1
|
Ma J, Gan M, Chen S, Shi Y, Yang Y, Liu C, Zhang S, Chen L, Zhu K, Zhang T, Luo Y, Liu Y, Liu B, Niu L, Wang Y, Zhu L, Shen L. Metabolome and transcriptome profiling reveal tRNA-derived small RNAs regulated glutathione metabolism in intrauterine growth-restricted pigs. Int J Biol Macromol 2024; 293:139167. [PMID: 39732235 DOI: 10.1016/j.ijbiomac.2024.139167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024]
Abstract
Intrauterine growth retardation (IUGR) has become a difficult problem in animal husbandry and is often accompanied by the occurrence of metabolic syndrome. tRNA-derived small RNAs (tsRNAs) are a novel class of regulatory small noncoding RNAs. However, the involvement of tsRNA in regulating the mechanism of IUGR remains unclear. Here, we first characterized the tsRNA expression profiles in the liver of normal pigs and IUGR pigs through high-throughput sequencing. IUGR pigs exhibit significantly increased 17 tsRNA levels including tRF-Ile-GAT, tRF-Pro-TGG, tRF-Leu-CAA and tRF-Ala-TGC etc. Transcriptome sequencing further revealed 1244 upregulated and 762 downregulated differentially expressed genes in IUGR pig liver. Functional enrichment analysis found that DEGs were mainly involved in insulin resistance, metabolic pathways, etc. Metabolomics was performed to determine the metabolic changes between the normal and IUGR pigs. Then, We constructed a potential tsRNA regulatory network involved in metabolic pathways in IUGR pig liver. Moreover, combined metabolome and transcriptome analysis showed a disorder of glutathione metabolism in the IUGR pigs liver. We identified tRF-Ile-GAT as the potential target of interest. NCTC1469 liver cells were used to validate the preliminary function of tRF-Ile-GAT in vitro. Bioinformatics analyses and luciferase reporter assays further revealed that microsomal glutathione S-transferase 1 (MGST1) was the target gene of tRF-Ile-GAT. In addition, tRF-Ile-GAT overexpression inhibited antioxidant gene expression, glutathione and glutathione glutathione S-transferase levels in NCTC1469 cells, while an MGST1 overexpression reversed the above phenomenon. These findings provide new insights into the understanding of the molecular mechanisms of IUGR pathogenesis.
Collapse
Affiliation(s)
- Jianfeng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyu Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuqian Shi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiting Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengming Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Kangping Zhu
- Sichuan Dekon Livestock Foodstuff Group, Chengdu 610200, China
| | - Tinghuan Zhang
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Yi Luo
- Sichuan Dekon Livestock Foodstuff Group, Chengdu 610200, China
| | - Yihui Liu
- Sichuan Province General Station of Animal Husbandry, Chengdu 610066, China
| | - Bin Liu
- Sichuan Dekon Livestock Foodstuff Group, Chengdu 610200, China
| | - Lili Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
Yuan L, Li J, Yin L, Lin X, Ni D, Deng C, Liang P, Jiang B. 5'tiRNA-33-CysACA-1 promotes septic cardiomyopathy by targeting PGC-1α-mediated mitochondrial biogenesis. Int J Biochem Cell Biol 2024; 179:106714. [PMID: 39631469 DOI: 10.1016/j.biocel.2024.106714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/20/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND We revealed for the first time that the expression of 158 tRNA-derived small RNAs (tsRNAs) was altered in septic cardiomyopathy (SCM) by microarray analysis, and we selected 5'tiRNA-33-CysACA-1, which was the most significantly up-regulated, as a representative to explore the roles and mechanisms of tsRNAs in SCM. METHODS We constructed a sepsis model by cecum ligation and puncture (CLP) in mice and detected the expression of 5'tiRNA-33-CysACA-1 using quantitative real-time PCR (qRT-PCR). The supernatant generated after LPS stimulation of macrophages was used as the conditional medium (CM) to stimulate H9C2 and established the injured cell model. CCK-8 and LDH release assays were used to detect cell viability and cell death. Mitochondrial membrane potential (MMP), ATP production, ROS production, and Mitotracker Red mitochondrial morphology were assayed to assess mitochondrial function. Expression of mRNA for molecules related to the mitochondrial quality control system was verified by qRT-PCR. The mechanism by which 5'tiRNA-33-CysACA-1 regulates peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) expression was examined by western blot, mRNA stability analysis, and rescue experiments. RESULTS Expression of 5'tiRNA-33-CysACA-1 was elevated in cardiac tissue and H9C2 cells during septic myocardial injury. Stimulation of the CM resulted in cardiomyocyte injury and impaired mitochondrial function. Transfection of 5'tiRNA-33-CysACA-1 mimic in CM further downregulated PGC-1α expression, inhibited mitochondrial biogenesis thereby impairing mitochondrial function and leading to decreased cardiomyocyte activity and increased cell death. In contrast, transfection of the inhibitor ameliorated the above biological processes. In addition, mRNA stability assay and bioinformatics analysis showed that 5'tiRNA-33-CysACA-1 led to a decrease in the stability of PGC-1α mRNA, which in turn downregulated the expression of PGC-1α and promoted the development of SCM. CONCLUSIONS 5'tiRNA-33-CysACA-1 expression is upregulated in SCM and inhibits mitochondrial biogenesis by targeting PGC-1α and decreasing the stability of PGC-1α mRNA, leading to mitochondrial dysfunction and promoting the development of SCM.
Collapse
Affiliation(s)
- Ludong Yuan
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China
| | - Jing Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China
| | - Leijing Yin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China
| | - Dan Ni
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China
| | - Chuanhuan Deng
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
3
|
Chang X, Du M, Wei J, Zhang Y, Feng X, Deng B, Liu P, Wang Y. Serum tsncRNAs reveals novel potential therapeutic targets of Salvianolic Acid B on atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155994. [PMID: 39243751 DOI: 10.1016/j.phymed.2024.155994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Salvianolic Acid B (SalB) has been proven to delay the progression of atherosclerosis. The therapeutic mechanisms of this compound are unclear. A novel class of short non-coding RNAs, pre-transfer RNA and mature transfer RNA (tsncRNAs) may regulate gene expression. TsncRNAs-sequencing revealed novel therapeutic targets for SalB. This is the first study focusing on tsncRNAs to treat atherosclerosis using SalB. PURPOSE To explore the potential mechanism of SalB treating atherosclerosis through tsncRNAs. METHODS Five groups of mice were created at random: control group (CON), atherosclerosis model group (MOD), SalB with high dose-treated group (SABH), SalB with low dose-treated group (SABL), and Simvastatin-treated group (ST). Aortic sinus plaque, body weight and inflammatory cytokines were evaluated. The Illumina NextSeq equipment was used to do expression profiling of tsncRNAs from serum. The targets of tsncRNAs were then predicted using tRNAscan and TargetScan. The KEGG pathway and GO analysis were utilized to forecast the bioinformatics analysis. Potential tsncRNAs and associated mRNAs were validated using quantitative real-time PCR. RESULTS tRF-Glu-CTC-014 and tRF-Gly-GCC-074 were markedly increased by SalB with high dose treatment and validated with quantitative real-time PCR. Two mRNAs SRF and Arrb related to tRF-Glu-CTC-014 changed consistently. GO analysis revealed that the altered target genes of the selected tsncRNAs were most enriched in protein binding and cellular process. Moreover, KEGG pathway analysis demonstrated that altered target genes of tsncRNAs were most enriched in MAPK signaling pathway. CONCLUSION SalB can promote the expression of tRF-Glu-CTC-014 to treat atherosclerosis.
Collapse
Affiliation(s)
- Xindi Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Min Du
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Jing Wei
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Yifan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Xiaoteng Feng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Bing Deng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Ping Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China.
| | - Yiru Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China.
| |
Collapse
|
4
|
Hu Y, Liu Y, Shen J, Yin L, Hu X, Huang X, Chen Y, Zhang Y. Longitudinal observation of tRNA-derived fragments profiles in gestational diabetes mellitus and its diagnostic value. J Obstet Gynaecol Res 2024; 50:1317-1333. [PMID: 38923718 DOI: 10.1111/jog.16008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Gestational Diabetes Mellitus (GDM) poses significant risks to maternal and fetal health. Current diagnostic methods based on glucose tolerance tests have limitations for early detection. tRNA-derived small RNAs (tsRNAs) have emerged as potential molecular regulators in various diseases, including metabolic disorders. However, the diagnostic value of tsRNAs in plasma for early GDM or postpartum remains unclear. METHODS This longitudinal study profiled the expression of tsRNAs across different gestational stages and postpartum in women with GDM (n = 40) and healthy control gestational women (HCs, n = 40). High-throughput small RNA sequencing identified candidate tsRNAs, which were then validated and correlated with clinical biochemical markers such as fasting blood glucose (FBG), HOMA-IR, and GHbA1c. RESULTS tRF-1:32-Val-AAC-1-M6, tRF-1:31-Glu-CTC-1-M2, and tRF-1:30-Gly-CCC-1-M4 were consistently upregulated in the GDM group compared to HCs during the second trimester (p < 0.05). Only tRF-1:31-Glu-CTC-1-M2 was highly expressed during the first trimester, and tRF-1:30-Gly-CCC-1-M4 increased during postpartum. tRF-1:31-Glu-CTC-1-M2 showed a significant correlation with FBG levels in the first trimester (R = 0.317, p = 0.047). The expression of tRF-1:30-Gly-CCC-1-M4 was significantly correlated with HOMA-IR (r = 0.65, p < 0.001) and GHBA1c (r = 0.33, p = 0.037) during postpartum. A joint diagnostic model incorporating tsRNAs expression and clinical markers demonstrated enhanced predictive power for GDM (ROC AUC = 0.768). CONCLUSION Our results revealed distinct expression patterns of specific tsRNAs in GDM, showcasing their correlation with key metabolic parameters. This underscores their promising role as biomarkers for early prediction and diagnosis of GDM. The integration of tRFs into a composite biomarker panel holds the potential to improve clinical outcomes by enabling personalized risk assessment and targeted interventions.
Collapse
Affiliation(s)
- Yifang Hu
- Department of Obstetrics, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yan Liu
- Department of Obstetrics, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Jun Shen
- Department of Obstetrics, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Lihua Yin
- Department of Obstetrics, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Xiaoxia Hu
- Department of Obstetrics, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Xiaolei Huang
- Department of Obstetrics, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yingyuan Chen
- Department of Obstetrics, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Yisheng Zhang
- Department of Obstetrics, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Wang K, Liu CY, Fang B, Li B, Li YH, Xia QQ, Zhao Y, Cheng XL, Yang SM, Zhang MH, Wang K. The function and therapeutic potential of transfer RNA-derived small RNAs in cardiovascular diseases: A review. Pharmacol Res 2024; 206:107279. [PMID: 38942340 DOI: 10.1016/j.phrs.2024.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are a class of small non-coding RNA (sncRNA) molecules derived from tRNA, including tRNA derived fragments (tRFs) and tRNA halfs (tiRNAs). tsRNAs can affect cell functions by participating in gene expression regulation, translation regulation, intercellular signal transduction, and immune response. They have been shown to play an important role in various human diseases, including cardiovascular diseases (CVDs). Targeted regulation of tsRNAs expression can affect the progression of CVDs. The tsRNAs induced by pathological conditions can be detected when released into the extracellular, giving them enormous potential as disease biomarkers. Here, we review the biogenesis, degradation process and related functional mechanisms of tsRNAs, and discuss the research progress and application prospects of tsRNAs in different CVDs, to provide a new perspective on the treatment of CVDs.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cui-Yun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Fang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Ying-Hui Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Qian-Qian Xia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yan Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xue-Li Cheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Su-Min Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Mei-Hua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China.
| | - Kun Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
6
|
Zhang Q, Zhao X, Sun M, Dong D. Novel insights into transfer RNA-derived small RNA (tsRNA) in cardio-metabolic diseases. Life Sci 2024; 341:122475. [PMID: 38309576 DOI: 10.1016/j.lfs.2024.122475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Cardio-metabolic diseases, including a cluster of metabolic disorders and their secondary affections on cardiovascular physiology, are gradually brought to the forefront by researchers due to their high prevalence and mortality, as well as an unidentified pathogenesis. tRNA-derived small RNAs (tsRNAs), cleaved by several specific enzymes and once considered as some "metabolic junks" in the past, have been proved to possess numerous functions in human bodies. More interestingly, such a potential also seems to influence the progression of cardio-metabolic diseases to some extent. In this review, the biogenesis, classification and mechanisms of tsRNAs will be discussed based on some latest studies, and their relations with several cardio-metabolic diseases will be highlighted in sequence. Lastly, some future prospects, such as their clinical applications as biomarkers and therapeutic targets will also be mentioned, in order to provide researchers with a comprehensive understanding of the research status of tsRNAs as well as its association with cardio-metabolic diseases, thus presenting as a beacon to indicate directions for the next stage of study.
Collapse
Affiliation(s)
- Qingya Zhang
- Innovation Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
7
|
Zhao Y, Wang K, Zhao C, Liu N, Wang Z, Yang W, Cheng Z, Zhou L, Wang K. The function of tRNA-derived small RNAs in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102114. [PMID: 38314096 PMCID: PMC10835008 DOI: 10.1016/j.omtn.2024.102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
tRNA-derived small RNAs (tsRNAs) constitute a subgroup of small noncoding RNAs (ncRNAs) originating from tRNA molecules. Their rich content, evolutionary conservatism, high stability, and widespread existence makes them significant in disease research. These characteristics have positioned tsRNAs as key players in various physiological and pathological processes. tsRNA actively participates in regulating many cellular processes, such as cell death, proliferation, and metabolism. tsRNAs could be promising diagnostic markers for cardiovascular diseases (CVDs). tsRNAs have been identified in serums, suggesting their utility as early indicators for the diagnosis of CVDs. Moreover, the regulatory roles of tsRNAs in CVDs make them promising targets for therapeutic intervention. This review provides a succinct overview of the characteristics, classification, and regulatory functions of tsRNAs in the context of CVDs. By shedding light on the intricate roles of tsRNAs, this knowledge could pave the way for the development of innovative diagnostic tools and therapeutic strategies for CVDs.
Collapse
Affiliation(s)
- Yan Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Chun Zhao
- College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Ning Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Zhihong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Wenting Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Zewei Cheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Luyu Zhou
- College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| |
Collapse
|
8
|
Zhang C, Ye W, Zhao M, Xia D, Fan Z. tRNA-derived small RNA changes in bone marrow stem cells under hypoxia and osteogenic conduction. J Oral Rehabil 2023; 50:1487-1497. [PMID: 37574812 DOI: 10.1111/joor.13566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/04/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Tissue engineering using bone mesenchymal stem cells (BMSCs) transplantation is a promising therapeutic for bone regeneration. However, the effect of bone regeneration remains unsatisfactory due to the BMSCs' functional abnormality influenced by hypoxia. In this study, we attempt to explore the mechanism of osteogenic differentiation of BMSCs under hypoxic conditions from the perspective of non-coding RNA regulation. METHODS The study employed BMSCs obtained from healthy donors and simulated hypoxia using CoCl2 stimulation. High-throughput sequencing technique was used to identify differential expression profiles of tRNA-derived small RNA (tsRNA) in three experimental groups: BMSCs-0d, BMSCs-7d and BMSCs-0d-CoCl2 . TargetScan and miRanda algorithms were used to determine tsRNA target genes, while Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were employed for the prediction of biological functions. Real-time reverse transcriptase-polymerase chain reaction (Real-time RT-PCR) was carried out on four selected differentially expressed tsRNAs. RESULTS After the osteogenic induction and CoCl2 stimulated separately, there were 19 tsRNAs differentially expressed in BMSCs, including 14 upregulated and five downregulated. According to the analysis of biological information, these tsRNAs may regulate 311 potential target genes and mainly enrich the pathways such as metabolic pathways, Wnt signalling pathway, osteoclast differentiation, cellular senescence and mTOR signalling pathway. The results of Real-time RT-PCR for 3'tiRNA-41-GlnTTG-6, 3'tiRNA-42-LysTTT-8, 5'tiRNA-35-CysACA-1 and tRF3a-AsnGTT-9 were consistent with small RNA sequencing data. CONCLUSION We discovered the tsRNA that changes the process of osteogenesis and hypoxia, which provides new targets for promoting survival and regeneration functions after BMSCs transplantation.
Collapse
Affiliation(s)
- Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Department of Dental Emergency, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Weilong Ye
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Mengyao Zhao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Dengsheng Xia
- Department of Dental Emergency, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Zhang L, Liu J, Hou Y. Classification, function, and advances in tsRNA in non-neoplastic diseases. Cell Death Dis 2023; 14:748. [PMID: 37973899 PMCID: PMC10654580 DOI: 10.1038/s41419-023-06250-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
tRNA-derived small RNAs (tsRNAs) are non-coding small RNAs produced by specific endonucleases following the processing and splicing of precursor or mature tRNAs upon starvation, oxidative stress, hypoxia, and other adverse conditions. tRNAs are classified into two major categories, tRNA fragments (tRFs) and tRNA-derived stress-induced small RNAs (tiRNAs), based on differences in splice sites. With the development of high-throughput sequencing technologies in recent years, tsRNAs have been found to have important biological functions, including inhibition of apoptosis, epigenetic regulation, cell-cell communication, translation, and regulation of gene expression. Additionally, these molecules have been found to be aberrantly expressed in various diseases and to be involved in several pathological processes. In this article, the classification and nomenclature, biological functions, and potential use of tsRNAs as diagnostic biomarkers and therapeutic targets in non-neoplastic diseases are reviewed. Although tsRNA research is at its infancy, their potential in the treatment of non-tumor diseases warrants further investigation.
Collapse
Affiliation(s)
- Liou Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jie Liu
- Translational Research Experiment Department, Science Experiment Center, China Medical University, Shenyang, China.
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
10
|
Peng Z, Cai J, Guo X, Xu S. Brown adipocyte activation mediates lipid metabolism through exosomal tRNA-derived fragments. Biochem Biophys Res Commun 2023; 672:128-136. [PMID: 37352601 DOI: 10.1016/j.bbrc.2023.06.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/25/2023]
Abstract
Human obesity is related with intrinsic impairments of adipocyte lipolysis and ectopic lipid accumulation. Small regulatory RNAs, such as tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs), are enriched in exosomes and play a crucial role in lipid metabolism. To determine certain tRFs for lipolysis, brown adipocytes were treated with forskolin. Using tRFs sequencing, 207 different expressed exosomal tRFs were determined. In forskolin samples, 145 downregulated and 62 upregulated tRFs were identified. Further, qRT-PCR validated that three notably upregulated tRFs (tRF-Gly-GCC-007, tRF-Gly-GCC-008, and tRF-Gly-GCC-009) were in accordance with the sequencing result. Target genes of tRFs were involved in positive regulation of protein phosphorylation and cell adhesion process by significantly downregulating UCHL1 expression, which might participate in lipolysis. This study might provide therapeutic targets and potential diagnostic biomarkers for obesity treatment.
Collapse
Affiliation(s)
- Zhou Peng
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyang Cai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xirong Guo
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Siliang Xu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Yu Z, Yin J, Tang Z, Hu T, Wang Z, Chen Y, Liu T, Zhang W. Non-coding RNAs are key players and promising therapeutic targets in atherosclerosis. Front Cell Dev Biol 2023; 11:1237941. [PMID: 37719883 PMCID: PMC10502512 DOI: 10.3389/fcell.2023.1237941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Cardiovascular disease (CVD) is the primary cause of death in humans. Atherosclerosis (AS) is the most common CVD and a major cause of many CVD-related fatalities. AS has numerous risk factors and complex pathogenesis, and while it has long been a research focus, most mechanisms underlying its progression remain unknown. Noncoding RNAs (ncRNAs) represent an important focus in epigenetics studies and are critical biological regulators that form a complex network of gene regulation. Abnormal ncRNA expression disrupts the normal function of tissues or cells, leading to disease development. A large body of evidence suggests that ncRNAs are involved in all stages of atherosclerosis, from initiation to progression, and that some are significantly differentially expressed during AS development, suggesting that they may be powerful markers for screening AS or potential treatment targets. Here, we review the role of ncRNAs in AS development and recent developments in the use of ncRNAs for AS-targeted therapy, providing evidence for ncRNAs as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Zhun Yu
- School of Clinical Medical, Changchun University of Chinese Medicine, Jilin, China
| | - JinZhu Yin
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - ZhiTong Tang
- Department of Massage, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Ting Hu
- Internal Medicine of Chinese Medicine, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - ZhuoEr Wang
- School of Clinical Medical, Changchun University of Chinese Medicine, Jilin, China
| | - Ying Chen
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Tianjia Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Wei Zhang
- Orthopedics Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
12
|
Farina FM, Weber C, Santovito D. The emerging landscape of non-conventional RNA functions in atherosclerosis. Atherosclerosis 2023; 374:74-86. [PMID: 36725418 DOI: 10.1016/j.atherosclerosis.2023.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Most of the human genome is transcribed into non-coding RNAs (ncRNAs), which encompass a heterogeneous family of transcripts including microRNAs (miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and others. Although the detailed modes of action of some classes are not fully elucidated, the common notion is that ncRNAs contribute to sculpting gene expression of eukaryotic cells at multiple levels. These range from the regulation of chromatin remodeling and transcriptional activity to post-transcriptional regulation of messenger RNA splicing, stability, and decay. Many of these functions ultimately govern the expression of coding and non-coding genes to affect diverse physiological and pathological mechanisms in vascular biology and beyond. As such, different classes of ncRNAs emerged as crucial regulators of vascular integrity as well as active players in the pathophysiology of atherosclerosis from the early stages of endothelial dysfunction to the clinically relevant complications. However, research in recent years revealed unexpected findings such as small ncRNAs being able to biophysically regulate protein function, the glycosylation of ncRNAs to be exposed on the cell surface, the release of ncRNAs in the extracellular space to act as ligands of receptors, and even the ability of non-coding portion of messenger RNAs to mediate structural functions. This evidence expanded the functional repertoire of ncRNAs far beyond gene regulation and highlighted an additional layer of biological control of cell function. In this Review, we will discuss these emerging aspects of ncRNA biology, highlight the implications for the mechanisms of vascular biology and atherosclerosis, and discuss possible translational implications.
Collapse
Affiliation(s)
- Floriana Maria Farina
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| |
Collapse
|
13
|
Hernandez R, Shi J, Liu J, Li X, Wu J, Zhao L, Zhou T, Chen Q, Zhou C. PANDORA-Seq unveils the hidden small noncoding RNA landscape in atherosclerosis of LDL receptor-deficient mice. J Lipid Res 2023; 64:100352. [PMID: 36871792 PMCID: PMC10119612 DOI: 10.1016/j.jlr.2023.100352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/08/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Small noncoding RNAs (sncRNAs) play diverse roles in numerous biological processes. While the widely used RNA sequencing (RNA-Seq) method has advanced sncRNA discovery, RNA modifications can interfere with the complementary DNA library construction process, preventing the discovery of highly modified sncRNAs including transfer RNA-derived small RNAs (tsRNAs) and ribosomal RNA-derived small RNAs (rsRNAs) that may have important functions in disease development. To address this technical obstacle, we recently developed a novel PANDORA-Seq (Panoramic RNA Display by Overcoming RNA Modification Aborted Sequencing) method to overcome RNA modification-elicited sequence interferences. To identify novel sncRNAs associated with atherosclerosis development, LDL receptor-deficient (LDLR-/-) mice were fed a low-cholesterol diet or high-cholesterol diet (HCD) for 9 weeks. Total RNAs isolated from the intima were subjected to PANDORA-Seq and traditional RNA-Seq. By overcoming RNA modification-elicited limitations, PANDORA-Seq unveiled an rsRNA/tsRNA-enriched sncRNA landscape in the atherosclerotic intima of LDLR-/- mice, which was strikingly different from that detected by traditional RNA-Seq. While microRNAs were the dominant sncRNAs detected by traditional RNA-Seq, PANDORA-Seq substantially increased the reads of rsRNAs and tsRNAs. PANDORA-Seq also detected 1,383 differentially expressed sncRNAs induced by HCD feeding, including 1,160 rsRNAs and 195 tsRNAs. One of HCD-induced intimal tsRNAs, tsRNA-Arg-CCG, may contribute to atherosclerosis development by regulating the proatherogenic gene expression in endothelial cells. Overall, PANDORA-Seq revealed a hidden rsRNA and tsRNA population associated with atherosclerosis development. These understudied tsRNAs and rsRNAs, which are much more abundant than microRNAs in the atherosclerotic intima of LDLR-/- mice, warrant further investigations.
Collapse
Affiliation(s)
- Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Jingwei Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Jake Wu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA; Molecular Medicine Program, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
| |
Collapse
|
14
|
Rong Z, Li F, Zhang R, Niu S, Di X, Ni L, Liu C. Inhibition of tiRNA-Gly-GCC ameliorates neointimal formation via CBX3-mediated VSMCs phenotypic switching. Front Cardiovasc Med 2023; 10:1030635. [PMID: 36818350 PMCID: PMC9937027 DOI: 10.3389/fcvm.2023.1030635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Background and aim tRNA-derived fragments (tRFs) are a new class of non-coding RNAs involved in a variety of pathological processes, but their biological functions and mechanisms in human aortic smooth muscle cells (HASMCs) phenotype transition and vascular intimal hyperplasia are unclear. Methods/results tiRNA-Gly-GCC is upregulated in synthetic HASMCs, atherosclerotic arteries, plasma, and the balloon injured carotid artery of rats. Functionally, the inhibition of tiRNA-Gly-GCC represses HASMCs proliferation, migration, and reversed dedifferentiation, whereas the overexpression of tiRNA- Gly-GCC have contrary effects. Mechanistically, tiRNA-Gly-GCC performs these functions on HASMCs via downregulating chromobox protein homolog 3 (CBX3). Finally, the inhibition of tiRNA-Gly-GCC could ameliorate neointimal formation after vascular injury in vivo. Conclusions tiRNA-Gly-GCC is a mediator of HASMCs phenotypic switching by targeting CBX3 and inhibition of tiRNA-Gly-GCC suppresses neointimal formation.
Collapse
|
15
|
Xia H, Gao M, Chen J, Huang G, Xiang X, Wang Y, Huang Z, Li Y, Su S, Zhao Z, Zeng Q, Ruan Y. M1 macrophage-derived extracellular vesicle containing tsRNA-5006c promotes osteogenic differentiation of aortic valve interstitial cells through regulating mitophagy. PeerJ 2022; 10:e14307. [PMID: 36518291 PMCID: PMC9744173 DOI: 10.7717/peerj.14307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background Osteogenic differentiation of aortic valve interstitial cells (AVICs) plays a key role in the calcific aortic valve disease progression. Extracellular vesicles (EVs)-derived from M1-polarized macrophages (M1-EVs) orchestrated intercellular communication by delivering non-coding RNAs such as tRNA-derived small RNAs (tsRNAs) is crucial for cardiovascular disease. However, the role and mechanism of M1-EVs tsRNAs in osteogenic differentiation of AVICs remains largely unclear. Methods M1-EVs and PBS treated-RAW 264.7 cell-derived EVs (NC-EVs) were incubated with AVICs and subjected to small RNA sequencing. Candidate tsRNA in M1-EVs was silenced to explore their effects on AVIC osteogenic differentiation and mitophagy. Results DiI-labeled M1-EVs were internalized by AVICs, resulting in significantly increased calcium nodule formation and expression of osteogenesis-related genes in AVICs, including RUNX2, BMP2, osteopontin, and SPP1, compared with NC-EVs. Small RNA sequencing revealed that 17 tsRNAs were significantly up-regulated such as tsRNA-5006c, while 28 tsRNAs were significantly down-regulated in M1-EVs compared with NC-EVs. Intriguingly, tsRNA-5006c-deleted M1-EVs treatment significantly reduced calcium nodule formation and expression of osteogenesis-related genes in AVICs relative to control group. Moreover, target genes of tsRNA-5006c were mainly involved in autophagy-related signaling pathways, such as MAPK, Ras, Wnt, and Hippo signaling pathway. Hallmarks of mitophagy activation in AVICs including mitophagosome formation, TMRM fluorescence, expression of LC3-II, BINP3, and PGC1α, were significantly elevated in the M1-EVs group compared with NC-EVs group, whereas M1-EVs tsRNA-5006c inhibitor led to a significant reduction in these indicators. Conclusion M1-EVs carried tsRNA-5006c regulates AVIC osteogenic differentiation from the perspective of mitophagy, and we provide a new target for the prevention and treatment of aortic valve calcification.
Collapse
Affiliation(s)
- Hao Xia
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingjian Gao
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Chen
- Department of Cardiology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Guanshen Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiuting Xiang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuyan Wang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaohui Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongchun Li
- Department of traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuang Su
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zewei Zhao
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qingchun Zeng
- Department of Cardiology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Yunjun Ruan
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Yuan L, Tang Y, Yin L, Lin X, Luo Z, Wang S, Li J, Liang P, Jiang B. Microarray Analysis Reveals Changes in tRNA-Derived Small RNAs (tsRNAs) Expression in Mice with Septic Cardiomyopathy. Genes (Basel) 2022; 13:genes13122258. [PMID: 36553526 PMCID: PMC9778384 DOI: 10.3390/genes13122258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Background: tRNA-derived small RNAs (tsRNAs) as a novel non-coding RNA have been studied in many cardiovascular diseases, but the relationship between tsRNAs and septic cardiomyopathy has not been investigated. We sought to analyze changes of the expression profile of tsRNAs in septic cardiomyopathy and reveal an important role for tsRNAs. Methods: We constructed a sepsis model by cecal ligation and puncture (CLP) in mice, and microarray analysis was used to find differentially expressed tsRNAs. Quantitative real-time PCR was used to verify the expression of tsRNAs and the interference effect of angiogenin (ANG), a key nuclease producing tsRNAs. Bioinformatics analysis was used to predict target genes and functions. CCK-8 and LDH release assays were used to detect cell viability and cell death. Results: A total of 158 tsRNAs were screened, of which 101 were up-regulated and 57 were down-regulated. A total of 8 tsRNAs were verified by qPCR, which was consistent with microarray results. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses suggest that these tsRNAs may be associated with the Wnt signaling pathway and participate in cellular process. The expression of tsRNAs decreased after the interference of the key nuclease ANG, while CCK-8 suggested a corresponding decrease in cell viability and an increase in the release of LDH (cell death), indicating that tsRNAs can protect cardiomyocytes during the development of septic cardiomyopathy, reduced cardiomyocyte death. Conclusions: A total of 158 tsRNAs changed significantly in septic cardiomyopathy, and these tsRNAs may play a protective role in the development of septic cardiomyopathy.
Collapse
Affiliation(s)
- Ludong Yuan
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Yuting Tang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Leijing Yin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Zhengyang Luo
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Shuxin Wang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Jing Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, National Medicine Functional Experimental Teaching Center, Xiangya School of Medicine, Central South University, Changsha 410008, China
- Correspondence: ; Tel./Fax: +86-0731-82355019
| |
Collapse
|
17
|
Li X, Qi H, Cui W, Wang Z, Fu X, Li T, Ma H, Yang Y, Yu T. Recent advances in targeted delivery of non-coding RNA-based therapeutics for atherosclerosis. Mol Ther 2022; 30:3118-3132. [PMID: 35918894 PMCID: PMC9552813 DOI: 10.1016/j.ymthe.2022.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022] Open
Abstract
Cardiovascular disease (CVD) has overtaken infectious illnesses as the leading cause of mortality and disability worldwide. The pathology that underpins CVD is atherosclerosis, characterized by chronic inflammation caused by the accumulation of plaques in the arteries. As our knowledge about the microenvironment of blood vessel walls deepens, there is an opportunity to fine-tune treatments to target the mechanisms driving atherosclerosis more directly. The application of non-coding RNAs (ncRNAs) as biomarkers or intervention targets is increasing. Although these ncRNAs play an important role in driving atherosclerosis and vascular dysfunction, the cellular and extracellular environments pose a challenge for targeted transmission and therapeutic regulation of ncRNAs. Specificity, delivery, and tolerance have hampered the clinical translation of ncRNA-based therapeutics. Nanomedicine is an emerging field that uses nanotechnology for targeted drug delivery and advanced imaging. Recently, nanoscale carriers have shown promising results and have introduced new possibilities for nucleic acid targeted drug delivery, particularly for atherosclerosis. In this review, we discuss the latest developments in nanoparticles to aid ncRNA-based drug development, particularly miRNA, and we analyze the current challenges in ncRNA targeted delivery. In particular, we highlight the emergence of various kinds of nanotherapeutic approaches based on ncRNAs, which can improve treatment options for atherosclerosis.
Collapse
Affiliation(s)
- Xiaoxin Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Hongzhao Qi
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Weigang Cui
- Department of Cardiology, People's Hospital of Rizhao, No. 126 Taian Road, Rizhao 276827, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China
| | - Tianxiang Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Huibo Ma
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao 266021, People's Republic of China.
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China.
| |
Collapse
|
18
|
Wang S, Luo Z, Yuan L, Lin X, Tang Y, Yin L, Liang P, Jiang B. tRNA-Derived Small RNAs: Novel Insights into the Pathogenesis and Treatment of Cardiovascular Diseases. J Cardiovasc Transl Res 2022; 16:300-309. [PMID: 36190649 DOI: 10.1007/s12265-022-10322-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022]
Abstract
tRNA-derived small RNAs (tsRNAs) are non-coding RNAs with diverse functions in various diseases. Although research on tsRNAs has focused on their roles in cancer, such as gene expression regulation to influence cancer progression and realize clinical effects, a growing number of studies are investigating the association of tsRNAs with cardiovascular diseases (CVDs), including atherosclerosis, myocardial infarction, and pulmonary hypertension. tsRNA expression varies across these diseases and could be regulated by epigenetics, tsRNA structure, and tRNA-binding proteins. tsRNAs play key roles in CVD progression, including the regulation of protein synthesis, and the different mechanisms underlying these functional roles of tsRNAs have been elucidated. Furthermore, tsRNAs are potential diagnostic biomarkers and therapeutic targets in CVDs. In this review, we summarize the biogenesis, classification, and regulation of tsRNAs and their potential application for CVD diagnosis and therapy. We also highlight the current challenges and provide perspectives for further investigation.
Collapse
Affiliation(s)
- Shuxin Wang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Zhengyang Luo
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Ludong Yuan
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Yuting Tang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Leijing Yin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
19
|
Su J, Cheng J, Hu Y, Yu Q, Li Z, Li J, Zheng N, Zhang Z, Yang J, Li X, Zhang Z, Wang Y, Zhu K, Du W, Chen X. Transfer RNA-derived small RNAs and their potential roles in the therapeutic heterogeneity of sacubitril/valsartan in heart failure patients after acute myocardial infarction. Front Cardiovasc Med 2022; 9:961700. [PMID: 36247465 PMCID: PMC9558900 DOI: 10.3389/fcvm.2022.961700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/14/2022] [Indexed: 12/05/2022] Open
Abstract
BackgroundIt has been reported that sacubitril/valsartan can improve cardiac function in acute myocardial infarction (AMI) patients complicated by heart failure (HF). However, a number of patients cannot be treated successfully; this phenomenon is called sacubitril/valsartan resistance (SVR), and the mechanisms remain unclear.MethodsIn our present research, the expression profiles of transfer RNA (tRNA)-derived small RNAs (tsRNAs) in SVR along with no sacubitril/valsartan resistance (NSVR) patients were determined by RNA sequencing. Through bioinformatics, quantitative real-time PCR (qRT-PCR), and cell-based experiments, we identified SVR-related tsRNAs and confirmed their diagnostic value, predicted their targeted genes, and explored the enriched signal pathways as well as regulatory roles of tsRNAs in SVR.ResultsOur research indicated that 36 tsRNAs were upregulated and that 21 tsRNAs were downregulated in SVR. Among these tsRNAs, the expression of tRF-59:76-Tyr-GTA-2-M3 and tRF-60:76-Val-AAC-1-M5 was upregulated, while the expression of tRF-1:29-Gly-GCC-1 was downregulated in the group of SVR. Receiver operating characteristic (ROC) curve analysis demonstrated that these three tsRNAs were potential biomarkers of the therapeutic heterogeneity of sacubitril/valsartan. Moreover, tRF-60:76-Val-AAC-1-M5 might target Tnfrsf10b and Bcl2l1 to influence the observed therapeutic heterogeneity through the lipid and atherosclerosis signaling pathways.ConclusionHence, tsRNA might play a vital role in SVR. These discoveries provide new insights for the mechanistic investigation of responsiveness to sacubitril/valsartan.
Collapse
Affiliation(s)
- Jia Su
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Ji Cheng
- Department of Emergency, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Yingchu Hu
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Qinglin Yu
- Department of Traditional Chinese Internal Medicine, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
| | - Zhenwei Li
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Jiyi Li
- Department of Cardiology, Yuyao People’s Hospital of Zhejiang Province, Yuyao, Zhejiang, China
| | - Nan Zheng
- Department of Cardiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Zhaoxia Zhang
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Jin Yang
- Department of Geriatrics, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
| | - Xiaojing Li
- Department of Geriatrics, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
| | - Zeqin Zhang
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Yong Wang
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Keqi Zhu
- Department of Traditional Chinese Internal Medicine, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- *Correspondence: Keqi Zhu,
| | - Weiping Du
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
- Weiping Du,
| | - Xiaomin Chen
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
- Xiaomin Chen,
| |
Collapse
|
20
|
Zhao JZ, Li QY, Lin JJ, Yang LY, Du MY, Wang Y, Liu KX, Jiang ZA, Li HH, Wang SF, Sun B, Mu SQ, Li B, Liu K, Gong M, Sun SG. Integrated analysis of tRNA-derived small RNAs in proliferative human aortic smooth muscle cells. Cell Mol Biol Lett 2022; 27:47. [PMID: 35705912 PMCID: PMC9199163 DOI: 10.1186/s11658-022-00346-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Background Abnormal proliferation of vascular smooth muscle cells (VSMCs) contributes to vascular remodeling diseases. Recently, it has been discovered that tRNA-derived small RNAs (tsRNAs), a new type of noncoding RNAs, are related to the proliferation and migration of VSMCs. tsRNAs regulate target gene expression through miRNA-like functions. This study aims to explore the potential of tsRNAs in human aortic smooth muscle cell (HASMC) proliferation. Methods High-throughput sequencing was performed to analyze the tsRNA expression profile of proliferative and quiescent HASMCs. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the sequence results and subcellular distribution of AS-tDR-001370, AS-tDR-000067, AS-tDR-009512, and AS-tDR-000076. Based on the microRNA-like functions of tsRNAs, we predicted target promoters and mRNAs and constructed tsRNA–promoter and tsRNA–mRNA interaction networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to reveal the function of target genes. EdU incorporation assay, Western blot, and dual-luciferase reporter gene assay were utilized to detect the effects of tsRNAs on HASMC proliferation. Results Compared with quiescent HASMCs, there were 1838 differentially expressed tsRNAs in proliferative HASMCs, including 887 with increased expression (fold change > 2, p < 0.05) and 951 with decreased expression (fold change < ½, p < 0.05). AS-tDR-001370, AS-tDR-000067, AS-tDR-009512, and AS-tDR-000076 were increased in proliferative HASMCs and were mainly located in the nucleus. Bioinformatics analysis suggested that the four tsRNAs involved a variety of GO terms and pathways related to VSMC proliferation. AS-tDR-000067 promoted HASMC proliferation by suppressing p53 transcription in a promoter-targeted manner. AS-tDR-000076 accelerated HASMC proliferation by attenuating mitofusin 2 (MFN2) levels in a 3′-untranslated region (UTR)-targeted manner. Conclusions During HASMC proliferation, the expression levels of many tsRNAs are altered. AS-tDR-000067 and AS-tDR-000076 act as new factors promoting VSMC proliferation. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00346-4.
Collapse
Affiliation(s)
- Jian-Zhi Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China.,Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi-Yao Li
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jia-Jie Lin
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Li-Yun Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Mei-Yang Du
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Ke-Xin Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Ze-An Jiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Huan-Huan Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Si-Fan Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Bo Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Shi-Qing Mu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Bin Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Kun Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Miao Gong
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Shao-Guang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
21
|
Yang P, Yang Y, He X, Sun P, Zhang Y, Song X, Tian Y, Zong T, Ma J, Chen X, Lv Q, Yu T, Jiang Z. miR-153-3p Targets βII Spectrin to Regulate Formaldehyde-Induced Cardiomyocyte Apoptosis. Front Cardiovasc Med 2022; 8:764831. [PMID: 34977182 PMCID: PMC8714842 DOI: 10.3389/fcvm.2021.764831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Formaldehyde (FA) is ubiquitous in the environment and can be transferred to the fetus through placental circulation, causing miscarriage and congenital heart disease (CHD). Studies have shown that βII spectrin is necessary for cardiomyocyte survival and differentiation, and its loss leads to heart development defects and cardiomyocyte apoptosis. Additionally, previous studies have demonstrated that miRNA is essential in heart development and remodeling. However, whether miRNA regulates FA-induced CHD and cardiomyocyte apoptosis remains unclear. Methods: Using commercially available rat embryonic cardiomyocytes and a rat model of fetal cardiomyocyte apoptosis. Real-time quantitative PCR (RT-qPCR) and Western blot were performed to examine the level of miR-153-3p, βII spectrin, caspase 7, cleaved caspase7, Bax, Bcl-2 expression in embryonic cardiomyocytes and a rat model of fetal cardiomyocyte apoptosis. Apoptotic cell populations were evaluated by flow cytometry and Tunel. Luciferase activity assay and RNA pull-down assay were used to detect the interaction between miR-153-3p and βII spectrin. Masson's trichrome staining detects the degree of tissue fibrosis. Fluorescence in situ hybridization (FISH) and Immunohistochemistry were used to detect the expression of miR-153-3p and βII spectrin in tissues. Results: Using commercially available rat embryonic cardiomyocytes and a rat model of fetal cardiomyocyte apoptosis, our studies indicate that miR-153-3p plays a regulatory role by directly targeting βII spectrin to promote cardiomyocyte apoptosis. miR-153-3p mainly regulates cardiomyocyte apoptosis by regulating the expression of caspase7, further elucidating the importance of apoptosis in heart development. Finally, the results with our animal model revealed that targeting the miR-153-3p/βII spectrin pathway effectively regulated FA-induced damage during heart development. Recovery experiments with miR-153-3p antagomir resulted in the reversal of FA-induced cardiomyocyte apoptosis and fetal cardiac fibrosis. Conclusion: This study investigated the molecular mechanism underpinning the role of βII spectrin in FA-induced CHD and the associated upstream miRNA pathway. The study findings suggest that miR-153-3p may provide a potential target for the clinical diagnosis and treatment of CHD.
Collapse
Affiliation(s)
- Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao, China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Pin Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoxia Song
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Tian
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianmin Ma
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofei Chen
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qifeng Lv
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
22
|
Yang Y, Yue W, Wang N, Wang Z, Li B, Zeng J, Yoshida S, Ding C, Zhou Y. Altered Expressions of Transfer RNA-Derived Small RNAs and microRNAs in the Vitreous Humor of Proliferative Diabetic Retinopathy. Front Endocrinol (Lausanne) 2022; 13:913370. [PMID: 35903272 PMCID: PMC9315217 DOI: 10.3389/fendo.2022.913370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE We sought to reveal the expression profiles of transfer RNA-derived small RNAs (tsRNAs) and microRNAs (miRNAs) in the vitreous humor of patients with proliferative diabetic retinopathy (PDR). METHODS Vitreous humor samples were obtained from PDR patients and a control group for this study. Sequencing of small RNAs was conducted to assess the expression profiles of tsRNAs and miRNAs in both groups, which was followed by validation using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). Bioinformatics analyses were conducted to predict the target genes and their potential biological functions and signaling pathways. RESULTS A total of 37 tsRNAs and 70 miRNAs with significant differences were screened out from the vitreous humor samples of PDR patients compared to controls. Following validation by RT-qPCR, the target genes of the validated tsRNAs and miRNAs were predicted, and Gene Ontology analysis indicated that the target genes of the tsRNAs were most enriched in the cellular macromolecule metabolic process, cytoplasm, and ion-binding, while those of the miRNAs were most abundant in the regulation of major metabolic process, cytoplasm, and protein-binding. In addition, Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the target genes of said tsRNAs and miRNAs were most enriched in the adenosine monophosphate-activated protein kinase signaling pathway and Th17 cell differentiation, respectively. CONCLUSIONS The present study identified altered tsRNAs and miRNAs in vitreous humor samples of PDR patients, which may play important roles in the pathogenesis of PDR and could be considered potential therapeutic targets in the treatment of PDR.
Collapse
Affiliation(s)
- Yan Yang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Wenyun Yue
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Nan Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jun Zeng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Japan
| | - Chun Ding
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
- *Correspondence: Yedi Zhou, ; Chun Ding,
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
- *Correspondence: Yedi Zhou, ; Chun Ding,
| |
Collapse
|
23
|
5'-tiRNA-Cys-GCA regulates VSMC proliferation and phenotypic transition by targeting STAT4 in aortic dissection. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:295-306. [PMID: 34513311 PMCID: PMC8413832 DOI: 10.1016/j.omtn.2021.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022]
Abstract
Accumulating evidence shows that tRNA-derived fragments are a novel class of functional small non-coding RNA; however, their roles in aortic dissection (AD) are still unknown. In this study, we found that 5'-tiRNA-Cys-GCA was significantly downregulated in human and mouse models of aortic dissection. The abnormal proliferation, migration, and phenotypic transition of vascular smooth muscle cells (VSMCs) played a crucial role in the initiation and progression of aortic dissection, with 5'-tiRNA-Cys-GCA as a potential phenotypic switching regulator, because its overexpression inhibited the proliferation and migration of VSMCs and increased the expression of contractile markers. In addition, we verified that signal transducer and activator of transcription 4 (STAT4) was a direct downstream target of 5'-tiRNA-Cys-GCA. We found that the STAT4 upregulation in oxidized low-density lipoprotein (ox-LDL)-treated VSMCs, which promoted cell proliferation, migration, and phenotypic transformation, was reversed by 5'-tiRNA-Cys-GCA. Furthermore, 5'-tiRNA-Cys-GCA treatment reduced the incidence and prevented the malignant process of angiotensin II- and β-aminopropionitrile-induced AD in mice. In conclusion, our findings reveal that 5'-tiRNA-Cys-GCA is a potential regulator of the AD pathological process via the STAT4 signaling pathway, providing a novel clinical target for the development of future treatment strategies for aortic dissection.
Collapse
|
24
|
Li X, Yang Y, Wang Z, Jiang S, Meng Y, Song X, Zhao L, Zou L, Li M, Yu T. Targeting non-coding RNAs in unstable atherosclerotic plaques: Mechanism, regulation, possibilities, and limitations. Int J Biol Sci 2021; 17:3413-3427. [PMID: 34512156 PMCID: PMC8416736 DOI: 10.7150/ijbs.62506] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) caused by arteriosclerosis are the leading cause of death and disability worldwide. In the late stages of atherosclerosis, the atherosclerotic plaque gradually expands in the blood vessels, resulting in vascular stenosis. When the unstable plaque ruptures and falls off, it blocks the vessel causing vascular thrombosis, leading to strokes, myocardial infarctions, and a series of other serious diseases that endanger people's lives. Therefore, regulating plaque stability is the main means used to address the high mortality associated with CVDs. The progression of the atherosclerotic plaque is a complex integration of vascular cell apoptosis, lipid metabolism disorders, inflammatory cell infiltration, vascular smooth muscle cell migration, and neovascular infiltration. More recently, emerging evidence has demonstrated that non-coding RNAs (ncRNAs) play a significant role in regulating the pathophysiological process of atherosclerotic plaque formation by affecting the biological functions of the vasculature and its associated cells. The purpose of this paper is to comprehensively review the regulatory mechanisms involved in the susceptibility of atherosclerotic plaque rupture, discuss the limitations of current approaches to treat plaque instability, and highlight the potential clinical value of ncRNAs as novel diagnostic biomarkers and potential therapeutic strategies to improve plaque stability and reduce the risk of major cardiovascular events.
Collapse
Affiliation(s)
- Xiaoxin Li
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Yanyan Yang
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shaoyan Jiang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao 266000, China
| | - Yuanyuan Meng
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiaoxia Song
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Liang Zhao
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lu Zou
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Min Li
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Tao Yu
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China.,Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
25
|
Li D, Yang Y, Wang S, He X, Liu M, Bai B, Tian C, Sun R, Yu T, Chu X. Role of acetylation in doxorubicin-induced cardiotoxicity. Redox Biol 2021; 46:102089. [PMID: 34364220 PMCID: PMC8350499 DOI: 10.1016/j.redox.2021.102089] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
As a potent chemotherapeutic agent, doxorubicin (DOX) is widely used for the treatment of a variety of cancers However, its clinical utility is limited by dose-dependent cardiotoxicity, and pathogenesis has traditionally been attributed to the formation of reactive oxygen species (ROS). Accordingly, the prevention of DOX-induced cardiotoxicity is an indispensable goal to optimize therapeutic regimens and reduce morbidity. Acetylation is an emerging and important epigenetic modification regulated by histone deacetylases (HDACs) and histone acetyltransferases (HATs). Despite extensive studies of the molecular basis and biological functions of acetylation, the application of acetylation as a therapeutic target for cardiotoxicity is in the initial stage, and further studies are required to clarify the complex acetylation network and improve the clinical management of cardiotoxicity. In this review, we summarize the pivotal functions of HDACs and HATs in DOX-induced oxidative stress, the underlying mechanisms, the contributions of noncoding RNAs (ncRNAs) and exercise-mediated deacetylases to cardiotoxicity. Furthermore, we describe research progress related to several important SIRT activators and HDAC inhibitors with potential clinical value for chemotherapy and cardiotoxicity. Collectively, a comprehensive understanding of specific roles and recent developments of acetylation in doxorubicin-induced cardiotoxicity will provide a basis for improved treatment outcomes in cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao, 266071, China
| | - Shizhong Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Ruicong Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Basic Medicine School, Qingdao University, 38 Deng Zhou Road, Qingdao, 266021, China.
| | - Xianming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266071, China.
| |
Collapse
|
26
|
Li X, Yin D, Yang Y, Bi C, Wang Z, Ma G, Fu X, Ji S, Jiang F, Yu T. Eosinophil: A Nonnegligible Predictor in COVID-19 Re-Positive Patients. Front Immunol 2021; 12:690653. [PMID: 34394084 PMCID: PMC8358389 DOI: 10.3389/fimmu.2021.690653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Although vaccine resources are being distributed worldwide, insufficient vaccine production remains a major obstacle to herd immunity. In such an environment, the cases of re-positive occurred frequently, and there is a big controversy regarding the cause of re-positive episodes and the infectivity of re-positive cases. In this case-control study, we tracked 39 patients diagnosed with COVID-19 from the Jiaodong Peninsula area of China, of which 7 patients tested re-positive. We compared the sex distribution, age, comorbidities, and clinical laboratory results between normal patients and re-positive patients, and analysed the correlation between the significantly different indicators and the re-positive. Re-positive patients displayed a lower level of serum creatinine (63.38 ± 4.94 U/L vs. 86.82 ± 16.98 U/L; P =0.014) and lower albumin (34.70 ± 5.46 g/L vs. 41.24 ± 5.44 g/L, P =0.039) at the time of initial diagnosis. In addition, two positive phases and the middle negative phase in re-positive patients with significantly different eosinophil counts (0.005 ± 0.005 × 109/L; 0.103 ± 0.033 × 109/L; 0.007 ± 0.115 × 109/L; Normal range: 0.02-0.52 × 109/L). The level of eosinophils in peripheral blood can be used as a marker to predict re-positive in patients who once had COVID-19.
Collapse
Affiliation(s)
- Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Deqing Yin
- Department of Microbiology, Linyi Center for Disease Control and Prevention, Linyi, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chunhua Bi
- Department of Infectious Disease, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guangren Ma
- Department of Medical Education, Qingdao Chest Hospital, Qingdao, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shengxiang Ji
- Department of Microbiology, Linyi Center for Disease Control and Prevention, Linyi, China
| | - Fachun Jiang
- Department of Infectious Disease, Qingdao Centre for Disease Control and Prevention, Qingdao Institute of Prevention Medicine, Qingdao, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
27
|
He X, Yang Y, Wang Q, Wang J, Li S, Li C, Zong T, Li X, Zhang Y, Zou Y, Yu T. Expression profiles and potential roles of transfer RNA-derived small RNAs in atherosclerosis. J Cell Mol Med 2021; 25:7052-7065. [PMID: 34137159 PMCID: PMC8278088 DOI: 10.1111/jcmm.16719] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/16/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Knowledge regarding the relationship between the molecular mechanisms underlying atherosclerosis (AS) and transfer RNA-derived small RNAs (tsRNAs) is limited. This study illustrated the expression profile of tsRNAs, thus exploring its roles in AS pathogenesis. Small RNA sequencing was performed with four atherosclerotic arterial and four healthy subject samples. Using bioinformatics, the protein-protein interaction network and cellular experiments were constructed to predict the enriched signalling pathways and regulatory roles of tsRNAs in AS. Of the total 315 tsRNAs identified to be dysregulated in the AS group, 131 and 184 were up-regulated and down-regulated, respectively. Interestingly, the pathway of the differentiated expression of tsRNAs in cell adhesion molecules (CAMs) was implicated to be closely associated with AS. Particularly, tRF-Gly-GCC might participate in AS pathogenesis via regulating cell adhesion, proliferation, migration and phenotypic transformation in HUVECs and VSMCs. In conclusion, tsRNAs might help understand the molecular mechanisms of AS better. tRF-Gly-GCC may be a promising target for suppressing abnormal vessels functions, suggesting a novel strategy for preventing the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao, China
| | - Qi Wang
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jueru Wang
- The department of thyroid surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shifang Li
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chunrong Li
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|