1
|
Deng W, Xiong X, Lu M, Huang S, Luo Y, Wang Y, Ying Y. Curcumin suppresses colorectal tumorigenesis through restoring the gut microbiota and metabolites. BMC Cancer 2024; 24:1141. [PMID: 39267014 PMCID: PMC11395590 DOI: 10.1186/s12885-024-12898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Curcumin has been reported to have activity for prevention and therapy of CRC, yet its underlying mechanisms remain largely unknown. Recently, emerging evidence suggests that the gut microbiota and its metabolites contribute to the causation and progression of Colorectal cancer (CRC). In this study, we aimed to investigate if curcumin affects the tumorigenesis of CRC by modulating gut microbiota and its metabolites. METHODS Forty male C57BL/6JGpt mice were randomly divided into four groups: negative control (NC), curcumin control, CRC model, and curcumin treatment (CRC-Cur) groups. CRC mouse model was induced by using azoxymethane (AOM) and dextran sodium sulfate (DSS), and the mice in CRC model and curcumin treatment groups received oral PBS or curcumin (150 mg/kg/day), respectively. Additionally, fecal samples were collected. 16 S rRNA sequencing and Liquid Chromatography Mass Spectrometry (LC-MS)-based untargeted metabolomics were used to observe the changes of intestinal flora and intestinal metabolites. RESULTS Curcumin treatment restored colon length and structural morphology, and significantly inhibited tumor formation in AOM/DSS-induced CRC model mice. The 16S rRNA sequencing analysis indicated that the diversity and richness of core and total species of intestinal microflora in the CRC group were significantly lower than those in the NC group, which were substantially restored in the curcumin treatment group. Curcumin reduced harmful bacteria, including Ileibacterium, Monoglobus and Desulfovibrio, which were elevated in CRC model mice. Moreover, curcumin increased the abundance of Clostridia_UCG-014, Bifidobacterium and Lactobacillus, which were decreased in CRC model mice. In addition, 13 different metabolites were identified. Compared to the NC group, ethosuximide, xanthosine, and 17-beta-estradiol 3-sulfate-17-(beta-D-glucuronide) were elevated in the CRC model group, whereas curcumin treatment significantly reduced their levels. Conversely, glutamylleucine, gamma-Glutamylleucine, liquiritin, ubenimex, 5'-deoxy-5'-fluorouridine, 7,8-Dihydropteroic acid, neobyakangelicol, libenzapril, xenognosin A, and 7,4'-dihydroxy-8-methylflavan were decreased in the CRC group but notably upregulated by curcumin. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis revealed enrichment in seven pathways, including folate biosynthesis (P < 0.05). CONCLUSIONS The gut microecological balance was disrupted in AOM/DSS-induced CRC mice, accompanied by metabolite dysbiosis. Curcumin restored the equilibrium of the microbiota and regulated metabolites, highly indicating that curcumin may alleviate the development of AOM/DSS induced colorectal cancer in mice by regulating intestinal flora homeostasis and intestinal metabolites.
Collapse
Affiliation(s)
- Wenxin Deng
- Jiangxi Provincial Key Laboratory of Prevention and Treatment of Infectious Diseases, Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, P.R. China
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Xiaojian Xiong
- Jiangxi Provincial Key Laboratory of Prevention and Treatment of Infectious Diseases, Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, P.R. China
| | - Mingyang Lu
- Queen Mary School, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Shibo Huang
- The Clinical Trial Research Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, P.R. China
| | - Yunfei Luo
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Yujie Wang
- Jiangxi Provincial Key Laboratory of Prevention and Treatment of Infectious Diseases, Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, P.R. China
| | - Ying Ying
- Jiangxi Provincial Key Laboratory of Prevention and Treatment of Infectious Diseases, Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, P.R. China.
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
2
|
El-Hajjaji MA, Fikri-Benbrahim K, Soulo N, Nouioura G, Laaroussi H, Ferreira-Santos P, Lyoussi B, Benziane Ouaritini Z. Analgesic, Antioxidant, Anti-Inflammatory, and Wound-Treating Actions of Bitter Apricot Kernel Extract. Adv Pharmacol Pharm Sci 2024; 2024:5574259. [PMID: 39246415 PMCID: PMC11380719 DOI: 10.1155/2024/5574259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
Apricot (Prunus armeniaca L.) kernels have been widely employed in phytomedicine for treating different ailments. This study aims to unveil the phytochemical composition by HPLC-ESI-MS, in vitro antioxidant activity, and examine certain pharmacological effects of the hydro-ethanolic extract from bitter apricot kernels (BAK). Obtained results indicated that the BAK extract presents a content of 4.58 ± 0.15 mg GAE/g extract of TPA and 1.68 ± 0.09 mg QUE/g extract of TFA, respectively. HPLC-ESI-MS analysis discovered the presence of 17 phenolic compounds including phenolic acids and flavonoids like 3,4-dihydroxybenzoic acid, gallic acid, caffeic acid, (+)-catechin, epicatechin, and others, with associated antioxidant power. Regarding the studied potential pharmacological effects, notable analgesic activity at a dosage of 100 mg/kg BW was recorded with 63.46% protection. In the anti-inflammatory test, significant inhibition was observed after 6 hours of treatment (77.4%) compared to untreated animals. Moreover, the daily application of ointment formulated with 10% BAK extract resulted in a remarkable healing of wounds and burns in rats. These findings underscore the increasing evidence supporting the potential use of apricot kernel extracts in treating various diseases.
Collapse
Affiliation(s)
- Mohamed Amine El-Hajjaji
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling Health and Quality of Life Faculty of Sciences Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Kawtar Fikri-Benbrahim
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Najoua Soulo
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling Health and Quality of Life Faculty of Sciences Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Ghizlane Nouioura
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling Health and Quality of Life Faculty of Sciences Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling Health and Quality of Life Faculty of Sciences Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Pedro Ferreira-Santos
- Department of Chemical Engineering Faculty of Science University of Vigo, As Lagoas, Ourense 32004, Spain
- IAA-Instituto de Agroecoloxía e Alimentación University of Vigo (Campus Auga), As Lagoas, Ourense 32004, Spain
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling Health and Quality of Life Faculty of Sciences Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Zineb Benziane Ouaritini
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling Health and Quality of Life Faculty of Sciences Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
3
|
Fadaei MS, Fadaei MR, Kheirieh AE, Rahmanian-Devin P, Dabbaghi MM, Nazari Tavallaei K, Shafaghi A, Hatami H, Baradaran Rahimi V, Nokhodchi A, Askari VR. Niosome as a promising tool for increasing the effectiveness of anti-inflammatory compounds. EXCLI JOURNAL 2024; 23:212-263. [PMID: 38487088 PMCID: PMC10938253 DOI: 10.17179/excli2023-6868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/16/2024] [Indexed: 03/17/2024]
Abstract
Niosomes are drug delivery systems with widespread applications in pharmaceutical research and the cosmetic industry. Niosomes are vesicles of one or more bilayers made of non-ionic surfactants, cholesterol, and charge inducers. Because of their bilayer characteristics, similar to liposomes, niosomes can be loaded with lipophilic and hydrophilic cargos. Therefore, they are more stable and cheaper in preparation than liposomes. They can be classified into four categories according to their sizes and structures, namely small unilamellar vesicles (SUVs), large unilamellar vesicles (LUVs,), multilamellar vesicles (MLVs), and multivesicular vesicles (MVVs). There are many methods for niosome preparation, such as thin-film hydration, solvent injection, and heating method. The current study focuses on the preparation methods and pharmacological effects of niosomes loaded with natural and chemical anti-inflammatory compounds in kinds of literature during the past decade. We found that most research was carried out to load anti-inflammatory agents like non-steroidal anti-inflammatory drugs (NSAIDs) into niosome vesicles. The studies revealed that niosomes could improve anti-inflammatory agents' physicochemical properties, including solubility, cellular uptake, stability, encapsulation, drug release and liberation, efficiency, and oral bioavailability or topical absorption. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Mohammad Saleh Fadaei
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Emad Kheirieh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Abouzar Shafaghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hooman Hatami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, FL 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Moayeri H, Rajabi A, Mohammadi M, Moghaddam SB. Effects of Curcumin on the treatment of oral lichen planus symptoms: a systematic review and meta-analysis study. BMC Oral Health 2024; 24:104. [PMID: 38233780 PMCID: PMC10795217 DOI: 10.1186/s12903-024-03873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/07/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Oral lichen planus (OLP) is a relatively common chronic T-cell-mediated disease that can cause significant pain, particularly in its erosive or ulcerative forms. This study aimed to examine the therapeutic impact of curcumin on symptoms of OLP. MATERIALS AND METHODS This meta-analysis was performed according to the PRISMA guidelines. All related English documents indexed in electronic databases (including PubMed, Web of Science, Scopus, Embase, Wiley, Cochrane, and ProQuest databases [updated to August 15, 2023]) were retrieved. Data were double-extracted into a predefined worksheet, and quality analysis was performed using the Joanna Briggs Institute (JBI) scale. We carried out meta-analyses, and the random effects model was used to estimate the differences in erythema, lesion size, and pain between the curcumin control groups. RESULTS The search identified 289 studies, of which 10 were found to meet the inclusion criteria. The overall findings of the meta-analysis revealed that curcumin did not have a significant effect on erythema of OLP (standardized mean difference [SMD] = -0.14; 95% CI, -0.68 to 0.40; P = 0.61; I2 = 57.50%), lesion size of OLP (SMD = -0.15; 95% CI, -0.45 to 0.15; P = 0.33; I2 = 28.42%), and pain of OLP (SMD = -0.38; 95% CI, -0.97 to 0.22; P = 0.22; I2 = 86.60%). However, subgroup analysis based on treatment duration indicated that 2-week treatment duration was significantly associated with a reduction in OLP pain (n = 3; SMD = -1.21; 95% CI, -2.19 to -0.23; P = 0.01). CONCLUSIONS Curcumin had no significant effect on erythema, lesion size, and pain of OLP compared to the control groups. However, subgroup analysis revealed that curcumin was more effective in reducing pain in non-randomized trials and in trials with a treatment duration of 2 weeks.
Collapse
Affiliation(s)
- Hanie Moayeri
- Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdolhalim Rajabi
- Health Management and Social Development Research Center, Department of Biostatistics and Epidemiology, Faculty of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoud Mohammadi
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Sudabeh Bagheri Moghaddam
- Maxillofacial Medicine, Dental Research Center, Department of Oral and Maxillofacial Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
5
|
Zhu J, Li Q, Wu Z, Xu Y, Jiang R. Curcumin for Treating Breast Cancer: A Review of Molecular Mechanisms, Combinations with Anticancer Drugs, and Nanosystems. Pharmaceutics 2024; 16:79. [PMID: 38258090 PMCID: PMC10819793 DOI: 10.3390/pharmaceutics16010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer (BC) has become the fifth most prevalent cause of cancer-related morbidity, attracting significant attention from researchers due to its heightened malignancy and drug resistance. Conventional chemotherapy approaches have proven inadequate in addressing all BC subtypes, highlighting the urgent need for novel therapeutic approaches or drugs. Curcumin (CUR), a phytochemical derived from Curcuma longa (turmeric), has shown substantial potential in inhibiting BC cell migration, metastasis, and proliferation. However, the use of CUR in this context comes with challenges due to its dynamic and easily degradable nature, poor aqueous solubility, low bioavailability, rapid metabolism, and swift systemic elimination, collectively limiting its clinical applications. As such, we provide an overview of the properties, synthesis, and characterization of the hybridization of CUR and its analogue with chemo-drug building blocks. We reviewed research from the last five years on CUR's biogenesis with respect to the regulation of BC, revealing that CUR participates in arresting BC cells in the cell cycle and significantly induces apoptosis in BC cells. Information on the chemotherapeutic and antitumor mechanisms of CUR in BC, including regulation of the cell cycle, increased cell apoptosis, and inhibition of multidrug resistance (MDR), was compiled. Additionally, we provide an overview of CUR loaded into nanomaterials that are cotreated with other chemotherapeutic drugs, such as paclitaxel, thymoquinone, and tamoxifen. In this review, we discuss different types of nanoparticles that can be used for CUR delivery, such as polymeric nanoparticles, carbon nanotubes, and liposomes. By comparing the size, entrapment efficiency, drug-loading capacity, release time, biocompatibility, pharmaceutical scale, and reproducibility of various nanomaterials, we aimed to determine which formulations are better suited for loading CUR or its analogue. Ultimately, this review is expected to offer inspiring ideas, promising strategies, and potential pathways for developing advanced anti-BC strategy nanosystems in clinical practice.
Collapse
Affiliation(s)
- Jing Zhu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Z.W.)
| | - Qian Li
- Medical Department, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China;
| | - Zhongping Wu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Z.W.)
| | - Ying Xu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Z.W.)
| | - Rilei Jiang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Z.W.)
| |
Collapse
|
6
|
Boshagh K, Khorvash F, Sahebkar A, Majeed M, Bahreini N, Askari G, Bagherniya M. The effects of curcumin-piperine supplementation on inflammatory, oxidative stress and metabolic indices in patients with ischemic stroke in the rehabilitation phase: a randomized controlled trial. Nutr J 2023; 22:69. [PMID: 38082237 PMCID: PMC10712118 DOI: 10.1186/s12937-023-00905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Stroke is a leading cause of death worldwide, which is associated with a heavy economic and social burden. The purpose of this study was to investigate the effects of supplementation with curcumin-piperine combination in patients with ischemic stroke in the rehabilitation stage. METHODS In this randomized controlled trial, 66 patients with stroke were randomized into two groups receiving curcumin-piperine tablets (500 mg curcumin + 5 mg piperine) and matched placebo tablets for 12 weeks. High-sensitivity C-reactive protein (hs-CRP), carotid intima-media thickness (CIMT), thrombosis, total antioxidant capacity (TAC), lipid profile, anthropometric indices, blood pressure, and quality of life were assessed before and after the intervention. Statistical data analysis was done using SPSS22 software. RESULTS A total of 56 patients with a mean age of 59.80 ± 4.25 years completed the trial. Based on ANCOVA test, adjusted for baseline values, curcumin-piperine supplementation for 12 weeks resulted in significant reductions in serum levels of hs-CRP (p = 0.026), total cholesterol (TC) (p = 0.009), triglycerides (TG) (p = 0.001), CIMT (p = 0.002), weight (P = 0.001), waist circumference (p = 0.024), and systolic and diastolic blood pressure (p < 0.001), and a significant increase in TAC (p < 0.001) in comparison to the placebo. Pain score significantly increased in both groups; however, its increase was significantly higher in the placebo group compared with the intervention group (p = 0.007). No significant changes were observed between the two groups in terms of serum fibrinogen, low-density lipoprotein (LDL), high-density lipoprotein (HDL), and quality of life indices. CONCLUSION Curcumin-piperine supplementation had beneficial effects on CIMT, serum hs-CRP, TC, TG, TAC, and systolic and diastolic blood pressure in patients with ischemic stroke in the rehabilitation stage.
Collapse
Affiliation(s)
- Kosar Boshagh
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Neurology Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Muhammed Majeed
- Sabinsa Corporation, 20 Lake Drive, East Windsor, NJ, 08520, USA
| | - Nimah Bahreini
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Jiang T, Han Y, Esmaeilizadeh N, Barkhordari A, Jalil AT, Saleh MM, Talaei S, Pilehvar Y. Epidural Administration of Curcumin-Loaded Polycaprolactone/Gelatin Electrospun Nanofibers for Extended Analgesia After Laminectomy in Rats. Appl Biochem Biotechnol 2023; 195:6557-6571. [PMID: 36881321 DOI: 10.1007/s12010-023-04342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 03/08/2023]
Abstract
Several clinical studies have reported the analgesic effect of curcumin (Curc) in various situations such as rheumatoid arthritis, osteoarthritis, and postsurgical pain. Therefore, in this work, Curc-loaded electrospun nanofibers (NFs) are designed to evaluate their sustained release on analgesic effect duration in rats after epidural placement via repeated formalin and tail-flick tests. The Curc-loaded polycaprolactone/gelatin NFs (Curc-PCL/GEL NFs) are prepared through an electrospinning technique and introduced to the rat's epidural space after laminectomy. The physicochemical and morphology features of the prepared Curc-PCL/GEL NFs were characterized via FE-SEM, FTIR, and degradation assay. The in vitro and in vivo concentrations of Curc were measured to evaluate the analgesic efficacy of the drug-loaded NFs. Rat nociceptive responses are investigated through repeated formalin and tail-flick tests for 5 weeks after the placement of NFs. Curc had a sustained release from the NFs for 5 weeks, and its local pharmaceutical concentrations were much greater than plasma concentrations. Rat's pain scores in both early and late phases of the formalin test were remarkably decreased in the experimental period. Rat's tail-flick latency was remarkably enhanced and remained constant for up to 4 weeks. Our findings show that the Curc-PCL/GEL NFs can supply controlled release of Curc to induce extended analgesia after laminectomy.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Anesthesiology, 3201 Hospital, Hanzhong, 723000, China
| | - Yu Han
- Department of Anesthesiology, 3201 Hospital, Hanzhong, 723000, China
| | | | - Amin Barkhordari
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Abduladheem Turki Jalil
- Medical Laboratory Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Anbar, Iraq
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Sona Talaei
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
8
|
Kaur Sandhu S, Raut J, Kumar S, Singh M, Ahmed B, Singh J, Rana V, Rishi P, Ganesh N, Dua K, Pal Kaur I. Nanocurcumin and viable Lactobacillus plantarum based sponge dressing for skin wound healing. Int J Pharm 2023; 643:123187. [PMID: 37394156 DOI: 10.1016/j.ijpharm.2023.123187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Curcumin loaded solid lipid nanoparticles (CSLNs) and probiotic (Lactobacillus plantarum UBLP-40; L. plantarum) were currently co-incorporated into a wound dressing. The combination with manifold anti-inflammatory, anti-infective, analgesic, and antioxidant properties of both curcumin and L. plantarum will better manage complex healing process. Recent reports indicate that polyphenolics like curcumin improve probiotic effects. Curcumin was nanoencapsulated (CSLNs) to improve its bioprofile and achieve controlled release on the wound bed. Bacteriotherapy (probiotic) is established to promote wound healing via antimicrobial activity, inhibition of pathogenic toxins, immunomodulation, and anti-inflammatory actions. Combination of CSLNs with probiotic enhanced (560%) its antimicrobial effects against planktonic cells and biofilms of skin pathogen, Staphylococcus aureus 9144. The sterile dressing was devised with selected polymers, and optimized for polymer concentration, and dressing characteristics using a central composite design. It exhibited a swelling ratio of 412 ± 36%, in vitro degradation time of 3 h, optimal water vapor transmission rate of 1516.81 ± 155.25 g/m2/day, high tensile strength, low-blood clotting index, case II transport, and controlled release of curcumin. XRD indicated strong interaction between employed polymers. FESEM revealed a porous sponge like meshwork embedded with L. plantarum and CSLNs. It degraded and released L. plantarum, which germinated in the wound bed. The sponge was stable under refrigerated conditions for up to six months. No translocation of probiotic from wound to the internal organs confirmed safety. The dressing exhibited faster wound closure and lowered bioburden in the wound area in mice. This was coupled with a decrease in TNF-α, MMP-9, and LPO levels; and an increase in VEGF, TGF-β, and antioxidant enzymes such as catalase and GSH, establishing multiple healing pathways. Results were compared with CSLNs and probiotic-alone dressings. The dressing was as effective as the silver nanoparticle-based marketed hydrogel dressing; however, the cost and risk of developing resistance would be much lower currently.
Collapse
Affiliation(s)
- Simarjot Kaur Sandhu
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Jayant Raut
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08844, USA
| | - Mandeep Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Bakr Ahmed
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Joga Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Vikas Rana
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | - Narayanan Ganesh
- Jawaharlal Nehru Cancer Hospital & Research Centre, Bhopal 462001, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, New South Wales 2007, Australia
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
9
|
Hassani S, Maghsoudi H, Fattahi F, Malekinejad F, Hajmalek N, Sheikhnia F, Kheradmand F, Fahimirad S, Ghorbanpour M. Flavonoids nanostructures promising therapeutic efficiencies in colorectal cancer. Int J Biol Macromol 2023; 241:124508. [PMID: 37085076 DOI: 10.1016/j.ijbiomac.2023.124508] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Colorectal cancer is among the frequently diagnosed cancers with high mortality rates around the world. Polyphenolic compounds such as flavonoids are secondary plant metabolites which exhibit anti-cancer activities along with anti-inflammatory effects. However, due to their hydrophobicity, sensitivity to degradation and low bioavailability, therapeutic effects have shown poor therapeutic effect. Nano delivery systems such as nanoliposomes, nanomicelles, silica nanoparticles have been investigated to overcome these difficulties. This review provides a summary of the efficiency of certain flavonoids and polyphenols (apigenin, genistein, resveratrol, quercetin, silymarin, catechins, luteolin, fisetin, gallic acid, rutin, and curcumin) on colorectal cancer models. It comprehensively discusses the influence of nano-formulation of flavonoids on their biological functions, including cellular uptake rate, bioavailability, solubility, and cytotoxicity, as well as their potential for reducing colorectal cancer tumor size under in vivo situations.
Collapse
Affiliation(s)
- Sepideh Hassani
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Malekinejad
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nooshin Hajmalek
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran.
| |
Collapse
|
10
|
Balasubramonian B, Selcer KW. The phytochemical curcumin inhibits steroid sulfatase activity in rat liver tissue and NIH-3T3 mouse fibroblast cells. Steroids 2023; 191:109163. [PMID: 36581086 DOI: 10.1016/j.steroids.2022.109163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Curcumin is a phytochemical derived from the spice turmeric that is reported to have therapeutic effects. We are studying the enzyme steroid sulfatase (STS), which removes the sulfate group from inactive steroid hormones in peripheral tissues and we were interested in the effect of curcumin on STS activity due to its structural composition (polyphenolic). We sought to determine if curcumin affects STS activity in two model systems, rat liver and NIH-3T3 mouse fibroblast cells. STS assays were performed on tissue extracts of rat liver, and on NIH-3T3 microsomes and cells, with and without curcumin. Male and female rat liver extracts contained substantial amounts of STS activity, with males averaging higher (4-11 %) levels. Estradiol inhibited STS activity in livers of both sexes at 20 and 10 µM. Curcumin acted as a competitive inhibitor of STS activity in rat liver extracts, with a Ki of 19.8 µM in males and 9.3 µM in females. Curcumin also inhibited STS activity in NIH-3T3 microsomes at both 20 µM and 10 µM, and in whole NIH-3T3 cells at 20 µM. These data are the first to demonstrate STS inhibition by curcumin. Inhibition of STS results in lower active steroid hormone (estrogens and androgens) levels in tissues, possibly altering modulation of immune responses by these steroids.
Collapse
Affiliation(s)
| | - Kyle W Selcer
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
| |
Collapse
|
11
|
Shojaei M, Foshati S, Abdi M, Askari G, Sukhorukov VN, Bagherniya M, Sahebkar A. The effectiveness of nano-curcumin on patients with COVID-19: A systematic review of clinical trials. Phytother Res 2023; 37:1663-1677. [PMID: 36799442 DOI: 10.1002/ptr.7778] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/18/2023]
Abstract
The main aim of the current study was to summarize the findings of available clinical studies to assess nano-curcumin's influence on COVID patients. A comprehensive online search was performed in Scopus, PubMed, ISI Web of Science, and Google Scholar until March 2022 to identify trials that investigated the effects of nano-curcumin in patients with COVID-19. Eight studies comprising 569 patients were included in this review. Compared with placebo, nano-curcumin had no significant effect on C-reactive protein (CRP) and high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). However, gene expression of IL-6 and gene expression as well as secretion of interleukin-1 beta (IL-1β) significantly decreased following nano-curcumin intervention. Nano-curcumin had beneficial effects on fever, cough, chills, myalgia, and olfactory and taste disturbances. The duration of hospitalization and mortality rate were significantly lower in the nano-curcumin group compared with the control group. Lymphocyte count was significantly increased after curcumin supplementation. Nano-curcumin also had favorable effects on O2 saturation, sputum, chest pain, wheeze, and dyspnea in patients with COVID-19. No major adverse effects were reported in response to nano-curcumin supplementation. In summary, the results of this systematic review of clinical trials suggested that nano-curcumin supplementation has beneficial effects on inflammation, respiratory function, disease manifestations, and complications in patients with COVID-19 viral infection.
Collapse
Affiliation(s)
- Mehrnaz Shojaei
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Foshati
- Food Security Research Center, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohaddese Abdi
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mohammad Bagherniya
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Pan S, Yan J, Xu X, Chen Y, Chen X, Li F, Xing H. Current Development and Future Application Prospects of Plants-Derived Polyphenol Bioactive Substance Curcumin as a Novel Feed Additive in Livestock and Poultry. Int J Mol Sci 2022; 23:ijms231911905. [PMID: 36233207 PMCID: PMC9570258 DOI: 10.3390/ijms231911905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Curcumin (CUR) is a kind of natural orange-yellow phenolic compound mainly extracted from the stems and roots of turmeric plants and other species in the genus Curcuma, furthermore, it is also the most important active ingredient exerting pharmacological functions in turmeric. In recent years, CUR has been frequently reported and has attracted widespread attention from scholars all over the world due to its numerous biological functions and good application prospects, such as anti-inflammatory, anticancer, antioxidant and providing lipid-lowering effects, etc. In addition, adding a certain dose of CUR to livestock and poultry feed is important for animal growth and development, which plays a key role in animal metabolism, reproduction, immunity and clinical health care. This review aims to summarize, based on the published papers and our own observations, the physical and chemical properties and the biological functions of the plant-derived bioactive ingredient CUR, especially regarding the latest research progress in regulating intestinal health as well as its current development and future application prospects in livestock and poultry as a novel feed additive, so as to provide theoretical and practical references for the further study of the application of CUR as a novel feed additive and a potential new antibiotic substitute, thereby improving the research field of plant-derived bioactive ingredients and promoting the healthy development of livestock and poultry.
Collapse
Affiliation(s)
- Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Department of Animal Science, Washington State University, Pullman, WA 99163, USA
- Correspondence: ; Tel.: +86-5148-7979-274; Fax: +86-514-8797-2218
| | - Jie Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xingyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yongfang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xinyu Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Fei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
13
|
Sterniczuk B, Rossouw PE, Michelogiannakis D, Javed F. Effectiveness of Curcumin in Reducing Self-Rated Pain-Levels in the Orofacial Region: A Systematic Review of Randomized-Controlled Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116443. [PMID: 35682028 PMCID: PMC9180889 DOI: 10.3390/ijerph19116443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
The aim was to systematically review randomized controlled trials (RCTs) that assessed the effectiveness of curcumin in reducing self-rated pain levels in the orofacial region (OFR). The addressed focused question was “Is curcumin effective in reducing self-rated pain levels in the OFR?”. Indexed databases (PubMed (National Library of Medicine), Scopus, EMBASE, MEDLINE (OVID), and Web of Science) were searched up to and including February 2022 using different keywords. The inclusion criteria were (a) original studies (RCTs) in indexed databases; and (b) studies assessing the role of curcumin in the management of pain in the OFR. The risk of bias was assessed using the Cochrane risk of bias tool. The pattern of the present systematic review was customized to primarily summarize the pertinent information. Nineteen RCTs were included. Results from 79% of the studies reported that curcumin exhibits analgesic properties and is effective in reducing self-rated pain associated with the OFR. Three studies had a low risk of bias, while nine and seven studies had a moderate and high risk of bias, respectively. Curcumin can be used as an alternative to conventional therapies in alleviating pain in the OFR. However, due to the limitations and risk of bias in the aforementioned studies, more high-quality RCTs are needed.
Collapse
|
14
|
Chen L, Dai Z, Ge C, Huang D, Zhou X, Pan K, Xu W, Fu J, lin Du J. Specific Metabolic Response of Patient-derived Organoids to Curcumin of Colorectal Cancer. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1203:123260. [DOI: 10.1016/j.jchromb.2022.123260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/17/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022]
|
15
|
Andrews FM, Riggs LM, Lopez MJ, Keowen ML, Garza F, Takawira C, Liu C, Liu Y, Seeram NP, Cairy A, St. Blanc M. Effect of an oral supplement containing curcumin extract (Longvida
®
) on lameness due to osteoarthritis and gastric ulcer scores. EQUINE VET EDUC 2022. [DOI: 10.1111/eve.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- F. M. Andrews
- Equine Health Studies Program Department of Veterinary Clinical Sciences School of Veterinary Medicine Louisiana State University Baton Rouge Louisiana USA
| | - L. M. Riggs
- Equine Health Studies Program Department of Veterinary Clinical Sciences School of Veterinary Medicine Louisiana State University Baton Rouge Louisiana USA
| | - M. J. Lopez
- Equine Health Studies Program Department of Veterinary Clinical Sciences School of Veterinary Medicine Louisiana State University Baton Rouge Louisiana USA
| | - M. L. Keowen
- Equine Health Studies Program Department of Veterinary Clinical Sciences School of Veterinary Medicine Louisiana State University Baton Rouge Louisiana USA
| | - F. Garza
- Equine Health Studies Program Department of Veterinary Clinical Sciences School of Veterinary Medicine Louisiana State University Baton Rouge Louisiana USA
| | - C. Takawira
- Equine Health Studies Program Department of Veterinary Clinical Sciences School of Veterinary Medicine Louisiana State University Baton Rouge Louisiana USA
| | - C.‐C. Liu
- Equine Health Studies Program Department of Veterinary Clinical Sciences School of Veterinary Medicine Louisiana State University Baton Rouge Louisiana USA
| | - Y. Liu
- Bioactive Botanical Research Laboratory Department of Biomedical and Pharmaceutical Sciences College of Pharmacy University of Rhode Island Kingston Rhode Island USA
| | - N. P. Seeram
- Bioactive Botanical Research Laboratory Department of Biomedical and Pharmaceutical Sciences College of Pharmacy University of Rhode Island Kingston Rhode Island USA
| | - A. Cairy
- W.F. Young, Inc East Longmeadow Massachusetts USA
| | - M. St. Blanc
- Equine Health Studies Program Department of Veterinary Clinical Sciences School of Veterinary Medicine Louisiana State University Baton Rouge Louisiana USA
| |
Collapse
|
16
|
Caliskan UK, Karakus MM. Evaluation of botanicals as potential COVID-19 symptoms terminator. World J Gastroenterol 2021; 27:6551-6571. [PMID: 34754152 PMCID: PMC8554406 DOI: 10.3748/wjg.v27.i39.6551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/01/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Information about the coronavirus disease 2019 (COVID-19) pandemic is still evolving since its appearance in December 2019 and has affected the whole world. Particularly, a search for an effective and safe treatment for COVID-19 continues. Botanical mixtures contain secondary metabolites (such as flavonoids, phenolics, alkaloids, essential oils etc.) with many therapeutic effects. In this study, the use of herbal treatments against COVID-19 was evaluated. Medical synthetic drugs focus mainly on respiratory symptoms, however herbal therapy with plant extracts may be useful to relieve overall symptoms of COVID-19 due to the variety of bioactive ingredients. Since COVID-19 is a virus that affects the respiratory tract, the antiviral effects of botanicals/plants against respiratory viruses have been examined through clinical studies. Data about COVID-19 patients revealed that the virus not only affects the respiratory system but different organs including the gastrointestinal (GI) system. As GI symptoms seriously affect quality of life, herbal options that might eliminate these problems were also evaluated. Finally, computer modeling studies of plants and their active compounds on COVID-19 were included. In summary, herbal therapies were identified as potential options for both antiviral effects and control of COVID-19 symptoms. Further data will be needed to enlighten all aspects of COVID-19 pathogenesis, before determining the effects of plants on severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Ufuk Koca Caliskan
- Department of Pharmacognosy and Pharmaceutical Botany, Gazi University, Ankara 06500, Turkey
| | - Methiye Mancak Karakus
- Department of Pharmacognosy and Pharmaceutical Botany, Gazi University, Ankara 06500, Turkey
| |
Collapse
|
17
|
Barua N, Buragohain AK. Therapeutic Potential of Curcumin as an Antimycobacterial Agent. Biomolecules 2021; 11:biom11091278. [PMID: 34572491 PMCID: PMC8470464 DOI: 10.3390/biom11091278] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/06/2023] Open
Abstract
Curcumin is the principal curcuminoid obtained from the plant Curcuma longa and has been extensively studied for its biological and chemical properties. Curcumin displays a vast range of pharmacological properties, including antimicrobial, anti-inflammatory, antioxidant, and antitumor activity. Specifically, curcumin has been linked to the improvement of the outcome of tuberculosis. There are many reviews on the pharmacological effects of curcumin; however, reviews of the antitubercular activity are comparatively scarcer. In this review, we attempt to discuss the different aspects of the research on the antitubercular activity of curcumin. These include antimycobacterial activity, modulation of the host immune response, and enhancement of BCG vaccine efficacy. Recent advances in the antimycobacterial activity of curcumin synthetic derivatives, the role of computer aided drug design in identifying curcumin targets, the hepatoprotective role of curcumin, and the dosage and toxicology of curcumin will be discussed. While growing evidence supports the use of curcumin and its derivatives for tuberculosis therapy, further preclinical and clinical investigations are of pivotal importance before recommending the use of curcumin formulations in public health.
Collapse
Affiliation(s)
- Nilakshi Barua
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin 999077, Hong Kong
- Correspondence: (N.B.); (A.K.B.)
| | - Alak Kumar Buragohain
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India
- Department of Biotechnology, Royal Global University, Guwahati 781035, India
- Correspondence: (N.B.); (A.K.B.)
| |
Collapse
|
18
|
Razavi BM, Ghasemzadeh Rahbardar M, Hosseinzadeh H. A review of therapeutic potentials of turmeric (Curcuma longa) and its active constituent, curcumin, on inflammatory disorders, pain, and their related patents. Phytother Res 2021; 35:6489-6513. [PMID: 34312922 DOI: 10.1002/ptr.7224] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022]
Abstract
Turmeric (Curcuma longa) and its constituent, curcumin, have been used for their therapeutic properties for a long time. Most of the medicinal impacts of turmeric and curcumin might be attributed to their anti-inflammatory, antinociceptive, and antioxidant effects. In the present review, the preventive and therapeutic potentials of turmeric and its active constituent, curcumin, on inflammatory disorders and pain as well as patents related to their analgesic and anti-inflammatory effects, have been summarized to highlight their value on human health. A literature review was accomplished in Google Scholar, PubMed, Scopus, Google Patent, Patentscope, and US Patent. Several documents and patents disclosed the significance of turmeric and curcumin to apply in several therapeutic, medicinal, and pharmaceutical fields. These phytocompounds could be applied as a supplementary therapy in phytotherapy, inflammatory disorders such as arthritis, inflammatory bowel diseases, osteoarthritis, psoriasis, dermatitis, and different types of pain including neuropathic pain. However, because of inadequate clinical trials, further high-quality studies are needed to firmly establish the clinical efficacy of the plant. Consistent with the human tendency to the usage of phytocompounds rather than synthetic drugs, particular consideration must be dedicated to bond the worth of turmeric and curcumin from basic sciences to clinical applications.
Collapse
Affiliation(s)
- Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Sandhu SK, Kumar S, Raut J, Singh M, Kaur S, Sharma G, Roldan TL, Trehan S, Holloway J, Wahler G, Laskin JD, Sinko PJ, Berthiaume F, Michniak-Kohn B, Rishi P, Ganesh N, Kaur IP. Systematic Development and Characterization of Novel, High Drug-Loaded, Photostable, Curcumin Solid Lipid Nanoparticle Hydrogel for Wound Healing. Antioxidants (Basel) 2021; 10:725. [PMID: 34063003 PMCID: PMC8148018 DOI: 10.3390/antiox10050725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 01/14/2023] Open
Abstract
The study aims to develop high drug-loaded (about 15% lipid matrix) curcumin solid lipid nanoparticles (CSLNs) for wound healing. CSLNs prepared by hot, high-pressure homogenization, without using organic solvents, were optimized using the Taguchi design followed by the central composite design. The optimized CSLNs exhibited a high assay/drug content (0.6% w/w), solubility (6 × 105 times), and EE (75%) with a particle size < 200 nm (PDI-0.143). The CSLNs were safe (in vitro and in vivo), photostable, autoclavable, stable up to one year at 30 °C and under refrigeration and exhibited a controlled release (zero-order; 5 days). XRD, FTIR, and DSC confirmed solubilization and entrapment of the curcumin within the SLNs. TEM and FESEM revealed a smooth and spherical shape. The CSLNs showed a significant antimicrobial effect (MIC of 64 µg/mL for planktonic cells; 512 µg/mL for biofilm formation; and 2 mg/mL for mature biofilm) against Staphylococcus aureus 9144, while free curcumin dispersion did not exhibit any effect. This is the first report on the disruption of mature biofilms by curcumin solid lipid nanoparticles (CSLNs). The cell proliferation potential of CSLNs was also evaluated in vitro while the wound healing potential of CSLNs (incorporated in a hydrogel) was assessed in vivo. In (i) nitrogen mustard gas and (ii) a full-thickness excision wound model, CSLNs exhibited (a) significantly faster wound closure, (b) histologically and immunohistochemically better healing, (c) lower oxidative stress (LPO) and (d) inflammation (TNFα), and (e) increased angiogenesis (VEGF) and antioxidant enzymes, i.e., catalase and GSH levels. CSLNs thus offer a promising modern wound therapy especially for infected wounds, considering their effects in mature biofilm disruption.
Collapse
Affiliation(s)
- Simarjot Kaur Sandhu
- Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; (S.K.S.); (J.R.); (M.S.); (S.K.); (G.S.)
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA; (S.K.); (F.B.)
| | - Jayant Raut
- Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; (S.K.S.); (J.R.); (M.S.); (S.K.); (G.S.)
| | - Mandeep Singh
- Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; (S.K.S.); (J.R.); (M.S.); (S.K.); (G.S.)
| | - Sandeep Kaur
- Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; (S.K.S.); (J.R.); (M.S.); (S.K.); (G.S.)
| | - Garima Sharma
- Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; (S.K.S.); (J.R.); (M.S.); (S.K.); (G.S.)
| | - Tomas L. Roldan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA; (T.L.R.); (J.H.); (P.J.S.); (B.M.-K.)
- Counter ACT Center of Excellence, Rutgers University, Piscataway, NJ 08854, USA; (G.W.); (J.D.L.)
| | - Sonia Trehan
- Center for Dermal Research (CDR), Life Sciences Building, Rutgers University, Piscataway, NJ 08854, USA;
| | - Jennifer Holloway
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA; (T.L.R.); (J.H.); (P.J.S.); (B.M.-K.)
- Counter ACT Center of Excellence, Rutgers University, Piscataway, NJ 08854, USA; (G.W.); (J.D.L.)
| | - Gabriella Wahler
- Counter ACT Center of Excellence, Rutgers University, Piscataway, NJ 08854, USA; (G.W.); (J.D.L.)
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeffrey D. Laskin
- Counter ACT Center of Excellence, Rutgers University, Piscataway, NJ 08854, USA; (G.W.); (J.D.L.)
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Patrick J. Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA; (T.L.R.); (J.H.); (P.J.S.); (B.M.-K.)
- Counter ACT Center of Excellence, Rutgers University, Piscataway, NJ 08854, USA; (G.W.); (J.D.L.)
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA; (S.K.); (F.B.)
| | - Bozena Michniak-Kohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA; (T.L.R.); (J.H.); (P.J.S.); (B.M.-K.)
- Center for Dermal Research (CDR), Life Sciences Building, Rutgers University, Piscataway, NJ 08854, USA;
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh 160014, India;
| | - Narayanan Ganesh
- Jawaharlal Nehru Cancer Hospital & Research Centre, Bhopal 462001, India;
| | - Indu Pal Kaur
- Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; (S.K.S.); (J.R.); (M.S.); (S.K.); (G.S.)
| |
Collapse
|
20
|
Effects of Curcumin and Its Different Formulations in Preclinical and Clinical Studies of Peripheral Neuropathic and Postoperative Pain: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22094666. [PMID: 33925121 PMCID: PMC8125634 DOI: 10.3390/ijms22094666] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Lesion or disease of the somatosensory system leads to the development of neuropathic pain. Peripheral neuropathic pain encompasses damage or injury of the peripheral nervous system. On the other hand, 10–15% of individuals suffer from acute postoperative pain followed by persistent pain after undergoing surgeries. Antidepressants, anticonvulsants, baclofen, and clonidine are used to treat peripheral neuropathy, whereas opioids are used to treat postoperative pain. The negative effects associated with these drugs emphasize the search for alternative therapeutics with better efficacy and fewer side effects. Curcumin, a polyphenol isolated from the roots of Curcuma longa, possesses antibacterial, antioxidant, and anti-inflammatory properties. Furthermore, the low bioavailability and fast metabolism of curcumin have led to the advent of various curcumin formulations. The present review provides a comprehensive analysis on the effects of curcumin and its formulations in preclinical and clinical studies of neuropathic and postoperative pain. Based on the positive outcomes from both preclinical and clinical studies, curcumin holds the promise of mitigating or preventing neuropathic and postoperative pain conditions. However, more clinical studies with improved curcumin formulations are required to involve its use as adjuvant to neuropathic and postoperative drugs.
Collapse
|
21
|
Hettiarachchi S, Dunuweera SP, Dunuweera AN, Rajapakse RMG. Synthesis of Curcumin Nanoparticles from Raw Turmeric Rhizome. ACS OMEGA 2021; 6:8246-8252. [PMID: 33817483 PMCID: PMC8015141 DOI: 10.1021/acsomega.0c06314] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/08/2021] [Indexed: 05/03/2023]
Abstract
Turmeric (Curcuma longa L.) has been used as a spice and a medicinal herb since ancient times. The main active ingredient of turmeric is curcumin, a polyphenol that helps prevent and control neurological, respiratory, cardiovascular, metabolic, inflammatory, and autoimmune diseases and some cancers. However, curcumin has drawbacks such as low water-solubility, poor absorption, fast metabolism, quick systemic elimination, low bioavailability, poor pharmacokinetics, low stability, and low penetration targeting efficacy. To overcome these drawbacks, a common method used is encapsulating curcumin in nanocarriers for targeted delivery. However, the degraded products of nanocarriers have raised concerns. In this research, we synthesized nanoparticles of curcumin, nanocurcumin without using nanocarriers. To do so, curcumin was soxhlet extracted from raw turmeric rhizome. The stock solutions of different curcumin concentrations prepared in dichloromethane were added to boiling water at different flow rates and sonicated for different time intervals. An average particle size of 82 ± 04 nm was obtained with 5.00 mg/mL stock solution concentration, at 0.10 mL/min flow rate and 30 min sonication time. The particle size tends to increase with the flow rate and the concentration of curcumin in the stock solution but decreases with the sonication time. X-ray diffraction shows sharp and intense diffraction peaks for curcumin, indicating its identity and high crystallinity, but nanocurcumins are amorphous. Fourier-transform infrared spectroscopy spectra confirm the presence of all the functional groups of curcumin in nanocurcumin. Transmission electron microscopy and scanning electron microscopy images show the perfectly spherical morphology of nanocurcumin. Although curcumin is not water-soluble, nano-curcumin formulations are freely dispersible in water.
Collapse
Affiliation(s)
| | | | - Asiri N. Dunuweera
- Department
of Basic Science, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - R. M. Gamini Rajapakse
- Department
of Chemistry, Faculty of Science, University
of Peradeniya, Peradeniya 20400, Sri Lanka
| |
Collapse
|
22
|
Herbal Medicine for Pain Management: Efficacy and Drug Interactions. Pharmaceutics 2021; 13:pharmaceutics13020251. [PMID: 33670393 PMCID: PMC7918078 DOI: 10.3390/pharmaceutics13020251] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 11/29/2022] Open
Abstract
Complementary and alternative medicines such as herbal medicines are not currently part of the conventional medical system. As the popularity of and global market for herbal medicine grows among all age groups, with supporting scientific data and clinical trials, specific alternative treatments such as herbal medicine can be reclassified as a practice of conventional medicine. One of the most common conditions for which adults use herbal medicine is pain. However, herbal medicines carry safety concerns and may impact the efficacy of conventional therapies. Unfortunately, mechanisms of action are poorly understood, and their use is unregulated and often underreported to medical professionals. This review aims to compile common and available herbal medicines which can be used as an alternative to or in combination with conventional pain management approaches. Efficacy and safety are assessed through clinical studies on pain relief. Ensuing herb–drug interactions such as cytochrome modulation, additive and synergistic effects, and contraindications are discussed. While self-management has been recognized as part of the overall treatment strategy for patients suffering from chronic pain, it is important for practitioners to be able to also optimize and integrate herbal medicine and, if warranted, other complementary and alternative medicines into their care.
Collapse
|
23
|
Akbari J, Saeedi M, Enayatifard R, Morteza-Semnani K, Hassan Hashemi SM, Babaei A, Rahimnia SM, Rostamkalaei SS, Nokhodchi A. Curcumin Niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Babaei F, Nassiri‐Asl M, Hosseinzadeh H. Curcumin (a constituent of turmeric): New treatment option against COVID-19. Food Sci Nutr 2020; 8:5215-5227. [PMID: 33133525 PMCID: PMC7590269 DOI: 10.1002/fsn3.1858] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
In late December 2019, the outbreak of respiratory illness emerged in Wuhan, China, and spreads worldwide. World Health Organization (WHO) named this disease severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused by a new member of beta coronaviruses. Several medications are prescribed to patients, and some clinical trials are underway. Scientists are trying to find a specific drug against this virus. In this review, we summarize the pathogenesis, clinical features, and current treatments of coronavirus disease 2019 (COVID-19). Then, we describe the possible therapeutic effects of curcumin and its molecular mechanism against coronavirus-19. Curcumin, as an active constituent of Curcuma longa (turmeric), has been studied in several experimental and clinical trial studies. Curcumin has some useful clinical effects such as antiviral, antinociceptive, anti-inflammatory, antipyretic, and antifatigue effects that could be effective to manage the symptoms of the infected patient with COVID-19. It has several molecular mechanisms including antioxidant, antiapoptotic, and antifibrotic properties with inhibitory effects on Toll-like receptors, NF-κB, inflammatory cytokines and chemokines, and bradykinin. Scientific evidence suggests that curcumin could have a potential role to treat COVID-19. Thus, the use of curcumin in the clinical trial, as a new treatment option, should be considered.
Collapse
Affiliation(s)
- Fatemeh Babaei
- Department of Clinical BiochemistrySchool of Medicine, Student Research CommitteeShahid Beheshti University of Medical SciencesTehranIran
| | - Marjan Nassiri‐Asl
- Department of Pharmacology and Neurobiology Research CenterSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and ToxicologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
25
|
Scazzocchio B, Minghetti L, D’Archivio M. Interaction between Gut Microbiota and Curcumin: A New Key of Understanding for the Health Effects of Curcumin. Nutrients 2020; 12:E2499. [PMID: 32824993 PMCID: PMC7551052 DOI: 10.3390/nu12092499] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Curcumin, a lipophilic polyphenol contained in the rhizome of Curcuma longa (turmeric), has been used for centuries in traditional Asian medicine, and nowadays it is widely used in food as dietary spice worldwide. It has received considerable attention for its pharmacological activities, which appear to act primarily through anti-inflammatory and antioxidant mechanisms. For this reason, it has been proposed as a tool for the management of many diseases, among which are gastrointestinal and neurological diseases, diabetes, and several types of cancer. However, the pharmacology of curcumin remains to be elucidated; indeed, a discrepancy exists between the well-documented in vitro and in vivo activities of curcumin and its poor bioavailability and chemical instability that should limit any therapeutic effect. Recently, it has been hypothesized that curcumin could exert direct regulative effects primarily in the gastrointestinal tract, where high concentrations of this polyphenol have been detected after oral administration. Consequently, it might be hypothesized that curcumin directly exerts its regulatory effects on the gut microbiota, thus explaining the paradox between its low systemic bioavailability and its wide pharmacological activities. It is well known that the microbiota has several important roles in human physiology, and its composition can be influenced by a multitude of environmental and lifestyle factors. Accordingly, any perturbations in gut microbiome profile or dysbiosis can have a key role in human disease progression. Interestingly, curcumin and its metabolites have been shown to influence the microbiota. It is worth noting that from the interaction between curcumin and microbiota two different phenomena arise: the regulation of intestinal microflora by curcumin and the biotransformation of curcumin by gut microbiota, both of them potentially crucial for curcumin activity. This review summarizes the most recent studies on this topic, highlighting the strong connection between curcumin and gut microbiota, with the final aim of adding new insight into the potential mechanisms by which curcumin exerts its effects.
Collapse
Affiliation(s)
- Beatrice Scazzocchio
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Luisa Minghetti
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Massimo D’Archivio
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| |
Collapse
|
26
|
Salehi M, Movahedpour A, Tayarani A, Shabaninejad Z, Pourhanifeh MH, Mortezapour E, Nickdasti A, Mottaghi R, Davoodabadi A, Khan H, Savardashtaki A, Mirzaei H. Therapeutic potentials of curcumin in the treatment of non-small-cell lung carcinoma. Phytother Res 2020; 34:2557-2576. [PMID: 32307773 DOI: 10.1002/ptr.6704] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Non-small-cell lung carcinoma (NSCLC) is one of the most lethal malignancies that include more than 80% of lung cancer cases worldwide. During the past decades, plants and plant-derived products have attracted great interest in the treatment of various human diseases. Curcumin, the turmeric isolated natural phenolic compound, has shown a promising chemo-preventive and anticancer agent. Numerous studies have shown that curcumin delays the initiation and progression of NSCLC by affecting a wide range of molecular targets and cell signalling pathways including NF-kB, Akt, MAPKS, BCL-2, ROS and microRNAs (miRNAs). However, the poor oral bioavailability and low chemical stability of curcumin remain as major challenges in the utilisation of this compound as a therapeutic agent. Different analogs of curcumin and new delivery systems (e.g., micelles, nanoparticles and liposomes) provided promising solutions to overcome these obstacles and improve curcumin pharmacokinetic profile. The present review focuses on current reported studies about anti-NSCLC effects of curcumin. NSCLC involved miRNAs whose expression is regulated by curcumin has also been discussed. Furthermore, recent researches on the use of curcumin analogs and delivery systems to enhance the curcumin benefits in NSCLC are also described.
Collapse
Affiliation(s)
- Mahsa Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Tayarani
- Student research committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Erfan Mortezapour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Nickdasti
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Mottaghi
- Department of Oral and Maxillofacial Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
27
|
Curcumin and colorectal cancer: An update and current perspective on this natural medicine. Semin Cancer Biol 2020; 80:73-86. [PMID: 32088363 PMCID: PMC7438305 DOI: 10.1016/j.semcancer.2020.02.011] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of most common malignancies worldwide and its incidence is still growing. In spite of recent advances in targeted therapies, their clinical efficacy has been limited, non-curative and unaffordable. A growing body of literature indicates that CRC is a multi-modal disease, where a variety of factors within the tumor microenvironment play a significant role in its pathogenesis. For instance, imbalance in gut microbial profiles and impaired intestinal barrier function contribute to the overall intestinal inflammation and initiation of CRC. Moreover, persistent chronic inflammation favors a tumor microenvironment for the growth of cancer. In addition, autophagy or 'self-eating' is a surveillance mechanism involved in the degradation of cellular constituents that are generated under stressful conditions. Cancer stem cells (CSCs), on the other hand, engage in the onset of CRC and are able to endow cancer cells with chemo-resistance. Furthermore, the aberrant epigenetic alterations promote CRC. These evidences highlight the need for multi-targeted approaches that are not only safe and inexpensive but offer a more effective alternative to current generation of targeted drugs. Curcumin, derived from the plant Curcuma longa, represents one such option that has a long history of its use for a variety of chronic disease including cancer, in Indian ayurvedic and traditional Chinese medicine. Scientific evidence over the past few decades have overwhelmingly shown that curcumin exhibits a multitude of anti-cancer activities orchestrated through key signaling pathways associated with cancer. In this article, we will present a current update and perspective on this natural medicine - incorporating the basic cellular mechanisms it effects and the current state of clinical evidence, challenges and promise for its use as a cancer preventative and potential adjunct together with modern therapies for CRC patients.
Collapse
|
28
|
|
29
|
Shanmugarajan D, P. P, Kumar BRP, Suresh B. Curcumin to inhibit binding of spike glycoprotein to ACE2 receptors: computational modelling, simulations, and ADMET studies to explore curcuminoids against novel SARS-CoV-2 targets. RSC Adv 2020; 10:31385-31399. [PMID: 35520671 PMCID: PMC9056388 DOI: 10.1039/d0ra03167d] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/08/2020] [Indexed: 11/21/2022] Open
Abstract
The significant role of curcumin against SARS-CoV-2 drug targets to thwart virus replication and binding into the host system using the computational biology paradigm approach.
Collapse
Affiliation(s)
- Dhivya Shanmugarajan
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- JSS Academy of Higher Education & Research
- Mysuru 570 015
- India
| | - Prabitha P.
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- JSS Academy of Higher Education & Research
- Mysuru 570 015
- India
| | - B. R. Prashantha Kumar
- Department of Pharmaceutical Chemistry
- JSS College of Pharmacy
- JSS Academy of Higher Education & Research
- Mysuru 570 015
- India
| | - B. Suresh
- JSS Academy of Higher Education & Research
- Mysuru 570 015
- India
| |
Collapse
|
30
|
In Silico Prediction of PAMPA Effective Permeability Using a Two-QSAR Approach. Int J Mol Sci 2019; 20:ijms20133170. [PMID: 31261723 PMCID: PMC6651837 DOI: 10.3390/ijms20133170] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Oral administration is the preferred and predominant route of choice for medication. As such, drug absorption is one of critical drug metabolism and pharmacokinetics (DM/PK) parameters that should be taken into consideration in the process of drug discovery and development. The cell-free in vitro parallel artificial membrane permeability assay (PAMPA) has been adopted as the primary screening to assess the passive diffusion of compounds in the practical applications. A classical quantitative structure–activity relationship (QSAR) model and a machine learning (ML)-based QSAR model were derived using the partial least square (PLS) scheme and hierarchical support vector regression (HSVR) scheme to elucidate the underlying passive diffusion mechanism and to predict the PAMPA effective permeability, respectively, in this study. It was observed that HSVR executed better than PLS as manifested by the predictions of the samples in the training set, test set, and outlier set as well as various statistical assessments. When applied to the mock test, which was designated to mimic real challenges, HSVR also showed better predictive performance. PLS, conversely, cannot cover some mechanistically interpretable relationships between descriptors and permeability. Accordingly, the synergy of predictive HSVR and interpretable PLS models can be greatly useful in facilitating drug discovery and development by predicting passive diffusion.
Collapse
|
31
|
Phoolcharoen N, Oranratanaphan S, Ariyasriwatana C, Worasethsin P. Efficacy of curcuminoids for reducing postoperative pain after laparoscopic gynecologic surgery: A pilot randomized trial. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2019; 16:/j/jcim.ahead-of-print/jcim-2018-0224/jcim-2018-0224.xml. [PMID: 31150356 DOI: 10.1515/jcim-2018-0224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022]
Abstract
Background Curcuminoids, which are substances extracted from turmeric, have been proved to have anti-inflammatory and analgesic effects along with a good safety profile. This study aimed to evaluate the clinical efficacy of curcuminoids for reducing postoperative pain in patients who undergo laparoscopic gynecologic surgery. Methods From November 2016 to December 2017, participants were randomly assigned, by blocks of four, to the intervention and control arms of the study. Altogether, 60 patients who were to undergo laparoscopic gynecologic surgery at our institution were enrolled. Intraoperative findings were not significantly different between the two groups. One tablet of curcuminoid extract 250 mg was given to patients in the intervention group four times a day on postoperative days 1-3. Pain was evaluated at 24 and 72 h postoperatively using a 10-point visual analog scale (VAS). Results The median VAS score 24 h after surgery was 3 (1-6) in the intervention group and 4.5 (3-7) in the control group, with the difference reaching statistical significance (p=0.001). The median VAS at 72 h after surgery was 1 (0-2) in the intervention group and 2 (1-5) in the control group (p<0.001). Conclusion Curcuminoids may be an effective supplement to reduce pain severity postoperatively following laparoscopic gynecologic surgery. Trial Registration TCTR20180215001 www.clinicaltrials.in.th.
Collapse
Affiliation(s)
- Natacha Phoolcharoen
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Shina Oranratanaphan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chai Ariyasriwatana
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pongkasem Worasethsin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
32
|
Seo EJ, Efferth T, Panossian A. Curcumin downregulates expression of opioid-related nociceptin receptor gene (OPRL1) in isolated neuroglia cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:285-299. [PMID: 30466988 DOI: 10.1016/j.phymed.2018.09.202] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/22/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Curcumin (CC) exerts polyvalent pharmacological actions and multi-target effects, including pain relief and anti-nociceptive activity. In combination with Boswellia serrata extract (BS), curcumin shows greater efficacy in knee osteoarthritis management, presumably due to synergistic interaction of the ingredients. AIM To elucidate the molecular mechanisms underlying the analgesic activity of curcumin and its synergistic interaction with BS. METHODS We performed gene expression profiling by transcriptome-wide mRNA sequencing in human T98G neuroglia cells treated with CC (Curamed), BS, and the combination of CC and BS (CC-BS; Curamin), followed by interactive pathways analysis of the regulated genes. RESULTS Treatment with CC and with CC-BS selectively downregulated opioid-related nociceptin receptor 1 gene (OPRL1) expression by 5.9-fold and 7.2-fold, respectively. No changes were detected in the other canonical opioid receptor genes: OPRK1, OPRD1, and OPRM1. Nociceptin reportedly increases the sensation of pain in supra-spinal pain transduction pathways. Thus, CC and CC-BS may downregulate OPRL1, consequently inhibiting production of the nociception receptor NOP, leading to pain relief. In neuroglia cells, CC and CC-BS inhibited signaling pathways related to opioids, neuropathic pain, neuroinflammation, osteoarthritis, and rheumatoid diseases. CC and CC-BS also downregulated ADAM metallopeptidase gene ADAMTS5 expression by 11.2-fold and 13.5-fold, respectively. ADAMTS5 encodes a peptidase that plays a crucial role in osteoarthritis development via inhibition of a corresponding signaling pathway. CONCLUSION Here, we report for the first time that CC and CC-BS act as nociceptin receptor antagonists, selectively downregulating opioid-related nociceptin receptor 1 gene (OPRL1) expression, which is associated with pain relief. BS alone did not affect OPRL1 expression, but rather appears to potentiate the effects of CC via multiple mechanisms, including synergistic interactions of molecular networks.
Collapse
Affiliation(s)
- Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Alexander Panossian
- EuroPharma USA Inc., 955 Challenger Dr., Green Bay, WI 54311, USA; Phytomed AB,Bofinkvagen 1, 31275 Vaxtorp, Halland, Sweden.
| |
Collapse
|