1
|
Yonis N, Mousa A, Yousef MH, Ghouneimy AM, Dabbish AM, Abdelzaher H, Hussein MA, Ezzeldin S, Adel AA, Mahmoud YH, El-Khazragy N, Abdelnaser A. Cracking the code: lncRNA-miRNA-mRNA integrated network analysis unveiling lncRNAs as promising non-invasive NAFLD biomarkers toward precision diagnosis. Comput Biol Chem 2025; 115:108325. [PMID: 39832417 DOI: 10.1016/j.compbiolchem.2024.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) involves abnormal fat accumulation in the liver, mainly as triglycerides. It ranges from steatosis to non-alcoholic steatohepatitis (NASH), which can lead to inflammation, cellular damage, liver fibrosis, cirrhosis, or hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) are crucial for regulating gene expression across various conditions. LncRNAs are emerging as potential putative diagnostic markers for NAFLD-associated HCC. METHODS We used two human and two mouse datasets from the Gene Expression Omnibus to analyze the expression profiles of mRNAs and lncRNAs. We created a network linking lncRNAs, miRNAs, and mRNAs to investigate the relationships among these RNA types. Additionally, we identified NAFLD-related lncRNAs from existing literature. We then quantified the expression levels of four specific lncRNAs, including PVT1, DUBR, SNHG17, and SNHG14, in the serum of 92 Egyptian participants using qPCR. Finally, we performed a Receiver Operating Characteristic analysis to evaluate the diagnostic potential of the candidate lncRNAs. RESULTS Our data suggests that maternally expressed gene 3 (MEG3), H19, and DPPA2 Upstream Binding RNA (DUBR) were significantly upregulated, and plasmacytoma variant translocation 1 (PVT1) was markedly downregulated. PVT1 showed the highest diagnostic accuracy for both NAFLD and NASH. The combined panels of PVT1 +H19 for NAFLD and PVT1 +H19 +DUBR for NASH demonstrated high diagnostic potential. Uniquely, PVT1 can distinguish between NAFLD and NASH. PVT1 exhibited strong diagnostic potential for NAFLD and NASH, individually and in combination with other lncRNAs. CONCLUSION Our study identifies four lncRNAs as putative biomarkers with high specificity and accuracy, individually or combined, for differentiating between NAFLD and NASH. Healthy volunteers with PVT1 possess the highest diagnostic accuracy and significantly discriminate between NAFLD and NASH.
Collapse
Affiliation(s)
- Nouran Yonis
- Institute of Global Health and Human Ecology (IGHHE), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Mousa
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed H Yousef
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed M Ghouneimy
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Areeg M Dabbish
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Hana Abdelzaher
- Institute of Global Health and Human Ecology (IGHHE), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology (IGHHE), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Shahd Ezzeldin
- Basic Research Department, Proteomics and Metabolomics Research Program, Children's Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
| | - Abdelmoneim A Adel
- Hematology and Gastroenterology Department, National Hepatology and Tropical Medicine Research Institute (NHTMRI), Egypt
| | - Yosra H Mahmoud
- Hematology and Gastroenterology Department, National Hepatology and Tropical Medicine Research Institute (NHTMRI), Egypt
| | - Nashwa El-Khazragy
- Clinical Pathology and Hematology Department, Faculty of Medicine, Ain Shams University Biomedical Research Department, Cairo 11381, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology (IGHHE), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
2
|
Shi Y, Qu F, Zeng S, Wang X, Liu Y, Zhang Q, Yuan D, Yuan C. Targeting long non-coding RNA H19 as a therapeutic strategy for liver disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:1-9. [PMID: 39357625 DOI: 10.1016/j.pbiomolbio.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
The liver has the function of regulating metabolic equilibrium in the human body, and the majority of liver disorders are chronic conditions that can significantly impair health. Recent research has highlighted the critical role of long noncoding RNAs (lncRNAs) in liver disease pathogenesis. LncRNA H19, an endogenous noncoding single-stranded RNA, exerts its influence through epigenetic modifications and affects various biological processes. This review focuses on elucidating the key molecular mechanisms underlying the regulation of H19 during the progression and advancement of liver diseases, aiming to highlight H19 as a potential therapeutic target and provide profound insights into the molecular underpinnings of liver pathologies.
Collapse
Affiliation(s)
- Yulan Shi
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Medicine and Health Science, China Three Gorges University Yichang, 443002, China
| | - Fenghua Qu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Medicine and Health Science, China Three Gorges University Yichang, 443002, China
| | - Shiyun Zeng
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University Yichang, 443002, China
| | - Xinchen Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Medicine and Health Science, China Three Gorges University Yichang, 443002, China
| | - Yuting Liu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Medicine and Health Science, China Three Gorges University Yichang, 443002, China
| | - Qirui Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University Yichang, 443002, China
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Medicine and Health Science, China Three Gorges University Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University Yichang, 443002, China.
| |
Collapse
|
3
|
Ngowi EE, Lu T, Liu Q, Xie X, Wang N, Luo L, Deng L, Zhou Y, Zhang Z, Qiao A. Biofluid-Derived Exosomal LncRNAs: Their Potential in Obesity and Related Comorbidities. BIOLOGY 2024; 13:976. [PMID: 39765643 PMCID: PMC11673191 DOI: 10.3390/biology13120976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 01/03/2025]
Abstract
Obesity has escalated into a critical global health crisis, tripling in prevalence since the mid-1970s. This increase mirrors the rise in metabolic-associated diseases such as type 2 diabetes (T2D) and its complications, certain cancers, and cardiovascular conditions. While substantial research efforts have enriched our understanding and led to the development of innovative management strategies for these diseases, the suboptimal response rates of existing therapies remain a major obstacle to effectively managing obesity and its associated conditions. Over the years, inter-organ communication (IOC) has emerged as a crucial factor in the development and progression of metabolic disorders. Exosomes, which are nano-sized vesicular couriers released by cells, play a significant role in this communication by transporting proteins, lipids, and nucleic acids across cellular landscapes. The available evidence indicates that exosomal RNAs present in biofluids such as blood, urine, milk, vitreous humor (VH), and cerebrospinal fluid (CSF) are altered in numerous diseases, suggesting their diagnostic and therapeutic potential. Long non-coding RNAs contained in exosomes (exo-lncRNAs) have attracted considerable interest, owing to their ability to interact with critical components involved in a multitude of metabolic pathways. Recent studies have found that alterations in exo-lncRNAs in biofluids correlate with several metabolic parameters in patients with metabolic-associated conditions; however, their exact roles remain largely unclear. This review highlights the diagnostic and therapeutic potential of exosomal lncRNAs in obesity and its associated conditions, emphasizing their role in IOC and disease progression, aiming to pave the way for further research in this promising domain.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (E.E.N.); (T.L.); (Q.L.); (X.X.); (N.W.); (L.L.); (L.D.) (Y.Z.); (Z.Z.)
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Tuyan Lu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (E.E.N.); (T.L.); (Q.L.); (X.X.); (N.W.); (L.L.); (L.D.) (Y.Z.); (Z.Z.)
| | - Qing Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (E.E.N.); (T.L.); (Q.L.); (X.X.); (N.W.); (L.L.); (L.D.) (Y.Z.); (Z.Z.)
| | - Xianghong Xie
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (E.E.N.); (T.L.); (Q.L.); (X.X.); (N.W.); (L.L.); (L.D.) (Y.Z.); (Z.Z.)
| | - Ning Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (E.E.N.); (T.L.); (Q.L.); (X.X.); (N.W.); (L.L.); (L.D.) (Y.Z.); (Z.Z.)
| | - Liping Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (E.E.N.); (T.L.); (Q.L.); (X.X.); (N.W.); (L.L.); (L.D.) (Y.Z.); (Z.Z.)
| | - Lijuan Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (E.E.N.); (T.L.); (Q.L.); (X.X.); (N.W.); (L.L.); (L.D.) (Y.Z.); (Z.Z.)
| | - Yinghua Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (E.E.N.); (T.L.); (Q.L.); (X.X.); (N.W.); (L.L.); (L.D.) (Y.Z.); (Z.Z.)
| | - Zhihong Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (E.E.N.); (T.L.); (Q.L.); (X.X.); (N.W.); (L.L.); (L.D.) (Y.Z.); (Z.Z.)
| | - Aijun Qiao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; (E.E.N.); (T.L.); (Q.L.); (X.X.); (N.W.); (L.L.); (L.D.) (Y.Z.); (Z.Z.)
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
4
|
Wade H, Pan K, Zhang B, Zheng W, Su Q. Mechanistic role of long non-coding RNAs in the pathogenesis of metabolic dysfunction-associated steatotic liver disease and fibrosis. EGASTROENTEROLOGY 2024; 2:e100115. [PMID: 39872125 PMCID: PMC11729351 DOI: 10.1136/egastro-2024-100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously referred to as non-alcoholic fatty liver disease, encompasses a broad range of hepatic metabolic disorders primarily characterised by the disruption of hepatic lipid metabolism, hepatic lipid accumulation and steatosis. Severe cases of MASLD might progress to metabolic dysfunction-associated steatohepatitis, characterised by hepatic inflammation, hepatocyte ballooning degeneration, activation of hepatic stellate cells (HSCs) and fibrogenesis. It may further progress to hepatocellular carcinoma. In the liver, long non-coding RNAs (lncRNAs) target multiple metabolic pathways in hepatocytes, HSCs, and Kupffer cells at different stages of MASLD and liver fibrosis. In this study, we overview recent findings on the potential role of lncRNAs in the pathogenesis of MASLD and liver fibrosis via modulation of de novo lipid synthesis, fatty acid β-oxidation, lipotoxicity, oxidative stress, metabolic inflammation, mammalian target of rapamycin signalling, apoptosis, ubiquitination and fibrogenesis. We critically assess the literature reports that investigate the complex interplay between lncRNA, microRNA and key mediators in liver injury, in both human participants and animal models of MASLD and liver fibrosis. We also highlight the therapeutic potential of lncRNAs in chronic liver diseases.
Collapse
Affiliation(s)
- Henry Wade
- School of Biological Sciences, Queen’s University Belfast, Belfast, UK
| | - Kaichao Pan
- Endocrinology Group, Advocate Illinois Masonic Medical Center, Chicago, Illinois, USA
| | - Bingrui Zhang
- School of Biological Sciences, Queen’s University Belfast, Belfast, UK
| | - Wenhua Zheng
- Faculty of Health Science, University of Macau, Macau, China
| | - Qiaozhu Su
- School of Biological Sciences, Queen’s University Belfast, Belfast, UK
| |
Collapse
|
5
|
Soltanieh SK, Khastar S, Kaur I, Kumar A, Bansal J, Fateh A, Nathiya D, Husseen B, Rajabivahid M, Dehghani-Ghorbi M, Akhavan-Sigari R. Long Non-Coding RNAs in Non-Alcoholic Fatty Liver Disease; Friends or Foes? Cell Biochem Biophys 2024. [DOI: 10.1007/s12013-024-01555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 01/03/2025]
|
6
|
Yang Z, Jiang Y, Ma J, Wang L, Han S, Huda N, Kusumanchi P, Gao H, Thoudam T, Sun Z, Liangpunsakul S. LncRNA H19 promoted alcohol-associated liver disease through dysregulation of alternative splicing and methionine metabolism. Hepatology 2024:01515467-990000000-01012. [PMID: 39364651 DOI: 10.1097/hep.0000000000001078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/30/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND AND AIMS Long noncoding RNAs constitute a significant portion of the human genome. Among these, lncRNA H19, initially identified for its high expression during fetal development followed by a decline in the liver postnatally, re-emerges in various liver diseases. However, its specific role in alcohol-associated liver disease (ALD) remains unclear. APPROACH AND RESULTS Elevated H19 levels were detected in peripheral blood and livers of patients with alcohol-associated cirrhosis and hepatitis, as well as in livers of ethanol-fed mice. Hepatic overexpression of H19 exacerbated ethanol-induced liver steatosis and injury. Metabolomics analysis revealed decreased methionine levels in H19-overexpressed mouse livers, attributable to H19-mediated inhibition of betaine homocysteine methyltransferase (BHMT), a crucial enzyme in methionine synthesis. H19 regulated BHMT alternative splicing through polypyrimidine tract-binding protein 1 (PTBP1), resulting in a reduced Bhmt protein-coding variant. The maternally specific knockout of H19 (H19Mat+/-) or liver-specific knockout of the H19 differentially methylated domain (H19DMDHep-/-) in ethanol-fed mice upregulated BHMT expression and ameliorated hepatic steatosis. Furthermore, BHMT restoration counteracted H19-induced ethanol-mediated hepatic steatosis. CONCLUSIONS This study identifies a novel mechanism whereby H19, via PTBP1-mediated BHMT regulation, influences methionine metabolism in ALD. Targeting the H19-PTBP1-BHMT pathway may offer new therapeutic avenues for ALD.
Collapse
Affiliation(s)
- Zhihong Yang
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yanchao Jiang
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jing Ma
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Li Wang
- Independent Researcher, Tucson, Arizona, USA
| | - Sen Han
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nazmul Huda
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Praveen Kusumanchi
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hui Gao
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Themis Thoudam
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Suthat Liangpunsakul
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Brandt A, Kopp F. Long Noncoding RNAs in Diet-Induced Metabolic Diseases. Int J Mol Sci 2024; 25:5678. [PMID: 38891865 PMCID: PMC11171519 DOI: 10.3390/ijms25115678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The prevalence of metabolic diseases, including type 2 diabetes and metabolic dysfunction-associated steatotic liver disease (MASLD), is steadily increasing. Although many risk factors, such as obesity, insulin resistance, or hyperlipidemia, as well as several metabolic gene programs that contribute to the development of metabolic diseases are known, the underlying molecular mechanisms of these processes are still not fully understood. In recent years, it has become evident that not only protein-coding genes, but also noncoding genes, including a class of noncoding transcripts referred to as long noncoding RNAs (lncRNAs), play key roles in diet-induced metabolic disorders. Here, we provide an overview of selected lncRNA genes whose direct involvement in the development of diet-induced metabolic dysfunctions has been experimentally demonstrated in suitable in vivo mouse models. We further summarize and discuss the associated molecular modes of action for each lncRNA in the respective metabolic disease context. This overview provides examples of lncRNAs with well-established functions in diet-induced metabolic diseases, highlighting the need for appropriate in vivo models and rigorous molecular analyses to assign clear biological functions to lncRNAs.
Collapse
Affiliation(s)
- Annette Brandt
- Molecular Nutritional Science, Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria;
| | - Florian Kopp
- Clinical Pharmacy Group, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
8
|
Tao Q, Xie J, Wu Y, Jin Y. Long non-coding RNAs as modulators and therapeutic targets in non-alcoholic fatty liver disease (NAFLD). GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:506-516. [PMID: 37806343 DOI: 10.1016/j.gastrohep.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world, with epidemiological studies indicating a 25% prevalence. NAFLD is considered to be a progressive disease that progresses from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH), then to liver fibrosis, and finally to cirrhosis or hepatocellular carcinoma (HCC). Existing research has mostly elucidated the etiology of NAFLD, yet its particular molecular processes remain uncertain. Long non-coding RNAs (LncRNAs) have been linked in a wide range of biological processes in recent years, with the introduction of microarray and high-throughput sequencing technologies, and previous studies have established their tight relationship with several stages of NAFLD development. Existing studies have shown that lncRNAs can regulate the signaling pathways related to hepatic lipid metabolism, NASH, NASH-related fibrosis and HCC. This review aims to provide a basic overview of NAFLD and lncRNAs, summarize and describe the mechanisms of lncRNAs action involved in the development of NAFLD, and provide an outlook on the future of lncRNAs-based therapy for NAFLD.
Collapse
Affiliation(s)
- Qing Tao
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Jing Xie
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yongkang Wu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yong Jin
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
9
|
Harrison SP, Baumgarten SF, Chollet ME, Stavik B, Bhattacharya A, Almaas R, Sullivan GJ. Parenteral nutrition emulsion inhibits CYP3A4 in an iPSC derived liver organoids testing platform. J Pediatr Gastroenterol Nutr 2024; 78:1047-1058. [PMID: 38529852 DOI: 10.1002/jpn3.12195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVES Parenteral nutrition (PN) is used for patients of varying ages with intestinal failure to supplement calories. Premature newborns with low birth weight are at a high risk for developing PN associated liver disease (PNALD) including steatosis, cholestasis, and gallbladder sludge/stones. To optimize nutrition regimens, models are required to predict PNALD. METHODS We have exploited induced pluripotent stem cell derived liver organoids to provide a testing platform for PNALD. Liver organoids mimic the developing liver and contain the different hepatic cell types. The organoids have an early postnatal maturity making them a suitable model for premature newborns. To mimic PN treatment we used medium supplemented with either clinoleic (80% olive oil/20% soybean oil) or intralipid (100% soybean oil) for 7 days. RESULTS Homogenous HNF4a staining was found in all organoids and PN treatments caused accumulation of lipids in hepatocytes. Organoids exhibited a dose dependent decrease in CYP3A4 activity and expression of hepatocyte functional genes. The lipid emulsions did not affect overall organoid viability and glucose levels had no contributory effect to the observed results. CONCLUSIONS Liver organoids could be utilized as a potential screening platform for the development of new, less hepatotoxic PN solutions. Both lipid treatments caused hepatic lipid accumulation, a significant decrease in CYP3A4 activity and a decrease in the RNA levels of both CYP3A4 and CYP1A2 in a dose dependent manner. The presence of high glucose had no additive effect, while Clinoleic at high dose, caused significant upregulation of interleukin 6 and TLR4 expression.
Collapse
Affiliation(s)
- Sean P Harrison
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Saphira F Baumgarten
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub-Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Maria E Chollet
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Benedicte Stavik
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Anindita Bhattacharya
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Runar Almaas
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gareth J Sullivan
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
10
|
Guo B, Yan S, Zhai L, Cheng Y. LncRNA HOTAIR accelerates free fatty acid-induced inflammatory response in HepG2 cells by recruiting SRSF1 to stabilize MLXIPL mRNA. Cytotechnology 2024; 76:259-269. [PMID: 38495293 PMCID: PMC10940554 DOI: 10.1007/s10616-023-00614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/28/2023] [Indexed: 03/19/2024] Open
Abstract
LncRNA HOTAIR has been reported to be associated with metabolic diseases of the liver. However, the effect of HOTAIR on non-alcoholic fatty liver disease (NAFLD) inflammation and its potential mechanism have not been reported. Genes and proteins expression were detected by qRT-PCR and Western blot respectively. The level of inflammatory cytokines was assessed by ELISA. HepG2 cell viability was detected by MTT assay. TG level and lipid accumulation were measured by Assay Kit and Oil red O staining, respectively. Direct binding relationship between HOTAIR and Serine/arginine splicing factor 1 (SRSF1), SRSF1 and MLX interacting protein like (MLXIPL) were confirmed by RNA-pull down and RIP assay. HOTAIR was highly expressed in free fatty acids (FFA)-treated HepG2 cells. HOTAIR knockdown alleviated FFA-induced inflammation of HepG2 cells. Then further analysis showed that HOTAIR and SRSF1 had a mutual binding relationship, and HOTAIR maintained MLXIPL mRNA stability via recruiting SRSF1 in HepG2 cells. Moreover, the inhibitory effect of HOTAIR knockdown on FFA-induced inflammation in HepG2 cells was reversed by MLXIPL overexpression. HOTAIR accelerates inflammation of FFA-induced HepG2 cells by recruiting SRSF1 to stabilize MLXIPL mRNA, which will help to find new effective strategies for NAFLD therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-023-00614-x.
Collapse
Affiliation(s)
- Bo Guo
- School of Clinical Medicine, Guangzhou Health Science College, Guangzhou, 510450 Guangdong China
| | - Shengzhe Yan
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 Guangdong China
| | - Lei Zhai
- School of Clinical Medicine, Guangzhou Health Science College, Guangzhou, 510450 Guangdong China
| | - Yanzhen Cheng
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 Guangdong China
| |
Collapse
|
11
|
Gou Y, Huang Y, Luo W, Li Y, Zhao P, Zhong J, Dong X, Guo M, Li A, Hao A, Zhao G, Wang Y, Zhu Y, Zhang H, Shi Y, Wagstaff W, Luu HH, Shi LL, Reid RR, He TC, Fan J. Adipose-derived mesenchymal stem cells (MSCs) are a superior cell source for bone tissue engineering. Bioact Mater 2024; 34:51-63. [PMID: 38186960 PMCID: PMC10770370 DOI: 10.1016/j.bioactmat.2023.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024] Open
Abstract
Effective bone regeneration through tissue engineering requires a combination of osteogenic progenitors, osteoinductive biofactors and biocompatible scaffold materials. Mesenchymal stem cells (MSCs) represent the most promising seed cells for bone tissue engineering. As multipotent stem cells that can self-renew and differentiate into multiple lineages including bone and fat, MSCs can be isolated from numerous tissues and exhibit varied differentiation potential. To identify an optimal progenitor cell source for bone tissue engineering, we analyzed the proliferative activity and osteogenic potential of four commonly-used mouse MSC sources, including immortalized mouse embryonic fibroblasts (iMEF), immortalized mouse bone marrow stromal stem cells (imBMSC), immortalized mouse calvarial mesenchymal progenitors (iCAL), and immortalized mouse adipose-derived mesenchymal stem cells (iMAD). We found that iMAD exhibited highest osteogenic and adipogenic capabilities upon BMP9 stimulation in vitro, whereas iMAD and iCAL exhibited highest osteogenic capability in BMP9-induced ectopic osteogenesis and critical-sized calvarial defect repair. Transcriptomic analysis revealed that, while each MSC line regulated a distinct set of target genes upon BMP9 stimulation, all MSC lines underwent osteogenic differentiation by regulating osteogenesis-related signaling including Wnt, TGF-β, PI3K/AKT, MAPK, Hippo and JAK-STAT pathways. Collectively, our results demonstrate that adipose-derived MSCs represent optimal progenitor sources for cell-based bone tissue engineering.
Collapse
Affiliation(s)
- Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yanran Huang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenping Luo
- Laboratory Animal Center, Southwest University, Chongqing, 400715, China
| | - Yanan Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, The Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Piao Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Meichun Guo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Aohua Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ailing Hao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200000, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedic Surgery, Beijing Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Hui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, 4000430, China
| | - Yunhan Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Psychology, School of Arts and Sciences, University of Rochester, Rochester, NY, 14627, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
12
|
Nandwani A, Rathore S, Datta M. LncRNA H19 inhibition impairs endoplasmic reticulum-mitochondria contact in hepatic cells and augments gluconeogenesis by increasing VDAC1 levels. Redox Biol 2024; 69:102989. [PMID: 38100882 PMCID: PMC10761920 DOI: 10.1016/j.redox.2023.102989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Inspite of exerting independent cellular functions, the endoplasmic-reticulum (ER) and the mitochondria also physically connect at specific sites termed mitochondria-associated ER membranes (MAMs) and these sites consist of several tethering proteins that play varied roles in diverse cellular processes. However, the regulation of these tethering proteins within the cell is relatively less studied. Here, we show that several MAM proteins are significantly altered in the liver during diabetes and among these, the lncRNA, H19 regulates the levels of VDAC1. Inhibition of H19 expression using H19 specific siRNA altered VDAC1, mitochondrial Ca2+ and oxygen consumption rate, ATP and ROS levels and enhanced ER and mitochondria coupling in Hepa 1-6 cells. While H19 inhibition did not impact lipid accumulation, levels of gluconeogenic genes were significantly increased. JNK-phosphorylation and IRS1-Ser307-phosphorylation were increased by H19 inhibition and this was associated with abrogation of insulin-stimulated AKT (Ser-473) phosphorylation and glucose uptake in Hepa 1-6 cells. While inhibition of VDAC1 expression using siRNAs and with metformin significantly rescued the effects of H19 inhibition, VDAC1 overexpression alone exerted effects similar to H19 inhibition, suggesting that VDAC1 increase mediates the adverse effects of H19. In-vivo H19 inhibition using specific siRNAs increased hepatic VDAC1, pJNK and pIRS1 (Ser307) levels and decreased AKT (Ser-473) phosphorylation in mice. These suggest an important role of the H19-VDAC1 axis in ER-mitochondria coupling and regulation of gluconeogenesis in the liver during diabetes.
Collapse
Affiliation(s)
- Arun Nandwani
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shalu Rathore
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Malabika Datta
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Yang S, Zhang Y, Zhang Y, Yin L, Han X, Zhao X, Wang N, Xu L. LncRNA Gm28382 promotes lipogenesis by interacting with miR-326-3p to regulate ChREBP signaling pathway in NAFLD. Int Immunopharmacol 2024; 127:111444. [PMID: 38157698 DOI: 10.1016/j.intimp.2023.111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to play vital roles in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, their biological roles and function mechanisms in NAFLD remain largely unknown. In this study, we found that Gm28382 may be a potential pathogenic lncRNA of NAFLD and highly expressed in NAFLD through RNA-seq. Overexpression of Gm28382 significantly enhanced the lipid accumulation in AML12 cells, whereas Gm28382 silencing reduced lipogenesis both in palmitic acid (PA)-induced AML12 cells and high fat diet (HFD)-induced mice. Then, bioinformatics were employed to speculate the potential interacting genes of Gm28382, and found that Gm28382 may regulate ChREBP expression through binding with miR-326-3p. Fluorescence in situ hybridization (FISH), dual luciferase reporter assay, immunofluorescence RNA pull-down and RNA immunoprecipitation (RIP) assays were used to validate the binding and targeting relationship of these genes, and we confirmed that Gm28382 competitively binds to miR-326-3p to increase ChREBP expression as a ceRNA. Mechanistically, overexpression of Gm28382 upregulated the ChREBP-mediated lipid synthesis signaling pathway, but the function was sabotaged by miR-326-3p deletion or ChREBP overexpression. Furthermore, in PA-challenged AML12 cells or HFD-induced mice, silencing of Gm28382 reversed the aberrant ChREBP signaling pathway and lipid accumulation, whereas ChREBP overexpression or liver-specific silencing of miR-326-3p blocked this function of Gm28382. Collectively, these findings reveal a critical role of Gm28382 in the promotion of lipogenesis in NAFLD by regulating the ChREBP signaling pathway through interaction with miR-326-3p, which could serve as a potential therapeutic target for NAFLD treatment.
Collapse
Affiliation(s)
- Sen Yang
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yang Zhang
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Zhang
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xuerong Zhao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Ning Wang
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
14
|
Chen D, Lu P, Sun T, Ding A. Long non-coding RNA HOX transcript antisense intergenic RNA depletion protects against alcoholic hepatitis through the microRNA-148a-3p/sphingosine 1-phosphate receptor 1 axis. Cell Tissue Res 2023; 394:471-485. [PMID: 37851113 DOI: 10.1007/s00441-023-03835-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
The aggravating role of long noncoding RNA (lncRNA) HOTAIR has been indicated in liver injury caused by hepatic ischemia/reperfusion. However, under the condition of alcoholic hepatitis (AH), its effects remain unclear. The present study aimed to examine the effect of lncRNA HOTAIR on hepatic stellate cell viability and apoptosis during liver injury caused by AH. In the liver tissues of AH rats, HOTAIR and S1PR1 were overexpressed, and microRNA (miR)-148a-3p was poorly expressed. Loss-of-function assays revealed that silencing of HOTAIR alleviated liver injury in AH by inhibiting the activated phenotype of hepatic stellate cells, inflammation, and fibrosis. Using the bioinformatics databases, dual-luciferase, RIP, and FISH assays, we observed that HOTAIR was mainly localized in the cytoplasm of hepatic stellate cells, and HOTAIR could bind specifically to miR-148a-3p. In addition, miR-148a-3p could target S1PR1 expression. Rescue experiments showed that silencing of miR-148a-3p or overexpression of S1PR1 reversed the alleviating effects of HOTAIR silencing on liver injury. Taken together, our findings revealed that HOTAIR regulates hepatic stellate cell proliferation via the miR-148a-3p/S1PR1 axis in liver injury, which may serve as the basis for developing novel therapeutic strategies to treat AH.
Collapse
Affiliation(s)
- Dan Chen
- Department of Integrated TCM & Western Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, 215101, People's Republic of China
| | - Ping Lu
- Department of Hepatology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 39, Xiashatang, Mudu Town, Wuzhong District, Suzhou, Jiangsu, 215101, People's Republic of China.
| | - Tianfeng Sun
- Department of Liver Disease Infection, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, 215101, People's Republic of China
| | - Aliang Ding
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, 215101, People's Republic of China
| |
Collapse
|
15
|
Lan X, Ren J, Du X, Zhang L, Wang S, Yang X, Lu S. lnc-HC ameliorates steatosis by promoting miR-130b-3p biogenesis and the assembly of an RNA-induced silencing complex. Mol Cell Endocrinol 2023; 578:112061. [PMID: 37678604 DOI: 10.1016/j.mce.2023.112061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Hepatic lipid deposition is the main cause of non-alcoholic fatty liver disease (NAFLD). Our previous study identified that lnc-HC prevents NAFLD by increasing the expression of miR-130b-3p. In the present study, we show that lnc-HC, an lncRNA derived from hepatocytes, positively controls miR-130b-3p maturation at multiple levels and contributes to its action by enhancing the assembly of an RNA-induced silencing complex (RISC). lnc-HC negatively regulates the downstream target genes of miR-130b-3p, including peroxisome proliferator-activated receptor gamma (PPARγ) and acyl-CoA synthetase long-chain family member 1 and 4 (Acsl1 and Acsl4, respectively), thus suppressing hepatic lipid droplet accumulation. Mechanistically, lnc-HC enhanced the promoter activity of miR-130b-3p by positively regulating the expression of transcription factors MAF bZIP transcription factor B (Mafb) and Jun proto-oncogene (Jun). Then, lnc-HC contributed the processing step of primary (pri-) miR-130b and strengthened the interaction between Drosha enzyme and the 5'-flanking sequence of pri-miR-130b to produce more precursor transcripts. Through direct binding with the chaperone heat shock protein 90 alpha family class A member 1 (HSP90AA1), lnc-HC contributed to RISC assembly, which was composed of HSP90AA1, argonaute RISC catalytic component 2 (AGO2) and miR-130b-3p. In a high-fat, high-cholesterol-induced hepatic lipid disorder E3 model, we confirmed that the hepatic expression of lnc-HC/miR-130b-3p negatively correlated with that of the target genes and was closely associated with liver triglycerides concentration. These findings provide a deeper understanding of the regulatory roles of lnc-HC in hepatic lipid metabolism and NAFLD development.
Collapse
Affiliation(s)
- Xi Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Beijing, China
| | - Jiajun Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Beijing, China
| | - Xiaojuan Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Beijing, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Beijing, China
| | | | - Xudong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Beijing, China.
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Beijing, China.
| |
Collapse
|
16
|
Ramezani M, Zobeiry M, Abdolahi S, Hatami B, Zali MR, Baghaei K. A crosstalk between epigenetic modulations and non-alcoholic fatty liver disease progression. Pathol Res Pract 2023; 251:154809. [PMID: 37797383 DOI: 10.1016/j.prp.2023.154809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently emerged as a major public health concern worldwide due to its rapidly rising prevalence and its potential to progress into end-stage liver disease. While the precise pathophysiology underlying NAFLD remains incompletely understood, it is strongly associated with various environmental triggers and other metabolic disorders. Epigenetics examines changes in gene expression that are not caused by alterations in the DNA sequence itself. There is accumulating evidence that epigenetics plays a key role in linking environmental cues to the onset and progression of NAFLD. Our understanding of how epigenetic mechanisms contribute to NAFLD pathophysiology has expanded considerably in recent years as research on the epigenetics of NAFLD has developed. This review summarizes recent insights into major epigenetic processes that have been implicated in NAFLD pathogenesis including DNA methylation, histone acetylation, and microRNAs that have emerged as promising targets for further investigation. Elucidating epigenetic mechanisms in NAFLD may uncover novel diagnostic biomarkers and therapeutic targets for this disease. However, many questions have remained unanswered regarding how epigenetics promotes NAFLD onset and progression. Additional studies are needed to further characterize the epigenetic landscape of NAFLD and validate the potential of epigenetic markers as clinical tools. Nevertheless, an enhanced understanding of the epigenetic underpinnings of NAFLD promises to provide key insights into disease mechanisms and pave the way for novel prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Meysam Ramezani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behzad Hatami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Li H, Deng N, Puopolo T, Jiang X, Seeram NP, Liu C, Ma H. Cannflavins A and B with Anti-Ferroptosis, Anti-Glycation, and Antioxidant Activities Protect Human Keratinocytes in a Cell Death Model with Erastin and Reactive Carbonyl Species. Nutrients 2023; 15:4565. [PMID: 37960218 PMCID: PMC10650133 DOI: 10.3390/nu15214565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Precursors of advanced glycation endproducts, namely, reactive carbonyl species (RCSs), are aging biomarkers that contribute to cell death. However, the impact of RCSs on ferroptosis-an iron-dependent form of cell death-in skin cells remains unknown. Herein, we constructed a cellular model (with human keratinocyte; HaCaT cells) to evaluate the cytotoxicity of the combinations of RCSs (including glyoxal; GO and methyglyoxal; MGO) and erastin (a ferroptosis inducer) using bioassays (measuring cellular lipid peroxidation and iron content) and proteomics with sequential window acquisition of all theoretical mass spectra. Additionally, a data-independent acquisition approach was used to characterize RCSs' and erastin's molecular network including genes, canonical pathways, and upstream regulators. Using this model, we evaluated the cytoprotective effects of two dietary flavonoids including cannflavins A and B against RCSs and erastin-induced cytotoxicity in HaCaT cells. Cannflavins A and B (at 0.625 to 20 µM) inhibited ferroptosis by restoring the cell viability (by 56.6-78.6% and 63.8-81.1%) and suppressing cellular lipid peroxidation (by 42.3-70.2% and 28.8-63.6%), respectively. They also alleviated GO + erastin- or MGO + erastin-induced cytotoxicity by 62.2-67.6% and 56.1-69.3%, and 35.6-54.5% and 33.8-62.0%, respectively. Mechanistic studies supported that the cytoprotective effects of cannflavins A and B are associated with their antioxidant activities including free radical scavenging capacity and an inhibitory effect on glycation. This is the first study showing that cannflavins A and B protect human keratinocytes from RCSs + erastin-induced cytotoxicity, which supports their potential applications as dietary interventions for aging-related skin conditions.
Collapse
Affiliation(s)
- Huifang Li
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Ni Deng
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Tess Puopolo
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Xian Jiang
- Department of Dermatology, Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Chang Liu
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Proteomics Facility, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Department of Dermatology, Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Wen Y, Ma L, Ju C. Recent insights into the pathogenesis and therapeutic targets of chronic liver diseases. EGASTROENTEROLOGY 2023; 1:e100020. [PMID: 38074919 PMCID: PMC10704956 DOI: 10.1136/egastro-2023-100020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Viral hepatitis, alcohol-associated liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are the three major causes of chronic liver diseases, which account for approximately 2 million deaths per year worldwide. The current direct-acting antiviral drugs and vaccinations have effectively reduced and ameliorated viral hepatitis infection, but there are still no effective drug treatments for ALD, NAFLD and liver cancer due to the poor understanding of their pathogenesis. To better understand the pathogenesis, the fifth Chinese American Liver Society/Society of Chinese Bioscientists in America Hepatology Division Annual Symposium, which was held virtually on 21-22 October 2022, focused on the topics related to ALD, NAFLD and liver cancer. Here, we briefly highlight the presentations that focus on the current progress in basic and translational research in ALD, NAFLD and liver cancer. The roles of non-coding RNA, autophagy, extrahepatic signalling, macrophages, etc in liver diseases are deliberated, and the application of single-cell RNA sequencing in the study of liver disease is also discussed.
Collapse
Affiliation(s)
- Yankai Wen
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
- Liver Cancer Program, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| | - Cynthia Ju
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
19
|
Zhong J, Tian L, Gou Y, Zhao P, Dong X, Guo M, Zhao G, Li A, Hao A, He TC, Fan J. BMP4 upregulates glycogen synthesis through the SMAD/SLC2A1 (GLUT1) signaling axis in hepatocellular carcinoma (HCC) cells. Cancer Metab 2023; 11:9. [PMID: 37443106 DOI: 10.1186/s40170-023-00310-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Excessive hepatic glycogen accumulation benefits tumorigenesis and cancer cell survival. We previously reported that BMP4 has the strongest ability to promote glycogenesis among the 14 BMPs in hepatocytes and augmented hepatocellular carcinoma (HCC) cell survival under hypoxia and hypoglycemia conditions by promoting the glycolysis pathway. However, the mechanism underlying BMP4's effect on glycogenesis in HCC remains elusive. METHODS The expression of BMP4 and SLC2A1 were acquired by analyzing the TCGA-LIHC dataset, as well as by immunohistochemical analysis of the 40 pairs of human HCC samples and para-tumor tissues. Gene expressions were detected by qPCR, immunoflurorescence staining, and Western blotting. Overexpression and silencing of BMP4 were accomplished through adenoviruses Ad-B4 and Ad-siB4 infection. Hepatic glycogen was detected by PAS staining. SLC2A1 (GLUT1) function was blocked by the inhibitor BAY-876. ChIP assay was used to determine the binding of SMADs to the promoter region of SLC2A1 in HCC cells. Lastly, the in vivo effect of BMP4-regulated SLC2A1 on HCC tumor growth was assessed in a xenograft model of HCC. RESULTS The elevated expression of BMP4 in HCC tumor tissues was highly correlated with hepatic glycogen accumulation in clinical samples. SLC2A1 was highly expressed in HCC tumor tissue and correlated with clinical stage and prognosis. Exogenous BMP4 augmented glycogen accumulation and upregulated the expression of glycogen synthesis-related genes in Huh7 and HepG2 cells, both of which were effectively blunted by SLC2A1inhibitor BAY-876. In mechanism, BMP4 activated SMAD5 to regulate the promoter of SLC2A1to enhance its expression. The in vivo xenograft experiments revealed that BMP4 promoted glycogen accumulation and tumor growth, which were effectively diminished by BAY-876. CONCLUSION These results demonstrate that BMP4 upregulates glycogen synthesis through the SMAD/SLC2A1 (GLUT1) signaling axis in HCC cells, which may be exploited as novel therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, Chongqing, China
- Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, No. 1 Medical School Road, Yuzhong District, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC 3079, Chicago, IL, 60637, USA
| | - Luyao Tian
- Ministry of Education Key Laboratory of Diagnostic Medicine, Chongqing, China
- Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, No. 1 Medical School Road, Yuzhong District, Chongqing, 400016, China
| | - Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, Chongqing, China
- Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, No. 1 Medical School Road, Yuzhong District, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC 3079, Chicago, IL, 60637, USA
| | - Piao Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine, Chongqing, China
- Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, No. 1 Medical School Road, Yuzhong District, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC 3079, Chicago, IL, 60637, USA
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, Chongqing, China
- Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, No. 1 Medical School Road, Yuzhong District, Chongqing, 400016, China
| | - Meichun Guo
- Ministry of Education Key Laboratory of Diagnostic Medicine, Chongqing, China
- Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, No. 1 Medical School Road, Yuzhong District, Chongqing, 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC 3079, Chicago, IL, 60637, USA
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Aohua Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, Chongqing, China
- Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, No. 1 Medical School Road, Yuzhong District, Chongqing, 400016, China
| | - Ailing Hao
- Ministry of Education Key Laboratory of Diagnostic Medicine, Chongqing, China
- Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, No. 1 Medical School Road, Yuzhong District, Chongqing, 400016, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC 3079, Chicago, IL, 60637, USA.
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, Chongqing, China.
- Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, No. 1 Medical School Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
20
|
Liao J, Chen B, Zhu Z, Du C, Gao S, Zhao G, Zhao P, Wang Y, Wang A, Schwartz Z, Song L, Hong J, Wagstaff W, Haydon RC, Luu HH, Fan J, Reid RR, He TC, Shi L, Hu N, Huang W. Long noncoding RNA (lncRNA) H19: An essential developmental regulator with expanding roles in cancer, stem cell differentiation, and metabolic diseases. Genes Dis 2023; 10:1351-1366. [PMID: 37397543 PMCID: PMC10311118 DOI: 10.1016/j.gendis.2023.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/07/2023] [Accepted: 02/08/2023] [Indexed: 07/04/2023] Open
Abstract
Recent advances in deep sequencing technologies have revealed that, while less than 2% of the human genome is transcribed into mRNA for protein synthesis, over 80% of the genome is transcribed, leading to the production of large amounts of noncoding RNAs (ncRNAs). It has been shown that ncRNAs, especially long non-coding RNAs (lncRNAs), may play crucial regulatory roles in gene expression. As one of the first isolated and reported lncRNAs, H19 has gained much attention due to its essential roles in regulating many physiological and/or pathological processes including embryogenesis, development, tumorigenesis, osteogenesis, and metabolism. Mechanistically, H19 mediates diverse regulatory functions by serving as competing endogenous RNAs (CeRNAs), Igf2/H19 imprinted tandem gene, modular scaffold, cooperating with H19 antisense, and acting directly with other mRNAs or lncRNAs. Here, we summarized the current understanding of H19 in embryogenesis and development, cancer development and progression, mesenchymal stem cell lineage-specific differentiation, and metabolic diseases. We discussed the potential regulatory mechanisms underlying H19's functions in those processes although more in-depth studies are warranted to delineate the exact molecular, cellular, epigenetic, and genomic regulatory mechanisms underlying the physiological and pathological roles of H19. Ultimately, these lines of investigation may lead to the development of novel therapeutics for human diseases by exploiting H19 functions.
Collapse
Affiliation(s)
- Junyi Liao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bowen Chen
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhenglin Zhu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Chengcheng Du
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Shengqiang Gao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Medical Scientist Training Program, The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ning Hu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Huang
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
21
|
Shi N, Sun K, Tang H, Mao J. The impact and role of identified long noncoding RNAs in nonalcoholic fatty liver disease: A narrative review. J Clin Lab Anal 2023; 37:e24943. [PMID: 37435630 PMCID: PMC10431402 DOI: 10.1002/jcla.24943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/07/2023] [Accepted: 07/02/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, but its mechanism and pathophysiology remain unclear. Long noncoding RNAs (lncRNAs) may exert a vital influence on regulating various biological functions in NAFLD. METHODS The databases such as Google Scholar, PubMed, and Medline were searched using the following keywords: nonalcoholic fatty liver disease, nonalcoholic fatty liver disease, NAFLD, nonalcoholic steatohepatitis, nonalcoholic steatohepatitis, NASH, long noncoding RNAs, and lncRNAs. Considering the titles and abstracts, unrelated studies were excluded. The authors evaluated the full texts of the remaining studies. RESULTS We summarized the current knowledge of lncRNAs and the main signaling pathways of lncRNAs involved in NAFLD explored in recent years. As a heterogeneous group of noncoding RNAs (ncRNAs), lncRNAs play crucial roles in biological processes underlying the pathophysiology of NAFLD. The mechanisms, particularly those associated with the regulation of the expression and activities of lncRNAs, play important roles in NAFLD. CONCLUSION A better comprehension of the mechanism controlled by lncRNAs in NAFLD is necessary for the identification of novel therapeutic targets for drug development and improved, noninvasive methods for diagnosis.
Collapse
Affiliation(s)
- Na Shi
- Department of GastroenterologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Internal MedicineThe Third People's Hospital of ChengduChengduChina
| | - Kang Sun
- Department of GastroenterologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Haiying Tang
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Jingwei Mao
- Department of GastroenterologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
22
|
Zaiou M. Peroxisome Proliferator-Activated Receptor-γ as a Target and Regulator of Epigenetic Mechanisms in Nonalcoholic Fatty Liver Disease. Cells 2023; 12:cells12081205. [PMID: 37190114 DOI: 10.3390/cells12081205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) belongs to the superfamily of nuclear receptors that control the transcription of multiple genes. Although it is found in many cells and tissues, PPARγ is mostly expressed in the liver and adipose tissue. Preclinical and clinical studies show that PPARγ targets several genes implicated in various forms of chronic liver disease, including nonalcoholic fatty liver disease (NAFLD). Clinical trials are currently underway to investigate the beneficial effects of PPARγ agonists on NAFLD/nonalcoholic steatohepatitis. Understanding PPARγ regulators may therefore aid in unraveling the mechanisms governing the development and progression of NAFLD. Recent advances in high-throughput biology and genome sequencing have greatly facilitated the identification of epigenetic modifiers, including DNA methylation, histone modifiers, and non-coding RNAs as key factors that regulate PPARγ in NAFLD. In contrast, little is still known about the particular molecular mechanisms underlying the intricate relationships between these events. The paper that follows outlines our current understanding of the crosstalk between PPARγ and epigenetic regulators in NAFLD. Advances in this field are likely to aid in the development of early noninvasive diagnostics and future NAFLD treatment strategies based on PPARγ epigenetic circuit modification.
Collapse
Affiliation(s)
- Mohamed Zaiou
- Institut Jean-Lamour, Université de Lorraine, UMR 7198 CNRS, 54505 Vandoeuvre-les-Nancy, France
| |
Collapse
|
23
|
Wang H, Cao Y, Shu L, Ying Z, Peng Q, Ran L, Wu J, Luo Y, Zuo G, Luo J, Zhou L, Shi Q, Weng Y, Huang A, He TC, Fan J. Long noncoding RNA (lncRNA) H19 induces hepatic steatosis through activating MLXIPL and mTORC1 networks in hepatocytes. J Cell Mol Med 2023; 27:1021-1022. [PMID: 36883309 PMCID: PMC10064026 DOI: 10.1111/jcmm.17719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Affiliation(s)
- Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China.,Department of Orthopaedic Surgery and Rehabilitation Medicine, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Youde Cao
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Liqing Shu
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Zhu Ying
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qi Peng
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Longke Ran
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Jinghong Wu
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yetao Luo
- Department of Biostatistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Guowei Zuo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jinyong Luo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lan Zhou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qiong Shi
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yaguang Weng
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases of The Ministry of Education of China, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- Department of Orthopaedic Surgery and Rehabilitation Medicine, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Cao L, Qu N, Wang X, Chen L, Liu M. The function of long non-coding RNA in non-alcoholic fatty liver disease. Clin Res Hepatol Gastroenterol 2023; 47:102095. [PMID: 36781069 DOI: 10.1016/j.clinre.2023.102095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Non-alcoholic fatty liver disease is a disease that is currently prevalent in the world, increasingly becoming the mainstay of liver diseases. And its prevalence is rapidly increasing, but its pathogenesis is not entirely understood. Long non-coding RNAs have increasingly gained attention as science has progressed in recent years. Studies have shown that long non-coding RNAs are involved in a variety of biological processes in vivo, such as proliferation, differentiation, and apoptosis, and can affect disease by regulating gene expression. This review explores the biological processes involving long non-coding RNAs, including lipid metabolism, glucose metabolism, liver fibrosis, and apoptosis. In addition, we summarize how the different long non-coding RNAs involved in each process function. Finally, the shortcomings of long non-coding RNAs as potential therapeutic targets are briefly described. In conclusion, this article provides a clear visualization of the link that exists between long non-coding RNAs and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Lianrui Cao
- School of Pharmaceutical Sciences, Liaoning University, No.66, Chongshan Mid Road, Shenyang 110036, China
| | - Na Qu
- School of Pharmaceutical Sciences, Liaoning University, No.66, Chongshan Mid Road, Shenyang 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, No.66, Chongshan Mid Road, Shenyang 110036, China
| | - Lijiang Chen
- School of Pharmaceutical Sciences, Liaoning University, No.66, Chongshan Mid Road, Shenyang 110036, China.
| | - Mingxia Liu
- School of Pharmaceutical Sciences, Liaoning University, No.66, Chongshan Mid Road, Shenyang 110036, China.
| |
Collapse
|
25
|
Kudriashov V, Sufianov A, Mashkin A, Beilerli A, Ilyasova T, Liang Y, Lyulin S, Beylerli O. The role of long non-coding RNAs in carbohydrate and fat metabolism in the liver. Noncoding RNA Res 2023; 8:294-301. [PMID: 36970373 PMCID: PMC10031277 DOI: 10.1016/j.ncrna.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The metabolism of carbohydrates and lipids (fat) in the liver is closely interconnected both in physiological conditions and in pathology. This relationship in the body is possible due to the regulation by many factors, including epigenetic ones. Histone modifications, DNA methylation, and non-coding RNAs are considered to be the main epigenetic factors. Non-coding RNAs (ncRNAs) refers to ribonucleic acid (RNA) molecules that do not code for a protein. They cover a huge number of RNA classes and perform a wide range of biological functions such as regulating gene expression, protecting the genome from exogenous DNA, and directing DNA synthesis. One such class of ncRNAs that has been extensively studied are long non-coding RNAs (lncRNAs). The important role of lncRNAs in the formation and maintenance of normal homeostasis of biological systems, as well as participation in many pathological processes, has been proven. The results of recent studies indicate the importance of lncRNAs in lipid and carbohydrate metabolism. Modifications of lncRNAs expression can lead to disruption of biological processes in tissues, including fat and protein, such as adipocyte proliferation and differentiation, inflammation, and insulin resistance. Further study of lncRNAs made it possible to partly determine the regulatory mechanisms underlying the formation of an imbalance in carbohydrate and fat metabolism individually and in their relationship, and the degree of interaction between different types of cells involved in this process. This review will focus on the function of lncRNAs and its relation to hepatic carbohydrate and fat metabolism and related diseases in order to elucidate the underlying mechanisms and prospects for studies with lncRNAs.
Collapse
|
26
|
Chang X, Tian C, Jia Y, Cai Y, Yan P. MLXIPL promotes the migration, invasion, and glycolysis of hepatocellular carcinoma cells by phosphorylation of mTOR. BMC Cancer 2023; 23:176. [PMID: 36809979 PMCID: PMC9945719 DOI: 10.1186/s12885-023-10652-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is associated with a high occurrence, mortality, and poor prognosis. MLX interacting protein like (MLXIPL) is an important regulator of glucolipid metabolism and is involved in tumor progression. We aimed to clarify the role of MLXIPL in HCC and its underlying mechanisms. METHODS The level of MLXIPL was predicted using bioinformatic analysis and verified using quantitative real-time PCR (qPCR), immunohistochemical analysis, and western blot. We assessed the effects of MLXIPL on biological behaviors using the cell counting kit-8, colony formation, and Transwell assay. Glycolysis was evaluated using the Seahorse method. The interaction between MLXIPL and mechanistic target of rapamycin kinase (mTOR) was confirmed using RNA immunoprecipitation and co-immunoprecipitation. mTOR expression was detected in HCC cells using qPCR, immunofluorescence analysis, and western blot. RESULTS The results showed that MLXIPL levels were elevated in both HCC tissues and HCC cell lines. Knockdown of MLXIPL impeded HCC cell growth, invasion, migration, and glycolysis. Moreover, MLXIPL combined with mTOR to induce phosphorylation of mTOR. Activated mTOR abrogated the effects on cellular processes induced by MLXIPL. CONCLUSION MLXIPL promoted the malignant progression of HCC by activating phosphorylation of mTOR, suggesting an important role of the combination of MLXIPL and mTOR in HCC.
Collapse
Affiliation(s)
- Xiaowei Chang
- grid.508540.c0000 0004 4914 235XDepartment of General Surgery, The First Affiliated Hospital of Xi’an Medical University, No. 48, Fenghao West Road, Lianhu District, 710077 Xi’an, Shaanxi China
| | - Chang Tian
- grid.508540.c0000 0004 4914 235XDepartment of Clinical Laboratory, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi China
| | - Yuanyuan Jia
- grid.508540.c0000 0004 4914 235XDepartment of Faculty Development and Teaching Evaluation Office, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi China
| | - Yu Cai
- grid.508540.c0000 0004 4914 235XDepartment of General Surgery, The First Affiliated Hospital of Xi’an Medical University, No. 48, Fenghao West Road, Lianhu District, 710077 Xi’an, Shaanxi China
| | - Pu Yan
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, No. 48, Fenghao West Road, Lianhu District, 710077, Xi'an, Shaanxi, China.
| |
Collapse
|
27
|
Yang W, Lyu Y, Xiang R, Yang J. Long Noncoding RNAs in the Pathogenesis of Insulin Resistance. Int J Mol Sci 2022; 23:ijms232416054. [PMID: 36555704 PMCID: PMC9785789 DOI: 10.3390/ijms232416054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Insulin resistance (IR), designated as the blunted response of insulin target tissues to physiological level of insulin, plays crucial roles in the development and progression of diabetes, nonalcoholic fatty liver disease (NAFLD) and other diseases. So far, the distinct mechanism(s) of IR still needs further exploration. Long non-coding RNA (lncRNA) is a class of non-protein coding RNA molecules with a length greater than 200 nucleotides. LncRNAs are widely involved in many biological processes including cell differentiation, proliferation, apoptosis and metabolism. More recently, there has been increasing evidence that lncRNAs participated in the pathogenesis of IR, and the dysregulated lncRNA profile played important roles in the pathogenesis of metabolic diseases including obesity, diabetes and NAFLD. For example, the lncRNAs MEG3, H19, MALAT1, GAS5, lncSHGL and several other lncRNAs have been shown to regulate insulin signaling and glucose/lipid metabolism in various tissues. In this review, we briefly introduced the general features of lncRNA and the methods for lncRNA research, and then summarized and discussed the recent advances on the roles and mechanisms of lncRNAs in IR, particularly focused on liver, skeletal muscle and adipose tissues.
Collapse
Affiliation(s)
- Weili Yang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yixiang Lyu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Beijing 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Beijing 100191, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Beijing 100191, China
- Correspondence:
| |
Collapse
|
28
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Katturajan R, Kannampuzha S, Murali R, Namachivayam A, Ganesan R, Renu K, Dey A, Vellingiri B, Prince SE. Exploring the Regulatory Role of ncRNA in NAFLD: A Particular Focus on PPARs. Cells 2022; 11:3959. [PMID: 36552725 PMCID: PMC9777112 DOI: 10.3390/cells11243959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Liver diseases are responsible for global mortality and morbidity and are a significant cause of death worldwide. Consequently, the advancement of new liver disease targets is of great interest. Non-coding RNA (ncRNA), such as microRNA (miRNA) and long ncRNA (lncRNA), has been proven to play a significant role in the pathogenesis of virtually all acute and chronic liver disorders. Recent studies demonstrated the medical applications of miRNA in various phases of hepatic pathology. PPARs play a major role in regulating many signaling pathways involved in various metabolic disorders. Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease in the world, encompassing a spectrum spanning from mild steatosis to severe non-alcoholic steatohepatitis (NASH). PPARs were found to be one of the major regulators in the progression of NAFLD. There is no recognized treatment for NAFLD, even though numerous clinical trials are now underway. NAFLD is a major risk factor for developing hepatocellular carcinoma (HCC), and its frequency increases as obesity and diabetes become more prevalent. Reprogramming anti-diabetic and anti-obesity drugs is an effective therapy option for NAFLD and NASH. Several studies have also focused on the role of ncRNAs in the pathophysiology of NAFLD. The regulatory effects of these ncRNAs make them a primary target for treatments and as early biomarkers. In this study, the main focus will be to understand the regulation of PPARs through ncRNAs and their role in NAFLD.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Ramkumar Katturajan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
29
|
Protective effect of hepatocyte-enriched lncRNA-Mir122hg by promoting hepatocyte proliferation in acute liver injury. Exp Mol Med 2022; 54:2022-2035. [PMID: 36424455 PMCID: PMC9722683 DOI: 10.1038/s12276-022-00881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/01/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022] Open
Abstract
Some long noncoding RNAs (lncRNAs), which harbor microRNAs in their gene sequence and are also known as microRNA host gene derived lncRNAs (lnc-MIRHGs), play a dominant role alongside miRNAs, or both perform biological functions synergistically or independently. However, only a small number of lnc-MIRHGs have been identified. Here, multiple liver injury datasets were analyzed to screen and identify the target lncRNA Mir122hg. Mir122hg was mainly enriched in liver tissues with human-mouse homology. In both CCl4-induced acute liver injury and Dgal/LPS-induced fulminant liver failure in mice, Mir122hg was sharply downregulated at the early stage, while a subsequent significant increase was only found in the CCl4 group with liver recovery. Overexpression and silencing assays confirmed that Mir122hg played a protective role in acute injury by promoting hepatocyte proliferation in vivo and in vitro. Consistent with the results of gene enrichment analysis, Mir122hg binding to C/EBPα affected its transcriptional repression, promoted gene transcription of downstream chemokines, Cxcl2, Cxcl3, and Cxcl5, and exerted pro-proliferative effects on hepatocytes through activation of the AKT/GSK-3β/p27 signaling pathway by CXC/CXCR2 complexes. This study identifies a novel lncRNA with protective effects in acute liver injury and demonstrates that the binding of Mir122hg-C/EBPα promotes hepatocyte proliferation via upregulation of CXC chemokine and activation of AKT signaling.
Collapse
|
30
|
Wang Y, Tai YL, Way G, Zeng J, Zhao D, Su L, Jiang X, Jackson KG, Wang X, Gurley EC, Liu J, Liu J, Chen W, Wang XY, Sanyal AJ, Hylemon PB, Zhou H. RNA binding protein HuR protects against NAFLD by suppressing long noncoding RNA H19 expression. Cell Biosci 2022; 12:172. [PMID: 36224648 PMCID: PMC9558407 DOI: 10.1186/s13578-022-00910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND NAFLD has become the most common chronic liver disease worldwide. Human antigen R (HuR), an RNA-binding protein, is an important post-transcriptional regulator. HuR has been reported as a key player in regulating lipid homeostasis in the liver and adipose tissues by using tissue-specific HuR knockout mice. However, the underlying mechanism by which hepatocyte-specific HuR regulates hepatic lipid metabolism under metabolic stress remains unclear and is the focus of this study. METHODS Hepatocyte-specific HuR deficient mice (HuRhKO) and age-/gender-matched control mice, as well as long-noncoding RNA H19 knockout mice (H19-/-), were fed a Western Diet plus sugar water (WDSW). Hepatic lipid accumulation, inflammation and fibrosis were examined by histology, RNA transcriptome analysis, qRT-PCR, and Western blot analysis. Bile acid composition was measured using LC-MS/MS. RESULTS Hepatocyte-specific deletion of HuR not only significantly increased hepatic lipid accumulation by modulating fatty acid synthesis and metabolism but also markedly induced inflammation by increasing immune cell infiltration and neutrophil activation under metabolic stress. In addition, hepatic deficiency of HuR disrupted bile acid homeostasis and enhanced liver fibrosis. Mechanistically, HuR is a repressor of H19 expression. Analysis of a recently published dataset (GSE143358) identified H19 as the top-upregulated gene in liver-specific HuR knockout mice. Similarly, hepatocyte-specific deficiency of HuR dramatically induced the expression of H19 and sphingosine-1 phosphate receptor 2 (S1PR2), but reduced the expression of sphingosine kinase 2 (SphK2). WDSW-induced hepatic lipid accumulation was alleviated in H19-/- mice. Furthermore, the downregulation of H19 alleviated WDSW-induced NAFLD in HuRhKO mice. CONCLUSIONS HuR not only functions as an RNA binding protein to modulate post-transcriptional gene expression but also regulates H19 promoter activity. Hepatic HuR is an important regulator of hepatic lipid metabolism via modulating H19 expression.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei, China
| | - Yun-Ling Tai
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
| | - Grayson Way
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Jing Zeng
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
| | - Derrick Zhao
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Lianyong Su
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Xixian Jiang
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Kaitlyn G. Jackson
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Xuan Wang
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Emily C. Gurley
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA USA
| | - Jinpeng Liu
- Department of Computer Science, University of Kentucky, Lexington, KY USA
| | - Weidong Chen
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei, China
| | - Xiang-Yang Wang
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA USA
- Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA USA
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | - Arun J. Sanyal
- Department of Internal Medicine/GI Division, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | - Phillip B. Hylemon
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Huiping Zhou
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| |
Collapse
|
31
|
Zaiou M. Noncoding RNAs as additional mediators of epigenetic regulation in nonalcoholic fatty liver disease. World J Gastroenterol 2022; 28:5111-5128. [PMID: 36188722 PMCID: PMC9516672 DOI: 10.3748/wjg.v28.i35.5111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most common cause of chronic liver disorder worldwide. It represents a spectrum that includes a continuum of different clinical entities ranging from simple steatosis to nonalcoholic steatohepatitis, which can evolve to cirrhosis and in some cases to hepatocellular carcinoma, ultimately leading to liver failure. The pathogenesis of NAFLD and the mechanisms underlying its progression to more pathological stages are not completely understood. Besides genetic factors, evidence indicates that epigenetic mechanisms occurring in response to environmental stimuli also contribute to the disease risk. Noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs, and circular RNAs, are one of the epigenetic factors that play key regulatory roles in the development of NAFLD. As the field of ncRNAs is rapidly evolving, the present review aims to explore the current state of knowledge on the roles of these RNA species in the pathogenesis of NAFLD, highlight relevant mechanisms by which some ncRNAs can modulate regulatory networks implicated in NAFLD, and discuss key challenges and future directions facing current research in the hopes of developing ncRNAs as next-generation non-invasive diagnostics and therapies in NAFLD and subsequent progression to hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mohamed Zaiou
- Institut Jean Lamour, UMR CNRS 7198, CNRS, University of Lorraine, Nancy 54011, France
| |
Collapse
|
32
|
Gou Y, Weng Y, Chen Q, Wu J, Wang H, Zhong J, Bi Y, Cao D, Zhao P, Dong X, Guo M, Wagstaff W, Hendren-Santiago B, Chen C, Youssef A, Haydon RC, Luu HH, Reid RR, Shen L, He TC, Fan J. Carboxymethyl chitosan prolongs adenovirus-mediated expression of IL-10 and ameliorates hepatic fibrosis in a mouse model. Bioeng Transl Med 2022; 7:e10306. [PMID: 36176604 PMCID: PMC9472002 DOI: 10.1002/btm2.10306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/09/2022] Open
Abstract
Effective and safe liver-directed gene therapy has great promise in treating a broad range of liver diseases. While adenoviral (Ad) vectors have been widely used for efficacious in vivo gene delivery, their translational utilities are severely limited due to the short duration of transgene expression and solicitation of host immune response. Used as a promising polymeric vehicle for drug release and nucleic acid delivery, carboxymethyl chitosan (CMC) is biocompatible, biodegradable, anti-microbial, inexpensive, and easy accessible. Here, by exploiting its biocompatibility, controlled release capability and anti-inflammatory activity, we investigated whether CMC can overcome the shortcomings of Ad-mediated gene delivery, hence improving the prospect of Ad applications in gene therapy. We demonstrated that in the presence of optimal concentrations of CMC, Ad-mediated transgene expression lasted up to 50 days after subcutaneous injection, and at least 7 days after intrahepatic injection. Histologic evaluation and immunohistochemical analysis revealed that CMC effectively alleviated Ad-induced host immune response. In our proof-of-principle experiment using the CCl4-induced experimental mouse model of chronic liver damage, we demonstrated that repeated intrahepatic administrations of Ad-IL10 mixed with CMC effectively mitigated the development of hepatic fibrosis. Collectively, these results indicate that CMC can improve the prospect of Ad-mediated gene therapy by diminishing the host immune response while allowing readministration and sustained transgene expression.
Collapse
Affiliation(s)
- Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Yaguang Weng
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Qian Chen
- Health Management Center, Deyang People's Hospital Deyang China
| | - Jinghong Wu
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Yang Bi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Stem Cell Biology and Therapy Laboratory of the Pediatric Research Institute, the National Clinical Research Center for Child Health and Disorders, and Ministry of Education Key Laboratory of Child Development and Disorders The Children's Hospital of Chongqing Medical University Chongqing China
| | - Daigui Cao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Department of Orthopaedic Surgery The Affiliated Hospital of the University of Chinese Academy of Sciences, and Chongqing General Hospital Chongqing China
| | - Piao Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Department of Orthopaedic Surgery The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Meichun Guo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Bryce Hendren-Santiago
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Andrew Youssef
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery The University of Chicago Medical Center Chicago Illinois USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Department of Surgery The University of Chicago Medical Center Chicago Illinois USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery The University of Chicago Medical Center Chicago Illinois USA
- Department of Surgery The University of Chicago Medical Center Chicago Illinois USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| |
Collapse
|
33
|
Rashidmayvan M, Sahebi R, Ghayour-Mobarhan M. Long non-coding RNAs: a valuable biomarker for metabolic syndrome. Mol Genet Genomics 2022; 297:1169-1183. [PMID: 35854006 DOI: 10.1007/s00438-022-01922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) have become important regulators of gene expression because they affect a wide range of biological processes, such as cell growth, death, differentiation, and aging. More and more evidence suggests that lncRNAs play a role in maintaining metabolic homeostasis. When certain lncRNAs are out of balance, metabolic disorders like diabetes, obesity, and heart disease get worse. In this review, we talk about what we know about how lncRNAs control metabolism, with a focus on diseases caused by long-term inflammation and the characteristics of the metabolic syndrome. We looked at lncRNAs and their molecular targets in the pathogenesis of signaling pathways. We also talked about how lncRNAs are becoming more and more interesting as diagnostic and therapeutic targets for improving metabolic homeostasis.
Collapse
Affiliation(s)
- Mohammad Rashidmayvan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Sahebi
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
34
|
Xiang J, Deng YY, Liu HX, Pu Y. LncRNA MALAT1 Promotes PPARα/CD36-Mediated Hepatic Lipogenesis in Nonalcoholic Fatty Liver Disease by Modulating miR-206/ARNT Axis. Front Bioeng Biotechnol 2022; 10:858558. [PMID: 35769097 PMCID: PMC9234139 DOI: 10.3389/fbioe.2022.858558] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are known to play crucial roles in nonalcoholic fatty liver disease (NAFLD). This research sought to explore mechanisms by which lncRNA MALAT1 regulates the progression of NAFLD. Thus, in order to detect the function of MALAT1 in NAFLD, in vitro and in vivo model of NAFLD were established. Then, fatty acid uptake and triglyceride level were investigated by BODIPY labeled-fatty acid uptake assay and Oil red O staining, respectively. The expressions of MALAT1, miR-206, ARNT, PPARα and CD36 were detected by western blotting and qPCR. Dual luciferase, RIP and ChIP assay were used to validate the relation among MALAT1, miR-206, ARNT and PPARα. The data revealed expression of MALAT1 was up-regulated in vitro and in vivo in NAFLD, and knockdown of MALAT1 suppressed FFA-induced lipid accumulation in hepatocytes. Meanwhile, MALAT1 upregulated the expression of ARNT through binding with miR-206. Moreover, miR-206 inhibitor reversed MALAT1 knockdown effects in decreased lipid accumulation in FFA-treated hepatocytes. Furthermore, ARNT could inhibit the expression of PPARα via binding with PPARα promoter. Knockdown of MALAT1 significantly upregulated the level of PPARα and downregulated the expression of CD36, while PPARα knockdown reversed these phenomena. MALAT1 regulated PPARα/CD36 -mediated hepatic lipid accumulation in NAFLD through regulation of miR-206/ARNT axis. Thus, MALAT1/miR-206/ARNT might serve as a therapeutic target against NAFLD.
Collapse
Affiliation(s)
- Juan Xiang
- Endocrinology Subspecialty of Geriatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Yuan-Yuan Deng
- Endocrinology Subspecialty of Geriatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Hui-Xia Liu
- Endocrinology Subspecialty of Geriatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Ying Pu
- Endocrinology Subspecialty of Geriatrics, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Ying Pu,
| |
Collapse
|
35
|
Juni RP, ’t Hart KC, Houtkooper RH, Boon R. Long non‐coding RNAs in cardiometabolic disorders. FEBS Lett 2022; 596:1367-1387. [DOI: 10.1002/1873-3468.14370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Rio P. Juni
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
| | - Kelly C. ’t Hart
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
- Laboratory Genetic Metabolic Diseases Amsterdam University Medical Centers; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Science, University of Amsterdam Frankfurt am Main Germany
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases Amsterdam University Medical Centers; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Science, University of Amsterdam Frankfurt am Main Germany
| | - Reinier Boon
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
- Institute for Cardiovascular Regeneration Centre for Molecular Medicine Goethe University Frankfurt am Main Frankfurt am Main Germany
- German Centre for Cardiovascular Research DZHK Partner site Frankfurt Rhein/Main Frankfurt am Main Germany
| |
Collapse
|
36
|
Hsu NW, Chou KC, Wang YTT, Hung CL, Kuo CF, Tsai SY. Building a model for predicting metabolic syndrome using artificial intelligence based on an investigation of whole-genome sequencing. J Transl Med 2022; 20:190. [PMID: 35484552 PMCID: PMC9052619 DOI: 10.1186/s12967-022-03379-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Background The circadian system is responsible for regulating various physiological activities and behaviors and has been gaining recognition. The circadian rhythm is adjusted in a 24-h cycle and has transcriptional–translational feedback loops. When the circadian rhythm is interrupted, affecting the expression of circadian genes, the phenotypes of diseases could amplify. For example, the importance of maintaining the internal temporal homeostasis conferred by the circadian system is revealed as mutations in genes coding for core components of the clock result in diseases. This study will investigate the association between circadian genes and metabolic syndromes in a Taiwanese population. Methods We performed analysis using whole-genome sequencing, read vcf files and set target circadian genes to determine if there were variants on target genes. In this study, we have investigated genetic contribution of circadian-related diseases using population-based next generation whole genome sequencing. We also used significant SNPs to create a metabolic syndrome prediction model. Logistic regression, random forest, adaboost, and neural network were used to predict metabolic syndrome. In addition, we used random forest model variables importance matrix to select 40 more significant SNPs, which were subsequently incorporated to create new prediction models and to compare with previous models. The data was then utilized for training set and testing set using five-fold cross validation. Each model was evaluated with the following criteria: area under the receiver operating characteristics curve (AUC), precision, F1 score, and average precision (the area under the precision recall curve). Results After searching significant variants, we used Chi-Square tests to find some variants. We found 186 significant SNPs, and four predicting models which used 186 SNPs (logistic regression, random forest, adaboost and neural network), AUC were 0.68, 0.8, 0.82, 0.81 respectively. The F1 scores were 0.412, 0.078, 0.295, 0.552, respectively. The other three models which used the 40 SNPs (logistic regression, adaboost and neural network), AUC were 0.82, 0.81, 0.81 respectively. The F1 scores were 0.584, 0.395, 0.574, respectively. Conclusions Circadian gene defect may also contribute to metabolic syndrome. Our study found several related genes and building a simple model to predict metabolic syndrome. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03379-7.
Collapse
Affiliation(s)
- Nai-Wei Hsu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Kai-Chen Chou
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei City, Taiwan
| | - Yu-Ting Tina Wang
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei City, Taiwan
| | - Chung-Lieh Hung
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Chien-Feng Kuo
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Nursing, MacKay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shin-Yi Tsai
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan. .,Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei City, Taiwan. .,Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA. .,Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan. .,Institute of Long-Term Care, Mackay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
37
|
Zhong J, Wang H, Yang K, Wang H, Duan C, Ni N, An L, Luo Y, Zhao P, Gou Y, Sheng S, Shi D, Chen C, Wagstaff W, Hendren-Santiago B, Haydon RC, Luu HH, Reid RR, Ho SH, Ameer GA, Shen L, He TC, Fan J. Reversibly immortalized keratinocytes (iKera) facilitate re-epithelization and skin wound healing: Potential applications in cell-based skin tissue engineering. Bioact Mater 2022; 9:523-540. [PMID: 34820586 PMCID: PMC8581279 DOI: 10.1016/j.bioactmat.2021.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Skin injury is repaired through a multi-phase wound healing process of tissue granulation and re-epithelialization. Any failure in the healing process may lead to chronic non-healing wounds or abnormal scar formation. Although significant progress has been made in developing novel scaffolds and/or cell-based therapeutic strategies to promote wound healing, effective management of large chronic skin wounds remains a clinical challenge. Keratinocytes are critical to re-epithelialization and wound healing. Here, we investigated whether exogenous keratinocytes, in combination with a citrate-based scaffold, enhanced skin wound healing. We first established reversibly immortalized mouse keratinocytes (iKera), and confirmed that the iKera cells expressed keratinocyte markers, and were responsive to UVB treatment, and were non-tumorigenic. In a proof-of-principle experiment, we demonstrated that iKera cells embedded in citrate-based scaffold PPCN provided more effective re-epithelialization and cutaneous wound healing than that of either PPCN or iKera cells alone, in a mouse skin wound model. Thus, these results demonstrate that iKera cells may serve as a valuable skin epithelial source when, combining with appropriate biocompatible scaffolds, to investigate cutaneous wound healing and skin regeneration.
Collapse
Affiliation(s)
- Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Ke Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Pediatric Research Institute, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Huifeng Wang
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Chongwen Duan
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Na Ni
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Liqin An
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yetao Luo
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Piao Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shiyan Sheng
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Bryce Hendren-Santiago
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL, 60208, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Guillermo A. Ameer
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL, 60208, USA
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60616, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL, 60208, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| |
Collapse
|
38
|
Diagnostic Modalities of Non-Alcoholic Fatty Liver Disease: From Biochemical Biomarkers to Multi-Omics Non-Invasive Approaches. Diagnostics (Basel) 2022; 12:diagnostics12020407. [PMID: 35204498 PMCID: PMC8871470 DOI: 10.3390/diagnostics12020407] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is currently the most common cause of chronic liver disease worldwide, and its prevalence is increasing globally. NAFLD is a multifaceted disorder, and its spectrum includes steatosis to steatohepatitis, which may evolve to advanced fibrosis and cirrhosis. In addition, the presence of NAFLD is independently associated with a higher cardiometabolic risk and increased mortality rates. Considering that the vast majority of individuals with NAFLD are mainly asymptomatic, early diagnosis of non-alcoholic steatohepatitis (NASH) and accurate staging of fibrosis risk is crucial for better stratification, monitoring and targeted management of patients at risk. To date, liver biopsy remains the gold standard procedure for the diagnosis of NASH and staging of NAFLD. However, due to its invasive nature, research on non-invasive tests is rapidly increasing with significant advances having been achieved during the last decades in the diagnostic field. New promising non-invasive biomarkers and techniques have been developed, evaluated and assessed, including biochemical markers, imaging modalities and the most recent multi-omics approaches. Our article provides a comprehensive review of the currently available and emerging non-invasive diagnostic tools used in assessing NAFLD, also highlighting the importance of accurate and validated diagnostic tools.
Collapse
|
39
|
Ge X, Sun T, Zhang Y, Li Y, Gao P, Zhang D, Zhang B, Wang P, Ma W, Lu S. The role and possible mechanism of the long noncoding RNA LINC01260 in nonalcoholic fatty liver disease. Nutr Metab (Lond) 2022; 19:3. [PMID: 35016686 PMCID: PMC8753873 DOI: 10.1186/s12986-021-00634-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
Objective To investigate the differential expression profile of lncRNAs in the nonalcoholic fatty liver disease (NAFLD) model induced by oleic acid (OA) and to further explore the role of LINC01260 (ENST00000255183) in NAFLD, providing theoretical support for the clinical value of lncRNAs in NAFLD. Methods OA (50 μg/mL) was used to induce steatosis in normal human LO2 hepatocytes for 48 h and was verified by Oil red O staining. Differential expression profiles of lncRNAs were obtained by eukaryotic circular sequencing (RNA/lncRNA/circRNA-seq) techniques. A gain-of-function (GOF) strategy for LINC01260 was adopted, Oil red O staining and semiquantitative analysis were combined to explore whether the GOF of LINC01260 affects LO2 cell steatosis. CeRNA-based bioinformatics analysis of lncRNAs was performed, and the enriched mRNAs were further verified. RXRB siRNAs were applied and verify its role in LINC01260 regulated OA-induced hepatocytes steatosis. Results Lipid droplets of different sizes were observed in the cells of the OA group. Absorbance in the OA group was significantly increased after isopropanol decolorization (P < 0.05). Compared with those in the control group, there were 648 lncRNAs with differential expression greater than 1 time in the OA group, of which 351 were upregulated and 297 were downregulated. Fluorescence quantitative PCR showed that the expression of LINC01260 in the OA group was downregulated by 0.35 ± 0.07-fold (P < 0.05). The formation of lipid droplets in LO2 cells of the LINC01260 GOF group decreased significantly (P < 0.05). CeRNA analysis indicated that the mRNA levels of RXRB, RNPEPL1, CD82, MADD and KLC2 were changed to different degrees. Overexpression of LINC01260 significantly induced RXRB transcription (P < 0.05) and translation, and RXRB silence attenuated the lipids decrease induced by LINC01260 overexpression. Conclusion The OA-induced NAFLD cell model has a wide range of lncRNA differential expression profiles. LINC01260 participates in the regulation of the lipid droplet formation process of NAFLD, and its overexpression can significantly inhibit the steatosis process of LO2 cells. Mechanistically, LINC01260 may act as a ceRNA to regulate the expression of RXRB, thereby affecting the adipocytokine signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-021-00634-4.
Collapse
Affiliation(s)
- Xiaoxiao Ge
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, Shandong, People's Republic of China.,Blood Transfusion Department, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Tao Sun
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, Shandong, People's Republic of China.,Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, People's Republic of China
| | - Yanmei Zhang
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, Shandong, People's Republic of China.,Department of Clinical Laboratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China
| | - Yongqing Li
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, Shandong, People's Republic of China
| | - Peng Gao
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, People's Republic of China
| | - Dantong Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, People's Republic of China
| | - Bingyang Zhang
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, Shandong, People's Republic of China.,Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, People's Republic of China
| | - Peijun Wang
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, Shandong, People's Republic of China
| | - Wanshan Ma
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, Shandong, People's Republic of China. .,Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, People's Republic of China.
| | - Sumei Lu
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, Shandong, People's Republic of China. .,Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
40
|
Long non-coding RNA in Non-alcoholic fatty liver disease. Adv Clin Chem 2022; 110:1-35. [DOI: 10.1016/bs.acc.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Albadawy R, Agwa SHA, Khairy E, Saad M, El Touchy N, Othman M, Matboli M. Clinical Significance of HSPD1/MMP14/ITGB1/miR-6881-5P/Lnc-SPARCL1-1:2 RNA Panel in NAFLD/NASH Diagnosis: Egyptian Pilot Study. Biomedicines 2021; 9:biomedicines9091248. [PMID: 34572434 PMCID: PMC8472260 DOI: 10.3390/biomedicines9091248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Non-alcoholic steatohepatitis ((NASH) is the progressive form of (non-alcoholic fatty liver disease) (NAFLD), which can progress to liver cirrhosis and hepatocellular carcinoma. There is no available reliable non-invasive diagnostic tool to diagnose NASH, and still the liver biopsy is the gold standard in diagnosis. In this pilot study, we aimed to evaluate the Nod-like receptor (NLR) signaling pathway related RNA panel in the diagnosis of NASH. Methods: Bioinformatics analysis was done, with retrieval of the HSPD1/MMP14/ITGB1/miR-6881-5P/Lnc-SPARCL1-1:2 RNA panel based on the relation to the NLR-signaling pathway. Hepatitis serum markers, lipid profile, NAFLD score and fibrosis score were assessed in the patients’ sera. Reverse transcriptase real time polymerase chain reaction (RT-PCR) was done to assess the relative expression of the RNA panel among patients who had NAFLD without steatosis, NAFLD with simple steatosis, NASH and healthy controls. Results: We observed up-regulation of Lnc-SPARCL1-1:2 lncRNA that led to upregulation of miR-6881-5P with a subsequent increase in levels of HSPD1, MMP14, and ITGB1 mRNAs. In addition, ROC curve analysis was done, with discriminative cutoff values that aided discrimination between NASH cases and control, and also between NAFLD, simple steatosis and NASH. Conclusion: This pilot study concluded that HSPD1/MMP14/ITGB1/miR-6881-5P/Lnc-SPARCL1-1:2 panel expression has potential in the diagnosis of NASH, and also differentiation between NAFLD, simple steatosis and NASH cases.
Collapse
Affiliation(s)
- Reda Albadawy
- Department of Gastroentrology, Hepatology & Infectious Disease, Faculty of Medicine, Benha University, Benha 13518, Egypt;
- Correspondence: (R.A.); (S.H.A.A.); (M.M.)
| | - Sara H. A. Agwa
- Molecular Genomics Unit, Clinical Pathology Department, Medical Ain Shams Research Institute (MASRI), School of Medicine, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (R.A.); (S.H.A.A.); (M.M.)
| | - Eman Khairy
- Medicinal Biochemistry and Molecular Biology Department, School of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Maha Saad
- Biochemistry Department, Faculty of Medicine, Modern University for Technology and Information, Cairo 11382, Egypt;
| | - Naglaa El Touchy
- Department of Gastroentrology, Hepatology & Infectious Disease, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Mohamed Othman
- Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Marwa Matboli
- Medicinal Biochemistry and Molecular Biology Department, School of Medicine, Ain Shams University, Cairo 11566, Egypt;
- Correspondence: (R.A.); (S.H.A.A.); (M.M.)
| |
Collapse
|
42
|
Mao Y, Ni N, Huang L, Fan J, Wang H, He F, Liu Q, Shi D, Fu K, Pakvasa M, Wagstaff W, Tucker AB, Chen C, Reid RR, Haydon RC, Ho SH, Lee MJ, He TC, Yang J, Shen L, Cai L, Luu HH. Argonaute (AGO) proteins play an essential role in mediating BMP9-induced osteogenic signaling in mesenchymal stem cells (MSCs). Genes Dis 2021; 8:918-930. [PMID: 34522718 PMCID: PMC8427325 DOI: 10.1016/j.gendis.2021.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/04/2021] [Accepted: 04/16/2021] [Indexed: 01/03/2023] Open
Abstract
As multipotent progenitor cells, mesenchymal stem cells (MSCs) can renew themselves and give rise to multiple lineages including osteoblastic, chondrogenic and adipogenic lineages. It's previously shown that BMP9 is the most potent BMP and induces osteogenic and adipogenic differentiation of MSCs. However, the molecular mechanism through which BMP9 regulates MSC differentiation remains poorly understood. Emerging evidence indicates that noncoding RNAs, especially microRNAs, may play important roles in regulating MSC differentiation and bone formation. As highly conserved RNA binding proteins, Argonaute (AGO) proteins are essential components of the multi-protein RNA-induced silencing complexes (RISCs), which are critical for small RNA biogenesis. Here, we investigate possible roles of AGO proteins in BMP9-induced lineage-specific differentiation of MSCs. We first found that BMP9 up-regulated the expression of Ago1, Ago2 and Ago3 in MSCs. By engineering multiplex siRNA vectors that express multiple siRNAs targeting individual Ago genes or all four Ago genes, we found that silencing individual Ago expression led to a decrease in BMP9-induced early osteogenic marker alkaline phosphatase (ALP) activity in MSCs. Furthermore, we demonstrated that simultaneously silencing all four Ago genes significantly diminished BMP9-induced osteogenic and adipogenic differentiation of MSCs and matrix mineralization, and ectopic bone formation. Collectively, our findings strongly indicate that AGO proteins and associated small RNA biogenesis pathway play an essential role in mediating BMP9-induced osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Yukun Mao
- Departments of Spine Surgery and Musculoskeletal Tumor, and Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430072, PR China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Nephrology, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, PR China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, PR China
| | - Kai Fu
- Departments of Spine Surgery and Musculoskeletal Tumor, and Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430072, PR China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Section of Plastic Surgery and Laboratory of Craniofacial Biology and Development, and Section of Surgical Research, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Andrew Blake Tucker
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Section of Plastic Surgery and Laboratory of Craniofacial Biology and Development, and Section of Surgical Research, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Section of Plastic Surgery and Laboratory of Craniofacial Biology and Development, and Section of Surgical Research, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Section of Plastic Surgery and Laboratory of Craniofacial Biology and Development, and Section of Surgical Research, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Section of Plastic Surgery and Laboratory of Craniofacial Biology and Development, and Section of Surgical Research, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lin Cai
- Departments of Spine Surgery and Musculoskeletal Tumor, and Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430072, PR China
- Corresponding author. Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, 430071, China.
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Corresponding author. Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL 60637, USA. Fax: +(773) 834 4598.
| |
Collapse
|
43
|
Wang Y, Hylemon PB, Zhou H. Long Noncoding RNA H19: A Key Player in Liver Diseases. Hepatology 2021; 74:1652-1659. [PMID: 33630308 PMCID: PMC10071419 DOI: 10.1002/hep.31765] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Yanyan Wang
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
44
|
Xia S, Wang Z, Chen L, Zhou Y, Li Y, Wang S, Chen A, Xu X, Shao J, Zhang Z, Tan S, Zhang F, Zheng S. Dihydroartemisinin regulates lipid droplet metabolism in hepatic stellate cells by inhibiting lncRNA-H19-induced AMPK signal. Biochem Pharmacol 2021; 192:114730. [PMID: 34400125 DOI: 10.1016/j.bcp.2021.114730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Activation of hepatic stellate cells (HSCs) is a central event in the pathogenesis of liver fibrosis and is often accompanied by the disappearance of lipid droplets (LDs). Although interference with LD metabolism can effectively reverse the activation of HSCs, there is currently no effective therapy for liver fibrosis. Our previous evidence indicates that long non-coding RNA (lncRNA)-H19 plays an essential role in LD metabolism of HSC. In this study, we investigated the potential molecular mechanism of dihydroartemisinin (DHA) inhibits LD metabolism and liver fibrosis by regulating H19-AMPK pathway. We found that DHA restores LDs content in activated HSCs via reducing the transcription of H19 driven by hypoxia inducible factor 1 subunit alpha (HIF1α) and inhibiting the lipid oxidation signal mediated by AMP-activated protein kinase (AMPK) phosphorylation. In vivo experiments, we have proved that DHA reduced the deposition of extracellular matrix (ECM) and reduce the level of liver fibrosis in CCl4-induced liver fibrosis of mice. In summary, our results emphasize the importance of H19 in liver fibrosis and the potential of DHA to regulate H19 to treat liver fibrosis, providing a new direction for the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Siwei Xia
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhimin Wang
- Jiangsu Provincial Xuzhou Pharmaceutical Vocational College, Xuzhou 221116, China
| | - Li Chen
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanyuan Zhou
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Li
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shijun Wang
- Shandong University of Traditional Chinese Medicine, Jinan 250035, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, MO 63104, USA
| | - Xuefen Xu
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiangjuan Shao
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zili Zhang
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanzhong Tan
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, China.
| | - Feng Zhang
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shizhong Zheng
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
45
|
Tello-Flores VA, Beltrán-Anaya FO, Ramírez-Vargas MA, Esteban-Casales BE, Navarro-Tito N, Alarcón-Romero LDC, Luciano-Villa CA, Ramírez M, del Moral-Hernández Ó, Flores-Alfaro E. Role of Long Non-Coding RNAs and the Molecular Mechanisms Involved in Insulin Resistance. Int J Mol Sci 2021; 22:7256. [PMID: 34298896 PMCID: PMC8306787 DOI: 10.3390/ijms22147256] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are single-stranded RNA biomolecules with a length of >200 nt, and they are currently considered to be master regulators of many pathological processes. Recent publications have shown that lncRNAs play important roles in the pathogenesis and progression of insulin resistance (IR) and glucose homeostasis by regulating inflammatory and lipogenic processes. lncRNAs regulate gene expression by binding to other non-coding RNAs, mRNAs, proteins, and DNA. In recent years, several mechanisms have been reported to explain the key roles of lncRNAs in the development of IR, including metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), imprinted maternal-ly expressed transcript (H19), maternally expressed gene 3 (MEG3), myocardial infarction-associated transcript (MIAT), and steroid receptor RNA activator (SRA), HOX transcript antisense RNA (HOTAIR), and downregulated Expression-Related Hexose/Glucose Transport Enhancer (DREH). LncRNAs participate in the regulation of lipid and carbohydrate metabolism, the inflammatory process, and oxidative stress through different pathways, such as cyclic adenosine monophosphate/protein kinase A (cAMP/PKA), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), polypyrimidine tract-binding protein 1/element-binding transcription factor 1c (PTBP1/SREBP-1c), AKT/nitric oxide synthase (eNOS), AKT/forkhead box O1 (FoxO1), and tumor necrosis factor-alpha (TNF-α)/c-Jun-N-terminal kinases (JNK). On the other hand, the mechanisms linked to the molecular, cellular, and biochemical actions of lncRNAs vary according to the tissue, biological species, and the severity of IR. Therefore, it is essential to elucidate the role of lncRNAs in the insulin signaling pathway and glucose and lipid metabolism. This review analyzes the function and molecular mechanisms of lncRNAs involved in the development of IR.
Collapse
Affiliation(s)
- Vianet Argelia Tello-Flores
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Fredy Omar Beltrán-Anaya
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Marco Antonio Ramírez-Vargas
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Brenda Ely Esteban-Casales
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico;
| | - Luz del Carmen Alarcón-Romero
- Laboratorio de Citopatología e Histoquímica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico;
| | - Carlos Aldair Luciano-Villa
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| | - Mónica Ramírez
- CONACyT, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico;
| | - Óscar del Moral-Hernández
- Laboratorio de Virología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico
| | - Eugenia Flores-Alfaro
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, GRO, Mexico; (V.A.T.-F.); (F.O.B.-A.); (M.A.R.-V.); (B.E.E.-C.); (C.A.L.-V.)
| |
Collapse
|
46
|
Rey F, Urrata V, Gilardini L, Bertoli S, Calcaterra V, Zuccotti GV, Cancello R, Carelli S. Role of long non-coding RNAs in adipogenesis: State of the art and implications in obesity and obesity-associated diseases. Obes Rev 2021; 22:e13203. [PMID: 33443301 PMCID: PMC8244036 DOI: 10.1111/obr.13203] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022]
Abstract
Obesity is an evolutionary, chronic, and relapsing disease that consists of a pathological accumulation of adipose tissue able to increase morbidity for high blood pressure, type 2 diabetes, metabolic syndrome, and obstructive sleep apnea in adults, children, and adolescents. Despite intense research over the last 20 years, obesity remains today a disease with a complex and multifactorial etiology. Recently, long non-coding RNAs (lncRNAs) are emerging as interesting new regulators as different lncRNAs have been found to play a role in early and late phases of adipogenesis and to be implicated in obesity-associated complications onset. In this review, we discuss the most recent advances on the role of lncRNAs in adipocyte biology and in obesity-associated complications. Indeed, more and more researchers are focusing on investigating the underlying roles that these molecular modulators could play. Even if a significant number of evidence is correlation-based, with lncRNAs being differentially expressed in a specific disease, recent works are now focused on deeply analyzing how lncRNAs can effectively modulate the disease pathogenesis onset and progression. LncRNAs possibly represent new molecular markers useful in the future for both the early diagnosis and a prompt clinical management of patients with obesity.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Valentina Urrata
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Luisa Gilardini
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Simona Bertoli
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy.,International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy.,Department of Pediatrics, Children's Hospital "V. Buzzi", Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy.,Department of Pediatrics, Children's Hospital "V. Buzzi", Milan, Italy
| | - Raffaella Cancello
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| |
Collapse
|
47
|
Hernández-Aguilar AI, Luciano-Villa CA, Tello-Flores VA, Beltrán-Anaya FO, Zubillaga-Guerrero MI, Flores-Alfaro E. Dysregulation of lncRNA-H19 in cardiometabolic diseases and the molecular mechanism involved : a systematic review. Expert Rev Mol Diagn 2021; 21:809-821. [PMID: 34133256 DOI: 10.1080/14737159.2021.1944808] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Cardiometabolic diseases are a global public health problem, with significant increases in their prevalence. Different epigenetic factors involved in the progression of metabolic alterations have been described, such as long non-coding RNAs (lncRNAs). H19 is a multifunctional lncRNA expressed from the maternal allele, with low expression after birth, except in the skeletal muscle and heart. Recent studies have linked its dysregulation to alterations in cell metabolism.Areas covered: H19 plays a role in the pathogenesis of coronary artery disease, nonalcoholic fatty liver disease, hepatic and renal fibrosis, insulin resistance, type 2 diabetes, and inflammation. H19 acts mainly as a competitive endogenous RNA of molecules involved in pathways that regulate cell metabolism. In this review, we analyzed the dysregulation of H19 in cardiometabolic diseases and its relationship with molecular alterations in different signaling pathways.Expert opinion: The association of H19 with the development of cardiometabolic diseases, indicates that H19 could be a therapeutic target and prognostic biomarker for these diseases. Controversies have been reported regarding the expression of H19 in some metabolic diseases, therefore, it is necessary to continue research to clarify its pathogenic effect in different organs.
Collapse
Affiliation(s)
- Ana Iris Hernández-Aguilar
- Faculty of Chemical‑Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | | | | | - Fredy Omar Beltrán-Anaya
- Faculty of Chemical‑Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | | | - Eugenia Flores-Alfaro
- Faculty of Chemical‑Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| |
Collapse
|
48
|
Sun X, Feinberg MW. Vascular Endothelial Senescence: Pathobiological Insights, Emerging Long Noncoding RNA Targets, Challenges and Therapeutic Opportunities. Front Physiol 2021; 12:693067. [PMID: 34220553 PMCID: PMC8242592 DOI: 10.3389/fphys.2021.693067] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/07/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a stable form of cell cycle arrest in response to various stressors. While it serves as an endogenous pro-resolving mechanism, detrimental effects ensue when it is dysregulated. In this review, we introduce recent advances for cellular senescence and inflammaging, the underlying mechanisms for the reduction of nicotinamide adenine dinucleotide in tissues during aging, new knowledge learned from p16 reporter mice, and the development of machine learning algorithms in cellular senescence. We focus on pathobiological insights underlying cellular senescence of the vascular endothelium, a critical interface between blood and all tissues. Common causes and hallmarks of endothelial senescence are highlighted as well as recent advances in endothelial senescence. The regulation of cellular senescence involves multiple mechanistic layers involving chromatin, DNA, RNA, and protein levels. New targets are discussed including the roles of long noncoding RNAs in regulating endothelial cellular senescence. Emerging small molecules are highlighted that have anti-aging or anti-senescence effects in age-related diseases and impact homeostatic control of the vascular endothelium. Lastly, challenges and future directions are discussed including heterogeneity of endothelial cells and endothelial senescence, senescent markers and detection of senescent endothelial cells, evolutionary differences for immune surveillance in mice and humans, and long noncoding RNAs as therapeutic targets in attenuating cellular senescence. Accumulating studies indicate that cellular senescence is reversible. A better understanding of endothelial cellular senescence through lifestyle and pharmacological interventions holds promise to foster a new frontier in the management of cardiovascular disease risk.
Collapse
Affiliation(s)
- Xinghui Sun
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, NE, United States
- Nebraska Center for the Prevention of Obesity Diseases Through Dietary Molecules, University of Nebraska–Lincoln, Lincoln, NE, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Mark W. Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
49
|
Ye WC, Huang SF, Hou LJ, Long HJ, Yin K, Hu CY, Zhao GJ. Potential Therapeutic Targeting of lncRNAs in Cholesterol Homeostasis. Front Cardiovasc Med 2021; 8:688546. [PMID: 34179148 PMCID: PMC8224755 DOI: 10.3389/fcvm.2021.688546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Maintaining cholesterol homeostasis is essential for normal cellular and systemic functions. Long non-coding RNAs (lncRNAs) represent a mechanism to fine-tune numerous biological processes by controlling gene expression. LncRNAs have emerged as important regulators in cholesterol homeostasis. Dysregulation of lncRNAs expression is associated with lipid-related diseases, suggesting that manipulating the lncRNAs expression could be a promising therapeutic approach to ameliorate liver disease progression and cardiovascular disease (CVD). However, given the high-abundant lncRNAs and the poor genetic conservation between species, much work is required to elucidate the specific role of lncRNAs in regulating cholesterol homeostasis. In this review, we highlighted the latest advances in the pivotal role and mechanism of lncRNAs in regulating cholesterol homeostasis. These findings provide novel insights into the underlying mechanisms of lncRNAs in lipid-related diseases and may offer potential therapeutic targets for treating lipid-related diseases.
Collapse
Affiliation(s)
- Wen-Chu Ye
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Shi-Feng Huang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Lian-Jie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Hai-Jiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China.,Xiangya Hospital, Central South University, Changsha, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Ching Yuan Hu
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Guo-Jun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
50
|
Errafii K, Al-Akl NS, Khalifa O, Arredouani A. Comprehensive analysis of LncRNAs expression profiles in an in vitro model of steatosis treated with Exendin-4. J Transl Med 2021; 19:235. [PMID: 34078383 PMCID: PMC8173795 DOI: 10.1186/s12967-021-02885-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background and aims The hallmark of non-alcoholic fatty liver disease (NAFLD) is the excessive hepatic lipid accumulation. Currently, no pharmacotherapy exists for NAFLD. However, the glucagon-like peptide-1 receptor agonists have recently emerged as potential therapeutics. Here, we sought to identify the long non-coding RNAs (LncRNAs) associated with the steatosis improvement induced by the GLP-1R agonist Exendin-4 (Ex-4) in vitro. Methods Steatosis was induced in HepG2 cells with oleic acid. The transcriptomic profiling was performed using total RNA extracted from untreated, steatotic, and Ex-4-treated steatotic cells. We validated a subset of differentially expressed LncRNAs with qRT-PCR and identified the most significantly enriched cellular functions associated with the relevant LncRNAs. Results We confirm that Ex-4 improves steatosis in HepG2 cells. We found 379 and 180 differentially expressed LncRNAs between untreated and steatotic cells and between steatotic and Ex-4-treated steatotic cells, respectively. Interestingly, 22 upregulated LncRNAs in steatotic cells became downregulated with Ex-4 exposure, while 50 downregulated LncRNAs in steatotic cells became upregulated in the presence of Ex-4. Although some LncRNAs, such as MALAT1, H19, and NEAT1, were previously associated with NAFLD, the association of others with steatosis and the positive effect of Ex-4 is being reported for the first time. Functional enrichment analysis identified many critical pathways, including fatty acid and pyruvate metabolism, and insulin, PPAR, Wnt, TGF-β, mTOR, VEGF, NOD-like, and Toll-like receptors signaling pathways. Conclusion Our results suggest that LncRNAs may play essential roles in the mechanisms underlying steatosis improvement in response to GLP-1R agonists and warrant further functional studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02885-4.
Collapse
Affiliation(s)
- Khaoula Errafii
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.,Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box: 34110, Doha, Qatar
| | - Neyla S Al-Akl
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box: 34110, Doha, Qatar
| | - Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box: 34110, Doha, Qatar
| | - Abdelilah Arredouani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar. .,Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box: 34110, Doha, Qatar.
| |
Collapse
|