1
|
Zheng X, Xie T, Sun S, Sun L. Application of periodontal tissue regeneration combined with orthodontics in oral prosthodontics and its influence and significance on the expressions of IL-1β, TNF-α and IL-5 in periodontal tissue. Biotechnol Genet Eng Rev 2024; 40:2295-2307. [PMID: 37036953 DOI: 10.1080/02648725.2023.2199242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023]
Abstract
The aim is to investigate the application of periodontal tissue regeneration combined with orthodontics in oral restoration, and explore its effect and significance on the expressions of Interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interleukin-5 (IL-5) in periodontal tissue. The patients in observation group were treated with orthodontics combined with periodontal tissue regeneration, and the control group was treated with periodontal tissue regeneration. The total effective rate, adverse reactions, recurrence rate and treatment satisfaction were compared. The masticatory function, language function, aesthetic level, VAS score, quality of life, gingival index (GI), plaque index (PLI), periodontal pocket probing depth (PD), sulcus bleeding index (SBI), IL-1β, TNF-α and IL-5 levels were compared. The recurrence rate of observation group was lower than control group, while the treatment satisfaction was higher after treatment. After treatment, the scores of masticatory, language, aesthetics, physiological, social, emotional, cognitive, and emotional functions and overall health score were higher than before treatment. After treatment, the scores of masticatory and language functions, aesthetics and quality of life of observation group were significantly higher than control group. After treatment, the VAS score, GI, PLI, SBI, PD, IL-1β, TNF-α and IL-5 levels were lower than before. The VAS score, GI, PLI, SBI, PD levels, IL-1β, TNF-α and IL-5 levels of observation group were lower after treatment. Orthodontics combined with periodontal tissue regeneration can help improve the periodontal condition of patients with periodontitis, reduce inflammatory response, improve the level of efficacy and overall safety, and further improve patients' quality of life and treatment satisfaction.
Collapse
Affiliation(s)
- Xiumei Zheng
- Department of Implantology, Stomatological Hospital of Xiamen Medical College and Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, Fujian, China
| | - Tian Xie
- Department of Neurology (I), Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, China
| | - Shaoni Sun
- Department of Emergency Centre, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, China
| | - Lizhi Sun
- Department of Medical Laboratory Diagnosis Center, Jinan Central Hospital, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Mendonça CDD, Mata ADSPD, Azevedo LFR, Marques JF, Silveira JML, Marques DNDS. Probiotics in the non-surgical treatment of periodontitis: a systematic review and network meta-analysis. BMC Oral Health 2024; 24:1224. [PMID: 39407177 PMCID: PMC11481756 DOI: 10.1186/s12903-024-05027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
This systematic review and network meta-analysis aimed to assess the impact of combining professional mechanical plaque removal (PMPR) with probiotics compared to PMPR + placebo on probing pocket depth (PPD) and clinical attachment level (CAL). Randomized controlled trials published until November 2023 were searched across electronic databases, peer-reviewed journals, and grey literature. Two authors independently selected, extracted data, and assessed bias risk. Primary outcomes were mean changes in PPD and CAL. Secondary outcomes included mean changes in bleeding on probing (BOP), plaque index, and colony-forming units. Network meta-analysis with the frequentist weighted least squares approach evaluated the data quantitatively, and CINeMA framework evaluated the quality of evidence. In 33 articles involving 1290 patients, results were stratified by follow-up period (short and long-time studies) and sensitivity analyses conducted based on probiotic therapy duration (1 month reference). Network meta-analysis revealed significant mean differences in PPD for nine probiotic interventions, CAL for eighteen interventions, and BOP for eight interventions, with Lactobacillus demonstrating the most substantial effects. Combining PMPR with probiotics as adjuvants to subgingival instrumentation may be more effective in improving PPD and CAL. Lactobacillus emerged as the most comprehensive and effective among the studied probiotic.
Collapse
Affiliation(s)
- Carlota Duarte de Mendonça
- Biology and Oral Biochemistry Group, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
- Center for Evidence-Based Dental Medicine, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
| | - António Duarte Sola Pereira da Mata
- Biology and Oral Biochemistry Group, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
- Center for Evidence-Based Dental Medicine, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
- LIBPhys-FCT UID/FIS/04559/2013, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
| | - Luís Filipe Ribeiro Azevedo
- Faculty of Medicine, Department of Community Medicine, Information and Decision in Health (MEDCIDS@FMUP), University of Porto, Porto, 4200-450, Portugal
- Center for Health Technology and Services Research & Associate Laboratory - Health Research Network (CINTESIS@RISE), Porto, 4200-450, Portugal
| | - Joana Faria Marques
- Biology and Oral Biochemistry Group, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
- Center for Evidence-Based Dental Medicine, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
- LIBPhys-FCT UID/FIS/04559/2013, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
| | - João Miguel Lourenço Silveira
- Biology and Oral Biochemistry Group, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
- Center for Evidence-Based Dental Medicine, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
- LIBPhys-FCT UID/FIS/04559/2013, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal
| | - Duarte Nuno da Silva Marques
- Biology and Oral Biochemistry Group, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal.
- Center for Evidence-Based Dental Medicine, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal.
- LIBPhys-FCT UID/FIS/04559/2013, Faculty of Dental Medicine, University of Lisbon, Lisbon, 1649-003, Portugal.
| |
Collapse
|
3
|
Chen X, Zhao Y, Xue K, Leng M, Yin W. Microbiological and clinical effects of probiotic-related Zeger therapy on gingival health: a randomized controlled clinical trial. BMC Oral Health 2024; 24:1086. [PMID: 39277730 PMCID: PMC11401283 DOI: 10.1186/s12903-024-04846-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND This single-blind randomized controlled trial was aimed to evaluate the microbiological and clinical effects of Zeger therapy on gingival health. METHODS Twenty-four adults with gingivitis were recruited and monitored micro-biologically and clinically at baseline (Day 0), 4 weeks (Day 29) after therapy. All volunteers received one-stage full-mouth supragingival scaling as basic oral health care for baseline, and then randomly divided into experimental (koumiss, n = 12) or control (none, n = 12) group. The koumiss was used once a day for 4 weeks. RESULTS The microbial diversity of the experimental group increased significantly after drinking koumiss (p < 0.05), mainly owing to increasing of Gram-positive bacteria (p = 0.038) and oral health-related microbes (Rothia, Corynebacterium, Actinomyces, Saccharibacteria_TM7, etc.), decreasing of Gram-negative bacteria (p = 0.009) and periodontal disease-related microbes (Porphyromonas, Fusobacterium, Veillonella, etc.), while the microbial diversity of the control group had no significant change (p > 0.05). However, there was no significant difference between the two groups in the clinical parameters (p > 0.05). CONCLUSIONS Zeger therapy promotes the diversity of supragingival microbiome in adults with gingivitis and increases the abundance of some beneficial flora while decreasing some harmful without clinical parameters marked changing, which holds promise for improving of gingivitis and may be a valuable oral health care approach in the future. TRIAL REGISTRATION The clinical trial was approved by the Medical Ethics Committee of West China Hospital of Stomatology, Sichuan University, batch No. WCHSIRB-D-2021-428. Before patient registration began, the prospective clinical trial was registered in www. CLINICALTRIALS gov public repository in China under the registration number ChiCTR2200060555 on 04/06/2022.
Collapse
Affiliation(s)
- Xin Chen
- State Key laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd., Chengdu, 610041, Sichuan, China
| | - Yi Zhao
- State Key laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd., Chengdu, 610041, Sichuan, China
| | - Kun Xue
- State Key laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd., Chengdu, 610041, Sichuan, China
| | - Mengyao Leng
- State Key laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd., Chengdu, 610041, Sichuan, China
| | - Wei Yin
- State Key laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd., Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Kon R, Ikarashi N, Ohkuma M, Toyonaga M, Tomimoto R, Sakai H, Hosoe T, Kamei J. Prebiotic effects of commercial apple juice in high-fat diet fed rat. BMC Res Notes 2024; 17:249. [PMID: 39237963 PMCID: PMC11378591 DOI: 10.1186/s13104-024-06907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
OBJECTIVES Apples are one of the most frequently consumed fruits and are effective in preventing lifestyle-related and other diseases. However, few studies have been conducted to evaluate health benefits of processed apple products such as juice. In this study, we analyzed the health benefits of consuming apple juice, focusing on changes in the gut microbiota, which plays an important role in maintaining human health. RESULTS Rats were fed apple juice ad libitum, and the relative abundances of various gut microbiota in fecal samples were analyzed. In addition, rats treated apple juice were fed with a high-fat diet, and body weight, plasma triglyceride, glucose, and cholesterol levels were measured. The relative abundance of Clostridium cluster XIV did not change with the treatment of apple juice, but the relative abundance of Clostridium cluster IV was significantly decreased. In contrast, the relative abundances of Lactobacillus and Bifidobacterium, which provide benefits to the human body, were significantly increased by 3-fold and 10-fold, respectively, with apple juice consumption. When apple juice-treated rats were fed a high-fat diet, the increase in body weight, liver fat, and blood lipid parameters were all suppressed compared to high-fat alone group. CONCULUSION This study suggests that the consumption of apple juice changes the gut microbiota, exerts a prebiotic effect, and is effective in improving lifestyle-related diseases.
Collapse
Affiliation(s)
- Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Mayumi Ohkuma
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Misato Toyonaga
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Rei Tomimoto
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tomoo Hosoe
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Junzo Kamei
- Juntendo Advanced Research institute for Health Science, Juntendo University, Bunkyo City, Japan
| |
Collapse
|
5
|
Rajasekaran JJ, Krishnamurthy HK, Bosco J, Jayaraman V, Krishna K, Wang T, Bei K. Oral Microbiome: A Review of Its Impact on Oral and Systemic Health. Microorganisms 2024; 12:1797. [PMID: 39338471 PMCID: PMC11434369 DOI: 10.3390/microorganisms12091797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
PURPOSE OF REVIEW This review investigates the oral microbiome's composition, functions, influencing factors, connections to oral and systemic diseases, and personalized oral care strategies. RECENT FINDINGS The oral microbiome is a complex ecosystem consisting of bacteria, fungi, archaea, and viruses that contribute to oral health. Various factors, such as diet, smoking, alcohol consumption, lifestyle choices, and medical conditions, can affect the balance of the oral microbiome and lead to dysbiosis, which can result in oral health issues like dental caries, gingivitis, periodontitis, oral candidiasis, and halitosis. Importantly, our review explores novel associations between the oral microbiome and systemic diseases including gastrointestinal, cardiovascular, endocrinal, and neurological conditions, autoimmune diseases, and cancer. We comprehensively review the efficacy of interventions like dental probiotics, xylitol, oral rinses, fluoride, essential oils, oil pulling, and peptides in promoting oral health by modulating the oral microbiome. SUMMARY This review emphasizes the critical functions of the oral microbiota in dental and overall health, providing insights into the effects of microbial imbalances on various diseases. It underlines the significant connection between the oral microbiota and general health. Furthermore, it explores the advantages of probiotics and other dental care ingredients in promoting oral health and addressing common oral issues, offering a comprehensive strategy for personalized oral care.
Collapse
Affiliation(s)
- John J. Rajasekaran
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | | | - Jophi Bosco
- Vibrant America LLC, Santa Clara, CA 95054, USA;
| | - Vasanth Jayaraman
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Karthik Krishna
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Tianhao Wang
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Kang Bei
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| |
Collapse
|
6
|
Zhang M, Cui Y, Mei X, Li L, Wang H, Li Y, Wu Y. Effect of Dietary Composite Probiotic Supplementation on the Microbiota of Different Oral Sites in Cats. Vet Sci 2024; 11:351. [PMID: 39195805 PMCID: PMC11360156 DOI: 10.3390/vetsci11080351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Probiotics demonstrated effectiveness in modulating oral microbiota and improving oral health in humans and rodents. However, its effects and applications on the oral microbiota of cats remain underexplored. Twelve healthy cats were randomly assigned to a control group (CON) and a composite probiotic group (CPG) for a 42-day trial. The CPG diet included additional supplementation of Bifidobacterium animalis subsp. lactis HN019, Lactobacillus acidophilus NCFM, and Lactobacillus casei LC-11, each at approximately 1 × 1010 CFU/kg. On days 0 and 42, microbial samples were collected from the gingiva, tooth surfaces, and tongue of all cats for 16S rRNA gene sequencing. Bacteroidetes, Firmicutes, and Proteobacteria were the dominant phyla across all oral sites. The CPG treatment enriched seven genera, such as Moraxella, Actinomyces, and Frederiksenia in the gingiva. Meanwhile, Bergeyella and Streptococcus were enriched on the tooth surfaces, while Bergeyella, Flavobacterium, and Luteimonas were enriched on the tongue. Furthermore, the composite probiotic effectively suppressed eight genera, such as Bacteroides, Desulfovibrio, and Filifactor in the gingiva of CPG cats, as well as Helcococcus, Lentimicrobium, and Campylobacter on tooth surfaces, and Porphyromonas, Treponema, and Fusibacter on the tongue. These findings suggest that the composite probiotic used in this study modulates the feline oral microbiota by supporting beneficial or commensal bacteria and inhibiting oral pathogens, demonstrating potential to improve oral health in cats.
Collapse
Affiliation(s)
- Mingrui Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.); (Y.C.)
| | - Yingyue Cui
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.); (Y.C.)
| | - Xiaoying Mei
- Hangzhou Wangmiao Biotechnology Co., Ltd., Hangzhou 311113, China
| | - Longxian Li
- Hangzhou Wangmiao Biotechnology Co., Ltd., Hangzhou 311113, China
| | - Haotian Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.); (Y.C.)
| | - Yingying Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.); (Y.C.)
| | - Yi Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.); (Y.C.)
| |
Collapse
|
7
|
Arekhi N, Mortazavi N, Bahramnejad E, Khouri V, Tajaldini M, Asgari N, Sohrabi A. Assessment of a combined mouthwash on pain relief in pericoronitis: a randomized clinical study. BMC Oral Health 2024; 24:855. [PMID: 39068391 PMCID: PMC11283692 DOI: 10.1186/s12903-024-04660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Pericoronitis, an inflammation near wisdom teeth, often occurs when they are partially emerged, especially in the lower jaw. Commonly, the gingiva partially envelops the tooth. Treatments vary from gingival surgery to extraction. This study assessed the efficacy of a mouthwash with Chlorhexidine, Benzydamine, Nanosilver, Amoxicillin, and Metronidazole for pain reduction and enhancement of maximum mouth opening in acute pericoronitis cases. MATERIALS AND METHODS In this randomized controlled clinical trial conducted at the Gorgan Dental Faculty, 48 pericoronitis patients were randomized into two groups. The control group used a 0.12% chlorhexidine mouthwash, while the case group used a mouthwash containing Chlorhexidine, Benzydamine, Nanosilver, Amoxicillin, and Metronidazole. The study recorded Visual Analog Scale (VAS) scores for 7 days, and Maximum mouth opening (MMO) was measured at the start and after 7 days. The analysis was performed using SPSS v20. RESULTS In this study, we compared the effects of a combined mouthwash with those of a chlorhexidine mouthwash on pericoronitis in 48 patients, with an average age of 21.56 years. No significant difference in pain reduction was observed between the groups; however, both groups exhibited decreased pain and improved MMO post-treatment. The gender distribution was balanced across both groups. CONCLUSION The results indicate that both chlorhexidine mouthwash and combined mouthwash significantly improved maximum mouth opening. Nonetheless, there were no notable differences in efficacy between the two groups. These findings suggest that these mouthwashes may be beneficial for oral hygiene, warranting further in-depth research. TRIAL REGISTRATION Registered on 12/03/2023, registration number IRCT20230104057046N1.
Collapse
Affiliation(s)
- Neman Arekhi
- Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nazanin Mortazavi
- Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Golestan University of Medical Sciences, PO Box 4916953363, Gorgan, Iran.
| | - Emad Bahramnejad
- Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Khouri
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahboubeh Tajaldini
- Department of Animal and Poultry Physiology, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Negar Asgari
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahmad Sohrabi
- Radinmehr Veterinary Laboratory, Radin Makian Azma Mehr Ltd, Gorgan, Iran
| |
Collapse
|
8
|
Zhao Y, Liu Y, Jia L. Gut microbial dysbiosis and inflammation: Impact on periodontal health. J Periodontal Res 2024. [PMID: 38991951 DOI: 10.1111/jre.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Periodontitis is widely acknowledged as the most prevalent type of oral inflammation, arising from the dynamic interplay between oral pathogens and the host's immune responses. It is also recognized as a contributing factor to various systemic diseases. Dysbiosis of the oral microbiota can significantly alter the composition and diversity of the gut microbiota. Researchers have delved into the links between periodontitis and systemic diseases through the "oral-gut" axis. However, whether the associations between periodontitis and the gut microbiota are simply correlative or driven by causative mechanistic interactions remains uncertain. This review investigates how dysbiosis of the gut microbiota impacts periodontitis, drawing on existing preclinical and clinical data. This study highlights potential mechanisms of this interaction, including alterations in subgingival microbiota, oral mucosal barrier function, neutrophil activity, and abnormal T-cell recycling, and offers new perspectives for managing periodontitis, especially in cases linked to systemic diseases.
Collapse
Affiliation(s)
- Yifan Zhao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lu Jia
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Wei X, Qian S, Yang Y, Mo J. Microbiome-based therapies for periodontitis and peri-implantitis. Oral Dis 2024; 30:2838-2857. [PMID: 37890080 DOI: 10.1111/odi.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/16/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVES Periodontitis and peri-implantitis are oral infectious-inflammatory diseases associated with oral microbial dysbiosis. Microbiome-based therapies, characterized by manipulation of the microbiota, are emerging as promising therapeutic approaches to resolve the microbial dysbiosis and associated dysregulation of immune system. This review aims at summarizing recent progress on microbiome-based therapies in periodontitis and peri-implantitis, promoting a further understanding of the related therapeutic mechanisms. SUBJECTS AND METHODS Pertinent literatures focused on microbiome-based therapies for periodontitis and peri-implantitis are obtained from PubMed and Web of Science. RESULTS In this article, we review the roles and therapeutic mechanisms of four microbiome-based therapies, including probiotics, postbiotics, predatory bacteria and phages, and microbiota transplantation, in the management of periodontitis and peri-implantitis. Challenges facing this field are also discussed, highlighting the areas that require more attention and investigation. CONCLUSIONS Microbiome-based therapies may serve as effective treatment for periodontitis and peri-implantitis. This review presents a new viewpoint to this field.
Collapse
Affiliation(s)
- Xindi Wei
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shujiao Qian
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yijie Yang
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiaji Mo
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
10
|
Ejeil A, Gaultier F, Catherine B, Chaubron F, Lupi L, Dridi S. Periodontal and microbiological data in patients with mucous membrane pemphigoid in a French population in 2021-2022: A pilot cross-sectional study. Health Sci Rep 2024; 7:e2163. [PMID: 39072352 PMCID: PMC11273292 DOI: 10.1002/hsr2.2163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/13/2024] [Accepted: 05/20/2024] [Indexed: 07/30/2024] Open
Abstract
Background and Aims In the case of mucous membrane pemphigoid with gingival expression (gMMP), the complete healing of the gingiva is generally not achieved despite medical treatment. Therefore, patients' oral comfort is impaired. The dysbiotic periodontal microbiota, generated by a lack of oral hygiene associated with persistent gingival pain, could the immunopathological mechanism to persist. The main objective of this study was to characterize the subgingival microbiota of the gMMP patients, and to highlight a potential link between this microbiological data and the clinical data. Methods Subgingival biofilm was collected from 15 gMMP patients, medically treated or not, but not receiving periodontal treatment. The usual clinical periodontal parameters were recorded. The biofilm was analyzed by polymerase chain reaction quantitative. The risk factors of severe erosive gingivitis and severe periodontitis were assessed using Chi-square or Fischer's exact test were used. Results Whatever the medical and periodontal conditions of the patients, the results showed the existence of three main communities of periodontopathic, dysbiotic bacteria. The first including Tannnerella forsythia, Peptostreptococcus micros, Fusobacterium nucleatum, and Campylobacter rectus, was found in 100% of the patients, the second enriched with Treponema denticola in 60% and the third enriched with Porphyromonas gingivalis and Prevotella intermedia in 26%. Furthermore, there was a significant positive link between the duration of gMMP and the severity of erosive gingivitis (p = 0.009), and the loss of deep periodontal tissue (p = 0.04). Conclusion This pilot study suggests a high periodontal risk in gMMP patients. The pathological processes, autoimmune on the one hand and plaque-induced on the other, may amplify each other. The application of periodontal therapy is therefore necessary in parallel with medical treatment. Nevertheless, further controlled studies are required to validate and complement these preliminary results.
Collapse
Affiliation(s)
- Anne‐Laure Ejeil
- Faculty of Dental SurgeryUniversity Paris CitéParisFrance
- Department of oral surgeryBretonneau Hospital AP‐HPParisFrance
| | - Frédérick Gaultier
- Faculty of Dental SurgeryUniversity Paris CitéParisFrance
- Department of oral surgeryHenri Mondor Hospital AP‐HPCréteilFrance
| | - Bisson Catherine
- Department of OdontologyUniversity LorraineNancyFrance
- Faculty of Dental SurgeryUniversity LorraineNancyFrance
| | - Franck Chaubron
- Biotechnology Laboratory SF BiotechInstitut ClinidentAix en ProvenceFrance
| | - Laurence Lupi
- Faculty of Dental SurgeryUniversity Cote d'AzurNiceFrance
- CHU NiceInstitut RiquierFrance
- Laboratory MICORALIS UPR 7354University Cote d'AzurNiceFrance
| | - Sophie‐Myriam Dridi
- Faculty of Dental SurgeryUniversity Cote d'AzurNiceFrance
- CHU NiceInstitut RiquierFrance
- Laboratory MICORALIS UPR 7354University Cote d'AzurNiceFrance
| |
Collapse
|
11
|
Lundtorp-Olsen C, Markvart M, Twetman S, Belstrøm D. Effect of Probiotic Supplements on the Oral Microbiota-A Narrative Review. Pathogens 2024; 13:419. [PMID: 38787271 PMCID: PMC11124442 DOI: 10.3390/pathogens13050419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Data from systematic reviews and meta-analyses show that probiotics positively impact clinical parameters of oral diseases such as gingivitis, dental caries, and periodontitis. However, the working mechanism of probiotics is not fully understood, but is hypothesized to be mediated by direct and indirect interactions with the oral microbiota and the human host. In the present narrative review, we focused on the microbiological effect of probiotic supplements based on data retrieved from randomized clinical trials (RCTs). In addition, we assessed to what extent contemporary molecular methods have been employed in clinical trials in the field of oral probiotics. Multiple RCTs have been performed studying the potential effect of probiotics on gingivitis, dental caries, and periodontitis, as evaluated by microbial endpoints. In general, results are conflicting, with some studies reporting a positive effect, whereas others are not able to record any effect. Major differences in terms of study designs and sample size, as well as delivery route, frequency, and duration of probiotic consumption, hamper comparison across studies. In addition, most RCTs have been performed with a limited sample size using relatively simple methods for microbial identification, such as culturing, qPCR, and DNA-DNA checkerboard, while high-throughput methods such as 16S sequencing have only been employed in a few studies. Currently, state-of-the-art molecular methods such as metagenomics, metatranscriptomics, and metaproteomics have not yet been used in RCTs in the field of probiotics. The present narrative review revealed that the effect of probiotic supplements on the oral microbiota remains largely uncovered. One important reason is that most RCTs are performed without studying the microbiological effect. To facilitate future systematic reviews and meta-analyses, an internationally agreed core outcome set for the reporting of microbial endpoints in clinical trials would be desirable. Such a standardized collection of outcomes would most likely improve the quality of probiotic research in the oral context.
Collapse
Affiliation(s)
| | | | | | - Daniel Belstrøm
- Department of Odontology, Section for Clinical Oral Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (C.L.-O.); (M.M.); (S.T.)
| |
Collapse
|
12
|
Wuttke B, Ekat K, Chabanovska O, Jackszis M, Springer A, Vasudevan P, Kreikemeyer B, Lang H. Preparation and In Vitro Characterization of Lactococcus lactis-Loaded Alginate Particles as a Promising Delivery Tool for Periodontal Probiotic Therapy. J Funct Biomater 2024; 15:129. [PMID: 38786639 PMCID: PMC11121860 DOI: 10.3390/jfb15050129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Probiotic microorganisms are used in a variety of food supplements and medical formulations to promote human health. In periodontal therapy, probiotics are mainly used in the form of gels, tablets or rinses that often tend to leak from the periodontal pocket, resulting in a strongly reduced therapeutic effect. In this pilot in vitro study, we present biodegradable alginate-based particles as an alternative, highly efficient system for a periodontal delivery of probiotic bacteria to the inflammation site. For this purpose, Lactococcus (L.) lactis was encapsulated using a standardized pump-controlled extrusion-dripping method. Time-dependent bacterial release in artificial saliva was investigated over 9 days. The effect of freeze drying was explored to ensure long-term storage of L. lactis-loaded particles. Additionally, the particles were bound to dentin surface using approved bioadhesives and subjected to shear stress in a hydrodynamic flow chamber that mimics the oral cavity in vitro. Thus, round particles within the range of 0.80-1.75 mm in radius could be produced, whereby the diameter of the dripping tip had the most significant impact on the size. Although both small and large particles demonstrated a similar release trend of L. lactis, the release rate was significantly higher in the former. Following lyophilization, particles could restore their original shape within 4 h in artificial saliva; thereby, the bacterial viability was not affected. The attachment strength to dentin intensified by an adhesive could resist forces between 10 and 25 N/m2. Full degradation of the particles was observed after 20 days in artificial saliva. Therefore, alginate particles display a valuable probiotic carrier for periodontal applications that have several crucial advantages over existing preparations: a highly stable form, prolonged continuous release of therapeutic bacteria, precise manufacturing according to required dimensions at the application site, strong attachment to the tooth with low risk of dislocation, high biocompatibility and biodegradability.
Collapse
Affiliation(s)
- Bettina Wuttke
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Katharina Ekat
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Rostock, 18057 Rostock, Germany
| | - Oleksandra Chabanovska
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Mario Jackszis
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, University Medical Center Rostock, 18057 Rostock, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Centre, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Praveen Vasudevan
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Rostock, 18057 Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, 18057 Rostock, Germany
| |
Collapse
|
13
|
Michałowski K, Brodzikowska A. Clinical Effect of Thioglycosides Extracted from White Mustard on Dental Plaque and Gingivitis: Randomized, Single-Blinded Clinical Trial. Int J Mol Sci 2024; 25:5290. [PMID: 38791329 PMCID: PMC11120871 DOI: 10.3390/ijms25105290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The antibacterial and anti-inflammatory effect of thioglycosides has already been established. This study investigates the effects of thioglycosides extracted from white mustard, specifically the "Bamberka" variety, in the context of oral hygiene. The aim of the study is to clarify an evidence-based link between the documented antibacterial and anti-inflammatory effects attributed to thioglycosides and their practical application in oral care. A randomized, single-blinded (patient-blinded) clinical study was performed on 66 patients using mustard-based toothpaste for oral hygiene. The patients were examined at baseline and after 6 and 12 months. The values of the Approximal Plaque Index (API), the Plaque Index (PI), and Bleeding on probing (BOP) were taken into consideration. The results show a significant reduction in plaque accumulation, especially after 6 months of using mustard-based toothpaste in all examined parameters. This suggests that thioglycosides from mustard contribute to a considerable decrease in dental plaque accumulation, confirming their potential in natural oral care solutions, which is indicated in the main conclusions or interpretations.
Collapse
Affiliation(s)
| | - Aniela Brodzikowska
- Department of Conservative Dentistry, Medical University of Warsaw, ul. Binieckiego 6, 02-097 Warszawa, Poland;
| |
Collapse
|
14
|
Zhao D, Li MH, Pan T, Guo J, Li J, Shi C, Wang N, Huang H, Wang C, Yang G. Preventive and Therapeutic Potential of Streptococcus cristatus CA119 in Experimental Periodontitis in Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10254-y. [PMID: 38607584 DOI: 10.1007/s12602-024-10254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Periodontitis is an inflammatory condition of the oral cavity caused by a mixed infection of various bacteria, which not only severely affects the alveolar bone and connective tissues but also displays potential correlations with distal intestinal inflammation. In this study, we aimed to elucidate the therapeutic effects of Streptococcus cristatus CA119 on experimental periodontitis in rats and its impact on intestinal morphology. The results demonstrate that CA119 is capable of colonizing the oral cavity and exerting antagonistic effects on Porphyromonas gingivalis and Fusobacterium nucleatum, thus leading to a significant reduction in the oral pathogen load. Following CA119 intervention, there was a significant alleviation of weight loss in rats induced by periodontitis (P < 0.001). CA119 also regulated the expression of IL-6 (P < 0.05), IL-1β (P < 0.001), IL-18 (P < 0.001), COX-2 (P < 0.001), iNOS (P < 0.001), and MCP-1 (P < 0.01) in the gingival tissue. Additionally, CA119 reduced oxidative stress levels in rats and enhanced their antioxidant capacity. Microcomputed tomography (micro-CT) and histological analysis revealed that CA119 significantly reduced alveolar bone loss and reversed the downregulation of OPG/RANKL (P < 0.001). Furthermore, CA119 exhibited a significant protective effect against intestinal inflammation induced by periodontal disease and improved the colonic morphology in rats. In conclusion, this study demonstrates the role of CA119 as a potential oral probiotic in the prevention and treatment of experimental periodontitis, underscoring the potential of probiotics as a complementary approach to traditional periodontal care.
Collapse
Affiliation(s)
- Dongyu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming-Han Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tianxu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jialin Guo
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Junyi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
15
|
Zhu L, Wang J, Wu Z, Chen S, He Y, Jiang Y, Luo G, Wu Z, Li Y, Xie J, Zou S, Zhou C. AFF4 regulates osteogenic potential of human periodontal ligament stem cells via mTOR-ULK1-autophagy axis. Cell Prolif 2024; 57:e13546. [PMID: 37731335 PMCID: PMC10849782 DOI: 10.1111/cpr.13546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023] Open
Abstract
Scaffold protein AF4/FMR2 family member 4 (AFF4) has been found to play a role in osteogenic commitment of stem cells. However, function of AFF4 in human periodontal ligament stem cells (hPDLSCs) has not been studied yet. This present study aims to investigate the biological effect of AFF4 on osteogenic differentiation of hPDLSCs and potential mechanistic pathway. First, AFF4 expression profile was evaluated in conditions of periodontitis and osteogenic differentiation of hPDLSCs by immunohistochemical staining, western blot and qRT-PCR. Next, si-RNA mediated knockdown and lentiviral transduction mediated overexpression of AFF4 were adopted to explore impact of AFF4 on osteogenic capacity of hPDLSCs. Then, possible mechanistic pathway was identified. At last, pharmacological agonist of autophagy, rapamycin, was utilized to affirm the role of autophagy in AFF4-regulated osteogenesis of hPDLSCs. First, AFF4 expressions were significantly lower in inflamed periodontal tissues and lipopolysaccharides-treated hPDLSCs than controls, and were up-regulated during osteogenic differentiation of hPDLSCs. Next, osteogenic potential of hPDLSCs was impaired by AFF4 knockdown and potentiated by AFF4 overexpression. Moreover, AFF4 was found to positively regulate autophagic activity in hPDLSCs. At last, rapamycin treatment was shown to be able to partly restore AFF4 knockdown-suppressed osteogenic differentiation. Our study demonstrates that AFF4 regulates osteogenic potential of hPDLSCs via targeting autophagic activity. The involvement of AFF4 in periodontal homeostasis was identified for the first time.
Collapse
Affiliation(s)
- Li Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Zuping Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouChina
| | - Sirui Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuying He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yukun Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Guowen Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Pediatric Dentistry, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
16
|
Ghaffarpour M, Karami‐Zarandi M, Rahdar HA, Feyisa SG, Taki E. Periodontal disease in down syndrome: Predisposing factors and potential non-surgical therapeutic approaches. J Clin Lab Anal 2024; 38:e25002. [PMID: 38254289 PMCID: PMC10829694 DOI: 10.1002/jcla.25002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 11/06/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Periodontal diseases (PDs) have been documented to be significantly more prevalent and severe in patients with Down syndrome (DS). Different immunological and microbiological factors contributed to predisposing these patients to progressive and recurrent PDs. AIM The aim of this review was to investigate the altered immunological responses and oral microbiota disorders as well as focus on adjunctive non-surgical methods for the treatment of PDs and its applicability in patients with DS. MATERIAL AND METHODS A literature review was conducted addressing the following topics: (1) the altered immunological responses, (2) orofacial disorders related to DS patients, (3) oral microbiota changing, and (4) adjunctive non-surgical treatment and its efficacy in patients with DS. RESULTS Due to the early onset of PDs in children with DS, the need for prompt and effective treatment in these patients is essential. DISCUSSION AND CONCLUSION So, investigating underlying factors may open a new window to better understand the pathology of PDs in DS people and thus, find better strategies for treatment in such group. Although non-surgical treatments such as photodynamic therapy and probiotic consumption represented acceptable outcomes in different examined patients without DS, data about the application of these convenience and no need for local anesthesia methods in patients with DS is limited.
Collapse
Affiliation(s)
- Mahdie Ghaffarpour
- Department of Oral Medicine, School of DentistryTehran University of Medical SciencesTehranIran
| | - Morteza Karami‐Zarandi
- Department of Microbiology, School of MedicineZanjan University of Medical SciencesZanjanIran
| | - Hossein Ali Rahdar
- Department of Microbiology, School of MedicineIranshahr University of Medical SciencesIranshahrIran
| | - Seifu Gizaw Feyisa
- Department of Medical LaboratorySalale University College of Health SciencesFicheEthiopia
| | - Elahe Taki
- Department of Microbiology, School of MedicineKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
17
|
Poulose M, Gujar D, Panicker S, Rokade S, Guruprasad M, Gopalakrishnan D. Efficacy and Viability of Subgingival Application of Probiotics as an Adjunct to Scaling and Root Planing in Periodontitis. Indian J Dent Res 2024; 35:59-64. [PMID: 38934751 DOI: 10.4103/ijdr.ijdr_533_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/10/2023] [Indexed: 06/28/2024] Open
Abstract
AIM This study aimed to compare the efficacy of subgingivally applied probiotics as an adjunct to scaling and root planing (SRP) vs SRP alone in patients with periodontitis. MATERIALS AND METHODS Patients diagnosed with periodontitis, with probing pocket depth (PPD) of 5-7 mm on at least two teeth on contralateral sites, were selected for the study and randomly allocated to the test group (n = 31) who underwent SRP along with subgingival application of probiotic paste and the control group (n = 31) who underwent only SRP. Clinical parameters were evaluated in both groups at baseline and after 12 weeks. The viability of probiotic bacteria was evaluated in the test group at baseline, day 4 and day 8. RESULTS All clinical parameters showed a statistically significant difference between baseline and 12 weeks on intragroup and intergroup comparison, with a greater improvement in the test group. Microbiological evaluation showed that the mean colony-forming units (CFUs) in the test group were 38.39 ± 7.76, 7.25 ± 2.72 and 1.57 ± 1.29 at baseline, day 4 and day 8, respectively. The mean CFUs significantly reduced with an increase in time from baseline to 8-day time interval. CONCLUSION It was seen that the probiotic bacteria remained viable in the periodontal pocket for up to 8 days after placement, but stable improvements were seen in all clinical parameters even at 12 weeks, indicating its prolonged efficacy. Thus, commercially available probiotics can prove to be an inexpensive method to treat periodontitis when combined with SRP.
Collapse
Affiliation(s)
- Mariam Poulose
- Department of Periodontology, Dr. D Y Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Dnyaneshwari Gujar
- Department of Periodontology, Dr. D Y Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Suneeta Panicker
- Department of Microbiology, Dr. D. Y. Patil Arts Commerce and Science College, Pimpri, Pune, Maharashtra, India
| | - Shreya Rokade
- Department of Periodontology, Dr. D Y Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Meghana Guruprasad
- Department of Periodontology, Dr. D Y Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Dharmarajan Gopalakrishnan
- Department of Periodontology, Dr. D Y Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
18
|
ŞAHİN T, AKCA G, ÖZMERİÇ N. The role of probiotics for preventing dysbiosis in periodontal disease: a randomized controlled trial. Turk J Med Sci 2023; 54:357-365. [PMID: 38812644 PMCID: PMC11031156 DOI: 10.55730/1300-0144.5798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/15/2024] [Accepted: 12/07/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Scaling and root planing remain inadequate in periodontitis treatment caused by dysbiotic microbial dental plaque. The aim of this clinical trial is to evaluate the effects of probiotics and kefir consumption in initial periodontal therapy (IPT) on oral microbiota composition and treatment outcomes in patients with periodontitis. Materials and methods The study was carried out in the Gazi University Department of Periodontology, including a sample size of 36 individuals and utilizing a randomized controlled design. Thirty-six patients with periodontitis were randomly allocated to three groups: one receiving probiotic treatment, another receiving kefir, and a third serving as the control group. Obtaining subgingival microbial samples, we recorded plaque, gingival index, bleeding on probing, periodontal pocket depth, and clinical attachment level (periodontal clinical indices) and then performed IPT. For 14 days, patients took either probiotics, kefir, or no supplements. Data for the first and third months were collected using periodontal clinical indices. DNA sequencing was performed to detect Tannerella forsythia, Porphyromonas gingivalis, and Treponema denticola in subgingival plaque samples collected at baseline and three months. Results Significant differences were observed regarding periodontal clinical indices among groups in the intragroup comparisons. Moreover, levels of Tannerella forsythia were significantly decreased in all groups. Conclusion Kefir can be administered in addition to IPT, providing results similar to those observed with probiotics.
Collapse
Affiliation(s)
- Tuğba ŞAHİN
- Division of Periodontology, Faculty of Dentistry, University, Bolu Abant İzzet Baysal University, Bolu,
Turkiye
| | - Gülçin AKCA
- Division of Microbiology, Faculty of Dentistry, Gazi University, Ankara,
Turkiye
| | - Nurdan ÖZMERİÇ
- Division of Periodontics, Faculty of Dentistry, Gazi University, Ankara,
Turkiye
- Division of Periodontics, School of Dentistry, Cyprus International University, Lefkoşa, North Cyprus,
Turkiye
| |
Collapse
|
19
|
Barnawi BM, Alrashidi NS, Albalawi AM, Alakeel NS, Hamed JT, Barashid AA, Alduraibi MS, Alhussain GS, Alghadeer JY, Alarifi NA, Altalhi AM. Nutritional Modulation of Periodontal Diseases: A Narrative Review of Recent Evidence. Cureus 2023; 15:e50200. [PMID: 38192930 PMCID: PMC10771989 DOI: 10.7759/cureus.50200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
The role of nutrition in managing periodontal diseases is a dynamic and evolving area of study. This review presents an in-depth analysis of various nutritional elements, including essential fatty acids, proteins, vitamins (D, E, and C), coenzyme Q10, melatonin, and probiotics, and their impact on periodontal health. It synthesizes findings from randomized clinical trials and observational studies to highlight the multifaceted influence of these nutrients on periodontal disease management. Key areas of focus include their role in reducing inflammation, altering the composition of the oral microbiota, and enhancing tissue repair and bone health. The review consistently points to the potential benefits of these nutrients, either as standalone agents or in conjunction with standard periodontal treatments, offering valuable insights for both clinicians and researchers. It advocates for a more nutritionally informed approach to periodontal disease management, emphasizing the importance of a well-rounded, preventive, and therapeutic strategy in dental health.
Collapse
Affiliation(s)
| | | | | | | | | | - Afnan A Barashid
- Radiology, Maternity and Children Specialized Hospital, Jeddah, SAU
| | | | | | | | | | | |
Collapse
|
20
|
Tie Y, Huang Y, Chen R, Li L, Chen M, Zhang S. Current insights on the roles of gut microbiota in inflammatory bowel disease-associated extra-intestinal manifestations: pathophysiology and therapeutic targets. Gut Microbes 2023; 15:2265028. [PMID: 37822139 PMCID: PMC10572083 DOI: 10.1080/19490976.2023.2265028] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, recurrent inflammatory disease of the gastrointestinal tract. In addition to digestive symptoms, patients with IBD may also develop extra-intestinal manifestations (EIMs), the etiology of which remains undefined. The gut microbiota has been reported to exert a critical role in the pathogenesis of IBD, with a similar pattern of gut dysbiosis observed between patients with IBD and those with EIMs. Therefore, it is hypothesized that the gut microbiota is also involved in the pathogenesis of EIMs. The potential mechanisms are presented in this review, including: 1) impaired gut barrier: dysbiosis induces pore formation in the intestinal epithelium, and activates pattern recognition receptors to promote local inflammation; 2) microbial translocation: intestinal pathogens, antigens, and toxins translocate via the impaired gut barrier into extra-intestinal sites; 3) molecular mimicry: certain microbial antigens share similar epitopes with self-antigens, inducing inflammatory responses targeting extra-intestinal tissues; 4) microbiota-related metabolites: dysbiosis results in the dysregulation of microbiota-related metabolites, which could modulate the differentiation of lymphocytes and cytokine production; 5) immunocytes and cytokines: immunocytes are over-activated and pro-inflammatory cytokines are excessively released. Additionally, we summarize microbiota-related therapies, including probiotics, prebiotics, postbiotics, antibiotics, and fecal microbiota transplantation, to promote better clinical management of IBD-associated EIMs.
Collapse
Affiliation(s)
- Yizhe Tie
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongle Huang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Rirong Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Ausenda F, Barbera E, Cotti E, Romeo E, Natto ZS, Valente NA. Clinical, microbiological and immunological short, medium and long-term effects of different strains of probiotics as an adjunct to non-surgical periodontal therapy in patients with periodontitis. Systematic review with meta-analysis. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:62-103. [PMID: 36915665 PMCID: PMC10006838 DOI: 10.1016/j.jdsr.2023.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 03/07/2023] Open
Abstract
Introduction/objectives Probiotics have been proposed as adjuncts to non-surgical periodontal therapy (NSPT), however, the effect of their use remains unclear. The aim of this systematic review and meta-analysis was to analyze the evidence regarding the use of probiotics as an adjunct to NSPT in patients with periodontitis at a clinical, microbiological and immunological level. Data/sources A comprehensive search to identify clinical studies investigating the use of probiotics as an adjunct to NSPT in patients treated for periodontitis was performed. The data were grouped according to probiotic strain, frequency, form and duration of the probiotic intake. Study selection A total of 25 articles were included, all articles analysed clinical parameters, 10 included also microbiological findings and only 4 had immunological findings. The difference in probing depth (PD) between the test and the control group was statistically significant in favour of the test group when the probiotics were in the form of lozenges, administered twice a day and when the strain was L. reuteri. In terms of Clinical Attachment Level (CAL) gain the difference was statistically significant in the short and in the medium term but not in the long term. Due to the heterogeneity of the data, it was not possible to compare trough a meta analysis the immunological and the microbiological findings that were therefore analysed only descriptively. Conclusions The use of probiotics as an adjunct to NSPT in patients with periodontitis appears to provide additional clinical benefits that depend on the duration, the frequency, the form and the strain of probiotic used. Clinical significance This review not only shows data on the efficacy of probiotics in non-surgical periodontal therapy, but provides important information on their effects over time and which forms of probiotic administration might be most clinically useful.
Collapse
Affiliation(s)
- Federico Ausenda
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Beldiletto 1, 20142 Milan, Italy
- Department fo Periodontology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Emanuele Barbera
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Beldiletto 1, 20142 Milan, Italy
| | - Elisabetta Cotti
- School of Dental Medicine, Department of Surgical Sciences, Faculty of Medicine and Surgery, University of Cagliari, Cagliari, Italy
| | - Eugenio Romeo
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Beldiletto 1, 20142 Milan, Italy
| | - Zuhair S Natto
- Department of Dental Public Health, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nicola Alberto Valente
- Division of Periodontology, School of Dental Medicine, Department of Surgical Sciences, Faculty of Medicine and Surgery, University of Cagliari, Cagliari, Italy
- Correspondence to: Cittadella Universitaria snc, Blocco I, Facoltà di Medicina e Chirurgia, Università di Cagliari, Monserrato, CA, Italy.
| |
Collapse
|
22
|
Garcia VG, Rocha TED, Gomes NA, Miessi DMJ, Nuernberg MAA, Rodrigues JVS, Cardoso JDM, Ervolino E, Theodoro LH. Adjuvant effects of Saccharomyces cerevisiae in the treatment of experimental periodontitis in rats undergoing chemotherapy. J Appl Oral Sci 2023; 31:e20230135. [PMID: 37991087 DOI: 10.1590/1678-7757-2023-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/17/2023] [Indexed: 11/23/2023] Open
Abstract
Surgical procedures, radiotherapy, and chemotherapy, individually or in association, are current oncological treatments. Among the most used chemotherapy drugs, 5-fluorouracil (5FU) is an antimetabolite with a broad spectrum of action. This study evaluated the effects of probiotics (PRO) as an adjuvant to the treatment of experimental periodontitis (EP) in rats immunosuppressed with 5FU.108 rats were randomly allocated to six different groups: EP; SS - systemic treatment with saline solution (SS); 5FU - systemic treatment with 5FU; 5FU+PRO - systemic treatment with 5FU, followed by the local administration of Saccharomyces cerevisiae ; 5FU+SRP - systemic treatment with 5-FU, followed by scaling and root planing (SRP); and 5FU+SRP+PRO - systemic treatment with 5FU followed by local treatments with SRP and PRO. Immunosuppression was obtained at two points: at the time of ligature installation and after 48 h. Six animals from each group were euthanized at seven, 15, and 30 d and hemimandibles were collected and processed for histopathological, histometric, and immunohistochemical analysis. Data were subjected to statistical analysis (α=5%). At 7 d, the 5FU+PRO group showed less bone resorption and better structured connective tissue compared with the EP, SS, 5FU+SRP, and 5FU+SRP+PRO groups. At 15 d, the 5FU+SRP group showed a greater intensity of the inflammatory response (p<0.05). At 30 d, the 5FU+SRP+PRO group showed better structured bone tissue and a higher percentage of bone tissue (PBT) than the EP, SS, 5FU, and 5FU+PRO groups (p<0.05). The use of Saccharomyces cerevisiae as monotherapy or as an adjuvant to periodontal therapy may have a positive effect on bone repair in immunosuppressed conditions.
Collapse
Affiliation(s)
- Valdir Gouveia Garcia
- Instituto Latino Americano de Pesquisa e Ensino Odontológico (ILAPEO), Curitiba , PR , Brasil
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba , Departamento de Diagnóstico e Cirurgia , Divisão Periodontia, Araçatuba , SP , Brasil
| | - Tiago Esgalha da Rocha
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba , Departamento de Diagnóstico e Cirurgia , Divisão Periodontia, Araçatuba , SP , Brasil
| | - Natália Amanda Gomes
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba , Departamento de Diagnóstico e Cirurgia , Divisão Periodontia, Araçatuba , SP , Brasil
| | - Daniela Maria Janjácomo Miessi
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba , Departamento de Diagnóstico e Cirurgia , Divisão Periodontia, Araçatuba , SP , Brasil
| | - Marta Aparecida Alberton Nuernberg
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba , Departamento de Diagnóstico e Cirurgia , Divisão Periodontia, Araçatuba , SP , Brasil
| | - João Victor Soares Rodrigues
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba , Departamento de Diagnóstico e Cirurgia , Divisão Periodontia, Araçatuba , SP , Brasil
| | | | - Edilson Ervolino
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba , Departamento de Ciências Básicas , Araçatuba , SP , Brasil
| | - Letícia Helena Theodoro
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba , Departamento de Diagnóstico e Cirurgia , Divisão Periodontia, Araçatuba , SP , Brasil
| |
Collapse
|
23
|
Moreira ALG, Silva PHF, Salvador SL, Ishikawa KH, Ferreira GC, Tanus-Santos JE, Mayer MPA, de Souza SLS, Furlaneto FAC, Messora MR. Effects of probiotics in rats with experimental metabolic syndrome and periodontitis: An investigation of the intestine-adipose tissue axis. J Periodontol 2023; 94:1363-1375. [PMID: 37057371 DOI: 10.1002/jper.22-0721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND This study evaluated the systemic (intestine and adipose tissue) and local (periodontal tissues) impact of probiotic therapy in rats with metabolic syndrome (MS) associated or not with periodontitis (PE). METHODS Forty-eight rats received a high-fat diet for induction of MS for 16 weeks. They were subdivided into groups with (+) and without (-) PE, receiving (*) or not (**) receiving probiotics (PROB): MS (-**), MSP (-*), MSPE (+**), and MSPEP (+*). PROB administration (Bifidobacterium animalis subsp. lactis HN019) started on the 8th week of the study and PE was induced on the 14th week by placing ligature on the animals' lower first molars. Euthanasia occurred in the 16th week. Biomolecular, immunoenzymatic assays, and histomorphometric analyses were performed. The data obtained were statistically analyzed (ANOVA, Tukey, p < 0.05). RESULTS The MSPEP group exhibited reduced alveolar bone loss when compared with the MSPE group, as well as lower levels of hepatic steatosis and proteinuria (p < 0.05). In the intestinal environment, the MSPE group exhibited significantly lower villus height and crypt depth, as well as a greater increase in Bacillota when compared with the MSPEP group (p < 0.05). The MSPEP group showed lower adipokine gene expression (LEPR, NAMPT, and FABP4) in adipose tissue than the MSPE group (p < 0.05). CONCLUSION The probiotic B. lactis HN019 reduced the severity of experimental periodontitis and modulated the expression of lipogenic genes and intestinal morphological and microbiological parameters in rats with MS.
Collapse
Affiliation(s)
- André L G Moreira
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Pedro H F Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Sérgio L Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Karin H Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo -USP, Ribeirão Preto, São Paulo, Brazil
| | - José E Tanus-Santos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo -USP, Ribeirão Preto, São Paulo, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sérgio L S de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Flávia A C Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Michel R Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
24
|
Moreira ALG, Silva GA, Silva PHF, Salvador SL, Vicente RM, Ferreira GC, Tanus-Santos JE, Mayer MPA, Ishikawa KH, de Souza SLS, Furlaneto FAC, Messora MR. Bifidobacterium animalis subspecies lactis HN019 can reduce the sequelae of experimental periodontitis in rats modulating intestinal parameters, expression of lipogenic genes, and levels of hepatic steatosis. J Periodontal Res 2023; 58:1006-1019. [PMID: 37482954 DOI: 10.1111/jre.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE To determine whether Bifidobacterium animalis subspecies lactis HN019 (B. lactis HN019) can reduce the sequelae of experimental periodontitis (EP) in rats modulating systemic parameters. BACKGROUND This study evaluated the effects of probiotic therapy (PROB) in the prevention of local and systemic damage resulting from EP. METHODS Forty-eight rats were allocated into four groups: C (control), PROB, EP, and EP-PROB. PROB (1 × 1010 CFU/mL) administration lasted 8 weeks and PE was induced on the 7th week by placing ligature on the animals' lower first molars. All animals were euthanized in the 9th week of the experiment. Biomolecular analyses, RT-PCR, and histomorphometric analyses were performed. The data obtained were analyzed statistically (ANOVA, Tukey, p < .05). RESULTS The EP group had higher dyslipidemia when compared to the C group, as well as higher levels of insulin resistance, proteinuria levels, percentages of systolic blood pressure, percentage of fatty hepatocytes in the liver, and expression of adipokines was up-regulated (LEPR, NAMPT, and FABP4). All these parameters (except insulin resistance, systolic blood pressure, LEPR and FABP4 gene expression) were reduced in the EP-PROB group when compared to the EP group. The EP group had lower villus height and crypt depth, as well as a greater reduction in Bacteroidetes and a greater increase in Firmicutes when compared to the EP-PROB group. Greater alveolar bone loss was observed in the EP group when compared to the EP-PROB group. CONCLUSION Bifidobacterium lactis HN019 can reduce the sequelae of EP in rats modulating intestinal parameters, attenuating expression of lipogenic genes and hepatic steatosis.
Collapse
Affiliation(s)
- André L G Moreira
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Giselle A Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Pedro H F Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Sérgio L Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Raphael M Vicente
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Karin H Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sérgio Luís Scombatti de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Flávia A C Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Michel R Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
25
|
Babina K, Salikhova D, Doroshina V, Makeeva I, Zaytsev A, Uvarichev M, Polyakova M, Novozhilova N. Antigingivitis and Antiplaque Effects of Oral Probiotic Containing the Streptococcus salivarius M18 Strain: A Randomized Clinical Trial. Nutrients 2023; 15:3882. [PMID: 37764667 PMCID: PMC10535351 DOI: 10.3390/nu15183882] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
We aimed to assess the effect of oral probiotic containing the Streptococcus salivarius M18 strain on gingival inflammation, bleeding on probing, and oral biofilm. Sixty-one consenting participants aged between 18 and 25 with gingivitis were recruited in this double-blind, parallel-group study and randomly divided into the probiotic group (n = 31) and the placebo group (n = 30). Fifty-seven participants completed the entire study protocol, 27 in the probiotic group and 30 in the placebo group. The outcomes were assessed after 4 weeks of intervention and 4 weeks of follow-up. There was a significant decrease in the Gingival Index, with the effect size of 0.58 [95%CI 0.05-1.10], and Turesky modification of the Quigley and Hein Plaque Index, with the effect size of 0.55 [95%CI: 0.02-1.07], in the probiotic group after the intervention. However, after a 4-week follow-up, the only significant treatment outcome was improved gingival condition according to the Gingival Index. The Gingival Bleeding Index also decreased significantly in the probiotic group after the intervention period; after the follow-up, this parameter did not differ significantly in both groups from the baseline values. In the placebo group, there were no significant improvements in the assessed parameters throughout this study. No serious side effects were registered. Within the limitations of this study, we conclude that the use of oral probiotic containing the Streptococcus salivarius M18 strain resulted in a significant improvement in gingival condition and oral hygiene level in young adults with gingivitis. Trial registration NCT05727436. Funding: none.
Collapse
Affiliation(s)
- Ksenia Babina
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.); (V.D.); (I.M.); (M.U.); (M.P.); (N.N.)
| | - Dilara Salikhova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.); (V.D.); (I.M.); (M.U.); (M.P.); (N.N.)
| | - Vladlena Doroshina
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.); (V.D.); (I.M.); (M.U.); (M.P.); (N.N.)
| | - Irina Makeeva
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.); (V.D.); (I.M.); (M.U.); (M.P.); (N.N.)
| | - Alexandr Zaytsev
- Institute of Linguistics and Intercultural Communication, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Matvey Uvarichev
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.); (V.D.); (I.M.); (M.U.); (M.P.); (N.N.)
| | - Maria Polyakova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.); (V.D.); (I.M.); (M.U.); (M.P.); (N.N.)
| | - Nina Novozhilova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.); (V.D.); (I.M.); (M.U.); (M.P.); (N.N.)
| |
Collapse
|
26
|
Cickovski T, Mathee K, Aguirre G, Tatke G, Hermida A, Narasimhan G, Stollstorff M. Attention Deficit Hyperactivity Disorder (ADHD) and the gut microbiome: An ecological perspective. PLoS One 2023; 18:e0273890. [PMID: 37594987 PMCID: PMC10437823 DOI: 10.1371/journal.pone.0273890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is an increasingly prevalent neuropsychiatric disorder characterized by hyperactivity, inattention, and impulsivity. Symptoms emerge from underlying deficiencies in neurocircuitry, and recent research has suggested a role played by the gut microbiome. The gut microbiome is an ecosystem of interdependent taxa involved in an exponentially complex web of interactions, plus host gene and reaction pathways, some of which involve neurotransmitters with roles in ADHD neurocircuitry. Studies have analyzed the ADHD gut microbiome using macroscale metrics such as diversity and differential abundance, and have proposed several taxa as elevated or reduced in ADHD compared to Control. Few studies have delved into the complex underlying dynamics ultimately responsible for the emergence of such metrics, leaving a largely incomplete, sometimes contradictory, and ultimately inconclusive picture. We aim to help complete this picture by venturing beyond taxa abundances and into taxa relationships (i.e. cooperation and competition), using a publicly available gut microbiome dataset (targeted 16S, v3-4 region, qPCR) from an observational, case-control study of 30 Control (15 female, 15 male) and 28 ADHD (15 female, 13 male) undergraduate students. We first perform the same macroscale analyses prevalent in ADHD gut microbiome literature (diversity, differential abundance, and composition) to observe the degree of correspondence, or any new trends. We then estimate two-way ecological relationships by producing Control and ADHD Microbial Co-occurrence Networks (MCNs), using SparCC correlations (p ≤ 0.01). We perform community detection to find clusters of taxa estimated to mutually cooperate along with their centroids, and centrality calculations to estimate taxa most vital to overall gut ecology. We finally summarize our results, providing conjectures on how they can guide future experiments, some methods for improving our experiments, and general implications for the field.
Collapse
Affiliation(s)
- Trevor Cickovski
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, United States of America
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL United States of America
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States of America
| | - Gloria Aguirre
- Department of Biological Sciences, College of Arts, Sciences and Education, Florida International University, Miami, FL, United States of America
| | - Gorakh Tatke
- Department of Biological Sciences, College of Arts, Sciences and Education, Florida International University, Miami, FL, United States of America
| | - Alejandro Hermida
- Cognitive Neuroscience Laboratory, Department of Psychology, Florida International University, Miami, FL, United States of America
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, United States of America
| | - Melanie Stollstorff
- Cognitive Neuroscience Laboratory, Department of Psychology, Florida International University, Miami, FL, United States of America
| |
Collapse
|
27
|
Yeung N, Forssten SD, Saarinen MT, Anjum M, Ouwehand AC. The Effect of Delivery Matrix on Bifidobacterium animalis subsp. lactis HN019 Survival through In Vitro Human Digestion. Nutrients 2023; 15:3541. [PMID: 37630731 PMCID: PMC10459543 DOI: 10.3390/nu15163541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Bifidobacterium animalis subsp. lactis HN019 is a probiotic with several documented human health benefits. Interest in probiotics has led to the development of new formats that probiotics, including HN019, can be supplemented into. In this study, we looked at common HN019 formats such as frozen culture and freeze-dried powder as well as supplementing it into the following food matrices: yogurts (dairy, soy, and oat based), xanthan gum-based tablets, pulpless orange juice, whey sports drink, and dark chocolate (70% cocoa). In this work, our aim was to investigate whether the food matrix that carried HN019 via simulated human digestion (a dual model system mimicking both upper and lower gastrointestinal digestion) influenced probiotic delivery. To that end, we validated and used a real-time qPCR assay to detect HN019 after simulated digestion. In addition, we also measured the effect on a panel of metabolites. After simulated digestion, we were able to detect HN019 from all the matrices tested, and the observed changes to the metabolite profile were consistent with those expected from the food matrix used. In conclusion, this work suggests that the food matrix supplemented with HN019 did not interfere with delivery to the colon via simulated human digestion.
Collapse
Affiliation(s)
- Nicolas Yeung
- IFF Health & Nutrition, Sokeritehtaantie 20, 02460 Kantvik, Finland; (S.D.F.); (M.T.S.); (M.A.); (A.C.O.)
| | | | | | | | | |
Collapse
|
28
|
Lee JJ, Piras E, Tamburini S, Bu K, Wallach DS, Remsen B, Cantor A, Kong J, Goetz D, Hoffman KW, Bonner M, Joe P, Mueller BR, Robinson-Papp J, Lotan E, Gonen O, Malaspina D, Clemente JC. Gut and oral microbiome modulate molecular and clinical markers of schizophrenia-related symptoms: A transdiagnostic, multilevel pilot study. Psychiatry Res 2023; 326:115279. [PMID: 37331068 PMCID: PMC10595250 DOI: 10.1016/j.psychres.2023.115279] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
Although increasing evidence links microbial dysbiosis with the risk for psychiatric symptoms through the microbiome-gut-brain axis (MGBA), the specific mechanisms remain poorly characterized. In a diagnostically heterogeneous group of treated psychiatric cases and nonpsychiatric controls, we characterized the gut and oral microbiome, plasma cytokines, and hippocampal inflammatory processes via proton magnetic resonance spectroscopic imaging (1H-MRSI). Using a transdiagnostic approach, these data were examined in association with schizophrenia-related symptoms measured by the Positive and Negative Syndrome Scale (PANSS). Psychiatric cases had significantly greater heterogeneity of gut alpha diversity and an enrichment of pathogenic taxa, like Veillonella and Prevotella, in the oral microbiome, which was an accurate classifier of phenotype. Cases exhibited significantly greater positive, negative, and general PANSS scores that uniquely correlated with bacterial taxa. Strong, positive correlations of bacterial taxa were also found with cytokines and hippocampal gliosis, dysmyelination, and excitatory neurotransmission. This pilot study supports the hypothesis that the MGBA influences psychiatric symptomatology in a transdiagnostic manner. The relative importance of the oral microbiome in peripheral and hippocampal inflammatory pathways was highlighted, suggesting opportunities for probiotics and oral health to diagnose and treat psychiatric conditions.
Collapse
Affiliation(s)
- Jakleen J Lee
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Enrica Piras
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sabrina Tamburini
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kevin Bu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - David S Wallach
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brooke Remsen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Adam Cantor
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jennifer Kong
- Academy for the Advancement of Science and Technology, Bergen County Academies, Hackensack, NJ, United States
| | - Deborah Goetz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kevin W Hoffman
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mharisi Bonner
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter Joe
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bridget R Mueller
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jessica Robinson-Papp
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eyal Lotan
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Oded Gonen
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Dolores Malaspina
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Jose C Clemente
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
29
|
Xu J, Chen C, Gan S, Liao Y, Fu R, Hou C, Yang S, Zheng Z, Chen W. The Potential Value of Probiotics after Dental Implant Placement. Microorganisms 2023; 11:1845. [PMID: 37513016 PMCID: PMC10383117 DOI: 10.3390/microorganisms11071845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Dental implantation is currently the optimal solution for tooth loss. However, the health and stability of dental implants have emerged as global public health concerns. Dental implant placement, healing of the surgical site, osseointegration, stability of bone tissues, and prevention of peri-implant diseases are challenges faced in achieving the long-term health and stability of implants. These have been ongoing concerns in the field of oral implantation. Probiotics, as beneficial microorganisms, play a significant role in the body by inhibiting pathogens, promoting bone tissue homeostasis, and facilitating tissue regeneration, modulating immune-inflammatory levels. This review explores the potential of probiotics in addressing post-implantation challenges. We summarize the existing research regarding the importance of probiotics in managing dental implant health and advocate for further research into their potential applications.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenfeng Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yihan Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijie Fu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chuping Hou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuhan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
30
|
Song B, Xian W, Sun Y, Gou L, Guo Q, Zhou X, Ren B, Cheng L. Akkermansia muciniphila inhibited the periodontitis caused by Fusobacterium nucleatum. NPJ Biofilms Microbiomes 2023; 9:49. [PMID: 37460552 DOI: 10.1038/s41522-023-00417-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
Periodontitis is the most important cause of tooth loss in adults and is closely related to various systemic diseases. Its etiologic factor is plaque biofilm, and the primary treatment modality is plaque control. Studies have confirmed that Fusobacterium nucleatum can cause periodontitis through its virulence factors and copolymerizing effects with other periodontal pathogens, such as the red complex. Inhibiting F. nucleatum is an essential target for preventing periodontitis. The time-consuming and costly traditional periodontal treatment, periodontal scaling, and root planing are a significant burden on individual and public health. Antibiotic use may lead to oral microbial resistance and microbiome imbalance, while probiotics regulate microbial balance. Akkermansia muciniphila is a critical probiotic isolated from the human intestine. It can protect the integrity of the epithelial barrier, regulate and maintain flora homeostasis, improve metabolism, and colonize the oral cavity. Its abundance is inversely correlated with various diseases. We hypothesized that A. muciniphila could inhibit the effects of F. nucleatum and alleviate periodontitis. Bacterial co-culture experiments showed that A. muciniphila could inhibit the expression of the virulence gene of F. nucleatum. After treating gingival epithelial cells (GECs) with F. nucleatum and A. muciniphila, transcriptome sequencing and ELISA experiments on medium supernatant showed that A. muciniphila inhibited the inflammatory effect of F. nucleatum on GECs by inhibiting TLR/MyD88/NF-κB pathway modulation and secretion of inflammatory factors. Finally, animal experiments demonstrated that A. muciniphila could inhibit F. nucleatum-induced periodontitis in BALB/c mice.
Collapse
Affiliation(s)
- Bingqing Song
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Wenpan Xian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Yan Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Lichen Gou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, Chengdu, China.
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
31
|
Adawi H, Aggarwal A, Jain S, Othman MA, Othman AAA, Zakri RA, Namazi SAM, Sori SA, Abuzawah LHA, Madkhali ZM. Influence of Bariatric Surgery on Oral Microbiota: A Systematic Review. Eur J Dent 2023; 17:602-614. [PMID: 36075269 PMCID: PMC10569860 DOI: 10.1055/s-0042-1753471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
The study aims to systematically review the available literature to evaluate the changes in oral microbiota in patients after bariatric surgery (BS) and correlates these alterations in microorganisms with common oral manifestations. Relevant Electronic databases were systematically searched for indexed English literature. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were followed for framework designing, application, and reporting of the current systematic review. The focused PICO question was: "Is there any change in oral microbiota (O) of patients (P) who underwent BS (I) when compared with non-BS groups (C)?' Seven articles were selected for qualitative synthesis. On application of the National Institutes of Health (NIH) quality assessment tool, six studies were found to be of fair quality and one was of good quality. All the seven included studies evaluated the effect of BS on oral microbiota in humans. The outcomes of this review suggest that considerable changes take place in oral microbiota after BS which can be correlated with common oral manifestations. These changes are mainly due to the indirect effect of BS and may vary with the individuals. Due to variations in the included studies, it is difficult to proclaim any persistent pattern of oral microbiota found after BS.
Collapse
Affiliation(s)
- Hafiz Adawi
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Aparna Aggarwal
- Private Practice, Vitaldent Dental Clinic, Faridabad, Haryana, India
| | - Saurabh Jain
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Maha A. Othman
- Experimental Oral Pathology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ahlam A. A. Othman
- Department of Fixed Prosthodontics, Faculty of Dentistry, Sana'a University, Sana'a, Yemen
| | | | | | - Sara A.Y. Sori
- College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | | |
Collapse
|
32
|
Ochôa C, Castro F, Bulhosa JF, Manso C, Fernandes JCH, Fernandes GVO. Influence of the Probiotic L. reuteri on Periodontal Clinical Parameters after Nonsurgical Treatment: A Systematic Review. Microorganisms 2023; 11:1449. [PMID: 37374951 DOI: 10.3390/microorganisms11061449] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this systematic review was to evaluate the actual efficacy of Lactobacillus reuteri (L. reuteri) on the periodontal clinical parameters when used concomitantly to the nonsurgical periodontal treatment. Searches were conducted through PubMed Central, Online Knowledge Library, Science Direct, Scielo, and Cochrane databases from 2012 to 2022. The focused question was "In patients with periodontitis, will the probiotic L. reuteri, when administrated as an adjunct to nonsurgical periodontal treatment, compared to the nonsurgical periodontal treatment alone, result in better clinical outcomes?" The following information was extracted from the articles: author and year of publication, type of study, follow-up, sample size and number of defects, and clinical characteristics and details. All included studies were qualitatively assessed using the Critical Appraisal tools according to the Joanna Briggs Institute. Twenty-four articles were full-text reading, but only 9 articles were included. The number of patients enrolled was 287, aged between 18 and 56 years. All periodontal parameters were evaluated. The "follow-up" varied (14, 40, 84, 90, 180, and 360 days). Most articles supported the clinical benefits of L. reuteri as an adjunct to SRP compared to SRP alone. A common finding at the beginning period was thatno statistically different results were observed between the test and control groups; otherwise, at the last period, a significant improvement was found in favor of the probiotic use (p = 0.001) for all the clinical parameters. The use of L. reuteri as an adjunct to nonsurgical periodontal treatment may result in significantly better clinical outcomes than nonsurgical periodontal treatment alone; but the conclusion must be carefully interpreted because of the heterogeneity found among the studies.
Collapse
Affiliation(s)
- Carlota Ochôa
- FP-I3ID, FCS, Fernando Pessoa University, 4249-004 Porto, Portugal
| | - Filipe Castro
- FP-I3ID, FCS, Fernando Pessoa University, 4249-004 Porto, Portugal
| | | | - Conceição Manso
- FP-I3ID, FCS, Fernando Pessoa University, 4249-004 Porto, Portugal
| | | | | |
Collapse
|
33
|
Hussein RR, Ahmed E, Abou-Bakr A, El-Gawish AA, Ras ABE, Ghalwash DM. Oral Changes in Hospitalized COVID-19 Patients: A Cross-Sectional Multicentric Study. Int J Dent 2023; 2023:3002034. [PMID: 37223395 PMCID: PMC10202601 DOI: 10.1155/2023/3002034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 05/25/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) has rapidly spread over the globe, and several oral symptoms have been documented. However, it is unclear whether these lesions are the result of coronavirus infection or are secondary symptoms of the patient's systemic illness. The aim of this study was to collect data from various hospitals on COVID-19 patients with oral involvement in order to highlight different oral changes that may be manifested in those patients. Methods This observational cross-sectional multicenter study used an online questionnaire covering oral signs and symptoms that were believed to be related to COVID-19 patients who were hospitalized in different hospitals in Egypt. Results 94.3% of the 210 patients who participated in the current study developed oral symptoms. Altered taste sensation (56.2%), burning sensation (43.3%), and oral candidiasis (40%) were the most prevalent oral symptoms (34.4%) that were found in the studied sample. Conclusions COVID-19 has a major influence on the oral cavity, with numerous oral symptoms that may impair quality of life. Thus, considering the need for support, pain control, and management for a better prognosis, the clinical dental evaluation of hospitalized patients with infectious diseases like COVID-19 should be addressed.
Collapse
Affiliation(s)
- Radwa R. Hussein
- Oral Medicine and Periodontology, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Enji Ahmed
- Oral Medicine and Periodontology, Faculty of Dentistry, Cairo University, Giza, Egypt
- Oral Medicine and Periodontology, Faculty of Dentistry, The British University in Egypt, El Sherouk City, Egypt
| | - Asmaa Abou-Bakr
- Oral Medicine and Periodontology, Faculty of Dentistry, The British University in Egypt, El Sherouk City, Egypt
| | - Ayman A. El-Gawish
- Oral Medicine and Periodontology, Faculty of Dentistry, The British University in Egypt, El Sherouk City, Egypt
| | - Abou-Bakr E. Ras
- Otolaryngology Department, Faculty of Medicine, Benha University, Qalyoubya, Egypt
| | - Dalia M. Ghalwash
- Oral Medicine and Periodontology, Faculty of Dentistry, The British University in Egypt, El Sherouk City, Egypt
| |
Collapse
|
34
|
Babina K, Salikhova D, Polyakova M, Zaytsev A, Egiazaryan A, Novozhilova N. Knowledge and Attitude towards Probiotics among Dental Students and Teachers: A Cross-Sectional Survey. Dent J (Basel) 2023; 11:dj11050119. [PMID: 37232770 DOI: 10.3390/dj11050119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
This cross-sectional survey assessed the knowledge of and the attitude towards probiotics of dental students and academics at Sechenov University, Moscow, Russia. Our questionnaire consisted of 15 questions divided into 3 sections: respondents' sociodemographic data, knowledge on probiotics, and attitude towards probiotics. The data were analyzed using the Mann-Whitney U test, Fisher's exact test, and Spearman's rank correlation coefficient. Out of the 658 questionnaires distributed, a total of 239 questionnaires were completed by the undergraduates, yielding a response rate of 39.6%, and 54 by the teaching staff (response rate = 100%). Most students (53.6%) and teachers (55.5%) had a fair knowledge of probiotics (p = 0.3135). A vast majority of dental students (97.9%) and all teachers had a positive attitude towards probiotics, with higher mean scores among academics (p < 0.001). A positive weak correlation was found between knowledge and attitude (Spearman r = 0.17, p = 0.0027). The results obtained reveal the need for more evidence-based educational trainings for university teachers and a course on probiotics to be included in the curriculum for dental students.
Collapse
Affiliation(s)
- Ksenia Babina
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Dilara Salikhova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Maria Polyakova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Alexandr Zaytsev
- Institute of Linguistics and Intercultural Communication, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Anna Egiazaryan
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Nina Novozhilova
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
35
|
Arias Z, Nizami MZI, Chen X, Chai X, Xu B, Kuang C, Omori K, Takashiba S. Recent Advances in Apical Periodontitis Treatment: A Narrative Review. Bioengineering (Basel) 2023; 10:bioengineering10040488. [PMID: 37106675 PMCID: PMC10136087 DOI: 10.3390/bioengineering10040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Apical periodontitis is an inflammatory response caused by pulp infection. It induces bone resorption in the apical and periapical regions of the tooth. The most conservative approach to treat this condition is nonsurgical endodontic treatment. However, clinical failure has been reported with this approach; thus, alternative procedures are required. This review highlights recent literature regarding advanced approaches for the treatment of apical periodontitis. Various therapies, including biological medications, antioxidants, specialized pro-resolving lipid mediators, and stem cell therapy, have been tested to increase the success rate of treatment for apical periodontitis. Some of these approaches remain in the in vivo phase of research, while others have just entered the translational research phase to validate clinical application. However, a detailed understanding of the molecular mechanisms that occur during development of the immunoinflammatory reaction in apical periodontitis remains unclear. The aim of this review was to summarize advanced approaches for the treatment of apical periodontitis. Further research can confirm the potential of these alternative nonsurgical endodontic treatment approaches.
Collapse
Affiliation(s)
- Zulema Arias
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Mohammed Zahedul Islam Nizami
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR 999077, China
| | - Xiaoting Chen
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Xinyi Chai
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Bin Xu
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Canyan Kuang
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kazuhiro Omori
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
36
|
Li J, Zhao G, Zhang HM, Zhu FF. Probiotic adjuvant treatment in combination with scaling and root planing in chronic periodontitis: a systematic review and meta-analysis. Benef Microbes 2023; 14:95-108. [PMID: 36856123 DOI: 10.3920/bm2022.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
This systematic review and meta-analysis assessed the impact of probiotic supplementation on treating chronic periodontal (CP) disease based on clinical and microbiological findings. Four databases were searched: Medline, Embase, Cochrane Library, and the Web of Science databases. The references to relevant studies were also manually searched. Analyses were conducted using the Review Manager 5.2 software, while the quality of randomised controlled trials was assessed with the Cochrane Risk of Bias tool. In total, 19 studies were included in the meta-analysis. Pooled results revealed that the adjuvant use of probiotics in the treatment of patients with periodontal disease was largely associated with good clinical efficacy. Resulting in statistically significant improvements in plaque index (P<0.05), periodontal probing depth (P<0.05), clinical attachment level (P<0.05), gingival index (P<0.05), bleeding on probing (P<0.05), deep probing depth (P<0.05), and levels of subgingival microbes (P<0.05) following probiotic supplementation. In summary, the results of this meta-analysis suggest that the administration of probiotics together with scaling and root planing can somewhat improve CP patient clinical outcomes and reduce levels of periodontal pathogens. However, more comprehensive experiments are needed to standardise probiotics and maximise their adjuvant therapy.
Collapse
Affiliation(s)
- J Li
- Jiamusi University, Jiamusi City 154000, Heilongjiang Province, China P.R
- Jiamusi University Affiliated Stomatological Hospital, Jiamusi City 154004, Heilongjiang Province, China P.R
| | - G Zhao
- Jiamusi University Affiliated Stomatological Hospital, Jiamusi City 154004, Heilongjiang Province, China P.R
| | - H M Zhang
- Jiamusi University, Jiamusi City 154000, Heilongjiang Province, China P.R
| | - F F Zhu
- Jiamusi University, Jiamusi City 154000, Heilongjiang Province, China P.R
- Jiamusi University Affiliated Stomatological Hospital, Jiamusi City 154004, Heilongjiang Province, China P.R
| |
Collapse
|
37
|
Alkimavičienė E, Pušinskaitė R, Basevičienė N, Banienė R, Savickienė N, Pacauskienė IM. Efficacy of Proanthocyanidins in Nonsurgical Periodontal Therapy. Int Dent J 2023; 73:195-204. [PMID: 36167610 PMCID: PMC10023589 DOI: 10.1016/j.identj.2022.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/25/2022] [Accepted: 08/16/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The aim of this work was to evaluate the efficacy of proanthocyanidins (PACNs) as an adjunctive periodontal therapy in patients with periodontitis. METHODS Patients with periodontitis (stage III-IV) were included in this randomised clinical study. Patients with periodontitis received 2 different treatment modalities: minimally invasive nonsurgical therapy only (MINST group) or minimally invasive nonsurgical therapy and subgingival application of collagen hydrogels with PACNs (MINST + PACNs group). Clinical periodontal parameters, that is, pocket probing depth (PPD), clinical attachment level (CAL), bleeding on probing (BOP), plaque index (PI), were evaluated before treatment and after 8 weeks. Concentrations of immunologic markers, matrix metalloproteinase-3 (MMP-3), and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in saliva were assessed at baseline and at 8-week follow-up. RESULTS Forty-six patients diagnosed with periodontitis were randomised into 2 groups: 23 patients in the MINST group and 23 patients in the MINST + PACNs group received the intended treatment. PACNs combined with MINST resulted in additional statistically significant PPD reduction and CAL gain in moderate periodontal pockets by 0.5 mm (P < .05) on average compared to MINST alone. Additional use of PACNs did not result in additional statistically significant improvement of BOP or PI values. Application of PACNs showed significant reduction of MMP-3 levels in saliva after 8 weeks (P < .05). CONCLUSIONS Adjunctive use of PACNs in MINST resulted in better clinical outcomes for moderate pockets. Additional use of PACNs improved MMP-3 concentration in saliva more than MINST alone. Biochemical analysis revealed that MMP-3 concentration in saliva reflected the periodontal health state.
Collapse
Affiliation(s)
- Evelina Alkimavičienė
- Department of Dental and Oral Pathology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Rasa Pušinskaitė
- Department of Dental and Oral Pathology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Nomeda Basevičienė
- Department of Dental and Oral Pathology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rasa Banienė
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Nijolė Savickienė
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | |
Collapse
|
38
|
Ye Y, Xu X, Mao B, Tang X, Cui S, Zhao J, Zhang Q. Evaluation of heat-inactivated Limosilactobacillus fermentum CCFM1139 and its supernatant for the relief of experimental periodontitis in rats. Food Funct 2023; 14:2847-2856. [PMID: 36880339 DOI: 10.1039/d2fo02938c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Periodontitis is a chronic inflammatory disease induced by subgingival microbial dysbiosis, characterised by inflammation of the soft tissues of the periodontium and progressive loss of alveolar bone. Limosilactobacillus fermentum CCFM1139 is a probiotic with the potential to relieve periodontitis in vitro and in vivo. Due to the cost of active strain in production applications, we considered the effectiveness of bacterial components and metabolites in alleviating experimental periodontitis. Therefore, this study investigated the effect of heat-inactivated Limosilactobacillus fermentum CCFM1139 and its supernatant in the development of experimental periodontitis through animal experiments. The results showed that active, heat-inactivated Limosilactobacillus fermentum CCFM1139 and its supernatant all significantly reduced IL-1β levels in gingival tissue and serum (p < 0.05). Micro-computed tomography (micro CT) analysis showed that the active and heat-inactivated Limosilactobacillus fermentum CCFM1139 reduced alveolar bone loss in rats with periodontitis by 25.6% and 15.9% respectively (p < 0.05), with no change in percentage of bone volume (p > 0.05). In histomorphometric analysis, active Limosilactobacillus fermentum CCFM1139 showed better results in reducing alveolar bone loss and reducing inflammatory cell recruitment at the second molar. In addition, there was no significant difference in the number of tartrate-resistant acid phosphatase (TRAP) positive cells after in all experimental groups (p > 0.05). Therefore, heat-inactivated Limosilactobacillus fermentum CCFM1139 or its supernatant also have the ability to relieve periodontitis, and their alleviating effect may focus on the regulation of inflammatory response.
Collapse
Affiliation(s)
- Yuhan Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai 200436, China
| | - Xianyin Xu
- Department of Stomatology, Wuxi Children's Hospital, Wuxi, Jiangsu 214023, P. R. China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai 200436, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai 200436, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai 200436, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai 200436, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai 200436, China
| |
Collapse
|
39
|
Ferrillo M, Giudice A, Migliario M, Renó F, Lippi L, Calafiore D, Marotta N, de Sire R, Fortunato L, Ammendolia A, Invernizzi M, de Sire A. Oral-Gut Microbiota, Periodontal Diseases, and Arthritis: Literature Overview on the Role of Probiotics. Int J Mol Sci 2023; 24:4626. [PMID: 36902056 PMCID: PMC10003001 DOI: 10.3390/ijms24054626] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Periodontal diseases are oral inflammatory diseases affecting the tissues supporting and surrounding the teeth and include gingivitis and periodontitis. Oral pathogens may lead to microbial products spreading into the systemic circulation and reaching distant organs, while periodontal diseases have been related to low-grade systemic inflammation. Gut and oral microbiota alterations might play a role in the pathogenesis of several autoimmune and inflammatory diseases including arthritis, considering the role of the gut-joint axis in the regulation of molecular pathways involved in the pathogenesis of these conditions. In this scenario, it is hypothesized that probiotics might contribute to the oral and intestinal micro-ecological balance and could reduce low-grade inflammation typical of periodontal diseases and arthritis. This literature overview aims to summarize state-of-the-art ideas about linkages among oral-gut microbiota, periodontal diseases, and arthritis, while investigating the role of probiotics as a potential therapeutic intervention for the management of both oral diseases and musculoskeletal disorders.
Collapse
Affiliation(s)
- Martina Ferrillo
- Dentistry Unit, Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Amerigo Giudice
- Dentistry Unit, Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Mario Migliario
- Dentistry Unit, Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| | - Filippo Renó
- Innovative Research Laboratory for Wound Healing, Health Sciences Department, University of Eastern Piedmont, 28100 Novara, Italy
| | - Lorenzo Lippi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Dario Calafiore
- Physical Medicine and Rehabilitation Unit, Department of Neurosciences, ASST Carlo Poma, 46100 Mantova, Italy
| | - Nicola Marotta
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Roberto de Sire
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy
| | - Leonzio Fortunato
- Dentistry Unit, Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Antonio Ammendolia
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| |
Collapse
|
40
|
de Oliveira LFF, Silva PHF, Salvador SL, Ervolino E, Casarin R, Figueiredo L, Ricoldi MT, de Souza SLS, Furlaneto F, Messora MR. Probiotic consumption can modify the resilience of periodontal tissues in rats under experimental periodontitis. J Periodontol 2023; 94:217-229. [PMID: 35690993 DOI: 10.1002/jper.21-0555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND This study evaluated the effects of systemic administration of Bifidobacterium animalis subsp. lactis HN019 (B. lactis HN019) on experimental periodontitis (EP) in rats. METHODS Thirty-two rats were allocated to groups C (control), C-HN019 (probiotic), EP (EP only), and EP-HN019 (EP+probiotic). From day 0, the animals of C-HN019 and EP-HN019 groups received B. lactis HN019 (1 × 109 CFU/ml) daily. On the 14th day, the animals of EP and EP-HN019 groups received silk ligature around mandibular molars. Animals were euthanized on the 28th day. Samples of oral biofilm, gingival tissues, blood serum, and mandible were obtained for microtomographic, histomorphometric, microbiological, and immunological analyses. Data were statistically analyzed (p < 0.05). RESULTS Group EP-HN019 presented significantly less alveolar bone loss when compared with Group EP in histomorphometric and microtomographic analyses. In gingival tissue and serum, Group EP-HN019 presented lower proinflammatory/anti-inflammatory cytokines ratios than Group EP. Group EP-HN019 showed higher expression of beta-defensins and less TRAP-positive cells than Group EP. Group EP presented higher gene expression of Ifng and lower gene expression of Foxp3 when compared with Group EP-HN019 in gingival tissue. In oral biofilm, EP-HN019 group presented a lower percentage of species similar to Fusobacterium periodonticum and a higher percentage of species similar to Actinomyces gereneseriae, Actinomyces israelli, and Streptococcus gordonii when compared with Group EP. There was a significant increase of B. lactis HN019 after administration of probiotic therapy in oral biofilm of Group EP-HN019. CONCLUSION The consumption of B. lactis HN019 promotes a protective effect against alveolar bone loss by modifying local and systemic microbiological and immunoinflammatory parameters.
Collapse
Affiliation(s)
- Luiz Fernando Ferreira de Oliveira
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| | - Pedro Henrique Felix Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| | - Sergio Luiz Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, Division of Histology, Dental School of Araçatuba, São Paulo State University, São Paulo, Brazil
| | - Renato Casarin
- Department of Prosthodontics and Periodontics, School of Dentistry, Campinas State University, São Paulo, Brazil
| | - Luciene Figueiredo
- Department of Periodontology, Dental Research Division, Guarulhos University, São Paulo, Brazil
| | - Milla Tavares Ricoldi
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| | - Sérgio Luís Scombatti de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| | - Flavia Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| | - Michel Reis Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| |
Collapse
|
41
|
Bifidobacterium animalis subsp. lactis as adjunct to non-surgical periodontal treatment in periodontitis: a randomized controlled clinical trial. Clin Oral Investig 2023; 27:1965-1972. [PMID: 36697840 DOI: 10.1007/s00784-023-04870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVES The purpose of this study is to investigate the clinical and microbiological effects of Bifidobacterium animalis subsp. lactis DN-173010 containing yogurt as an adjunct to non-surgical periodontal treatment in periodontitis patients. MATERIALS AND METHODS This is a prospective randomized controlled clinical study registered with NCT05408364 under clinical trial registration. Thirty periodontitis patients were divided into 2 groups at random. As adjunctive to supra and subgingival instrumentation, the test group consumed Bifidobacterium animalis subsp. lactis DN-173010 containing yogurt while the control group consumed natural yogurt, once daily for 28 days. The plaque index (PI), gingival index (GI), bleeding on probing (BOP), probing depth (PD), and clinical attachment level (CAL) were recorded at baseline, 28th day, and 3rd month. Microbiological analysis was performed using culture method by obtaining subgingival plaque samples from 2 periodontal sites with 4≤PD≤6 mm at the same time points. RESULTS The inter-group comparisons of PI, GI, and BOP as well as the changes between the measurement time points were statistically significant in favor of the test group. There were no significant differences in terms of PD and CAL changes between the study groups at all times (∆baseline-28 days, ∆baseline-3 months) (p>0.05). The number of patients presenting subgingival Bifidobacterium species was significantly greater in the test group than the control group at the 28th day (p<0.05). CONCLUSIONS The administration of probiotics has shown beneficial effects, albeit limited, on clinical and microbiological outcomes in the management of periodontitis patients. CLINICAL RELEVANCE Daily consumption of probiotic yogurt may be supportive for supra and subgingival instrumentation.
Collapse
|
42
|
Butera A, Folini E, Cosola S, Russo G, Scribante A, Gallo S, Stablum G, Menchini Fabris GB, Covani U, Genovesi A. Evaluation of the Efficacy of Probiotics Domiciliary Protocols for the Management of Periodontal Disease, in Adjunction of Non-Surgical Periodontal Therapy (NSPT): A Systematic Literature Review. APPLIED SCIENCES 2023; 13:663. [DOI: 10.3390/app13010663] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Introduction: Periodontitis is a multifactorial chronic inflammatory disease induced by a dysbiosis between the host and oral microbiota, which can compromise the host’s immune defenses and lead to the destruction of periodontal tissues. Despite the efficacy of non-surgical periodontal therapy (NSPT) as the gold standard of periodontal treatment, its application can produce lower results due to anatomical and microbiological limitations. This systematic literature review was performed to assess the long-term efficacy of the effects of probiotics as an adjunct to NSPT compared to the control groups with follow-up of clinical, microbiological and immunological outcomes. Materials and methods: A literature review was conducted, considering manuscripts published from November 2016 to February 2022. The research question was formulated following the population, intervention, comparison and outcome strategies. Randomized controlled trials (RCT), systematic review and meta-analysis investigating the periodontal efficacy of domiciliary probiotic therapy in an adjunct to the mechanical therapy were included. Results: Regarding clinical outcomes, there is a reduction in periodontal probing depth (PPD), clinical attachments level (CAL), bleeding on probing (BoP) and plaque index (PI) for the test groups compared to the control groups in a short-term period. No differences were generally observed in the following indices over a period of more than 3 months for most studies considered. Conclusions: Weak evidence suggests that the use of probiotics as an adjunct to non-surgical periodontal therapy treatment may be able to show improvements in periodontal clinical parameters for up to 3 months. However, a significant and large heterogeneity of studies, along with the absence of long-term microbiological and immunological data, preclude any definitive conclusions.
Collapse
|
43
|
Effects of oral administration of Bifidobacterium animalis subsp. lactis HN019 on the treatment of plaque-induced generalized gingivitis. Clin Oral Investig 2023; 27:387-398. [PMID: 36305963 PMCID: PMC9614197 DOI: 10.1007/s00784-022-04744-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/02/2022] [Indexed: 01/28/2023]
Abstract
OBJECTIVES This double-blind, randomized, placebo-controlled clinical trial evaluated the adjuvant effects of Bifidobacterium lactis HN019 on the treatment of plaque-induced generalized gingivitis. MATERIALS AND METHODS Sixty patients were submitted to professional supragingival scaling and prophylaxis. They were randomly assigned to test (probiotic lozenges containing B. lactis HN019, n = 30) or control (placebo lozenges, n = 30) groups. Lozenges were consumed twice a day for 8 weeks. Bleeding on probing (BoP), Gingival Index (GI), Plaque Index (PI), probing depth (PD), and clinical attachment level (CAL) were evaluated at baseline and after 2 and 8 weeks. Gingival crevicular fluid (GCF) was collected at baseline and at 8 weeks for analysis of the inflammatory mediators IL-1β, IL-1α, IL-8, MCP-1, and MIP-1β. Data were statistically analyzed (p < 0.05). RESULTS After 8 weeks, both groups showed reduction in the percentage of PI, with no significant difference between groups (p = 0.7423). The test group presented a lower percentage of BoP and a higher percentage of sites with GI ≤ 1 when compared with the control group at the end of the study (p < 0.0001). At 8 weeks, the test group had a greater number of patients without generalized gingivitis than the control group (20 and 11 patients, respectively; p < 0.05). The test group presented significantly lower levels of IL-1α, IL-1β, and MCP-1 in GCF than the control group at the end of the study (p < 0.05). CONCLUSION The adjunct use of B. lactis HN019 promotes additional clinical and immunological benefits in the treatment of generalized gingivitis. CLINICAL RELEVANCE B. lactis HN019 can be an efficient and side-effect-free adjunct strategy in the treatment of generalized gingivitis.
Collapse
|
44
|
Cannizzaro S, Maiorani C, Scribante A, Butera A. Personalized Treatment of Periodontitis in a Patient with McArdle's Disease: The Benefits from Probiotics. Case Rep Dent 2023; 2023:5080384. [PMID: 36937222 PMCID: PMC10023231 DOI: 10.1155/2023/5080384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction McArdle's disease is a severe glycogen storage disease characterized by intolerance to exercise; patients have a syndrome of muscle intolerance to stress, associated with myalgia, cramps, fatigue, and muscle weakness. Periodontal disease is a multifactorial pathology of the supporting tissues of the teeth: one of the main factors is the formation of bacterial biofilm; its control favors the prevention and the maintenance of good health of the oral cavity; and some systemic pathologies can worsen the periodontal disease and hinder its therapy. This case report concerns a woman with McArdle's disease diagnosed with periodontal disease. Material and Methods. A 54-year-old female patient with McArdle's disease has been diagnosed with Stage 3 generalized periodontitis, Grade B. At the baseline, the patient had 82 pockets with probing pocket depth (PPD) equal to or greater than 4 mm. The patient was instructed in the correct methods of oral hygiene and was advised toothpaste and mouthwash based on probiotics; subsequently, a debridement was performed to remove etiological factors using Dental-Biofilm Detection Topographic Technique (D-BioTECH). Results After 60 days, the number of pockets was reduced from 82 to 14 overall with PPD ≥ 4 mm and from 50 to 2 pockets with PPD ≥ 5 mm. Full mouth bleeding score (FMBS) increased from 48% to 15% and full mouth plaque score (FMPS) from 73% to 15%. Conclusions In this case, the use of a correct brushing method combined with the D-BioTECH has reduced the disease state, with the use of probiotics at home to restore and maintain a healthy oral microbiome.
Collapse
Affiliation(s)
- Salvatore Cannizzaro
- 1Ordinary Member of Academy of Advanced Technologies in Oral Hygiene Sciences, Siracusa, Italy
| | - Carolina Maiorani
- 2Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia 27100, Italy
| | - Andrea Scribante
- 2Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia 27100, Italy
- 3Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia 27100, Italy
| | - Andrea Butera
- 2Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia 27100, Italy
| |
Collapse
|
45
|
Merenstein D, Pot B, Leyer G, Ouwehand AC, Preidis GA, Elkins CA, Hill C, Lewis ZT, Shane AL, Zmora N, Petrova MI, Collado MC, Morelli L, Montoya GA, Szajewska H, Tancredi DJ, Sanders ME. Emerging issues in probiotic safety: 2023 perspectives. Gut Microbes 2023; 15:2185034. [PMID: 36919522 PMCID: PMC10026873 DOI: 10.1080/19490976.2023.2185034] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Probiotics are used for both generally healthy consumers and in clinical settings. However, theoretical and proven adverse events from probiotic consumption exist. New probiotic strains and products, as well as expanding use of probiotics into vulnerable populations, warrants concise, and actionable recommendations on how to work toward their safe and effective use. The International Scientific Association for Probiotics and Prebiotics convened a meeting to discuss and produce evidence-based recommendations on potential acute and long-term risks, risks to vulnerable populations, the importance for probiotic product quality to match the needs of vulnerable populations, and the need for adverse event reporting related to probiotic use. The importance of whole genome sequencing, which enables determination of virulence, toxin, and antibiotic resistance genes, as well as clear assignment of species and strain identity, is emphasized. We present recommendations to guide the scientific and medical community on judging probiotic safety.
Collapse
Affiliation(s)
- Daniel Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DCUSA
| | - Bruno Pot
- Yakult Europe BV, Almere, Netherlands
| | | | - Arthur C. Ouwehand
- Global Health & Nutrition Sciences, International Flavors & Fragrances, Kantvik, Finland
| | - Geoffrey A. Preidis
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Christopher A. Elkins
- Clinical and Environmental Microbiology Branch, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Andi L. Shane
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Emory Children’s Center, Atlanta, Georgia
| | - Niv Zmora
- Scientific consultant, Elinav Lab, Immunology Department, Weizmann Institute of Science, Department of Gastroenterology and Liver Diseases, Tel Aviv, Israel
| | | | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Lorenzo Morelli
- Department of Food Science and Technology, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gina A. Montoya
- Department of Chemical Risk Assessment, Nestlé S.A., Lausanne, Switzerland
| | - Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Daniel J. Tancredi
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO, USA
| |
Collapse
|
46
|
Colamarino AN, Johnson TM, Boudreaux DM, Dutner JM, Stancoven BW, Lincicum AR, Akers JA. Influence of Lactobacillus reuteri, Bifidobacterium animalis subsp. lactis, and prebiotic inulin on dysbiotic dental biofilm composition ex vivo. J Periodontol 2022. [PMID: 36542391 DOI: 10.1002/jper.22-0505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Probiotic bacterial supplementation has shown promising results in the treatment of periodontitis and the maintenance of periodontal health. The purpose of this investigation was to evaluate the influence of Lactobacillus reuteri or Bifidobacterium animalis subsp. lactis supplementation with and without prebiotic inulin on biofilm composition using an ex vivo biofilm model. METHODS Subgingival plaque specimens from three periodontitis-affected human donors were used to grow biofilms on hydroxyapatite disks in media supplemented with varying combinations of prebiotic inulin, Lactobacillus reuteri, and Bifidobacterium animalis subsp. lactis. Relative abundances of bacterial genera present in mature biofilms were evaluated using 16S rRNA next-generation sequencing. Diversity metrics of microbial communities were evaluated using a next-generation microbiome bioinformatics platform. RESULTS Inulin supplementation produced statistically significant dose-dependent increases in relative abundances of Lactobacillus and Bifidobacterium species (p < 0.001) with concomitant decreases in relative abundances of Streptococcus, Veillonella, Fusobacterium, Parvimonas, and Prevotella species (p < 0.001). Inoculation with L. reuteri or B. animalis subsp. lactis increased the relative abundance of only the supplemented probiotic genera (p < 0.05). Supplemental inulin led to a statistically significant decrease in biofilm alpha diversity (p < 0.001). CONCLUSIONS The described ex vivo model appears suitable for investigating the effects of probiotic bacteria, prebiotic oligosaccharides, and combinations thereof on biofilm composition and complexity. Within the limitations imposed by this model, results from the present study underscore the potential for prebiotic inulin to modify biofilm composition favorably. Additional research further elucidating biologic rationale and controlled clinical research defining therapeutic benefits is warranted.
Collapse
Affiliation(s)
- Aaron N Colamarino
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| | - Thomas M Johnson
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| | | | - Joseph M Dutner
- Department of Endodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| | - Brian W Stancoven
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| | - Adam R Lincicum
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| | - Joshua A Akers
- Department of Periodontics, Army Postgraduate Dental School, Uniformed Services University of the Health Sciences, Fort Gordon, Georgia, USA
| |
Collapse
|
47
|
Matsubara VH, Fakhruddin KS, Ngo H, Samaranayake LP. Probiotic Bifidobacteria in Managing Periodontal Disease: A Systematic Review. Int Dent J 2022; 73:11-20. [PMID: 36535806 PMCID: PMC9875235 DOI: 10.1016/j.identj.2022.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Although various probiotic organisms have been evaluated for their utility in the management of periodontitis, their strain-specific mechanisms of action are still unclear. We aimed to systematically review the effect of bifidobacterial probiotics on periodontopathogens and host immune responses in periodontal diseases. An electronic search of articles published until June 2022 in Medline, PubMed, Web of Science, and Cochrane Library databases was performed. Randomised controlled trials (RCTs) and in vitro and animal studies were assessed, and the data regarding antimicrobial properties, immunomodulation, and clinical outcomes were analysed. A total of 304 studies were screened, but only 3 RCTs and 6 animal and in vitro studies met the inclusion criteria. The use of different strains of bifidobacteria led to (1) a reduction of key players of the red complex periodontopathogens; (2) reduced levels of pro-inflammatory cytokines (eg, interleukin [IL]1-β and IL-8) and higher levels of anti-inflammatory cytokines (IL-10); (3) enhanced levels of osteoprotegerin and reduced levels of receptor activator of nuclear factor kappa-B ligand; and (4) a reduction of the dental plaque, bleeding on probing, alveolar bone loss, and clinical attachment loss. Bifidobacterial probiotic adjuvant supplementation, especially with Bifidobacterium animalis subspecies lactis, appears to help improve clinical periodontal parameters and develop a healthy plaque microbiome through microbiological and immunomodulatory pathways. Further human and animal studies are warranted prior to the therapeutic use of bifidobacteria in the routine management of periodontal infections.
Collapse
Affiliation(s)
- Victor Haruo Matsubara
- UWA Dental School, University of Western Australia, Perth, Western Australia, Australia,Corresponding author. Dental School, University of Western Australia, 17 Monash Avenue, Nedlands, Perth, WA 6009, Australia.
| | - Kausar Sadia Fakhruddin
- Department of Preventive and Restorative Dentistry, University of Sharjah, Sharjah, United Arab Emirates
| | - Hien Ngo
- UWA Dental School, University of Western Australia, Perth, Western Australia, Australia
| | - Lakshman P. Samaranayake
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| |
Collapse
|
48
|
Functional biomaterials for comprehensive periodontitis therapy. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
49
|
NAUREEN ZAKIRA, MEDORI MARIACHIARA, DHULI KRISTJANA, DONATO KEVIN, CONNELLY STEPHENTHADDEUS, BELLINATO FRANCESCO, GISONDI PAOLO, BERTELLI MATTEO. Polyphenols and Lactobacillus reuteri in oral health. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E246-E254. [PMID: 36479495 PMCID: PMC9710395 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Oral health is one of the necessary preludes to the overall quality of life. Several medical procedures and therapies are available to treat oral diseases in general and periodontal diseases in particular, yet caries, periodontitis, oral cancer, and oral infections remain a global concern. Natural molecules, with their anti-oxidant, anti-inflammatory, and anti-microbic properties, are one of the main sources of oral health and dental health care, and should be supplemented to exploit their beneficial effects. A possible way to improve the intake of these molecules is adhering to a diet that is rich in fruits, vegetables, and probiotics, which has many beneficial properties and can improve overall health and wellbeing. The Mediterranean diet, in particular, provides several beneficial natural molecules, mainly because of the precious nutrients contained in its typical ingredients, mainly plant-based (olives, wine, citrus fruits, and many more). Its beneficial effects on several diseases and in increasing the overall wellbeing of the population are currently being studied by physicians. Among its nutrients, polyphenols (including, among other molecules, lignans, tannins, and flavonoids) seem to be of outmost importance: several studies showed their anticariogenic properties, as well as their effects in decreasing the incidence of non-communicable diseases. Therefore, plant-derived molecules - such as polyphenols - and probiotics - such as Lactobacillus reuteri - have shown a significant potential in treating and curing oral diseases, either alone or in combination, owing to their antioxidant and antimicrobial properties, respectively.
Collapse
Affiliation(s)
| | | | - KRISTJANA DHULI
- MAGI’S LAB, Rovereto (TN), Italy
- Correspondence: Kristjana Dhuli, MAGI’S LAB, Rovereto (TN), 38068, Italy; E-mail:
| | | | | | - FRANCESCO BELLINATO
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - PAOLO GISONDI
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, Verona, Italy
| | - MATTEO BERTELLI
- MAGI Euregio, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
50
|
Idrees M, Imran M, Atiq N, Zahra R, Abid R, Alreshidi M, Roberts T, Abdelgadir A, Tipu MK, Farid A, Olawale OA, Ghazanfar S. Probiotics, their action modality and the use of multi-omics in metamorphosis of commensal microbiota into target-based probiotics. Front Nutr 2022; 9:959941. [PMID: 36185680 PMCID: PMC9523698 DOI: 10.3389/fnut.2022.959941] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
This review article addresses the strategic formulation of human probiotics and allows the reader to walk along the journey that metamorphoses commensal microbiota into target-based probiotics. It recapitulates what are probiotics, their history, and the main mechanisms through which probiotics exert beneficial effects on the host. It articulates how a given probiotic preparation could not be all-encompassing and how each probiotic strain has its unique repertoire of functional genes. It answers what criteria should be met to formulate probiotics intended for human use, and why certain probiotics meet ill-fate in pre-clinical and clinical trials? It communicates the reasons that taint the reputation of probiotics and cause discord between the industry, medical and scientific communities. It revisits the notion of host-adapted strains carrying niche-specific genetic modifications. Lastly, this paper emphasizes the strategic development of target-based probiotics using host-adapted microbial isolates with known molecular effectors that would serve as better candidates for bioprophylactic and biotherapeutic interventions in disease-susceptible individuals.
Collapse
Affiliation(s)
- Maryam Idrees
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naima Atiq
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rabaab Zahra
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rameesha Abid
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
- Department of Biotechnology, University of Sialkot, Sialkot, Pakistan
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| | - Tim Roberts
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia
| | - Abdelmuhsin Abdelgadir
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| | | | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Shakira Ghazanfar
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| |
Collapse
|