1
|
Jin Z, Zhang P, Huang H, Liu J, Jiang C, Zhang H, Ren L, Sun B, Chang X, Gao T, Sun W. Food-derived skin-care ingredient as a promising strategy for skin aging: Current knowledge and future perspectives. Colloids Surf B Biointerfaces 2024; 244:114170. [PMID: 39180992 DOI: 10.1016/j.colsurfb.2024.114170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Skin aging involves complex biochemical reactions and has attracted a growing concern recently. For it, there is a great desire to replace the hazardous and easy-recurring "therapy means" with "daily care" based on some natural and healthy ingredients. According to a novel theory called "homology of cosmetic and food", the safety, efficacy and accessibility of food-derived skin-care ingredients offer an attractive option for combating skin aging, which will be an inevitable trend of dermatology in the future. Ultraviolet (UV) radiation is a major trigger of skin aging. It acts on the skin and generates reactive oxygen species, which causing oxidative stress. More, matrix metalloproteinase and melanin levels are also upregulated by the UV-activated mitogen-activated protein kinase (MAPK) pathway and tyrosinase, respectively, resulting in collagen degradation and melanin deposition in the extracellular matrix. Through the existing studies, the relevant key biomarkers and biochemical pathways can be effectively controlled by skin-care ingredients from animal-derived and plant-derived foods as well as traditional herbs, thus preserving human skin from UV-induced aging in terms of antioxidant, collagen protection and melanin inhibition. To extend their application potential, some carriers represented by nanoliposomes can facilitate the transdermal absorption of food-derived skin-care ingredients by the variation of molecular weight and lipid solubility. The present review will provide an overview of the trigger mechanisms of skin aging, and focus on the molecular biology aspects of food-derived skin-care ingredients in skin matrix and the critical summarize of their research state.
Collapse
Affiliation(s)
- Zichun Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Peng Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Huan Huang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Jialin Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Chaoping Jiang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Hanyuan Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Lu Ren
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Bingkun Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Xianghan Chang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Tingyue Gao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Wenxiu Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
2
|
Olivero-Verbel J, Quintero-Rincón P, Caballero-Gallardo K. Aromatic plants as cosmeceuticals: benefits and applications for skin health. PLANTA 2024; 260:132. [PMID: 39500772 PMCID: PMC11538177 DOI: 10.1007/s00425-024-04550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
MAIN CONCLUSION This review highlights the potential of aromatic plants as natural antioxidants in cosmeceuticals to combat skin aging and promote health and rejuvenation. Aromatic plant extracts, essential oils, or their phytoconstituents have a long history of use in skincare, dating back centuries. Currently, these plant-based sources are extensively researched and utilized in the cosmeceutical industry to formulate products that enhance skin health and promote a youthful appearance. These plants' diverse bioactivities and sensory properties make them ideal ingredients for developing anti-aging agents recommended for maintaining healthy skin through self-care routines, offering a natural alternative to synthetic products. Reactive oxygen species (ROS) accumulation in the dermis, attributed to intrinsic and extrinsic aging factors, particularly prolonged sun exposure, is identified as the primary cause of skin aging. Plant extracts enriched with antioxidant compounds including flavonoids, phenolics, tannins, stilbenes, terpenes, and steroids, are fundamental to counteract ROS-induced oxidative stress. Noteworthy effects observed from the use of these natural sources include photoprotective, senolytic, anti-inflammatory, anti-wrinkle, anti-acne, and anti-tyrosinase activities, encompassing benefits like photoprotection, wound healing, skin whitening, anti-pigmentation, tissue regeneration, among others. This review highlights several globally distributed aromatic plant species renowned for their benefits for skin, including Foeniculum vulgare Mill. (Apiaceae), Calendula officinalis L. and Matricaria chamomilla L. (Asteraceae), Thymus vulgaris L. (Lamiaceae), Litsea cubeba (Lour.) Pers. (Lauraceae), Althaea officinalis L. (Malvaceae), Malaleuca alternifolia (Maiden y Betche) Cheel (Myrtaceae), Cymbopogon citratus (DC.) Stapf (Poaceae), Rubus idaeus L. (Rosaceae), and Citrus sinensis L. Osbeck (Rutaceae), emphasizing their potential in skincare formulations and their role in promoting health and rejuvenation.
Collapse
Affiliation(s)
- Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia
| | - Patricia Quintero-Rincón
- Functional Toxicology Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia
- Research Group Design and Formulation of Medicines, Cosmetics, and Related, Faculty of Pharmaceutical and Food Sciences, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
- Functional Toxicology Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| |
Collapse
|
3
|
Martins-Gomes C, Nunes FM, Silva AM. Thymus spp. Aqueous Extracts and Their Constituent Salvianolic Acid A Induce Nrf2-Dependent Cellular Antioxidant Protection Against Oxidative Stress in Caco-2 Cells. Antioxidants (Basel) 2024; 13:1287. [PMID: 39594429 PMCID: PMC11591053 DOI: 10.3390/antiox13111287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
The increasing incidence of colorectal cancer and inflammatory diseases poses a major health concern, with oxidative stress playing a significant role in the onset of these pathologies. Factors such as excessive consumption of sugar-rich and fatty foods, synthetic food additives, pesticides, alcohol, and tobacco contribute to oxidative stress and disrupt intestinal homeostasis. Functional foods arise as a potential tool to regulate redox balance in the intestinal tract. Herbs (such as Thymus spp.) have long been screened for their antioxidant properties, but their use as antioxidants for medicinal purposes requires validation in biological models. In this study, we addressed the potential antioxidant protection and preventive effects of extracts from two thyme species at the intestinal level, as well as their molecular mechanisms of action. Caco-2 cells were pre-exposed (4 h) to aqueous (AD) and hydroethanolic (HE) extracts of Thymus carnosus and Thymus capitellatus, followed by a recovery period in culture medium (16 h), and then treated with tert-butyl-hydroperoxide (TBHP; 4 h), before analyzing cell viability. The effect of the extracts' main components was also analysed. Cellular oxidative stress, cell-death markers, and the expression of antioxidant-related proteins were evaluated using flow cytometry on cells pre-exposed to the AD extracts and salvianolic acid A (SAA). Results showed that pre-exposure to AD extracts or SAA reduced TBHP-induced oxidative stress and cell death, mediated by increased levels of nuclear factor erythroid 2-related factor 2 (Nrf2) protein. The protective activity of T. capitellatus AD extract was shown to be dependent on NAD(P)H quinone dehydrogenase 1 (NQO1) protein expression and on increased glutathione (GSH) content. Furthermore, ursolic acid induced cytotoxicity and low cellular antioxidant activity, and thus the presence of this triterpenoid impaired the antioxidant effect of HE extracts. Thus, AD extracts show high potential as prophylactic dietary agents, while HE extracts arise as a source of nutraceuticals with antioxidant potential.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Chemistry, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4gro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Hu X, Chen M, Nawaz J, Duan X. Regulatory Mechanisms of Natural Active Ingredients and Compounds on Keratinocytes and Fibroblasts in Mitigating Skin Photoaging. Clin Cosmet Investig Dermatol 2024; 17:1943-1962. [PMID: 39224224 PMCID: PMC11368101 DOI: 10.2147/ccid.s478666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Background The mechanism underlying skin photoaging remains elusive because of the intricate cellular and molecular changes that contribute to this phenomenon, which have yet to be elucidated. In photoaging, the roles of keratinocytes and fibroblasts are vital for maintaining skin structure and elasticity. But these cells can get photo-induced damage during photoaging, causing skin morphological changes. Recently, the function of natural active ingredients in treating and preventing photoaging has drawn more attention, with researches often focusing on keratinocytes and fibroblasts. Methods We searched for studies published from 2007 to January 2024 in the Web of Science, PubMed, and ScienceDirect databases through the following keywords: natural plant, natural plant products or phytochemicals, traditional Chinese Medicine or Chinese herbal, plant extracts, solar skin aging, skin photoaging, and skin wrinkling. This review conducted the accordance of Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Results In total, 87 researches were included in this review (Figure 1). In keratinocytes, natural compounds may primarily regulate signal pathways such as the NF-κB, MAPK, PI3K/AKT, and Nrf2/ARE pathways, reducing inflammation and cellular damage, thus slowing skin photoaging. Additionally, in fibroblasts, natural active ingredients primarily promote the TGF-β pathway, inhibit MMPs activity, and enhance collagen synthesis while potentially modulating the mTOR pathway, thereby protecting the dermal collagen network and reducing wrinkle formation. Several trials showed that natural compounds that regulate keratinocytes and fibroblasts responses have significant and safe therapeutic effects. Conclusion The demand for natural product-based ingredients in sunscreen formulations is rising. Natural compounds show promising anti-photoaging effects by targeting cellular pathways in keratinocytes and fibroblasts, providing potential therapeutic strategies. However, comprehensive clinical studies are needed to verify their efficacy and safety in mitigating photoaging, which should use advanced pharmacological methods to uncover the complex anti-photoaging mechanisms of natural compounds.
Collapse
Affiliation(s)
- Xinru Hu
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Meng Chen
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Jahanzeb Nawaz
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Xi Duan
- Department of Dermatovenereology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| |
Collapse
|
5
|
Fan R, Zhang Y, Liu R, Wei C, Wang X, Wu X, Yu X, Li Z, Mao R, Hu J, Zhu N, Liu X, Li Y, Xu M. Exogenous Nucleotides Improve the Skin Aging of SAMP8 Mice by Modulating Autophagy through MAPKs and AMPK Pathways. Nutrients 2024; 16:1907. [PMID: 38931262 PMCID: PMC11206724 DOI: 10.3390/nu16121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
The skin, serving as the body's primary defense against external elements, plays a crucial role in protecting the body from infections and injuries, as well as maintaining overall homeostasis. Skin aging, a common manifestation of the aging process, involves the gradual deterioration of its normal structure and repair mechanisms. Addressing the issue of skin aging is increasingly imperative. Multiple pieces of evidence indicate the potential anti-aging effects of exogenous nucleotides (NTs) through their ability to inhibit oxidative stress and inflammation. This study aims to investigate whether exogenous NTs can slow down skin aging and elucidate the underlying mechanisms. To achieve this objective, senescence-accelerated mouse prone-8 (SAMP8) mice were utilized and randomly allocated into Aging, NTs-low, NTs-middle, and NTs-high groups, while senescence-accelerated mouse resistant 1 (SAMR1) mice were employed as the control group. After 9 months of NT intervention, dorsal skin samples were collected to analyze the pathology and assess the presence and expression of substances related to the aging process. The findings indicated that a high-dose NT treatment led to a significant increase in the thickness of the epithelium and dermal layers, as well as Hyp content (p < 0.05). Additionally, it was observed that low-dose NT intervention resulted in improved aging, as evidenced by a significant decrease in p16 expression (p < 0.05). Importantly, the administration of high doses of NTs could improve, in some ways, mitochondrial function, which is known to reduce oxidative stress and promote ATP and NAD+ production significantly. These observed effects may be linked to NT-induced autophagy, as evidenced by the decreased expression of p62 and increased expression of LC3BI/II in the intervention groups. Furthermore, NTs were found to upregulate pAMPK and PGC-1α expression while inhibiting the phosphorylation of p38MAPK, JNK, and ERK, suggesting that autophagy may be regulated through the AMPK and MAPK pathways. Therefore, the potential induction of autophagy by NTs may offer benefits in addressing skin aging through the activation of the AMPK pathway and the inhibition of the MAPK pathway.
Collapse
Affiliation(s)
- Rui Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Ying Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Rui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Chan Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xiujuan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xin Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xiaochen Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Zhen Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Ruixue Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Jiani Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Na Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xinran Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (R.F.); (Y.Z.); (R.L.); (C.W.); (X.W.); (X.W.); (X.Y.); (Z.L.); (R.M.); (J.H.); (N.Z.); (X.L.); (Y.L.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Liu SJ, Cai C, Cai HY, Bai YQ, Wang DY, Zhang H, Peng JG, Xie LJ. Integrated analysis of transcriptome and small RNAome reveals regulatory network of rapid and long-term response to heat stress in Rhododendron moulmainense. PLANTA 2024; 259:104. [PMID: 38551672 PMCID: PMC10980653 DOI: 10.1007/s00425-024-04375-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/03/2024] [Indexed: 04/01/2024]
Abstract
MAIN CONCLUSION The post-transcriptional gene regulatory pathway and small RNA pathway play important roles in regulating the rapid and long-term response of Rhododendron moulmainense to high-temperature stress. The Rhododendron plays an important role in maintaining ecological balance. However, it is difficult to domesticate for use in urban ecosystems due to their strict optimum growth temperature condition, and its evolution and adaptation are little known. Here, we combined transcriptome and small RNAome to reveal the rapid response and long-term adaptability regulation strategies in Rhododendron moulmainense under high-temperature stress. The post-transcriptional gene regulatory pathway plays important roles in stress response, in which the protein folding pathway is rapidly induced at 4 h after heat stress, and alternative splicing plays an important role in regulating gene expression at 7 days after heat stress. The chloroplasts oxidative damage is the main factor inhibiting photosynthesis efficiency. Through WGCNA analysis, we identified gene association patterns and potential key regulatory genes responsible for maintaining the ROS steady-state under heat stress. Finally, we found that the sRNA synthesis pathway is induced under heat stress. Combined with small RNAome, we found that more miRNAs are significantly changed under long-term heat stress. Furthermore, MYBs might play a central role in target gene interaction network of differentially expressed miRNAs in R. moulmainense under heat stress. MYBs are closely related to ABA, consistently, ABA synthesis and signaling pathways are significantly inhibited, and the change in stomatal aperture is not obvious under heat stress. Taken together, we gained valuable insights into the transplantation and long-term conservation domestication of Rhododendron, and provide genetic resources for genetic modification and molecular breeding to improve heat resistance in Rhododendron.
Collapse
Affiliation(s)
- Si-Jia Liu
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Chang Cai
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
| | - Hong-Yue Cai
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Yu-Qing Bai
- Administrative Office of Wutong Mountain National Park, Shenzhen, 518004, China
| | - Ding-Yue Wang
- Administrative Office of Wutong Mountain National Park, Shenzhen, 518004, China
| | - Hua Zhang
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Jin-Gen Peng
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China.
| | - Li-Juan Xie
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Kim M, Heo H, Hong S, Lee J, Lee H. Synergistic Effect of Madecassoside and Rosmarinic Acid Against Ultraviolet B-Induced Photoaging in Human Skin Fibroblasts. J Med Food 2023; 26:919-926. [PMID: 37976111 DOI: 10.1089/jmf.2023.k.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Madecassoside (MD) and rosmarinic acid (RA) are well-known compounds with wound healing and antiaging effects. We demonstrated the synergistic protective activity of the MD-RA combination in Hs68 cells against ultraviolet B (UVB)-induced photoaging. The cell viabilities of MD, RA, and MD-RA combinations at various ratios (9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, and 1:9, v/v) were measured to compare their protective effects against UVB radiation. The synergistic interaction between MD and RA was confirmed using a combination index. The strongest effect of the MD-RA combination was observed at a ratio of 3:7. The combination of MD-RA 3:7 exerted a synergistic effect against UVB-induced changes in cell viability, as well as superoxide dismutase activity, reactive oxygen species, glutathione, catalase activity, and malondialdehyde levels. Moreover, the inhibitory effect of the MD-RA combination (3:7) on matrix metalloproteinases and total collagen production was higher than that of MD or RA alone. These results demonstrated that the MD-RA combination (3:7) generated a strong synergistic effect against UVB-induced photoaging in Hs68 cells. Overall, our results provide scientific evidence to support the development of a new combination therapy for skin protection against UVB-induced photoaging through the synergistic interaction between MD and RA. These natural compounds are promising options for antiaging and skin protection in the cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
- Minha Kim
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Huijin Heo
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Seonghwa Hong
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Hana Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
8
|
Michalak M. Plant Extracts as Skin Care and Therapeutic Agents. Int J Mol Sci 2023; 24:15444. [PMID: 37895122 PMCID: PMC10607442 DOI: 10.3390/ijms242015444] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Natural ingredients have been used for centuries for skin treatment and care. Interest in the health effects of plants has recently increased due to their safety and applicability in the formulation of pharmaceuticals and cosmetics. Long-known plant materials as well as newly discovered ones are increasingly being used in natural products of plant origin. This review highlights the beneficial effects of plants and plant constituents on the skin, including moisturizing (e.g., Cannabis sativa, Hydrangea serrata, Pradosia mutisii and Carthamus tinctorius), anti-aging (e.g., Aegopodium podagraria, Euphorbia characias, Premna odorata and Warburgia salutaris), antimicrobial (e.g., Betula pendula and Epilobium angustifolium), antioxidant (e.g., Kadsura coccinea, Rosmarinus officinalis, Rubus idaeus and Spatholobus suberectus), anti-inflammatory (e.g., Antidesma thwaitesianum, Helianthus annuus, Oenanthe javanica, Penthorum chinense, Ranunculus bulumei and Zanthoxylum bungeanum), regenerative (e.g., Aloe vera, Angelica polymorpha, Digitaria ciliaris, Glycyrrihza glabra and Marantodes pumilum), wound healing (e.g., Agrimonia eupatoria, Astragalus floccosus, Bursera morelensis, Jatropha neopauciflora and Sapindus mukorossi), photoprotective (e.g., Astragalus gombiformis, Calea fruticose, Euphorbia characias and Posoqueria latifolia) and anti-tyrosinase activity (e.g., Aerva lanata, Bruguiera gymnorhiza, Dodonaea viscosa, Lonicera japonica and Schisandra chinensis), as well as their role as excipients in cosmetics (coloring (e.g., Beta vulgaris, Centaurea cyanus, Hibiscus sabdariffa and Rubia tinctiorum), protective and aromatic agents (e.g., Hyssopus officinalis, Melaleuca alternifolia, Pelargonium graveolens and Verbena officinalis)).
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, 35-317 Kielce, Poland
| |
Collapse
|
9
|
Zhang L, Liang S, Zhang Z, Wang K, Cao J, Yao M, Qin L, Qu C, Miao J. Protective Effects of ζ-Carotene-like Compounds against Acute UVB-Induced Skin Damage. Int J Mol Sci 2023; 24:13970. [PMID: 37762273 PMCID: PMC10530282 DOI: 10.3390/ijms241813970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The previous study successfully established an expression strain of ζ-carotene-like compounds (CLC) and demonstrated its remarkable antioxidant activity, which exhibited resistance to photodamage caused by UVB radiation on the skin following gavage administration. The objective of this study was to investigate the impact and mechanism of CLC on UVB-induced skin damage through topical application. Cell viability, anti-apoptotic activity, ROS scavenging ability, the inhibition of melanin synthesis, the regulation of inflammatory factors and collagen deposition were assessed in cells and mice using qRT-PCR, WB, Elisa assays, immunohistochemistry staining and biochemical kits, etc. The experimental results demonstrated that CLC-mitigated apoptosis induced by UVB irradiation up-regulated the Keap1/Nrf2/ARE antioxidant pathway to attenuate levels of ROS and inflammatory factors (NF-κB, TNF-α, IL-6 and IL-β), and suppressed MAPK/AP-1 and CAMP/PKA/CREB signaling pathways to mitigate collagen degradation, skin aging and melanin formation. In conclusion, this study underscored the potential of CLC as a safe and efficacious source of antioxidants, positioning it as a promising ingredient in the formulation of cosmetics targeting anti-aging, skin brightening and sunburn repair.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (L.Z.); (Z.Z.)
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (K.W.); (J.C.); (M.Y.); (L.Q.)
| | - Shaoxin Liang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (K.W.); (J.C.); (M.Y.); (L.Q.)
| | - Zhi Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (L.Z.); (Z.Z.)
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (K.W.); (J.C.); (M.Y.); (L.Q.)
| | - Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (K.W.); (J.C.); (M.Y.); (L.Q.)
| | - Junhan Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (K.W.); (J.C.); (M.Y.); (L.Q.)
| | - Mengke Yao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (K.W.); (J.C.); (M.Y.); (L.Q.)
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (K.W.); (J.C.); (M.Y.); (L.Q.)
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (K.W.); (J.C.); (M.Y.); (L.Q.)
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (K.W.); (J.C.); (M.Y.); (L.Q.)
- Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| |
Collapse
|
10
|
Oh S, Zheng S, Fang M, Kim M, Bellere AD, Jeong J, Yi TH. Anti-Photoaging Effect of Phaseolus angularis L. Extract on UVB-Exposed HaCaT Keratinocytes and Possibilities as Cosmetic Materials. Molecules 2023; 28:molecules28031407. [PMID: 36771069 PMCID: PMC9919029 DOI: 10.3390/molecules28031407] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Phaseolus angularis L. is widely cultivated and is considered a superfood because of its nutritious protein and starch contents. Nevertheless, P. angularis's effects on skin photoaging are unknown. The aim of this study was to research the effects of P. angularis seed extract (PASE) on photoaging in human keratinocytes (HaCaT) damaged by UVB radiation so as to find out whether PASE can be used as an effective anti-photoaging ingredient in cosmetic products. The antioxidant activities were assessed using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical scavenging, and reactive oxygen species (ROS) assays. Enzyme-linked immunosorbent assay (ELISA) analysis was used to determine the change in matrix metalloproteinase (MMP)-1, and MMP-3. The protein levels of mitogen-activated protein kinase (MAPK)/activator protein (AP)-1, transforming growth factor beta (TGF)-β/suppressor of mothers against decapentaplegic (Smad), and NF-E2-related factor (Nrf)2/antioxidant response element (ARE) were measured by western blot. As a result, PASE increased DPPH and ABTS antioxidant activities in a dose-dependent manner. Additionally, PASE treatment (100 µg/mL) significantly reverted the damage induced by UVB (125 mJ/cm2) irradiation by downregulating ROS, matrix metalloproteinase (MMP)-1, and MMP-3 secretion and expression and increasing procollagen type I production. To suppress MMP-1 and MMP-3 secretion, PASE significantly decreased UVB-induced p38 and JNK phosphorylation and phosphorylated c-Fos and c-Jun nuclear translocation. PASE promoted collagen I production by inhibiting UVB-induced TGF-β activation and Smad7 overexpression; antioxidant properties also arose from the stimulation of the Nrf2-dependent expression of the antioxidant enzymes heme oxygenase (HO)-1 and quinone oxidoreductase (NQO)-1. Our data demonstrated that PASE has the potential to prevent ROS formation induced by UVB exposure by targeting specific pathways. Thus, PASE might be a potent anti-photoaging component to exploit in developing anti-aging products.
Collapse
Affiliation(s)
- Sarang Oh
- Snowwhitefactory Co., Ltd., 807 Nonhyeon-ro, Gangnam-gu, Seoul 06032, Republic of Korea
| | - Shengdao Zheng
- Snowwhitefactory Co., Ltd., 807 Nonhyeon-ro, Gangnam-gu, Seoul 06032, Republic of Korea
| | - Minzhe Fang
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea
| | - Myeongju Kim
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea
| | - Arce Defeo Bellere
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea
| | - Jeehaeng Jeong
- Snowwhitefactory Co., Ltd., 807 Nonhyeon-ro, Gangnam-gu, Seoul 06032, Republic of Korea
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea
- Correspondence: ; Tel.: +82-31-201-3693
| |
Collapse
|
11
|
Bouzroud S, El Maaiden E, Sobeh M, Merghoub N, Boukcim H, Kouisni L, El Kharrassi Y. Biotechnological Approaches to Producing Natural Antioxidants: Anti-Ageing and Skin Longevity Prospects. Int J Mol Sci 2023; 24:ijms24021397. [PMID: 36674916 PMCID: PMC9867058 DOI: 10.3390/ijms24021397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Plants are the main source of bioactive compounds that can be used for the formulation of cosmetic products. Plant extracts have numerous proven health benefits, among which are anti-ageing and skin-care properties. However, with the increased demand for plant-derived cosmetic products, there is a crucial prerequisite for establishing alternative approaches to conventional methods to ensure sufficient biomass for sustainable production. Plant tissue culture techniques, such as in vitro root cultures, micropropagation, or callogenesis, offer the possibility to produce considerable amounts of bioactive compounds independent of external factors that may influence their production. This production can also be significantly increased with the implementation of other biotechnological approaches such as elicitation, metabolic engineering, precursor and/or nutrient feeding, immobilization, and permeabilization. This work aimed to evaluate the potential of biotechnological tools for producing bioactive compounds, with a focus on bioactive compounds with anti-ageing properties, which can be used for the development of green-label cosmeceutical products. In addition, some examples demonstrating the use of plant tissue culture techniques to produce high-value bioactive ingredients for cosmeceutical applications are also addressed, showing the importance of these tools and approaches for the sustainable production of plant-derived cosmetic products.
Collapse
Affiliation(s)
- Sarah Bouzroud
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Ezzouhra El Maaiden
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Mansour Sobeh
- AgroBioSciences Department (AgBS), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco
| | - Nawal Merghoub
- AgroBioSciences Department (AgBS), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MAScIR), Rabat 10100, Morocco
| | - Hassan Boukcim
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Youssef El Kharrassi
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
- Correspondence:
| |
Collapse
|
12
|
Kahremany S, Hofmann L, Gruzman A, Dinkova-Kostova AT, Cohen G. NRF2 in dermatological disorders: Pharmacological activation for protection against cutaneous photodamage and photodermatosis. Free Radic Biol Med 2022; 188:262-276. [PMID: 35753587 PMCID: PMC9350913 DOI: 10.1016/j.freeradbiomed.2022.06.238] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023]
Abstract
The skin barrier and its endogenous protective mechanisms cope daily with exogenous stressors, of which ultraviolet radiation (UVR) poses an imminent danger. Although the skin is able to reduce the potential damage, there is a need for comprehensive strategies for protection. This is particularly important when developing pharmacological approaches to protect against photocarcinogenesis. Activation of NRF2 has the potential to provide comprehensive and long-lasting protection due to the upregulation of numerous cytoprotective downstream effector proteins that can counteract the damaging effects of UVR. This is also applicable to photodermatosis conditions that exacerbate the damage caused by UVR. This review describes the alterations caused by UVR in normal skin and photosensitive disorders, and provides evidence to support the development of NRF2 activators as pharmacological treatments. Key natural and synthetic activators with photoprotective properties are summarized. Lastly, the gap in knowledge in research associated with photodermatosis conditions is highlighted.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel; The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel; Ben-Gurion University of the Negev, Eilat Campus, Eilat, 8855630, Israel.
| |
Collapse
|
13
|
Lim H, Hong H, Hwang S, Kim SJ, Seo SY, No KT. Identification of Novel Natural Product Inhibitors against Matrix Metalloproteinase 9 Using Quantum Mechanical Fragment Molecular Orbital-Based Virtual Screening Methods. Int J Mol Sci 2022; 23:4438. [PMID: 35457257 PMCID: PMC9030947 DOI: 10.3390/ijms23084438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are calcium-dependent zinc-containing endopeptidases involved in multiple cellular processes. Among the MMP isoforms, MMP-9 regulates cancer invasion, rheumatoid arthritis, and osteoarthritis by degrading extracellular matrix proteins present in the tumor microenvironment and cartilage and promoting angiogenesis. Here, we identified two potent natural product inhibitors of the non-catalytic hemopexin domain of MMP-9 using a novel quantum mechanical fragment molecular orbital (FMO)-based virtual screening workflow. The workflow integrates qualitative pharmacophore modeling, quantitative binding affinity prediction, and a raw material search of natural product inhibitors with the BMDMS-NP library. In binding affinity prediction, we made a scoring function with the FMO method and applied the function to two protein targets (acetylcholinesterase and fibroblast growth factor 1 receptor) from DUD-E benchmark sets. In the two targets, the FMO method outperformed the Glide docking score and MM/PBSA methods. By applying this workflow to MMP-9, we proposed two potent natural product inhibitors (laetanine 9 and genkwanin 10) that interact with hotspot residues of the hemopexin domain of MMP-9. Laetanine 9 and genkwanin 10 bind to MMP-9 with a dissociation constant (KD) of 21.6 and 0.614 μM, respectively. Overall, we present laetanine 9 and genkwanin 10 for MMP-9 and demonstrate that the novel FMO-based workflow with a quantum mechanical approach is promising to discover potent natural product inhibitors of MMP-9, satisfying the pharmacophore model and good binding affinity.
Collapse
Affiliation(s)
- Hocheol Lim
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Korea; (H.L.); (H.H.)
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Hansol Hong
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Korea; (H.L.); (H.H.)
- Department of Biological Science, Kongju National University, Kongju 32588, Korea; (S.J.K.); (S.Y.S.)
| | - Seonik Hwang
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Song Ja Kim
- Department of Biological Science, Kongju National University, Kongju 32588, Korea; (S.J.K.); (S.Y.S.)
| | - Sung Yum Seo
- Department of Biological Science, Kongju National University, Kongju 32588, Korea; (S.J.K.); (S.Y.S.)
| | - Kyoung Tai No
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Korea; (H.L.); (H.H.)
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Korea
- Baobab AiBIO Co., Ltd., Incheon 21983, Korea
| |
Collapse
|
14
|
Wang T, Wang Y, Wang J, Chen H, Qu B, Li Z. Efficacy and Safety of Topical Therapy With Botanical Products for Melasma: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Med (Lausanne) 2022; 8:797890. [PMID: 35141245 PMCID: PMC8819825 DOI: 10.3389/fmed.2021.797890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022] Open
Abstract
Botanical products have been increasingly popular in topical therapies for melasma, as presumed safer and milder than fully synthetic products. Although the efficacy of different topical botanicals has recently been substantiated through randomized controlled trials (RCTs), there is a lack of sufficiently pooled evidence on their efficacy and safety for the treatment of melasma. Herein, a systematic review and meta-analysis was conducted on the efficacy and safety of topical botanical products for the treatment of melasma, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). All RCTs on the use of topical botanical products for the treatment of melasma in humans were included, except for trials enrolling pregnant patients. The primary outcome was Melasma Area and Severity Index (MASI) or its variation. The secondary outcomes included Mexameter® reading, melasma improvement evaluated by participants, and any reported adverse events (AEs). As a result, twelve eligible trials comprising 695 patients with melasma from 6 different countries were included. The topical botanical products contained active ingredients which varied among trials as follows: herb-derived molecule, extracts of a single herb, and extracts of compound herbs. Topical therapy with botanical products significantly improved melasma with a large effect on MASI reduction (SMD −0.79, 95% CI −1.14 to −0.44, p < 0.00001), and a moderate effect on Mexameter® reading reduction (SMD −0.52, 95% CI −0.81 to 0.23, p = 0.0005), when compared with placebo. It also showed a similar improvement of melasma with a better safety profile (RR 0.37, 95% CI 0.15–0.88, p = 0.02), when compared with active-comparators. Botanical products were well-tolerated across studies, with no serious AEs reported. Despite the limitations such as small sample size, short duration of follow up and varied botanical products, this work still represents the best level of evidence currently available on topical use of botanical products on melasma. Moreover, it should be noted that more well-designed studies are needed before recommending topical botanical products as a viable treatment option for melasma.
Collapse
Affiliation(s)
- Tianyun Wang
- Department of Endocrinology, Huaian Hospital, Huaian, China
- Department of Pharmacy, Huaian Hospital, Huaian, China
| | - Youmei Wang
- Department of Endocrinology, Huaian Hospital, Huaian, China
- Department of Pharmacy, Huaian Hospital, Huaian, China
| | - Jue Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Hongwei Chen
- School of Public Health, Sun Yat-sen University, Shenzhen, China
| | - Biao Qu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
- Biao Qu
| | - Zheng Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, College of Health Sciences, Jiangsu Normal University, Xuzhou, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- *Correspondence: Zheng Li
| |
Collapse
|
15
|
Bottoni M, Milani F, Galimberti PM, Vignati L, Romanini PL, Lavezzo L, Martinetti L, Giuliani C, Fico G. Ca' Granda, Hortus simplicium: Restoring an Ancient Medicinal Garden of XV-XIX Century in Milan (Italy). Molecules 2021; 26:6933. [PMID: 34834025 PMCID: PMC8620247 DOI: 10.3390/molecules26226933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
This work is based on the study of 150 majolica vases dated back to the mid XVII century that once preserved medicinal remedies prepared in the ancient Pharmacy annexed to the Ospedale Maggiore Ca' Granda in Milan (Lombardy, Italy). The Hortus simplicium was created in 1641 as a source of plant-based ingredients for those remedies. The main objective of the present work is to lay the knowledge base for the restoration of the ancient Garden for educational and informative purposes. Therefore, the following complementary phases were carried out: (i) the analysis of the inscriptions on the jars, along with the survey on historical medical texts, allowing for the positive identification of the plant ingredients of the remedies and their ancient use as medicines; (ii) the bibliographic research in modern pharmacological literature in order to validate or refute the historical uses; (iii) the realization of the checklist of plants potentially present in cultivation at the ancient Garden, concurrently with the comparison with the results of a previous in situ archaeobotanical study concerning pollen grains. For the species selection, considerations were made also regarding drug amounts in the remedies and pedoclimatic conditions of the study area. Out of the 150 vases, 108 contained plant-based remedies, corresponding to 148 taxa. The remedies mainly treated gastrointestinal and respiratory disorders. At least one of the medicinal uses was validated in scientific literature for 112 out of the 148 examined species. Finally, a checklist of 40 taxa, presumably hosted in the Hortus simplicium, was assembled.
Collapse
Affiliation(s)
- Martina Bottoni
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Fabrizia Milani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Paolo M. Galimberti
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, 20122 Milan, Italy;
| | - Lucia Vignati
- Landscape Ecomuseum of Parabiago, P.za della Vittoria 7, 20015 Milan, Italy;
| | - Patrizia Luise Romanini
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Luca Lavezzo
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Livia Martinetti
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, 20133 Milan, Italy;
| | - Claudia Giuliani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Gelsomina Fico
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| |
Collapse
|
16
|
Park SH, Kim JG, Jang YA, Bayazid AB, Ou Lim B. Fermented black rice and blueberry with Lactobacillus plantarum MG4221 improve UVB-induced skin injury. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1967300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Seo Hyun Park
- Department of Integrated Bioscience, Konkuk University, Chungju, Korea
- R&D Center, Ahn-Gook Health Co., Ltd., Seoul, Korea
| | - Jae Gon Kim
- Department of Integrated Bioscience, Konkuk University, Chungju, Korea
- Research of Institute of Inflammatory Diseases, BK21FOUR GLOCAL Education Program for Nutraceutical and Biopharmaceutical Research, Konkuk University, Chungju, Republic of Korea
| | - Young Ah Jang
- Convergence Research Center for Smart Healthcare, R&DB Foundation of Kyungsung University, Busan, Korea
| | - Al Borhan Bayazid
- Department of Integrated Bioscience, Konkuk University, Chungju, Korea
| | - Beong Ou Lim
- Department of Integrated Bioscience, Konkuk University, Chungju, Korea
- Research of Institute of Inflammatory Diseases, BK21FOUR GLOCAL Education Program for Nutraceutical and Biopharmaceutical Research, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
17
|
Han EJ, Kim SY, Han HJ, Kim HS, Kim KN, Fernando IPS, Madusanka DMD, Dias MKHM, Cheong SH, Park SR, Han YS, Lee K, Ahn G. UVB protective effects of Sargassum horneri through the regulation of Nrf2 mediated antioxidant mechanism. Sci Rep 2021; 11:9963. [PMID: 33976251 PMCID: PMC8113259 DOI: 10.1038/s41598-021-88949-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
The present study aimed to evaluate the protective effect of a methanol extract of Sargassum horneri (SHM), which contains 6-hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one (HTT) and apo-9'-fucoxanthinone, against ultraviolet B (UVB)-induced cellular damage in human keratinocytes and its underlying mechanism. SHM significantly improved cell viability of UVB-exposed human keratinocytes by reducing the generation of intracellular reactive oxygen species (ROS). Moreover, SHM inhibited UVB exposure-induced apoptosis by reducing the formation of apoptotic bodies and the populations of the sub-G1 hypodiploid cells and the early apoptotic cells by modulating the expression of the anti- and pro-apoptotic molecules, Bcl-2 and Bax, respectively. Furthermore, SHM inhibited NF-κB p65 activation by inducing the activation of Nrf2/HO-1 signaling. The cytoprotective and antiapoptotic activities of SHM are abolished by the inhibition of HO-1 signaling. In further study, SHM restored the skin dryness and skin barrier disruption in UVB-exposed human keratinocytes. Based to these results, our study suggests that SHM protects the cells against UVB-induced cellular damages through the Nrf2/HO-1/NF-κB p65 signaling pathway and may be potentially useful for the prevention of UVB-induced skin damage.
Collapse
Affiliation(s)
- Eui Jeong Han
- Research Center for Healthcare and Biomedical Engineering, Chonnam National University, Yeosu, 59626, Republic of Korea
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Seo-Young Kim
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, 24341, Republic of Korea
| | - Hee-Jin Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, Janghang-eup, Seocheon, 33662, Republic of Korea
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, 24341, Republic of Korea
| | - Ilekuttige Priyan Shanura Fernando
- Control Center for Aquatic Animal Diseases, Chonnam National University, Yeosu, 59626, Republic of Korea
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, 59626, Republic of Korea
| | | | | | - Sun Hee Cheong
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, 59626, Republic of Korea
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Sang Rul Park
- Estuarine and Coastal Ecology Laboratory, Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Young Seok Han
- Neo Environmental Business Co., Daewoo Technopark, Doyak-ro, Bucheon, 14523, Republic of Korea
| | - Kyounghoon Lee
- Division of Fisheries Science, Chonnam National University, Yeosu, 59626, Republic of Korea.
- Department of Marine Technology, Chonnam National University, Yeosu, 59626, Republic of Korea.
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, 59626, Republic of Korea.
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, 59626, Republic of Korea.
| |
Collapse
|
18
|
Liang J, Lian L, Wang X, Li L. Thymoquinone, extract from Nigella sativa seeds, protects human skin keratinocytes against UVA-irradiated oxidative stress, inflammation and mitochondrial dysfunction. Mol Immunol 2021; 135:21-27. [PMID: 33857815 DOI: 10.1016/j.molimm.2021.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/22/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Ultraviolet A (UVA) irradiation caused skin keratinocytes to accumulate reactive oxygen species (ROS) leading to the skin injury. Thymoquinone (TQ) was identified as the prominent bioactive ingredient in Nigella sativa seeds which was applied in therapying various human diseases. This study aimed to illustrate the role and mechanism of TQ in UVA-induced skin injury. We pre-treated HaCaT cells with TQ and irradiated them by UVA. MTT and Elisa assays were used to evaluate cell viability and apoptosis, as well as cytokine levels. To detect the related parameters of oxidative stress and mitochondrial function, colorimetry, spectrophotometry, bioluminescence, and dual-luciferase reporter methods were used. RT-qPCR and western blotting were performed for expressions of related mRNAs and proteins. TQ significantly improved the UVA-induced cytotoxicity on HaCaT cells. TQ treatment alleviated the oxidative stress and inflammation in UVA-irradiated keratinocytes. Besides, UVA irradiation promoted mitochondrial dysregulation in HaCaT cells leading to cell apoptosis, which could be reversed by TQ treatment. More importantly, NrF2/ARE pathway was activated in TQ-treated cells, while COX-2 was depressed, and inhibiting the pathway or activating COX-2 blocked the therapeutic effect of TQ on UVA-induced skin cell injury. Our study suggested that TQ treatment attenuated the UVA-induced oxidative and inflammatory responses, as well as mitochondrial apoptosis in keratinocytes by COX-2 inhibition via activating NrF2/ARE pathway. This might be a novel sight for preventing the solar radiation damage to the skin.
Collapse
Affiliation(s)
- Junfang Liang
- Department of Traditional Chinese Medicine Cosmetology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, China
| | - Liyang Lian
- Department of Dermatological, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, China
| | - Xiaoli Wang
- Department of Dermatological, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, China
| | - Liang Li
- Department of Traditional Chinese Medicine Pain Area of Orthopedic, Honghui Hospital, Xi'an Jiaotong University, Xianyang, Shaanxi 710064, China.
| |
Collapse
|
19
|
Diniyah N, Alam MB, Choi HJ, Lee SH. Lablab Purpureus Protects HaCaT Cells from Oxidative Stress-Induced Cell Death through Nrf2-Mediated Heme Oxygenase-1 Expression via the Activation of p38 and ERK1/2. Int J Mol Sci 2020; 21:ijms21228583. [PMID: 33202535 PMCID: PMC7697790 DOI: 10.3390/ijms21228583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Ultraviolet B (UV-B) radiation induces the extreme production of either reactive oxygen species (ROS) or inflammatory mediators. The aim of this study was to evaluate the antioxidant activities of 70% ethanolic extract of Lablab purpureus (LPE) and the underlying mechanisms using HaCaT cells exposed to UV-B. High-performance liquid chromatography (HPLC) confirmed the presence of gallic acid, catechin, and epicatechin in LPE. LPE was shown to have a very potent capacity to scavenge free radicals. The results showed that LPE prevented DNA damage and inhibited the generation of ROS in HaCaT cells without causing any toxicity. LPE increased the expression of endogenous antioxidant enzymes such as superoxide dismutase-1 and catalase. Furthermore, LPE treatment facilitates the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf-2), boosting the phase II detoxifying enzyme heme oxygenase-1 (HO-1) leading to the combatting of oxidative stress. However, pretreatment of LPE also caused the phosphorylation of mitogen-activated protein kinases (MAPK kinase) (p38 kinase) and extracellular signal-regulated kinase (ERK), whereas treatment with p38 and ERK inhibitors substantially suppressed LPE-induced Nrf2 and heme oxygenase (HO)-1 expression. These findings suggest that LPE exhibits antioxidant activity via Nrf-2-mediated HO-1 signaling through the activation of p38 and ERK, indicating that LPE can potentially be used as a remedy to combat oxidative stress-induced disorder.
Collapse
Affiliation(s)
- Nurud Diniyah
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; (N.D.); (M.B.A.); (H.-J.C.)
- Faculty of Agricultural Technology, University of Jember, Jember 68121, East Java, Indonesia
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; (N.D.); (M.B.A.); (H.-J.C.)
- Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Korea
| | - Hee-Jeong Choi
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; (N.D.); (M.B.A.); (H.-J.C.)
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; (N.D.); (M.B.A.); (H.-J.C.)
- Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-7754
| |
Collapse
|
20
|
Hernandez DF, Cervantes EL, Luna-Vital DA, Mojica L. Food-derived bioactive compounds with anti-aging potential for nutricosmetic and cosmeceutical products. Crit Rev Food Sci Nutr 2020; 61:3740-3755. [PMID: 32772550 DOI: 10.1080/10408398.2020.1805407] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Besides providing essential nutrients for humans, food contains bioactive compounds that exert diverse biological activities such as anti-microbial, anti-cancerogenic, anti-viral, anti-inflammatory and antioxidant. The cosmetic industry is interested in natural bioactive compounds for their use in nutricosmetic and cosmeceutical products. These products aimed to reduce skin aging, inflammation or provide photoprotection against UV radiation. As a result, nutricosmetics and cosmeceuticals are becoming innovative self-care products in the beauty market. These products contain phytochemicals as active compounds obtained from fruits, vegetables, legumes, medicinal herbs and plants with anti-aging potential. This review summarizes the information within the last 5 years related to bioactive compounds present in fruits, vegetables, herbs and spices commonly used for human consumption. Their antioxidant and biological potential for modulating molecular markers involved in the aging process, as well as their mechanism of action. Diverse natural foods and their byproducts could be used as a source of bioactive compounds for developing cosmeceutical and nutricosmetic products.
Collapse
Affiliation(s)
- David Fonseca Hernandez
- Tecnología Alimentaria. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. CIATEJ, Unidad Zapopan, Zapopan, Jalisco, México
| | - Eugenia Lugo Cervantes
- Tecnología Alimentaria. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. CIATEJ, Unidad Zapopan, Zapopan, Jalisco, México
| | - Diego A Luna-Vital
- Tecnologico de Monterrey, Department of Bioengineering and Science, Puebla, Puebla, Mexico
| | - Luis Mojica
- Tecnología Alimentaria. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. CIATEJ, Unidad Zapopan, Zapopan, Jalisco, México
| |
Collapse
|
21
|
Samivel R, Nagarajan RP, Subramanian U, Khan AA, Masmali A, Almubrad T, Akhtar S. Inhibitory Effect of Ursolic Acid on Ultraviolet B Radiation-Induced Oxidative Stress and Proinflammatory Response-Mediated Senescence in Human Skin Dermal Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1246510. [PMID: 32617130 PMCID: PMC7313156 DOI: 10.1155/2020/1246510] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/21/2020] [Indexed: 01/14/2023]
Abstract
Ultraviolet radiation is an environmental carcinogenic agent that enhances inflammation and immunological reactions in the exposed human skin cells leading to oxidative photoaging of the epidermal and dermal segment. In the present study, we investigated the protective role of ursolic acid (UA) against ultraviolet B (UVB) radiation- induced photoaging an in vitro model of human skin dermal fibroblasts. UA-pretreated human skin dermal fibroblast (HDF) cells were exposed to UVB radiation to evaluated cell viability, reactive oxygen species (ROS), mitochondrial membrane potential, lipid peroxidation, antioxidant status, DNA damage, proinflammatory response, apoptotic induction, and matrix metalloproteinase (MMP) alteration. The UA pretreatment of HDFs mitigated the UVB irradiation-induced cytotoxicity, ROS generation, and mitochondrial membrane potential alteration and lipid peroxidation, depletion of antioxidant status, DNA damage, and apoptotic induction. UA pretreatment of HDFs also attenuated the UVB-induced expression of inflammatory (TNF-α and NF-κB) and apoptotic (p53, Bax, and caspase-3) and MMPs (MMP-2 and MMP-9) and enhanced the Bcl-2 protein levels in 20 μM UA treatment, when compared to concentrations. Hence, these results revealed that UA has the potential to mitigate UVB-induced extracellular damage by interfering with the ROS-mediated apoptotic induction and photoaging senescence and thus is a potential therapeutic agent to protect the skin against UVB-irradiation induced photooxidative damage.
Collapse
Affiliation(s)
- Ramachandran Samivel
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Rajendra Prasad Nagarajan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India
| | - Umadevi Subramanian
- Translational Research Platform for Veterinary Biologicals, Central University Laboratory Building, TANUVAS, Tamil Nadu, India
| | - Adnan Ali Khan
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Ali Masmali
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Turki Almubrad
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Saeed Akhtar
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| |
Collapse
|
22
|
Gu Y, Han J, Jiang C, Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev 2020; 59:101036. [PMID: 32105850 DOI: 10.1016/j.arr.2020.101036] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Aging is a major cause of many degenerative diseases. The most intuitive consequence of aging is mainly manifested on the skin, resulting in cumulative changes in skin structure, function and appearance, such as increased wrinkles, laxity, elastosis, telangiectasia, and aberrant pigmentation of the skin. Unlike other organs of the human body, skin is not only inevitably affected by the intrinsic aging process, but also affected by various extrinsic environmental factors to accelerate aging, especially ultraviolet (UV) radiation. Skin aging is a highly complex and not fully understood process, and the lack of universal biomarkers for the definitive detection and evaluation of aging is also a major research challenge. Oxidative stress induced by the accumulation of reactive oxygen species (ROS) can lead to lipid, protein, nucleic acid and organelle damage, thus leading to the occurrence of cellular senescence, which is one of the core mechanisms mediating skin aging. Autophagy can maintain cellular homeostasis when faced with different stress conditions and is one of the survival mechanisms of cell resistance to intrinsic and extrinsic stress. Autophagy and aging have many features in common and may be associated with skin aging mediated by different factors. Here, we summarize the changes and biomarkers of skin aging, and discuss the effects of oxidative stress and autophagy on skin aging.
Collapse
|
23
|
Li CY, Ma WX, Yan LJ. 5-Methoxyindole-2-Carboylic Acid (MICA) Fails to Retard Development and Progression of Type II Diabetes in ZSF1 Diabetic Rats. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2020; 9:144-147. [PMID: 32551363 PMCID: PMC7301685 DOI: pmid/32551363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
5-Methoxyindole-2-carboxylic acid (MICA) is a well-established reversible inhibitor of mitochondrial dihydrolipoamide dehydrogenase (DLDH). This chemical, as an indole derivative, has been shown to be neuroprotective against ischemic stroke injury when administered either before or after ischemic stroke in animal models. MICA has also been studied as a potential antidiabetic agent by numerous investigators, though the underlying mechanisms remain sketchy. To attempt to elucidate the mechanisms of its antidiabetic action, we tested the effect of MICA on ZSF1 rat, a widely used rodent model of type 2 diabetes. ZSF1 rats as well as its healthy controls were fed with control diet or MICA-containing diet (200 mg/kg/day) for 9 weeks. Unexpectedly, comparison of body weight changes and blood glucose levels at the end of the 9-week's feeding period indicated that MICA failed to show any anti-diabetic effect in the ZSF1 diabetic rats. The reasons for this failure were discussed.
Collapse
Affiliation(s)
- Chun-Yan Li
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wei-Xing Ma
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
- Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
- Technical Center of Qingdao Customs, Qingdao 266002, Shandong, China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| |
Collapse
|
24
|
Skarupova D, Vostalova J, Rajnochova Svobodova A. Ultraviolet A protective potential of plant extracts and phytochemicals. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:1-22. [PMID: 32188958 DOI: 10.5507/bp.2020.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
Chronic exposure to solar radiation is related to an increased incidence of various skin disorders, including premature skin aging and melanoma and non-melanoma skin cancers. Ultraviolet (UV) photons in particular are responsible for skin damage. Solar UV photons mainly belong to UVA wavebands, however UVA radiation has been mostly ignored for a long time. At the cellular level, UVA photons mainly provoke indirect oxidative damage to biomolecules via the massive generation of unstable and highly reactive compounds. Human skin has several effective mechanisms that forestall, repair and eliminate damage caused by solar radiation. Regardless, some damage persists and can accumulate with chronic exposure. Therefore, conscious protection against solar radiation (UVB+UVA) is necessary. Besides traditional types of photoprotection such as sunscreen use, new strategies are being searched for and developed. One very popular protective strategy is the application of phytochemicals as active ingredients of photoprotection preparations instead of synthetic chemicals. Phytochemicals usually possess additional biological activities besides absorbing the energy of photons, and those properties (e.g. antioxidant, anti-inflammatory) magnify the protective potential of phytochemicals and extracts. Therefore, compounds of natural origin are in the interest of researchers as well as developers. In this review, only studies on UVA protection with well-documented experimental conditions are summarized. This article includes 17 well standardized plant extracts (Camellia sinensis (L.) Kuntze, Silybum marianum L. Gaertn., Punica granatum L., Polypodium aureum L., Vaccinium myrtillus L., Lonicera caerulea L., Thymus vulgaris L., Opuntia ficus-indica (L.) Mill., Morinda citrifolia L., Aloe vera (L.) Burm.f., Oenothera paradoxa Hudziok, Galinsoga parviflora Cav., Galinsoga quadriradiata Ruiz et Pavón, Hippophae rhamnoides L., Cola acuminata Schott & Endl., Theobroma cacao L. and Amaranthus cruentus L.) and 26 phytochemicals.
Collapse
Affiliation(s)
- Denisa Skarupova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Jitka Vostalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Alena Rajnochova Svobodova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|
25
|
Kang YM, Hong CH, Kang SH, Seo DS, Kim SO, Lee HY, Sim HJ, An HJ. Anti-Photoaging Effect of Plant Extract Fermented with Lactobacillus buchneri on CCD-986sk Fibroblasts and HaCaT Keratinocytes. J Funct Biomater 2020; 11:jfb11010003. [PMID: 31936562 PMCID: PMC7151581 DOI: 10.3390/jfb11010003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Ultraviolet (UV) exposure triggers the abnormal production of reactive oxygen (ROS) species and the expression of matrix metalloproteinases (MMPs) that are responsible for photoaging. Probiotics are widely used in healthcare and for immune enhancement. One probiotic, Lactobacillus buchneri is found in Kimchi. This study was aimed at assessing the anti-photoaging effect of plant extracts fermented with L. buchneri (PELB) to develop functional cosmetics. We investigated the anti-photoaging effect of PELB in a UVB-induced photoaging in vitro model and selected effective extracts using the elastase inhibition assay, ELISA for Type I procollagen and collagenase-1, and quantitative real time PCR. Normal human dermal fibroblasts and epidermal keratinocytes were pre-treated with PELB and exposed to UVB. We found that PELB decreased elastase activity and increased type I collagen expression in a UVB-induced photoaging in vitro model. In addition, PELB greatly reduced collagenase activity and MMP mRNA levels in a UVB-induced photoaging in vitro model. Furthermore, PELB promoted the expression of moisture factor and anti-oxidant enzymes in a UVB-induced photoaging in vitro model. These results indicated that the PELB could be potential candidates for the protective effects against UVB-induced photoaging. Overall, these results suggest that PELB might be useful natural components of cosmetic products.
Collapse
Affiliation(s)
- Yun-Mi Kang
- Department of Pharmacology, College of Korean Medicine, Sangji University, Gangwon-do 26339, Korea;
| | - Chul-Hee Hong
- Department of Korean Ophthalmology and Otolaryngology and Dermatology, College of Korean Medicine, Sangji University, Wonju, Gangwon 26339, Korea;
| | - Sa-Haeng Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Iksan, Jeonbuk 59338, Korea;
| | - Dong-Seok Seo
- WonNature, Wonkwang University, Iksan, Jeonbuk 54538, Korea;
| | - Seong-Oh Kim
- Research Institute, Wonkwang herb Co., Ltd., Jinan, Jeonbuk 55442, Korea; (S.-O.K.); (H.-Y.L.); (H.-J.S.)
| | - Hoon-Yeon Lee
- Research Institute, Wonkwang herb Co., Ltd., Jinan, Jeonbuk 55442, Korea; (S.-O.K.); (H.-Y.L.); (H.-J.S.)
| | - Hyeon-Jae Sim
- Research Institute, Wonkwang herb Co., Ltd., Jinan, Jeonbuk 55442, Korea; (S.-O.K.); (H.-Y.L.); (H.-J.S.)
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Gangwon-do 26339, Korea;
- Correspondence: ; Tel.: +82-33-738-7503; Fax: +82-33-730-0679
| |
Collapse
|
26
|
Haiyuan YU, Shen X, Liu D, Hong M, Lu Y. The protective effects of β-sitosterol and vermicularin from Thamnolia vermicularis (Sw.) Ach. against skin aging in vitro. AN ACAD BRAS CIENC 2019; 91:e20181088. [PMID: 31800700 DOI: 10.1590/0001-3765201920181088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/27/2018] [Indexed: 01/01/2023] Open
Abstract
Aged skin, featured with dryness and wrinkles, has received mounting attention due to its adverse influences on beauty. β-Sitosterol and vermicularin are two common active ingredients of Thamnolia vermicularis (Sw.) Ach., a traditional Chinese medicine, of which the anti-aging effect has been discovered. Their protective performance against skin aging was assayed by co-culturing with skin cells in this work. Results showed that β-sitosterol promoted the biosynthesis of hyaluronic acid by increasing the expression of hyaluronic acid synthases in fibroblasts and enhanced the expression of skin barrier functional proteins including aquaporin 3, loricrin, filaggrin and involucrin in keratinocytes, which conduced to the moisture retention within skin. Moreover, vermicularin might function as an anti-wrinkle agent by preventing the loss of collagen type I. Specifically, vermicularin reduced the amount of reactive oxygen species within hydrogen-peroxide-induced fibroblasts; together with suppressing the activation of mitogen-activated protein kinases, it could inhibit the production of matrix metalloproteinases-1. The present research will contribute to the development of the compounds as anti-aging ingredients for future applications in cosmetic formulations and functional food as well as promote further studies of raw materials containing alike compounds.
Collapse
Affiliation(s)
- Y U Haiyuan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Xueqing Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Dan Liu
- Technology Center, Shanghai Inoherb Cosmetics limited company, 121 Chengyin Road, 200083 Shanghai, People's Republic of China
| | - Minhua Hong
- Technology Center, Shanghai Inoherb Cosmetics limited company, 121 Chengyin Road, 200083 Shanghai, People's Republic of China
| | - Yanhua Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| |
Collapse
|
27
|
Wang L, Lee W, Cui YR, Ahn G, Jeon YJ. Protective effect of green tea catechin against urban fine dust particle-induced skin aging by regulation of NF-κB, AP-1, and MAPKs signaling pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1318-1324. [PMID: 31252129 DOI: 10.1016/j.envpol.2019.06.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
The increase in ambient fine dust particles (FDP) due to urbanization and industrialization has been identified as a major contributor to air pollution. It has become a serious issue that threatens human health because it causes respiratory diseases and skin aging. In the present study, the protective effect of the green tea catechin, (-)-epigallocatechin gallate (EGCG), against FDP (ERM-CZ100)-stimulated skin aging in human dermal fibroblasts (HDFs) was investigated. The results demonstrate that EGCG significantly and dose-dependently scavenged intracellular reactive oxygen species (ROS) in and increased the viability of FDP-stimulated HDFs. In addition, EGCG dose-dependently recovered collagen synthesis and inhibited intracellular elastase and collagenase activities. Moreover, EGCG decreased the expression of human matrix metalloproteinases (MMPs) via regulation of nuclear factor kappa B (NF-κB), activator protein 1 (AP-1), and mitogen-activated protein kinases (MAPKs) signaling pathways in FDP-stimulated HDFs. This study suggests that EGCG is a potential anti-aging candidate that can be used for FDP-induced skin aging as a therapeutic agent itself or as an ingredient in pharmaceutical and cosmeceutical products.
Collapse
Affiliation(s)
- Lei Wang
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - WonWoo Lee
- Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Yong Ri Cui
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Ginnae Ahn
- Department of Marine Bio Food Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
28
|
Rodríguez-Luna A, Ávila-Román J, Oliveira H, Motilva V, Talero E. Fucoxanthin and Rosmarinic Acid Combination Has Anti-Inflammatory Effects through Regulation of NLRP3 Inflammasome in UVB-Exposed HaCaT Keratinocytes. Mar Drugs 2019; 17:E451. [PMID: 31374828 PMCID: PMC6722862 DOI: 10.3390/md17080451] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/29/2019] [Indexed: 01/23/2023] Open
Abstract
Excessive exposure to ultraviolet (UV) radiation is the main risk factor to develop skin pathologies or cancer because it encourages oxidative condition and skin inflammation. In this sense, strategies for its prevention are currently being evaluated. Natural products such as carotenoids or polyphenols, which are abundant in the marine environment, have been used in the prevention of oxidative stress due to their demonstrated antioxidant activities. Nevertheless, the anti-inflammatory activity and its implication in photo-prevention have not been extensively studied. Thus, we aimed to evaluate the combination of fucoxanthin (FX) and rosmarinic acid (RA) on cell viability, apoptosis induction, inflammasome regulation, and anti-oxidative response activation in UVB-irradiated HaCaT keratinocytes. We demonstrated for the first time that the combination of FX and RA (5 µM RA plus 5 μM FX, designated as M2) improved antioxidant and anti-inflammatory profiles in comparison to compounds assayed individually, by reducing UVB-induced apoptosis and the consequent ROS production. Furthermore, the M2 combination modulated the inflammatory response through down-regulation of inflammasome components such as NLRP3, ASC, and Caspase-1, and the interleukin (IL)-1β production. In addition, Nrf2 and HO-1 antioxidant genes expression increased in UVB-exposed HaCaT cells pre-treated with M2. These results suggest that this combination of natural products exerts photo-protective effects by down-regulating NRLP3-inflammasome and increasing Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Azahara Rodríguez-Luna
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Javier Ávila-Román
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Helena Oliveira
- Department of Biology, Faculty of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
29
|
Photoprotective and Anti-Inflammatory Properties of Vina-Ginsenoside R7 Ameliorate Ultraviolet B-Induced Photodamage in Normal Human Dermal Fibroblasts. Appl Biochem Biotechnol 2019; 189:729-744. [DOI: 10.1007/s12010-019-03027-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
|
30
|
Piao MJ, Kang KA, Zhen AX, Kang HK, Koh YS, Kim BS, Hyun JW. Horse Oil Mitigates Oxidative Damage to Human HaCaT Keratinocytes Caused by Ultraviolet B Irradiation. Int J Mol Sci 2019; 20:ijms20061490. [PMID: 30934595 PMCID: PMC6471125 DOI: 10.3390/ijms20061490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022] Open
Abstract
Horse oil products have been used in skin care for a long time in traditional medicine, but the biological effects of horse oil on the skin remain unclear. This study was conducted to evaluate the protective effect of horse oil on ultraviolet B (UVB)-induced oxidative stress in human HaCaT keratinocytes. Horse oil significantly reduced UVB-induced intracellular reactive oxygen species and intracellular oxidative damage to lipids, proteins, and DNA. Horse oil absorbed light in the UVB range of the electromagnetic spectrum and suppressed the generation of cyclobutane pyrimidine dimers, a photoproduct of UVB irradiation. Western blotting showed that horse oil increased the UVB-induced Bcl-2/Bax ratio, inhibited mitochondria-mediated apoptosis and matrix metalloproteinase expression, and altered mitogen-activated protein kinase signaling-related proteins. These effects were conferred by increased phosphorylation of extracellular signal-regulated kinase 1/2 and decreased phosphorylation of p38 and c-Jun N-terminal kinase 1/2. Additionally, horse oil reduced UVB-induced binding of activator protein 1 to the matrix metalloproteinase-1 promoter site. These results indicate that horse oil protects human HaCaT keratinocytes from UVB-induced oxidative stress by absorbing UVB radiation and removing reactive oxygen species, thereby protecting cells from structural damage and preventing cell death and aging. In conclusion, horse oil is a potential skin protectant against skin damage involving oxidative stress.
Collapse
Affiliation(s)
- Mei Jing Piao
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Kyoung Ah Kang
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Ao Xuan Zhen
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Hee Kyoung Kang
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Young Sang Koh
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Bong Seok Kim
- Bio Convergence Center, Jeju Technopark, Jeju 63243, Korea.
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
31
|
Yang X, Song J, Yan LJ. Chronic Inhibition of Mitochondrial Dihydrolipoamide Dehydrogenase (DLDH) as an Approach to Managing Diabetic Oxidative Stress. Antioxidants (Basel) 2019; 8:E32. [PMID: 30717346 PMCID: PMC6406859 DOI: 10.3390/antiox8020032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial dihydrolipoamide dehydrogenase (DLDH) is a redox enzyme involved in decarboxylation of pyruvate to form acetyl-CoA during the cascade of glucose metabolism and mitochondrial adenine triphosphate (ATP) production. Depending on physiological or pathophysiological conditions, DLDH can either enhance or attenuate the production of reactive oxygen species (ROS) and reactive nitrogen species. Recent research in our laboratory has demonstrated that inhibition of DLDH induced antioxidative responses and could serve as a protective approach against oxidative stress in stroke injury. In this perspective article, we postulated that chronic inhibition of DLDH could also attenuate oxidative stress in type 2 diabetes. We discussed DLDH-involving mitochondrial metabolic pathways and metabolic intermediates that could accumulate upon DLDH inhibition and their corresponding roles in abrogating oxidative stress in diabetes. We also discussed a couple of DLDH inhibitors that could be tested in animal models of type 2 diabetes. It is our belief that DLDH inhibition could be a novel approach to fighting type 2 diabetes.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Jing Song
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
32
|
Meng J, Yu P, Tong J, Sun W, Jiang H, Wang Y, Xue K, Xie F, Qian H, Liu N, Zhao J, Bao N. Hydrogen treatment reduces tendon adhesion and inflammatory response. J Cell Biochem 2019; 120:1610-1619. [PMID: 30367509 DOI: 10.1002/jcb.27441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/16/2018] [Indexed: 01/24/2023]
Abstract
A rat model of tendon repair was established to investigate the effects of hydrogen water on tendon adhesion reduction. Thirty-six Sprague Dawley rats were randomly divided into a normal saline (NS) group and a hydrogen water (HS) group according to the processing reagents after a tendon repairing operation. Pre- and postoperative superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) in subjects' serum were observed. Skin fibroblasts were grouped into an NS group, H2 O2 group, H2 group, and H2 O2 H2 group. Expressions of Nrf2, CATA, and γ-GCS were also tested by Western blot analysis. 8-OHdG, GSH, MDA, and SOD of the cells were analyzed by the enzyme-linked immunosorbent assay method. The postoperative SOD activity and GSH contents were significantly reduced (P < 0.05), whereas the postoperative MDA level was significantly increased (P < 0.05). Similarly, the postoperative HS group showed significantly higher SOD activity and GSH contents (P < 0.05) but lower MDA (P < 0.05) compared with the postoperative NS group. MDA and 8-OHdG were significantly decreased in hydrogen-rich medium, while SOD and GSH were increased. The expression of Nrf2, CATA, and γ-GCS in antioxidant system were reduced after H2 O2 processing, which were restored after the application of hydrogen-rich medium. Hydrogen water can reduce tendon adhesion after tendon repairing and prohibit excessive inflammatory response, which could be associated with the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Jia Meng
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Pan Yu
- Department of Burn and Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Jian Tong
- Orthopedic Department, The Affiliated Taizhou people's Hospital of Nantong University, Taizhou, Jiangsu, China
| | - Wenshuang Sun
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Hui Jiang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yicun Wang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Kaiwen Xue
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Farong Xie
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Hong Qian
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Naicheng Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianning Zhao
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Nirong Bao
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Hyun YJ, Piao MJ, Kang KA, Zhen AX, Madushan Fernando PDS, Kang HK, Ahn YS, Hyun JW. Effect of Fermented Fish Oil on Fine Particulate Matter-Induced Skin Aging. Mar Drugs 2019; 17:md17010061. [PMID: 30669248 PMCID: PMC6356237 DOI: 10.3390/md17010061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/21/2022] Open
Abstract
Skin is exposed to various harmful environmental factors such as air pollution, which includes different types of particulate matter (PM). Atmospheric PM has harmful effects on humans through increasing the generation of reactive oxygen species (ROS), which have been reported to promote skin aging via the induction of matrix metalloproteinases (MMPs), which in turn can cause the degradation of collagen. In this study, we investigated the effect of fermented fish oil (FFO) derived from mackerel on fine PM (particles with a diameter < 2.5 µm: PM2.5)-induced skin aging in human keratinocytes. We found that FFO inhibited the PM2.5-induced generation of intracellular ROS and MMPs, including MMP-1, MMP-2, and MMP-9. In addition, FFO significantly abrogated the elevation of intracellular Ca2+ levels in PM2.5-treated cells and was also found to block the PM2.5-induced mitogen-activated protein kinase/activator protein 1 (MAPK/AP-1) pathway. In conclusion, FFO has an anti-aging effect on PM2.5-induced aging in human keratinocytes.
Collapse
Affiliation(s)
- Yu Jae Hyun
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Mei Jing Piao
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Kyoung Ah Kang
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Ao Xuan Zhen
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | | | - Hee Kyoung Kang
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Yong Seok Ahn
- Choung Ryong Fisheries Co. LTD, 7825 Iljudong-ro, Namwon-epu, Seogwipo, Jeju 63612, Korea.
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
34
|
Zhao P, Alam MB, Lee SH. Protection of UVB-Induced Photoaging by Fuzhuan-Brick Tea Aqueous Extract via MAPKs/ Nrf2-Mediated Down-Regulation of MMP-1. Nutrients 2018; 11:nu11010060. [PMID: 30597920 PMCID: PMC6357030 DOI: 10.3390/nu11010060] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022] Open
Abstract
Ultraviolet B (UVB) irradiation is viewed as the principal inducer of skin photo-aging, associated with acceleration of collagen degradation and upregulation of matrix metalloproteinases (MMPs). The ethnic groups of southern/western China use Fuzhuan brick-tea (FBT) as a beverage and as a nutritional supplement. In this study, we scrutinized the antagonistic effects of aqueous extract of Fuzhuan-brick tea (FBTA) on skin photo-aging in UVB-exposed human keratinocyte (HaCaT) cells. FBTA exhibited strong antioxidant activity and quenched UVB-induced generation of cellular reactive oxygen species (ROS) without showing any toxicity. FBTA was capable of combating oxidative stress by augmenting messenger RNA (mRNA) and protein levels of both phase I and phase II detoxifying enzymes, especially heme oxygenase 1 (HO-1), by upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated pathway in HaCaT cells via the phosphorylation of p38 and extracellular signal-regulated kinase (ERK). FBTA also downregulated the expression of matrix metalloproteinase-1 (MMP-1) while upregulating type I procollagen by modulating Nrf2 signaling in UVB-irradiated HaCaT cells. Collectively, our results show that FBTA might be useful as a functional food while being a good candidate in the development of cosmetic products and medicines for the remedy of UVB-induced skin photo-aging.
Collapse
Affiliation(s)
- Peijun Zhao
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea.
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea.
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Korea.
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea.
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
35
|
Liu Y, Hwang E, Ngo HTT, Perumalsamy H, Kim YJ, Li L, Yi TH. Protective Effects of Euphrasia officinalis Extract against Ultraviolet B-Induced Photoaging in Normal Human Dermal Fibroblasts. Int J Mol Sci 2018; 19:ijms19113327. [PMID: 30366440 PMCID: PMC6275060 DOI: 10.3390/ijms19113327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 02/02/2023] Open
Abstract
Ultraviolet (UV) radiation induces skin photoaging, which is associated with the elevation of matrix metalloproteinases (MMPs) and the impairment of collagen. The Euphrasia species play a well-known role in the treatment of certain eye disorders through their anti-oxidative and anti-inflammatory activities. However, their protective activity toward UVB-induced damage remains unclear. In the present study, we investigated the protective effect of Euphrasia officinalis (95% ethanol extract) on UVB-irradiated photoaging in normal human dermal fibroblasts (NHDFs). Our results show that Euphrasia officinalis extract exhibited obvious reactive oxygen species (ROS) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, enhanced NHDF cell migration, and reduced UVB-induced apoptosis. The UVB-induced increases in MMP-1 and MMP-3 and decrease in type I procollagen were ameliorated by Euphrasia officinalis treatment, which worked by suppressing the mitogen-activated protein kinase (MAPK) and nuclear transcription factor activator protein 1 (AP-1) signaling pathways. Taken together, our data strongly suggest that Euphrasia officinalis ethanol extract could reduce UVB-induced photoaging by alleviating oxidative stress, proinflammatory activity, and cell apoptosis.
Collapse
Affiliation(s)
- Ying Liu
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Eunson Hwang
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Hien T T Ngo
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Haribalan Perumalsamy
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Yeon Ju Kim
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Lu Li
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| | - Tae-Hoo Yi
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea.
| |
Collapse
|
36
|
Zhao L, Man Y, Liu S. Long non-coding RNA HULC promotes UVB-induced injury by up-regulation of BNIP3 in keratinocytes. Biomed Pharmacother 2018; 104:672-678. [DOI: 10.1016/j.biopha.2018.05.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022] Open
|
37
|
Syringic acid prevents skin carcinogenesis via regulation of NoX and EGFR signaling. Biochem Pharmacol 2018; 154:435-445. [DOI: 10.1016/j.bcp.2018.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/06/2018] [Indexed: 10/14/2022]
|
38
|
Kim H, Lee S, Son B, Jeon J, Kim D, Lee W, Youn H, Lee JM, Youn B. Biocidal effect of thymol and carvacrol on aquatic organisms: Possible application in ballast water management systems. MARINE POLLUTION BULLETIN 2018; 133:734-740. [PMID: 30041370 DOI: 10.1016/j.marpolbul.2018.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/10/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Ballast water is essential for maintaining the balance and integrity of a ship. However, exchanging ballast water resulted in discharging water of different origins in vessel recipient ports, and this may have caused ecosystem disturbance or aquatic pollution. The ballast water management (BWM) system is essential for the purification and disinfection of the ballast water that is taken up. Because current BWM systems widely use biocides for the treatment of aquatic organisms, the biocides may result in unintended toxicity of the discharged ballast water. In this study, we suggested thymol and carvacrol as chemical biocides for BWM systems and investigated their effectiveness using Artemia salina and Escherichia coli. Thymol and carvacrol showed biocidal effects in our study. A combination of these substances showed a synergistic increase in the biocidal effects. Moreover, carvacrol naturally degrades after disinfection, which indicates that natural substances may be promising candidates to increase the efficacy and reduce unwanted side effects of the BWM system.
Collapse
Affiliation(s)
- Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Beomseok Son
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Jaewan Jeon
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Daehoon Kim
- Nuclear Science Research Institute, Pusan National University, Busan, Republic of Korea
| | - Wonku Lee
- QuantomBio. Co., Ltd, Busan 46241, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Jae-Myung Lee
- Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
39
|
Zhang M, Hwang E, Lin P, Gao W, Ngo HTT, Yi TH. Prunella vulgaris L. Exerts a Protective Effect Against Extrinsic Aging Through NF-κB, MAPKs, AP-1, and TGF-β/Smad Signaling Pathways in UVB-Aged Normal Human Dermal Fibroblasts. Rejuvenation Res 2018; 21:313-322. [PMID: 29378470 PMCID: PMC6103252 DOI: 10.1089/rej.2017.1971] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Prunella vulgaris L., a well-known traditional Chinese herbal medicine, has anti-inflammatory and antioxidant activities. In the present study, the underlying molecular mechanisms of the protective effect of P. vulgaris extract (PVE) were investigated in UVB-irradiated normal human dermal fibroblasts (NHDFs). The mRNA expression of matrix metalloproteinases (MMPs), procollagen type I, and cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor (TNF-α), was determined by reverse transcription–polymerase chain reaction. The expression of anti-photoaging-related signaling molecules in the NF-κB, MAPK/AP-1, and TGF/Smad pathways was assessed by western blot. We observed that PVE blocked the upregulated production of radical oxygen species induced in UVB-irradiated NHDFs in a dose-dependent manner. Treatment with PVE also significantly ameliorated the mRNA levels of MMPs, procollagen type I, TNF-α, and IL-6. In addition, the phosphorylation level of c-Jun and c-Fos was decreased through the attenuated expression levels of p-ERK and p-JNK after treatment with PVE. Furthermore, cells treated with PVE showed inhibited Smad 7 and increased Smad 2/3 expression in the TGF-β/Smad signaling pathway. Hence, synthesis of procollagen type I, a precursor of collagen I, was promoted. These findings indicate that treatment with PVE has a potential protective effect against UVB-induced photoaging and photoinflammation.
Collapse
Affiliation(s)
- Mengyang Zhang
- College of Life Sciences, Kyung Hee University , Yongin-si, Republic of Korea
| | - Eunson Hwang
- College of Life Sciences, Kyung Hee University , Yongin-si, Republic of Korea
| | - Pei Lin
- College of Life Sciences, Kyung Hee University , Yongin-si, Republic of Korea
| | - Wei Gao
- College of Life Sciences, Kyung Hee University , Yongin-si, Republic of Korea
| | - Hien T T Ngo
- College of Life Sciences, Kyung Hee University , Yongin-si, Republic of Korea
| | - Tae-Hoo Yi
- College of Life Sciences, Kyung Hee University , Yongin-si, Republic of Korea
| |
Collapse
|
40
|
Muzaffer U, Paul VI, Rajendra Prasad N. Molecular docking of selected phytoconstituents with signaling molecules of Ultraviolet-B induced oxidative damage. In Silico Pharmacol 2018; 5:17. [PMID: 29308353 DOI: 10.1007/s40203-017-0035-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
Abstract The signaling molecules TNF-α, AP-1, and NF-κB act to integrate multiple stress signals into a series of diverse antiproliferative responses. Disruption of these processes can promote tumor progression and chemoresistance. Naturally occurring plant derived compounds are considered as attractive candidates for cancer treatment and prevention. Phytoconstituents can control and modify various biological activities by interacting with molecules involved in concerned signaling pathways. The aim of this study was to find binding conformations between phytoconstituents and these signaling molecules responsible for multiple stress signals of UVB induced photodamage. Induced fit docking was carried out for understanding the binding interactions of pantothenic acid (vitamin B5); 3,4,5-trihydroxy benzoic acid (gallic acid); madecassic acid and hexadecanoic acid, ethyl ester (palmitic acid) with TNF-α, AP-1, and NF-κB. Favorable binding conformations between these signaling molecules and the four phytoconstituents were observed. A number of poses were generated to evaluate the binding conformations and common interacting residues between the ligands and proteins. Among them, the best ligands against TNF-α, AP-1, and NF-κB are reported. The present investigation strongly suggests the probable use of these flavonoids for the amelioration of UVB induced photodamage. Graphical abstract
Collapse
Affiliation(s)
- Umar Muzaffer
- Department of Zoology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu 608 002 India
| | - V I Paul
- Department of Zoology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu 608 002 India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu 608 002 India
| |
Collapse
|
41
|
Hwang E, Lin P, Ngo HTT, Yi TH. Clove attenuates UVB-induced photodamage and repairs skin barrier function in hairless mice. Food Funct 2018; 9:4936-4947. [DOI: 10.1039/c8fo00843d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Syzygium aromaticum L., commonly named clove, is widely used in the food industry due to its antioxidant and antibacterial capabilities.
Collapse
Affiliation(s)
- Eunson Hwang
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Pei Lin
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Hien T. T. Ngo
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Tae-Hoo Yi
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| |
Collapse
|
42
|
Abstract
5-Methoxyindole-2-carboxylic acid (MICA) is a potent hypoglycemic agent that inhibits gluconeogenesis in the liver. It is also a well-known inhibitor of mitochondrial dihydrolipoamide dehydrogenase. MICA was extensively studied in the 1960s and 1970s and was once tested for its antidiabetic effect in diabetic Chinese hamsters, whereby MICA was shown to exhibit pronounced glucose-lowering ability while also leading to increased rate of death of the diabetic animals. Since then, MICA's potential ability in lowering blood glucose in diabetes has never been revisited. In my opinion, MICA should be comprehensively reexplored for its antidiabetic properties in a variety of rodent diabetes models. For a given animal model, its dose-dependent effect and the effects of different routes of administrations as well as its synergistic effects with other glucose-lowering drugs should also be investigated. More studies in the future on this chemical may provide novel insights into its role as an antidiabetic agent.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
- Correspondence: Liang-Jun Yan, Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA, Tel +1 817 735 2386, Fax +1 817 735 2603, Email
| |
Collapse
|
43
|
Hwang E, Lin P, Ngo HTT, Gao W, Wang YS, Yu HS, Yi TH. Icariin and icaritin recover UVB-induced photoaging by stimulating Nrf2/ARE and reducing AP-1 and NF-κB signaling pathways: a comparative study on UVB-irradiated human keratinocytes. Photochem Photobiol Sci 2018; 17:1396-1408. [DOI: 10.1039/c8pp00174j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Icariin (ICA) and icaritin (ICT) have potential to treat UVB-induced skin oxidative stress, inflammation and photoaging.
Collapse
Affiliation(s)
- Eunson Hwang
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Pei Lin
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Hien T. T. Ngo
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Wei Gao
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Yu-Shuai Wang
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| | - Hong-Shan Yu
- College of Biotechnology
- Dalian Polytechnic University
- Dalian
- PR China
| | - Tae-Hoo Yi
- College of Life Science
- Kyung Hee University
- Yongin-si
- Republic of Korea
| |
Collapse
|
44
|
Effect of Orally Administered Collagen Peptides from Bovine Bone on Skin Aging in Chronologically Aged Mice. Nutrients 2017; 9:nu9111209. [PMID: 29099747 PMCID: PMC5707681 DOI: 10.3390/nu9111209] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 11/30/2022] Open
Abstract
Collagen peptides (CPs) have demonstrated to exert beneficial effects on skin photoaging. However, little has been done to evaluate their effects on chronologically aged skin. Here, the effects of CPs from bovine bone on skin aging were investigated in chronologically aged mice. 13-month-old female Kunming mice were administered with CPs from bovine bone (200, 400 and 800 mg/kg body weight/day) or proline (400 mg/kg body weight/day) for 8 weeks. Mice body weight, spleen index (SI) and thymus index (TI), degree of skin laxity (DSL), skin components, skin histology and antioxidant indicators were analyzed. Ingestion of CPs or proline had no effect on mice skin moisture and hyaluronic acid content, but it significantly improved the skin laxity, repaired collagen fibers, increased collagen content and normalized the ratio of type I to type III collagen in chronologically aged skin. CPs prepared by Alcalase performed better than CPs prepared by collagenase. Furthermore, CPs intake also significantly improved the antioxidative enzyme activities in skin. These results indicate that oral administration of CPs from bovine bone or proline can improve the laxity of chronologically aged skin by changing skin collagen quantitatively and qualitatively, and highlight their potential application as functional foods to combat skin aging in chronologically aged process.
Collapse
|
45
|
Song H, Zhang L, Luo Y, Zhang S, Li B. Effects of collagen peptides intake on skin ageing and platelet release in chronologically aged mice revealed by cytokine array analysis. J Cell Mol Med 2017; 22:277-288. [PMID: 28922541 PMCID: PMC5742730 DOI: 10.1111/jcmm.13317] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022] Open
Abstract
Action mechanisms underlying various biological activities of collagen peptides (CPs) remained to be elucidated. Cytokines may play an important role in mediating these health benefits of CPs. This study aimed to systemically examine the cytokines in skin and blood regulated by CPs intake. Thirteen‐month‐old female Kunming mice were administered with CPs for 2 months (0 or 400 mg/kg bodyweight/day). The cytokines in skin and plasma were analysed using a 53‐cytokine array and corresponding ELISA kits. In skin, CPs intake significantly down‐regulated placenta growth factor (PIGF‐2), insulin‐like growth factor (IGF)‐binding protein (IGFBP) ‐2 and IGFBP‐3, and up‐regulated platelet factor 4 (PF4), serpin E1 and transforming growth factor (TGF)‐β1. CPs treatment also increased the type I collagen mRNA and protein levels and improved the aged skin collagen fibres. In plasma, nine cytokines were significantly down‐regulated by CPs intake compared to the model group: fibroblast growth factor (FGF)‐2, heparin‐binding (HB) epidermal growth factor (EGF)‐like growth factor (HB‐EGF), hepatocyte growth factor (HGF), platelet‐derived growth factor (PDGF)‐AB/BB, vascular endothelial growth factor (VEGF), chemokine (C‐X‐C motif) ligand 1 (KC), matrix metalloproteinase (MMP)‐9, interleukin (IL)‐1α and IL‐10; 2 cytokines were significantly up‐regulated, including TGF‐β1 and serpin F1. Furthermore, CPs intake significantly decreased the level of platelet release indicators in the plasma and washed platelets, including PF4, granule membrane protein (GMP)‐140, β‐thromboglobulin and serotonin. These results provide a mechanism underlying anti‐skin ageing by CPs intake and highlight potential application of CPs as a healthcare supplement to combat cancer and cardiovascular disease by inhibiting platelet release.
Collapse
Affiliation(s)
- Hongdong Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ling Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yongkang Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Siqi Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bo Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Higher Institution Engineering Research Center of Animal Product, Beijing, China
| |
Collapse
|
46
|
Kanlayavattanakul M, Lourith N. Skin hyperpigmentation treatment using herbs: A review of clinical evidences. J COSMET LASER THER 2017; 20:123-131. [PMID: 28853960 DOI: 10.1080/14764172.2017.1368666] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hyperpigmentation of skin is caused by several factors. UV exposure, in addition to oxidative stress, elevates inflammatory mediators stimulating melanogenesis. Herbal-derived compounds for improving skin lightness are gaining interest as they are perceived to be milder, safer, and healthier than fully synthetic products. This review briefly addresses the causes of skin hyperpigmentation and extensively summarizes the status of herbs currently used in skin-lightening cosmetics. The properties of active compounds and their dose rate information are summarized where available, along with human or animal relevant models for activity testing. This review will be of value to cosmetic formulators and dermatologists who are searching for naturally derived ingredients for improving skin lightness, in line with consumer preference and expectations.
Collapse
Affiliation(s)
- Mayuree Kanlayavattanakul
- a School of Cosmetic Science , Mae Fah Luang University , Chiang Rai , Thailand.,b Phytocosmetics and Cosmeceuticals Research Group , Mae Fah Luang University , Chiang Rai Thailand
| | - Nattaya Lourith
- a School of Cosmetic Science , Mae Fah Luang University , Chiang Rai , Thailand.,b Phytocosmetics and Cosmeceuticals Research Group , Mae Fah Luang University , Chiang Rai Thailand
| |
Collapse
|
47
|
Martinez RM, Pinho-Ribeiro FA, Vale DL, Steffen VS, Vicentini FT, Vignoli JA, Baracat MM, Georgetti SR, Verri WA, Casagrande R. Trans-chalcone added in topical formulation inhibits skin inflammation and oxidative stress in a model of ultraviolet B radiation skin damage in hairless mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 171:139-146. [DOI: 10.1016/j.jphotobiol.2017.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/29/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022]
|