this marker for detecting municipal sewage/wastewater contamination in water by comparing it to other human and animal markers of fecal pollution. Strong correlations were observed between the uspC-IS30-flhDC marker and the human fecal markers Bacteroides HF183 and HumM2, but not animal fecal markers, in surface and stormwater samples. The uspC-IS30-flhDC marker appears to be a potential E. coli-based marker for human wastewater contamination.
Collapse
Affiliation(s)
- Shuai Zhi
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315200, China E-mail: ; School of Medicine, Ningbo University, Ningbo 315211, China
| | - Graham Banting
- School of Public Health, University of Alberta, Room 3-57, South Academic Building, Edmonton, Alberta T6G 2G7, Canada
| | - Norman F Neumann
- School of Public Health, University of Alberta, Room 3-57, South Academic Building, Edmonton, Alberta T6G 2G7, Canada
| |
Collapse
|
17
|
Lima FS, Scalize PS, Gabriel EFM, Gomes RP, Gama AR, Demoliner M, Spilki FR, Vieira JDG, Carneiro LC. Escherichia coli, Species C Human Adenovirus, and Enterovirus in Water Samples Consumed in Rural Areas of Goiás, Brazil. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:77-88. [PMID: 34792781 DOI: 10.1007/s12560-021-09504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Rural environments lack basic sanitation services. Facilities for obtaining water and disposing sewage are often under the initiative of each resident, who may not be able to build and maintain them properly. Thus, water for human consumption is subject to fecal contamination and, consequently, the presence of waterborne pathogens, such as enteric viruses. This study evaluated fecal contamination of water samples from individual sources used for domestic water supply on small farms in the state of Goiás, Brazil. Samples were collected from 78 houses whose water sources were tubular wells, dug wells, springs, and surface waters. Escherichia coli (EC) bacteria, analyzed by the defined chromogenic substrate method, was used as a traditional indicator of fecal contamination. The enteric viruses Human mastadenovirus (HAdV) and Enterovirus (EV), analyzed by qPCR, were tested as complementary indicators of fecal contamination. At least one of these markers was found in 89.7% of the samples. Detection rates were 79.5% for EC, 52.6% for HAdV, and 5.1% for EV. The average concentration for EC was 8.82 × 101 most probable number (MPN) per 100 mL, while for HAdV and EV the concentrations were 7.51 × 105 and 1.89 × 106 genomic copies (GC) per liter, respectively. EC was the most frequent marker in ground and surface water samples. HAdV was detected significantly more frequently in groundwater than in surface water and was more efficient in indicating contamination in tubular wells. There was no association of frequencies or correlation of concentrations between EC and HAdV. HAdV indicated human fecal contamination and performed well as a complementary indicator. The results reveal that a large part of the analyzed population is vulnerable to waterborne diseases caused by enteric pathogens.
Collapse
Affiliation(s)
- Fernando Santos Lima
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil.
| | - Paulo Sérgio Scalize
- Escola de Engenharia Civil e Ambiental, Universidade Federal de Goiás, Goiânia, GO, 74605-220, Brazil
| | | | - Raylane Pereira Gomes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Aline Rodrigues Gama
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Meriane Demoliner
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, 93352-075, Brazil
| | - Fernando Rosado Spilki
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, 93352-075, Brazil
| | | | - Lilian Carla Carneiro
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| |
Collapse
|
18
|
Odetoyin B, Ogundipe O, Onanuga A. Prevalence, diversity of diarrhoeagenic Escherichia coli and associated risk factors in well water in Ile-Ife, Southwestern Nigeria. ONE HEALTH OUTLOOK 2022; 4:3. [PMID: 35130987 PMCID: PMC8822758 DOI: 10.1186/s42522-021-00057-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Diarrhoeagenic Escherichia coli (DEC) strains are common causes of morbidity and mortality worldwide. Waterborne DEC could pose a health risk to humans through domestic use of contaminated water. However, epidemiological studies on DEC in well water are scarce in Nigeria. This study determined the prevalence, diversity and factors associated with the presence of DEC in well water in Ile-Ife, southwestern Nigeria. METHODS We assessed 143 wells for safety and a questionnaire was administered. Contaminating isolates were identified as E. coli by amplifying their 16S rRNA gene. Five diarrhoeagenic E. coli pathotypes were sought using multiplex polymerase chain reaction (PCR). (GTG)5 repetitive PCR and Shannon diversity index were used to determine isolates diversity. Multivariate analysis was used to reveal the factors associated with the presence of DEC in well water. RESULTS Fifty-six (39.2%) wells were contaminated by diarrhoeagenic E. coli. Wells with dirty platforms, undercut by erosion and sited near septic tanks significantly harboured DEC (p < 0.05). There was a preponderance of Shiga-toxin producing E. coli among the isolates with 10 (17.9%) wells contaminated by multiple DEC. The DEC isolates showed 45 unique fingerprints and were divided into six clades, with an overall diversity index of 18.87. DISCUSSION The presence of DEC in well water highlights the risk to human health associated with the use of untreated water. There was a high degree of genetic diversity among the isolates implying multiple sources of contamination. There is a need for periodic sanitation and inspection of wells for cracks to prevent seepages and possible outbreaks of waterborne diseases.
Collapse
Affiliation(s)
- Babatunde Odetoyin
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Olawumi Ogundipe
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Adebola Onanuga
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, University of Maiduguri, Maiduguri, Borno State Nigeria
| |
Collapse
|
19
|
Coprostanol as a Population Biomarker for SARS-CoV-2 Wastewater Surveillance Studies. WATER 2022. [DOI: 10.3390/w14020225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wastewater surveillance is a cost-effective tool for monitoring SARS-CoV-2 transmission in a community. However, challenges remain with regard to interpretating such studies, not least in how to compare SARS-CoV-2 levels between different-sized wastewater treatment plants. Viral faecal indicators, including crAssphage and pepper mild mottle virus, have been proposed as population biomarkers to normalise SARS-CoV-2 levels in wastewater. However, as these indicators exhibit variability between individuals and may not be excreted by everyone, their utility as population biomarkers may be limited. Coprostanol, meanwhile, is a bacterial metabolite of cholesterol which is excreted by all individuals. In this study, composite influent samples were collected from a large- and medium-sized wastewater treatment plant in Dublin, Ireland and SARS-CoV-2 N1, crAssphage, pepper mild mottle virus, HF183 and coprostanol levels were determined. SARS-CoV-2 N1 RNA was detected and quantified in all samples from both treatment plants. Regardless of treatment plant size, coprostanol levels exhibited the lowest variation in composite influent samples, while crAssphage exhibited the greatest variation. Moreover, the strongest correlations were observed between SARS-CoV-2 levels and national and Dublin COVID-19 cases when levels were normalised to coprostanol. This work demonstrates the usefulness of coprostanol as a population biomarker for wastewater surveillance studies.
Collapse
|
20
|
Kvesić M, Kalinić H, Dželalija M, Šamanić I, Andričević R, Maravić A. Microbiome and antibiotic resistance profiling in submarine effluent-receiving coastal waters in Croatia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118282. [PMID: 34619178 DOI: 10.1016/j.envpol.2021.118282] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/10/2021] [Accepted: 10/03/2021] [Indexed: 05/29/2023]
Abstract
Wastewater treatment plant (WWTP) effluents are pointed as hotspots for the introduction of both commensal and pathogenic bacteria as well as their antibiotic resistance genes (ARGs) in receiving water bodies. For the first time, the effect of partially treated submarine effluents was explored at the bottom and surface of the water column to provide a comprehensive overview of the structure of the microbiome and associated AR, and to assess environmental factors leading to their alteration. Seawater samples were collected over a 5-month period from submarine outfalls in central Adriatic Sea, Croatia. 16S rRNA amplicon sequencing was used to establish taxonomic and resistome profiles of the bacterial communities. The community differences observed between the two discharge areas, especially in the abundance of Proteobacteria and Firmicutes, could be due to the origin of wastewaters treated in WWTPs and the limiting environmental conditions such as temperature and nutrients. PICRUSt2 analysis inferred the total content of ARGs in the studied microbiomes and showed the highest abundance of resistance genes encoding multidrug efflux pumps, such as MexAB-OprM, AcrEF-TolC and MdtEF-TolC, followed by the modified peptidoglycan precursors, transporter genes encoding tetracycline, macrolide and phenicol resistance, and the bla operon conferring β-lactam resistance. A number of pathogenic genera introduced by effluents, including Acinetobacter, Arcobacter, Bacteroides, Escherichia-Shigella, Klebsiella, Pseudomonas, and Salmonella, were predicted to account for the majority of efflux pump-driven multidrug resistance, while Acinetobacter, Salmonella, Bacteroides and Pseudomonas were also shown to be the predominant carriers of non-efflux ARGs conferring resistance to most of nine antibiotic classes. Taken together, we evidenced the negative impact of submarine discharges of treated effluents via alteration of physico-chemical characteristics of the water column and enrichment of bacterial community with nonindigenous taxa carrying an arsenal of ARGs, which could contribute to the further propagation of the AR in the natural environment.
Collapse
Affiliation(s)
- Marija Kvesić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region, University of Split, Ruđera Boškovića 31, 21000, Split, Croatia; Faculty of Science, University of Split, Ruđera Boškovića 33, Split, Croatia
| | - Hrvoje Kalinić
- Department of Informatics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000, Split, Croatia
| | - Mia Dželalija
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000, Split, Croatia
| | - Ivica Šamanić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000, Split, Croatia
| | - Roko Andričević
- Center of Excellence for Science and Technology-Integration of Mediterranean Region, University of Split, Ruđera Boškovića 31, 21000, Split, Croatia; Faculty of Civil Engineering, Architecture and Geodesy, University of Split, Matice Hrvatske 15, Split, Croatia
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000, Split, Croatia.
| |
Collapse
|
21
|
Gallard-Gongora J, Lobos A, Conrad JW, Peraud J, Harwood VJ. An assessment of three methods for extracting bacterial DNA from beach sand. J Appl Microbiol 2021; 132:2990-3000. [PMID: 34932856 DOI: 10.1111/jam.15423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
Abstract
AIMS Beach water quality is regulated by faecal indicator bacteria levels, sand is not, despite known human health risk from exposure to beach sand. We compared the performance of three methods to extract bacterial DNA from beach sand as a step toward a standard method. METHODS AND RESULTS The analytical sensitivity of quantitative polymerase chain reaction (qPCR) for Enterococcus was compared for the slurry (suspension, agitation, membrane filtration of supernatant), versus direct extraction using PowerSoil™ or PowerMax Soil™ kits. The slurry method had the lowest limit of detection at 20-80 gene copies g-1 , recovered significantly more DNA, and the only method that detected Enterococcus by qPCR in all samples; therefore, the only method used in subsequent experiments. The slurry method reflected the spatial variability of Enterococcus in individual transect samples. Mean recovery efficiency of the microbial source tracking marker HF183 from wastewater spiked marine and freshwater beach sand was 100.8% and 64.1%, respectively, but varied, indicating that the mixing protocol needs improvement. CONCLUSIONS Among the three methods, the slurry method had the best analytical sensitivity and produced extracts that were useful for culture or molecular analysis. SIGNIFICANCE AND IMPACT OF STUDY Standardization of methods for extraction of bacterial DNA from sand facilitates comparisons among studies, and ultimately contributes to the safety of recreational beaches.
Collapse
Affiliation(s)
| | - Aldo Lobos
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - James W Conrad
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Jayme Peraud
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
22
|
Goh SG, Liang L, Gin KYH. Assessment of Human Health Risks in Tropical Environmental Waters with Microbial Source Tracking Markers. WATER RESEARCH 2021; 207:117748. [PMID: 34837748 DOI: 10.1016/j.watres.2021.117748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Human specific microbial source tracking (MST) markers which are highly specific to human waste contamination offer the advantage of better association with human pathogens than traditional microbial indicators. However, the performance of these MST markers may vary across different geographical regions. The magnitude of MST markers also plays an important role in interpreting the health risks. This study aims to (i) validate the specificity and sensitivity of human markers for tropical urban catchments; (ii) identify the threshold concentrations of MST markers, i.e. human polyomaviruses (HPyVs), Bacteroides thetaiotaomicron (B. theta) and Methanobrevibacter smithii (M. smithii), that correspond to the acceptable gastrointestinal (GI) illness risks associated with swimming using the QMRA approach; and (iii) validate the threshold concentrations of MST markers using the surveillance data obtained from the tropical urban environment. Among the three MST markers, HPyVs showed the highest specificity (100%) to sewage samples, followed by M. smithii (97%) and B. theta (90%). All MST markers showed 100% sensitivity towards sewage contamination, with B. theta present in highest abundance in sewage, followed by HPyVs and M. smithii. This study demonstrates a risk-based framework to identify the threshold concentrations of MST markers associated with GI illness risks in environmental waters by considering two main influencing factors (i.e. decay and dilution factors). This study successfully validated the B. theta threshold concentration range (581 to 8073 GC/100 mL) with field data (370 to 6500 GC/100 mL) in estimating GI illness risks with an Enterococcus model. Field data showed that the MST markers at threshold concentrations were able to classify the safe level in more than 83% of the samples, according to GI illness risks from Enterococcus and adenovirus. The study also highlighted the lack of associations between MST markers and GI illness risks from norovirus. With comprehensive information on specificity, sensitivity and threshold concentrations of MST markers, increasing confidence can be placed on identifying human source contamination and evaluating the health risks posed in environmental waters in Singapore.
Collapse
Affiliation(s)
- S G Goh
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, #02-01, 5A Engineering Drive 1 117411, Singapore
| | - L Liang
- Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Block E1A, #07-03,1 Engineering Drive 2 117576, Singapore
| | - K Y H Gin
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, #02-01, 5A Engineering Drive 1 117411, Singapore; Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Block E1A, #07-03,1 Engineering Drive 2 117576, Singapore.
| |
Collapse
|
23
|
Pathogens Removal in a Sustainable and Economic High-Rate Algal Pond Wastewater Treatment System. SUSTAINABILITY 2021. [DOI: 10.3390/su132313232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study evaluates the efficiency of a sustainable technology represented in an integrated pilot-scale system, which includes a facultative pond (FP), a high-rate algal pond (HRAP), and a rock filter (RF) for wastewater treatment to produce water that complies with the Egyptian standards for treated wastewater reuse. Still, limited data are available on pathogen removal through HRAP systems. Thus, in this study, the performance of the integrated system was investigated for the removal of Escherichia coli (E. coli), coliform bacteria, eukaryotic pathogens (Cryptosporidium spp., Giardia intestinalis, and helminth ova), somatic coliphages (SOMCPH), and human adenovirus (HAdV). Furthermore, physicochemical parameters were determined in order to evaluate the performance of the integrated system. The principal component analysis and non-metric multidimensional scaling analysis showed a strong significant effect of the integrated system on changing the physicochemical and microbial parameters from inlet to outlet. The mean log10 removal values for total coliform, fecal coliform, and E. coli were 5.67, 5.62, and 5.69, respectively, while 0.88 log10 and 1.65 log10 reductions were observed for HAdV and SOMCPH, respectively. The mean removal of Cryptosporidium spp. and Giardia intestinalis was 0.52 and 2.42 log10, respectively. The integrated system achieved 100% removal of helminth ova. The results demonstrated that the system was able to improve the chemical and microbial characteristics of the outlet to acceptable levels for non-food crops irrigation. Such findings together with low operation and construction costs of HRAPs should facilitate wider implementation of these nature-based systems in remote and rural communities. Overall, this study provides a novel insight into the performance of such systems to eliminate multiple microbial pathogens from wastewater.
Collapse
|
24
|
Yaniv K, Shagan M, Lewis YE, Kramarsky-Winter E, Weil M, Indenbaum V, Elul M, Erster O, Brown AS, Mendelson E, Mannasse B, Shirazi R, Lakkakula S, Miron O, Rinott E, Baibich RG, Bigler I, Malul M, Rishti R, Brenner A, Friedler E, Gilboa Y, Sabach S, Alfiya Y, Cheruti U, Nadav Davidovich, Moran-Gilad J, Berchenko Y, Bar-Or I, Kushmaro A. City-level SARS-CoV-2 sewage surveillance. CHEMOSPHERE 2021; 283:131194. [PMID: 34467943 PMCID: PMC8217074 DOI: 10.1016/j.chemosphere.2021.131194] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/21/2021] [Accepted: 06/09/2021] [Indexed: 05/09/2023]
Abstract
The COVID-19 pandemic created a global crisis impacting not only healthcare systems, but also economics and society. Therefore, it is important to find novel methods for monitoring disease activity. Recent data have indicated that fecal shedding of SARS-CoV-2 is common, and that viral RNA can be detected in wastewater. This suggests that wastewater monitoring is a potentially efficient tool for both epidemiological surveillance, and early warning for SARS-CoV-2 circulation at the population level. In this study we sampled an urban wastewater infrastructure in the city of Ashkelon (̴ 150,000 population), Israel, during the end of the first COVID-19 wave in May 2020 when the number of infections seemed to be waning. We were able to show varying presence of SARS-CoV-2 RNA in wastewater from several locations in the city during two sampling periods, before the resurgence was clinically apparent. This was expressed with a new index, Normalized Viral Load (NVL) which can be used in different area scales to define levels of virus activity such as red (high) or green (no), and to follow morbidity in the population at the tested area. The rise in viral load between the two sampling periods (one week apart) indicated an increase in morbidity that was evident two weeks to a month later in the population. Thus, this methodology may provide an early indication for SARS-CoV-2 infection outbreak in a population before an outbreak is clinically apparent.
Collapse
Affiliation(s)
- Karin Yaniv
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, BeerSheva 8410501, Israel
| | - Marilou Shagan
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, BeerSheva 8410501, Israel
| | | | - Esti Kramarsky-Winter
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, BeerSheva 8410501, Israel
| | - Merav Weil
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Israel
| | | | - Michal Elul
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Israel
| | - Oran Erster
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Israel
| | - Alin Sela Brown
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Israel
| | - Ella Mendelson
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Israel; School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Batya Mannasse
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Israel
| | - Rachel Shirazi
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Israel
| | - Satish Lakkakula
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, BeerSheva 8410501, Israel
| | - Oren Miron
- Department of Health Systems Management, School of Public Health, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ehud Rinott
- Department of Health Systems Management, School of Public Health, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Iris Bigler
- KANDO, Environment Services Ltd, Tsor St 8, Kokhav Ya'ir Tzur Yigal, Israel
| | - Matan Malul
- KANDO, Environment Services Ltd, Tsor St 8, Kokhav Ya'ir Tzur Yigal, Israel
| | - Rotem Rishti
- KANDO, Environment Services Ltd, Tsor St 8, Kokhav Ya'ir Tzur Yigal, Israel
| | - Asher Brenner
- Department of Civil and Environmental Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eran Friedler
- Faculty of Civ. and Env. Eng., Technion-Israel Inst. of Technology, Haifa, 32000, Israel
| | - Yael Gilboa
- Faculty of Civ. and Env. Eng., Technion-Israel Inst. of Technology, Haifa, 32000, Israel
| | - Sara Sabach
- Faculty of Civ. and Env. Eng., Technion-Israel Inst. of Technology, Haifa, 32000, Israel
| | - Yuval Alfiya
- Faculty of Civ. and Env. Eng., Technion-Israel Inst. of Technology, Haifa, 32000, Israel
| | - Uta Cheruti
- Faculty of Civ. and Env. Eng., Technion-Israel Inst. of Technology, Haifa, 32000, Israel
| | - Nadav Davidovich
- Department of Health Systems Management, School of Public Health, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jacob Moran-Gilad
- Department of Health Systems Management, School of Public Health, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yakir Berchenko
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Itay Bar-Or
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, BeerSheva 8410501, Israel; The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.
| |
Collapse
|
25
|
Basavaraju S, Aswathanarayan JB, Basavegowda M, Somanathan B. Coronavirus: occurrence, surveillance, and persistence in wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:508. [PMID: 34302225 PMCID: PMC8300075 DOI: 10.1007/s10661-021-09303-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 07/12/2021] [Indexed: 05/02/2023]
Abstract
The coronavirus disease (COVID-19) outbreak reported in China in December 2019 has spread throughout the world. The WHO declared it as a pandemic in March 2020. The pandemic severely affected public health and the global economy. Many studies conducted on the coronavirus have helped us to elucidate its pathogenicity and pathophysiology. However, it is important to study the behavior of the pathogen in the environment to develop effective control measures. While studying the persistence and transmission of viruses in drinking water and wastewater systems, a low concentration of coronavirus and its nucleic acids have been detected in municipal wastewaters. This could be due to their high susceptibilities to degradation in aqueous environments. Epidemiological study on coronaviruses in wastewater will serve two purposes, i.e., in early detection of outbreak and in identifying asymptomatic carriers. In such cases, the epidemiological study will help in early detection of the presence of the virus in the community. Secondly, it will help in knowing if there are asymptomatic carriers, as such people do not show any signs of symptoms but shed the viruses in feces. The present review focuses on the epidemiological surveillance of wastewater for coronaviruses, as in recent years these are increasingly causing global pandemics. In this review we have discussed, the four pertinent areas of coronavirus study: (1) occurrence of coronavirus in wastewater, (2) wastewater based epidemiological surveillance of coronaviruses, (3) epidemiological surveillance tools used for detection of coronaviruses in sewage, and (4) persistence and sustainability of coronaviruses in wastewater.
Collapse
Affiliation(s)
| | - Jamuna Bai Aswathanarayan
- Department of Microbiology, Faculty of Life Science, JSS Academy of Higher Education, Mysore, 570015, India.
| | - Madhu Basavegowda
- Department of Community Medicine, JSS Medical College, JSS AHER, Mysore, 570015, India
| | | |
Collapse
|
26
|
Devereux R, Wan Y, Rackley JL, Fasselt V, Vivian DN. Comparative analysis of nitrogen concentrations and sources within a coastal urban bayou watershed: A multi-tracer approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145862. [PMID: 35185223 PMCID: PMC8856010 DOI: 10.1016/j.scitotenv.2021.145862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fate and transport of nitrogen (N) in urban coastal watersheds continues to draw research interest due to serious impacts of N pollution and complexities with N sources and transport pathways. In this study, we used multiple tracers for source identification of N pollution (15N isotope in nitrate and chemical sewage tracers in water) and waters (using isotopes of 18O and 2H in water) in a coastal northwest Florida U.S.A. urban bayou fed by two contrasting streams, namely Jackson Creek traversing a dense residential area and Jones Creek flowing mainly through a wetland preserve. Results showed that the slightly higher δ15N-NO3 - values in Jones Creek and the bayou were insufficient to distinguish N sources; yet the different chemical sewage tracer concentrations (e.g., sucralose, carbamazepine and sulfamethoxazole) clearly demonstrated the major N source from leaking septic tanks in the Jackson Creek sub-basin but not in the Jones Creek sub-basin. The higher concentrations of nitrate, which constituted over 98% of dissolved inorganic N in Jackson Creek, support active nitrification in sandy soils and steep terrain while higher δ15N-NO3 - and much lower nitrate in Jones Creek are likely associated with denitrification in dense vegetative wetland and riparian zones. Episodic high nitrate concentrations and δ18O values in Jackson Creek preceded by periods of little rainfall indicated that the creek was sustained by subsurface flow with a steady input of nitrate. This study demonstrated the connection of land use and stormwater runoff generation to the forms of N entering urban waterways, the utility of N sourcing approaches, and the value of watershed-scale assessments for developing strategies to limit N loadings in urban settings.
Collapse
Affiliation(s)
- Richard Devereux
- U.S. EPA Center for Environmental Measurement and Modeling, 1 Sabine Island Drive, Gulf Breeze, FL 32561, United States
| | - Yongshan Wan
- U.S. EPA Center for Environmental Measurement and Modeling, 1 Sabine Island Drive, Gulf Breeze, FL 32561, United States
| | - Jennifer L Rackley
- U.S. EPA Center for Environmental Measurement and Modeling, 1 Sabine Island Drive, Gulf Breeze, FL 32561, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Veronica Fasselt
- U.S. EPA Region 4, Water Division, 61 Forsyth Street, SW, Atlanta, GA 30303, United States
| | - Deborah N Vivian
- U.S. EPA Center for Environmental Measurement and Modeling, 1 Sabine Island Drive, Gulf Breeze, FL 32561, United States
| |
Collapse
|
27
|
Bacteriophages as Fecal Pollution Indicators. Viruses 2021; 13:v13061089. [PMID: 34200458 PMCID: PMC8229503 DOI: 10.3390/v13061089] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteriophages are promising tools for the detection of fecal pollution in different environments, and particularly for viral pathogen risk assessment. Having similar morphological and biological characteristics, bacteriophages mimic the fate and transport of enteric viruses. Enteric bacteriophages, especially phages infecting Escherichia coli (coliphages), have been proposed as alternatives or complements to fecal indicator bacteria. Here, we provide a general overview of the potential use of enteric bacteriophages as fecal and viral indicators in different environments, as well as the available methods for their detection and enumeration, and the regulations for their application.
Collapse
|
28
|
Kongprajug A, Denpetkul T, Chyerochana N, Mongkolsuk S, Sirikanchana K. Human Fecal Pollution Monitoring and Microbial Risk Assessment for Water Reuse Potential in a Coastal Industrial-Residential Mixed-Use Watershed. Front Microbiol 2021; 12:647602. [PMID: 33959110 PMCID: PMC8093506 DOI: 10.3389/fmicb.2021.647602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Rapid economic development has caused industrial expansion into residential communities, leading to higher fecal pollution loads that could be discharged into aquatic environments. However, little is known regarding the potential microbial impact on human health. This study investigated microbial contamination from coastal industrial–residential community areas in nine sampling sites in waterways during three dry events. A general microbial source tracking (MST) marker, GenBac3, was detected in all samples from all three events, indicating continuing fecal pollution in the area, mostly from human sewage contamination. This was shown by the human-specific genetic marker crAssphage (88.9%) and human polyomavirus (HPyVs; 92.6%) detection. Enteric human adenovirus (HAdV40/41) showed three positive results only from residential sites in the first event. No spatial difference was observed for MST markers and traditional fecal indicators (total coliforms and Escherichia coli) in each event. Still, a significantly lower abundance of GenBac3, HPyVs, and total coliforms in the first sampling event was detected. Spearman’s rho analysis indicated a strong correlation among certain pairs of microbial parameters. Multivariate analysis revealed two clusters of samples separated by land use type (industrial vs. residential). According to factor analysis of mixed data, the land use parameter was more associated with physicochemical parameters (i.e., salinity, conductivity, water temperature, and dissolved oxygen). A Quantitative Microbial Risk Assessment (QMRA) was then conducted to estimate the annual infection risks of HAdV40/41 for non-potable water reuse purposes using predicted concentrations from crAssphage and HPyVs. The highest risks (95th percentiles) were ranked by food crop irrigation, aquaculture, and toilet flushing, at 10–1, 10–2, and 10–3 per person per year (pppy). Required treatment levels to achieve a 10–4 pppy annual infection risk were estimated. QMRA-based water treatment scenarios were suggested, including chlorination for toilet flushing reuse and depth filtration prior to chlorination for aquaculture and food crop irrigation. Microbial monitoring combined with a QMRA could provide better insights into fecal pollution patterns and the associated risks, facilitating effective water quality management and appropriate prior treatments for water reuse.
Collapse
Affiliation(s)
- Akechai Kongprajug
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Thammanitchpol Denpetkul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
| |
Collapse
|
29
|
Coliphages as a Complementary Tool to Improve the Management of Urban Wastewater Treatments and Minimize Health Risks in Receiving Waters. WATER 2021. [DOI: 10.3390/w13081110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Even in countries with extensive sanitation systems, outbreaks of waterborne infectious diseases are being reported. Current tendencies, such as the growing concentration of populations in large urban conurbations, climate change, aging of existing infrastructures, and emerging pathogens, indicate that the management of water resources will become increasingly challenging in the near future. In this context, there is an urgent need to control the fate of fecal microorganisms in wastewater to avoid the negative health consequences of releasing treated effluents into surface waters (rivers, lakes, etc.) or marine coastal water. On the other hand, the measurement of bacterial indicators yields insufficient information to gauge the human health risk associated with viral infections. It would therefore seem advisable to include a viral indicator—for example, somatic coliphages—to monitor the functioning of wastewater treatments. As indicated in the studies reviewed herein, the concentrations of somatic coliphages in raw sewage remain consistently high throughout the year worldwide, as occurs with bacterial indicators. The removal process for bacterial indicators and coliphages in traditional sewage treatments is similar, the concentrations in secondary effluents remaining sufficiently high for enumeration, without the need for cumbersome and costly concentration procedures. Additionally, according to the available data on indicator behavior, which is still limited for sewers but abundant for surface waters, coliphages persist longer than bacterial indicators once outside the gut. Based on these data, coliphages can be recommended as indicators to assess the efficiency of wastewater management procedures with the aim of minimizing the health impact of urban wastewater release in surface waters.
Collapse
|
30
|
Espinosa MF, Verbyla ME, Vassalle L, Rosa-Machado AT, Zhao F, Gaunin A, Mota CR. Reduction and partitioning of viral and bacterial indicators in a UASB reactor followed by high rate algal ponds treating domestic sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144309. [PMID: 33348164 DOI: 10.1016/j.scitotenv.2020.144309] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 05/13/2023]
Abstract
Human enteric pathogens are a major global concern, as they are responsible for thousands of preventable deaths every year. New pathogens in wastewater are constantly emerging. For example, SARS-CoV-2 has been recently detected in domestic sewage and primary sludge. Knowledge about the reduction of viruses in wastewater treatment and their partitioning between the treated liquid effluent versus the sludge or biosolids is still very scarce, especially in countries with emerging economies and tropical climates. Upflow anaerobic sludge blanket (UASB) reactors are among the top three most commonly used technologies for the treatment of sewage in Latin America and the Caribbean, and their use has become increasingly common in many other low- and middle-income countries. High-rate algal ponds (HRAP) are regarded as a sustainable technology for the post-treatment of UASB effluent. This study evaluated the overall reduction and the liquid-solid partitioning of somatic coliphages, F-specific coliphages, and E. coli in a pilot-scale system comprised of a UASB reactor followed by HRAPs treating real wastewater. Average log removal for somatic and F-specific coliphages were 0.40 and 0.56 for the UASB reactor, and 1.15 and 1.70 for HRAPs, respectively. The overall removal of both phages in the system was 2.06-log. Removal of E. coli was consistently higher. The number of viruses leaving the system in the UASB solids and algal biomass was less than 10% of the number leaving in the clarified liquid effluent. The number of E. coli leaving the system in solids residuals was estimated to be approximately one order of magnitude higher than the number of E. coli leaving in the liquid effluent. Results from this study demonstrate the suitability of UASB-HRAP systems to reduce viral and bacterial indicators from domestic sewage and the importance of adequately treating sludge for pathogen reduction before they are used as biosolids.
Collapse
Affiliation(s)
| | - Matthew E Verbyla
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA 92182, United States
| | - Lucas Vassalle
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Fei Zhao
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA 92182, United States
| | - Anaïs Gaunin
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA 92182, United States
| | - César Rossas Mota
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
31
|
Quillaguamán J, Guzmán D, Campero M, Hoepfner C, Relos L, Mendieta D, Higdon SM, Eid D, Fernández CE. The microbiome of a polluted urban lake harbors pathogens with diverse antimicrobial resistance and virulence genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116488. [PMID: 33485000 DOI: 10.1016/j.envpol.2021.116488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Bacterial resistance to antibiotics is one of the greatest threats to the modern human population. Paradoxically, urban settlements are often culpable in generating such resistance by influencing the adaptation of bacterial communities via pollution of natural ecosystems. Urban lakes are well-known examples of this problem, as they often receive discharges of both domestic and industrial wastewater. In this study, we used shotgun metagenome sequencing to examine the microbial diversity of water and sediment samples of Lake Alalay, a polluted urban lake near Cochabamba, Bolivia. We found that Proteobacteria dominated the relative abundance of both water and sediment samples at levels over 25% and that a significant proportion of the microbial diversity could not be classified (about 9% in water and 22% in sediment). Further metagenomic investigation of antimicrobial resistance (AR) genes identified 277 and 150 AR genes in water and sediment samples, respectively. These included genes with functional annotations for resistance to fluoroquinolones, tetracyclines, phenicols, macrolides, beta-lactams, and rifamycin. A high number of genes involved in bacterial virulence also occurred in both water and sediment samples (169 and 283, respectively), where the virulence gene pscP normally found in the Pseudomonas aeruginosa type III secretion system had the highest relative abundance. Isolated and identified bacteria from water samples also revealed the presence of pathogenic bacteria among the microbiota of Lake Alalay. Seeing as most AR and virulence genes detected in this study are commonly described in nosocomial infections, we provide evidence suggesting that the microbial ecosystem of Lake Alalay presents a severe health risk to the surrounding population.
Collapse
Affiliation(s)
- Jorge Quillaguamán
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia.
| | - Daniel Guzmán
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Melina Campero
- Center of Limnology and Aquatic Resources, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Claudia Hoepfner
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Laura Relos
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Daniela Mendieta
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Shawn M Higdon
- Department of Plant Sciences, University of California, Davis, CA, 95616, United States
| | - Daniel Eid
- Institute of Biomedical Research and Social Research, Faculty of Medicine, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Carla E Fernández
- Center of Limnology and Aquatic Resources, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| |
Collapse
|
32
|
Main CR, Tyler R, Huerta S. Microbial Source Tracking in the Love Creek Watershed, Delaware (USA). Dela J Public Health 2021; 7:22-31. [PMID: 34467176 PMCID: PMC8352542 DOI: 10.32481/djph.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Fecal contamination of waterways in Delaware pose an ongoing problem for environmental and public health. For monitoring efforts, Enterococcus has been widely adopted by the state to indicate the presence of fecal matter from warm-blooded animals and to establish Primary and Secondary Contact Recreation criteria. In this study, we examined sites within the Love Creek watershed, a tributary of the Rehoboth bay, using next-generation sequencing and SourceTracker to determine sources of potential fecal contamination and compared to bacterial communities to chemical and nutrient concentrations. Microbial community from fecal samples of ten different types of animals and one human sample were used to generate a fecal library for community-based microbial source tracking. Orthophosphate and total dissolved solids were among the major factors associated with community composition. SourceTracker analysis of the monthly samples from the Love Creek watershed indicated the majority of the microbial community were attributed to "unknown" sources, i.e. wildlife. Those that attribute to known sources were primarily domestic animals, i.e. cat and dog. These results suggest that at the state level these methods are capable of giving the start for source tracking as a means to understanding bacterial contamination.
Collapse
Affiliation(s)
- Christopher R Main
- Environmental Laboratory Section, Division of Water, Delaware Department of Natural Resources and Environmental Control
| | - Robin Tyler
- Environmental Laboratory Section, Division of Water, Delaware Department of Natural Resources and Environmental Control
| | - Sergio Huerta
- Laboratory Director, Public Health and Environmental Laboratories, State of Delaware
| |
Collapse
|
33
|
Impact of Freeze-Thaw Cycles on Die-Off of E. coli and Intestinal Enterococci in Deer and Dairy Faeces: Implications for Landscape Contamination of Watercourses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17196999. [PMID: 32987924 PMCID: PMC7579438 DOI: 10.3390/ijerph17196999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 01/28/2023]
Abstract
Characterising faecal indicator organism (FIO) survival in the environment is important for informing land management and minimising public health risk to downstream water users. However, key gaps in knowledge include understanding how wildlife contribute to catchment-wide FIO sources and how FIO survival is affected by low environmental temperatures. The aim of this study was to quantify E. coli and intestinal enterococci die-off in dairy cow versus red deer faecal sources exposed to repeated freeze–thaw cycles under controlled laboratory conditions. Survival of FIOs in water exposed to freeze–thaw was also investigated to help interpret survival responses. Both E. coli and intestinal enterococci were capable of surviving sub-freezing conditions with the faeces from both animals able to sustain relatively high FIO concentrations, as indicated by modelling, and observations revealing persistence in excess of 11 days and in some cases confirmed beyond 22 days. Die-off responses of deer-derived FIOs in both faeces and water exposed to low temperatures provide much needed information to enable better accounting of the varied catchment sources of faecal pollution and results from this study help constrain the parameterisation of die-off coefficients to better inform more integrated modelling and decision-making for microbial water quality management.
Collapse
|
34
|
Holcomb DA, Stewart JR. Microbial Indicators of Fecal Pollution: Recent Progress and Challenges in Assessing Water Quality. Curr Environ Health Rep 2020; 7:311-324. [PMID: 32542574 PMCID: PMC7458903 DOI: 10.1007/s40572-020-00278-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Fecal contamination of water is a major public health concern. This review summarizes recent developments and advancements in water quality indicators of fecal contamination. RECENT FINDINGS This review highlights a number of trends. First, fecal indicators continue to be a valuable tool to assess water quality and have expanded to include indicators able to detect sources of fecal contamination in water. Second, molecular methods, particularly PCR-based methods, have advanced considerably in their selected targets and rigor, but have added complexity that may prohibit adoption for routine monitoring activities at this time. Third, risk modeling is beginning to better connect indicators and human health risks, with the accuracy of assessments currently tied to the timing and conditions where risk is measured. Research has advanced although challenges remain for the effective use of both traditional and alternative fecal indicators for risk characterization, source attribution and apportionment, and impact evaluation.
Collapse
Affiliation(s)
- David A Holcomb
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr., Chapel Hill, NC, 27599-7435, USA
| | - Jill R Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr., Chapel Hill, NC, 27599-7431, USA.
| |
Collapse
|
35
|
Paulino GVB, Félix CR, Silvan CG, Andersen GL, Landell MF. Bacterial community and environmental factors associated to rivers runoff and their possible impacts on coral reef conservation. MARINE POLLUTION BULLETIN 2020; 156:111233. [PMID: 32510379 DOI: 10.1016/j.marpolbul.2020.111233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Rivers potentially conduct important components as result of anthropogenic stressors for coral reefs. Molecular techniques are increasingly being used for monitoring biological and chemical monitoring of rivers and reefs. Here, we use PhyloChips™ to process surface water samples collected along two rivers and associated reefs in an environmental protection area in northeastern Brazil. Our results indicate that a significant part of Operational Taxonomic Units (OTUs) identified were able to survive the transition from freshwater to seawater, several of them belonging to genera implicated in human pathogenesis. The BBC:A ratio and functional prediction suggests that both study rivers are subject to fecal contamination and xenobiotics input and that the bacterial communities were more homogeneous in these environments. We suggest that protection actions adopted for reefs should be broadly extended to the surrounding environment, and that other bacterial group (besides cultivable coliforms) should be included in routine water quality monitoring.
Collapse
Affiliation(s)
| | - Ciro Ramon Félix
- Universidade Federal de Alagoas - UFAL, Campus A. C. Simões, Av. Lourival Melo Mota, s/n, CEP: 57072-900 Maceió, AL, Brazil
| | - Cinta Gomez Silvan
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Gary L Andersen
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Melissa Fontes Landell
- Universidade Federal de Alagoas - UFAL, Campus A. C. Simões, Av. Lourival Melo Mota, s/n, CEP: 57072-900 Maceió, AL, Brazil.
| |
Collapse
|
36
|
Sediment Microbial Diversity in Urban Piedmont North Carolina Watersheds Receiving Wastewater Input. WATER 2020. [DOI: 10.3390/w12061557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Urban streams are heavily influenced by human activity. One way that this occurs is through the reintroduction of treated effluent from wastewater treatment plants. We measured the microbial community composition of water, sediment, and soil at sites upstream and downstream from two Charlotte treatment facilities. We performed 16S rRNA gene sequencing to assay the microbial community composition at each site at four time points between the late winter and mid-summer of 2016. Despite the location of these streams in an urban area with many influences and disruptions, the streams maintain distinct water, sediment, and soil microbial profiles. While there is an overlap of microbial species in upstream and downstream sites, there are several taxa that differentiate these sites. Some taxa characteristics of human-associated microbial communities appear elevated in the downstream sediment communities. In the wastewater treatment plant and to a lesser extent in the downstream community, there are high abundance amplicon sequence variants (ASVs) which are less than 97% similar to any sequence in reference databases, suggesting that these environments contain an unexplored biological novelty. Taken together, these results suggest a need to more fully characterize the microbial communities associated with urban streams, and to integrate information about microbial community composition with mechanistic models.
Collapse
|
37
|
Fecal Source Tracking in A Wastewater Treatment and Reclamation System Using Multiple Waterborne Gastroenteritis Viruses. Pathogens 2019; 8:pathogens8040170. [PMID: 31574994 PMCID: PMC6963801 DOI: 10.3390/pathogens8040170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 01/22/2023] Open
Abstract
Gastroenteritis viruses in wastewater reclamation systems can pose a major threat to public health. In this study, multiple gastroenteritis viruses were detected from wastewater to estimate the viral contamination sources in a wastewater treatment and reclamation system installed in a suburb of Xi'an city, China. Reverse transcription plus nested or semi-nested PCR, followed by sequencing and phylogenetic analysis, were used for detection and genotyping of noroviruses and rotaviruses. As a result, 91.7% (22/24) of raw sewage samples, 70.8% (17/24) of the wastewater samples treated by anaerobic/anoxic/oxic (A2O) process and 62.5% (15/24) of lake water samples were positive for at least one of target gastroenteritis viruses while all samples collected from membrane bioreactor effluent after free chlorine disinfection were negative. Sequence analyses of the PCR products revealed that epidemiologically minor strains of norovirus GI (GI/14) and GII (GII/13) were frequently detected in the system. Considering virus concentration in the disinfected MBR effluent which is used as the source of lake water is below the detection limit, these results indicate that artificial lake may be contaminated from sources other than the wastewater reclamation system, which may include aerosols, and there is a possible norovirus infection risk by exposure through reclaimed water usage and by onshore winds transporting aerosols containing norovirus.
Collapse
|
38
|
Worley‐Morse T, Mann M, Khunjar W, Olabode L, Gonzalez R. Evaluating the fate of bacterial indicators, viral indicators, and viruses in water resource recovery facilities. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:830-842. [PMID: 30848516 PMCID: PMC6849880 DOI: 10.1002/wer.1096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 05/03/2023]
Abstract
A year-long sampling campaign at nine water resource recovery facilities (WRRFs) was conducted to assess the treatability and fate of bacterial indicators, viral indicators, and viruses. Influent concentrations of viral indicators (male-specific and somatic coliphages) and bacterial indicators (Escherichia coli and enterococci) remained relatively constant, typically varying by one order of magnitude over the course of the year. Annual average bacterial indicator reduction ranged from 4.0 to 6.7 logs, and annual average viral indicator reduction ranged from 1.6 to 5.4 logs. Bacterial and viral indicator reduction depended on the WRRF's treatment processes, and bacterial indicator reduction was greater than viral indicator reduction for many processes. Viral reduction (adenovirus 41, norovirus GI, and norovirus GII) was more similar to viral indicator reduction than bacterial indicator reduction. Overall, this work suggests that viral indicator reduction in WRRFs is variable and depends on specific unit processes. Moreover, for the same unit treatment process, viral indicator reduction and bacterial indicator reduction can vary. PRACTITIONER POINTS: A year-long sampling campaign was conducted at nine water resource recovery facilities (WRRFs). The treatability and fate of bacterial indicators, viral indicators, and viruses were assessed. Viral indicator reduction in WRRFs is variable and depends on specific unit processes. For the same unit treatment process, viral indicator reduction and bacterial indicator reduction can vary.
Collapse
Affiliation(s)
| | | | | | | | - Raul Gonzalez
- Hampton Roads Sanitation DistrictVirginia BeachVirginia
| |
Collapse
|