1
|
Pallarés S, Carbonell JA, Picazo F, Bilton DT, Millán A, Abellán P. Intraspecific variation of thermal tolerance along elevational gradients: the case of a widespread diving beetle (Coleoptera: Dytiscidae). INSECT SCIENCE 2024. [PMID: 39586796 DOI: 10.1111/1744-7917.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 11/27/2024]
Abstract
Species distributed across wide elevational gradients are likely to experience local thermal adaptation and exhibit high thermal plasticity, as these gradients are characterised by steep environmental changes over short geographic distances (i.e., strong selection differentials). The prevalence of adaptive intraspecific variation in thermal tolerance with elevation remains unclear, however, particularly in freshwater taxa. We explored variation in upper and lower thermal limits and acclimation capacity among Iberian populations of adults of the widespread water beetle Agabus bipustulatus (Dytiscidae) across a 2000 m elevational gradient, from lowland to alpine areas. Since mean and extreme temperatures decline with elevation, we predicted that populations at higher elevations will show lower heat tolerance and higher cold tolerance than lowland ones. We also explored whether acclimation capacity is positively related with climatic variability across elevations. We found significant variation in thermal limits between populations of A. bipustulatus, but no evidence of local adaptation to different thermal conditions across the altitudinal gradient, as relationships between thermal limits and elevation or climatic variables were largely nonsignificant. Furthermore, plasticities of both upper and lower thermal limits were consistently low in all populations. These results suggest thermal niche conservatism in this species, likely due to gene flow counteracting the effects of divergent selection, or adaptations in other traits that buffer exposure to climate extremes. The limited adaptive potential and plasticity of thermal tolerance observed in A. bipustulatus suggest that even generalist species, distributed across wide environmental gradients, may have limited resilience to global warming.
Collapse
Affiliation(s)
- Susana Pallarés
- Department of Zoology, University of Seville, Seville, Spain
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| | - José Antonio Carbonell
- Department of Zoology, University of Seville, Seville, Spain
- Department of Zoology, University of Córdoba, Córdoba, Spain
| | - Félix Picazo
- Department of Ecology, Research Unit Modeling Nature and Water Institute, University of Granada, Granada, Spain
| | - David T Bilton
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Andrés Millán
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| | - Pedro Abellán
- Department of Zoology, University of Seville, Seville, Spain
| |
Collapse
|
2
|
Pallarés S, Ortego J, Carbonell JA, Franco-Fuentes E, Bilton DT, Millán A, Abellán P. Genomic, morphological and physiological data support fast ecotypic differentiation and incipient speciation in an alpine diving beetle. Mol Ecol 2024; 33:e17487. [PMID: 39108249 DOI: 10.1111/mec.17487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024]
Abstract
An intricate interplay between evolutionary and demographic processes has frequently resulted in complex patterns of genetic and phenotypic diversity in alpine lineages, posing serious challenges to species delimitation and biodiversity conservation planning. Here we integrate genomic data, geometric morphometric analyses and thermal tolerance experiments to explore the role of Pleistocene climatic changes and adaptation to alpine environments on patterns of genomic and phenotypic variation in diving beetles from the taxonomically complex Agabus bipustulatus species group. Genetic structure and phylogenomic analyses revealed the presence of three geographically cohesive lineages, two representing trans-Palearctic and Iberian populations of the elevation-generalist A. bipustulatus and another corresponding to the strictly-alpine A. nevadensis, a narrow-range endemic taxon from the Sierra Nevada mountain range in southeastern Iberia. The best-supported model of lineage divergence, along with the existence of pervasive genetic introgression and admixture in secondary contact zones, is consistent with a scenario of population isolation and connectivity linked to Quaternary climatic oscillations. Our results suggest that A. nevadensis is an alpine ecotype of A. bipustulatus, whose genotypic, morphological and physiological differentiation likely resulted from an interplay between population isolation and local altitudinal adaptation. Remarkably, within the Iberian Peninsula, such ecotypic differentiation is unique to Sierra Nevada populations and has not been replicated in other alpine populations of A. bipustulatus. Collectively, our study supports fast ecotypic differentiation and incipient speciation processes within the study complex and points to Pleistocene glaciations and local adaptation along elevational gradients as key drivers of biodiversity generation in alpine environments.
Collapse
Affiliation(s)
- Susana Pallarés
- Department of Zoology, University of Seville, Seville, Spain
| | - Joaquín Ortego
- Department of Ecology and Evolution, Estación Biológica de Doñana, EBD-CSIC, Seville, Spain
| | | | | | - David T Bilton
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Andrés Millán
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| | - Pedro Abellán
- Department of Zoology, University of Seville, Seville, Spain
| |
Collapse
|
3
|
González-Morales JC, Rivera-Rea J, Moreno-Rueda G, Plasman M, Quintana E, Bastiaans E. Seasonal and altitudinal variation in dorsal skin reflectance and thermic rates in a high-altitude montane lizard. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1421-1435. [PMID: 38652160 DOI: 10.1007/s00484-024-02677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/26/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Temperature is one of the most important factors in the life histories of ectotherms, as body temperature has an undeniable effect on growth, activity, and reproduction. Lizards have a wide variety of strategies to acquire and maintain body temperature in an optimal range. The "Thermal Melanism Hypothesis" proposes that individuals with lower skin reflectance can heat up faster as a result of absorbing more solar radiation compared to lighter conspecifics. Therefore, having a darker coloration might be advantageous in cold habitats. Dorsal skin reflectance has been found to change rapidly with body temperature in several lizard species, and it can also vary over longer, seasonal time scales. These variations may be important in thermoregulation, especially in lizards that inhabit areas with a large temperature variation during the year. Here, we study how dorsal reflectance fluctuates with body temperature and varies among seasons. We compared dorsal skin reflectance at three body temperature treatments, and measured thermal rates (i.e., heat and cool rate, thermic lapse, and net heat gain) by elevation (2500-4100 m) and seasons (spring, summer, and autumn) in the mesquite lizard, Sceloporus grammicus. Our results show that lizards were darker at high elevations and during the months with the lowest environmental temperatures. The rate of obtaining and retaining heat also varied during the year and was highest during the reproductive season. Our results indicate that the variation of dorsal skin reflectance and thermal rates follows a complex pattern in lizard populations and is affected by both elevation and season.
Collapse
Affiliation(s)
- J Carlos González-Morales
- Centro Universitario Amecameca, Universidad Autónoma del Estado de México, Estado de México, Instituto Literario No. 100, Col. Centro, Toluca, CP 50000, México.
| | - Jimena Rivera-Rea
- Doctorado en Ciencias Agropecuarias y Recursos Naturales, Universidad Autónoma del Estado de México, Instituto Literario No. 100, Col. Centro, Toluca, Estado de México, CP 50000, México
| | - Gregorio Moreno-Rueda
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Avenida Fuentenueva S/N, Granda, E-18071, España
| | - Melissa Plasman
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, México
| | - Erendira Quintana
- Centro Universitario Amecameca, Universidad Autónoma del Estado de México, Estado de México, Instituto Literario No. 100, Col. Centro, Toluca, CP 50000, México
| | - Elizabeth Bastiaans
- Biology Departament, State University of New York at Oneonta, 108 Ravine Parkway, Oneonta, NY, 13820, USA
| |
Collapse
|
4
|
Nkurikiyimfura O, Waheed A, Fang H, Yuan X, Chen L, Wang YP, Lu G, Zhan J, Yang L. Fitness difference between two synonymous mutations of Phytophthora infestans ATP6 gene. BMC Ecol Evol 2024; 24:36. [PMID: 38494489 PMCID: PMC10946160 DOI: 10.1186/s12862-024-02223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Sequence variation produced by mutation provides the ultimate source of natural selection for species adaptation. Unlike nonsynonymous mutation, synonymous mutations are generally considered to be selectively neutral but accumulating evidence suggests they also contribute to species adaptation by regulating the flow of genetic information and the development of functional traits. In this study, we analysed sequence characteristics of ATP6, a housekeeping gene from 139 Phytophthora infestans isolates, and compared the fitness components including metabolic rate, temperature sensitivity, aggressiveness, and fungicide tolerance among synonymous mutations. RESULTS We found that the housekeeping gene exhibited low genetic variation and was represented by two major synonymous mutants at similar frequency (0.496 and 0.468, respectively). The two synonymous mutants were generated by a single nucleotide substitution but differed significantly in fitness as well as temperature-mediated spatial distribution and expression. The synonymous mutant ending in AT was more common in cold regions and was more expressed at lower experimental temperature than the synonymous mutant ending in GC and vice versa. CONCLUSION Our results are consistent with the argument that synonymous mutations can modulate the adaptive evolution of species including pathogens and have important implications for sustainable disease management, especially under climate change.
Collapse
Affiliation(s)
- Oswald Nkurikiyimfura
- Institute of Plant Virology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Abdul Waheed
- Institute of Plant Virology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Hanmei Fang
- Institute of Plant Virology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaoxian Yuan
- Institute of Plant Virology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lixia Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yan-Ping Wang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, 611130, China
| | - Guodong Lu
- Department of Plant Pathology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden.
| | - Lina Yang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
5
|
Bogota‐Gregory JD, Jenkins DG, Acosta‐Santos A, Agudelo Córdoba E. Fish diversity of Colombian Andes-Amazon streams at the end of conflict is a reference for conservation before increased land use. Ecol Evol 2024; 14:e11046. [PMID: 38487746 PMCID: PMC10937820 DOI: 10.1002/ece3.11046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 03/17/2024] Open
Abstract
Reference conditions are difficult to find in the Anthropocene but essential for effective biodiversity conservation. Aquatic ecosystems in the Andes-Amazon transition zone of Colombia are now at high risk due to expanded human activities after peace agreements in 2016 ended armed conflict because lands formerly controlled by FARC and other armed groups are now prone to agricultural and urban expansion. Particularly, expanding human land use may reduce fish diversity across the altitudinal gradient, especially in the premontane streams (i.e., <500 m a.s.l.) because lands are more amenable to human use than at greater altitudes. We evaluated fish α-diversity (measured as species richness, total abundance, and effective species number) and β-diversity (spatial and temporal) in 12 sites over 8 years bracketing the end of armed conflict. All α-diversity and β-diversity analyses were evaluated relative to categorical altitude (< or >500 m) and continuous altitude. Strong differences in fish community structure among sites occurred as a function of altitude. Fish communities exhibit altitudinal biodiversity gradients that are consistent in space and time, and that need to be accounted for conservation and management considerations. Our results provide a reference to identify short- and long-term changes due to impending human land use at a critical moment for the conservation of tropical fish diversity. Similar studies in other areas of the upper Amazon Basin are needed to evaluate effects of subsequent human activities on diversity patterns and our study area to compare to reference conditions reported here.
Collapse
Affiliation(s)
| | - David G. Jenkins
- Biology DepartmentUniversity of Central FloridaOrlandoFloridaUSA
| | - Astrid Acosta‐Santos
- Aquatic Ecosystems GroupInstituto Amazónico de Investigaciones Científicas SINCHILeticiaColombia
| | - Edwin Agudelo Córdoba
- Aquatic Ecosystems GroupInstituto Amazónico de Investigaciones Científicas SINCHILeticiaColombia
| |
Collapse
|
6
|
Páez-Vacas MI, Funk WC. Thermal limits along tropical elevational gradients: Poison frog tadpoles show plasticity but maintain divergence across elevation. J Therm Biol 2024; 120:103815. [PMID: 38402728 DOI: 10.1016/j.jtherbio.2024.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024]
Abstract
Temperature is arguably one of the most critical environmental factors impacting organisms at molecular, organismal, and ecological levels. Temperature variation across elevation may cause divergent selection in physiological critical thermal limits (CTMAX and CTMIN). Generally, high elevation populations are predicted to withstand lower environmental temperatures than low elevation populations. Organisms can also exhibit phenotypic plasticity when temperature varies, although theory and empirical evidence suggest that tropical ectotherms have relatively limited ability to acclimate. To study the effect of temperature variation along elevational transects on thermal limits, we measured CTMAX and CTMIN of 934 tadpoles of a poison frog species, Epipedobates anthonyi, along two elevational gradients (200-1700 m asl) in southwestern Ecuador to investigate their thermal tolerance across elevation. We also tested if tadpoles could plastically shift their critical thermal limits in response to exposure to different temperatures representing the range of temperatures they experience in nature (20 °C, 24 °C, and 28 °C). Overall, we found that CTMAX did not change across elevation. In contrast, CTMIN was lower at higher elevations, suggesting that elevational variation in temperature influences this thermal trait. Moreover, all populations shifted their CTMAX and CTMIN according to treatment temperatures, demonstrating an acclimation response. Overall, trends in CTMIN among high, mid, and low elevation populations were maintained despite plastic responses to treatment temperature. These results demonstrate that, for tadpoles of E. anthonyi across tropical elevational gradients, temperature acts as a selective force for CTMIN, even when populations show acclimation abilities in both, CTMAX and CTMIN. Our findings advance our understanding on how environmental variation affects organisms' evolutionary trajectories and their abilities to persist in a changing climate in a tropical biodiversity hotspot.
Collapse
Affiliation(s)
- Mónica I Páez-Vacas
- Centro de Investigación en Biodiversidad y Cambio Climático (BioCamb), Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias del Medio Ambiente, Universidad Tecnológica Indoamérica, Av. Machala y Sabanilla, Quito, Ecuador; Biology Department, Colorado State University, Fort Collins, CO, USA; Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA; Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Jambatu, San Rafael, Quito, Ecuador.
| | - W Chris Funk
- Biology Department, Colorado State University, Fort Collins, CO, USA; Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
7
|
Clancey E, MacPherson A, Cheek RG, Mouton JC, Sillett TS, Ghalambor CK, Funk WC, Hohenlohe PA. Unraveling Adaptive Evolutionary Divergence at Microgeographic Scales. Am Nat 2024; 203:E35-E49. [PMID: 38306284 DOI: 10.1086/727723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
AbstractStriking examples of local adaptation at fine geographic scales are increasingly being documented in natural populations. However, the relative contributions made by natural selection, phenotype-dependent dispersal (when individuals disperse with respect to a habitat preference), and mate preference in generating and maintaining microgeographic adaptation and divergence are not well studied. Here, we develop quantitative genetics models and individual-based simulations (IBSs) to uncover the evolutionary forces that possibly drive microgeographic divergence. We also perform Bayesian estimation of the parameters in our IBS using empirical data on habitat-specific variation in bill morphology in the island scrub-jay (Aphelocoma insularis) to apply our models to a natural system. We find that natural selection and phenotype-dependent dispersal can generate the patterns of divergence we observe in the island scrub-jay. However, mate preference for a mate with similar bill morphology, even though observed in the species, does not play a significant role in driving divergence. Our modeling approach provides insights into phenotypic evolution occurring over small spatial scales relative to dispersal ranges, suggesting that adaptive divergence at microgeographic scales may be common across a wider range of taxa than previously thought. Our quantitative genetic models help to inform future theoretical and empirical work to determine how selection, habitat preference, and mate preference contribute to local adaptation and microgeographic divergence.
Collapse
|
8
|
Rahman SR, Lozier JD. Genome-wide DNA methylation patterns in bumble bee (Bombus vosnesenskii) populations from spatial-environmental range extremes. Sci Rep 2023; 13:14901. [PMID: 37689750 PMCID: PMC10492822 DOI: 10.1038/s41598-023-41896-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
Unraveling molecular mechanisms of adaptation to complex environments is crucial to understanding tolerance of abiotic pressures and responses to climatic change. Epigenetic variation is increasingly recognized as a mechanism that can facilitate rapid responses to changing environmental cues. To investigate variation in genetic and epigenetic diversity at spatial and thermal extremes, we use whole genome and methylome sequencing to generate a high-resolution map of DNA methylation in the bumble bee Bombus vosnesenskii. We sample two populations representing spatial and environmental range extremes (a warm southern low-elevation site and a cold northern high-elevation site) previously shown to exhibit differences in thermal tolerance and determine positions in the genome that are consistently and variably methylated across samples. Bisulfite sequencing reveals methylation characteristics similar to other arthropods, with low global CpG methylation but high methylation concentrated in gene bodies and in genome regions with low nucleotide diversity. Differentially methylated sites (n = 2066) were largely hypomethylated in the northern high-elevation population but not related to local sequence differentiation. The concentration of methylated and differentially methylated sites in exons and putative promoter regions suggests a possible role in gene regulation, and this high-resolution analysis of intraspecific epigenetic variation in wild Bombus suggests that the function of methylation in niche adaptation would be worth further investigation.
Collapse
Affiliation(s)
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
9
|
Míguez S, Torre I, Arrizabalaga A, Freixas L. Influences of Maternal Weight and Geographic Factors on Offspring Traits of the Edible Dormouse in the NE of the Iberian Peninsula. Life (Basel) 2023; 13:life13051223. [PMID: 37240868 DOI: 10.3390/life13051223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The main goal of this study was to analyze the reproductive patterns of edible dormouse (Glis glis) populations in the northeast of the Iberian Peninsula using an 18-year period of data obtained from nest boxes collected between 2004 and 2021. The average litter size in Catalonia (Spain) was 5.5 ± 1.60 (range: 2-9, n = 131), with litter sizes between 5 and 7 pups as the more frequent. The overall mean weight in pink, grey and open eyes pups was 4.8 g/pup, 11.7 g/pup and 23.6 g/pup, respectively. No differences in offspring weights between sexes were found in any of the three age groups. Maternal body weight was positively associated with mean pup weight, whereas no correlation between the weight of the mothers and litter size was found. The trade-off between offspring number and size was not detected at birth. Regarding litter size variation across the geographic gradient (and their climatic gradient associated) from the southernmost populations of the Iberian Peninsula located in Catalonia to the Pyrenees region in Andorra, no evidence to suggest that geographic variables affect litter size was found, discarding (1) an investment in larger litters to compensate shorter seasons related to higher altitudes or northern latitudes, and (2) variation in litter size related to weather changes (e.g., temperature and precipitation) along latitudinal and/or altitudinal gradients.
Collapse
Affiliation(s)
| | - Ignasi Torre
- BiBio Research Group, Natural Sciences Museum of Granollers, C/Francesc Macià 51, E-08402 Granollers, Spain
| | - Antoni Arrizabalaga
- BiBio Research Group, Natural Sciences Museum of Granollers, C/Francesc Macià 51, E-08402 Granollers, Spain
| | - Lídia Freixas
- BiBio Research Group, Natural Sciences Museum of Granollers, C/Francesc Macià 51, E-08402 Granollers, Spain
| |
Collapse
|
10
|
Lin Y, Wu H, Liu D, Li Y, Kang Y, Zhang Z, Wang W. Patterns and drivers of soil surface-dwelling Oribatida diversity along an altitudinal gradient on the Changbai Mountain, China. Ecol Evol 2023; 13:e10105. [PMID: 37214606 PMCID: PMC10196937 DOI: 10.1002/ece3.10105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Distribution patterns of biodiversity and environmental interactions are dominant themes in ecology. In montane ecosystems, biodiversity is closely associated with altitudinal gradients. However, studies of biodiversity in montane ecosystems are focused on plants and vertebrates, with relatively less on invertebrates. Here, the present study used a Vortis arthropod suction sampler to explore the biodiversity patterns of soil surface-dwelling Oribatida and their drivers along an altitudinal gradient (600, 800, 1600, 2000, and 2300 m) from typical temperate forests, evergreen coniferous forests, subalpine birch forests to alpine tundra on the north slope of Changbai Mountain, Northeast China. Trichoribates berlesei, Platynothrus peltifer, and Oribatula tibialis were the dominant soil surface-dwelling species on Changbai Mountain. Generally, alpha diversity and beta diversity of soil surface-dwelling Oribatida decreased with the rising altitude, with a peaking density value at 2000 m. The result of beta diversity showed that the structures of community were more influenced by the species turnover component than the nestedness component. Nonmetric multidimensional scaling (NMDS) ordination showed that the community structure of soil surface-dwelling Oribatida varied significantly along the altitudinal gradient. The variance partitioning showed that the elevation and climatic conditions determined the soil surface-dwelling Oribatida community. Spatial filtering represented by geographic and elevation distances was particularly associated with soil surface-dwelling Oribatida community variation between altitudes on Changbai Mountain. However, the variation of the Oribatida community between adjacent altitudes was only associated with geographic distance. Our study provides supportive evidence for the biodiversity analyzing of soil surface-dwelling Oribatida in montane ecosystems along an altitudinal gradient.
Collapse
Affiliation(s)
- Yiling Lin
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Haitao Wu
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Dong Liu
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Yaxiao Li
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Yujuan Kang
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhongsheng Zhang
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Wenfeng Wang
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| |
Collapse
|
11
|
Jarčuška B, Krištín A, Kaňuch P. Body size traits in the flightless bush-cricket are plastic rather than locally adapted along an elevational gradient. Evol Ecol 2023. [DOI: 10.1007/s10682-023-10231-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
12
|
Elevation and blood traits in the mesquite lizard: Are patterns repeatable between mountains? Comp Biochem Physiol A Mol Integr Physiol 2023; 276:111338. [PMID: 36336309 DOI: 10.1016/j.cbpa.2022.111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Ecogeographical patterns describe predictable variation in phenotypic traits between ecological communities. For example, high-altitude animals are expected to show elevated hematological values as an adaptation to the lower oxygen pressure. Mountains act like ecological islands and therefore are considered natural laboratories. However, the majority of ecophysiological studies on blood traits lack replication that would allow us to infer if the pattern reported is a local event or whether it is a widespread pattern resulting from larger-scale ecological processes. In lizards, in fact, the increase of hematological values at high altitudes has received mixed support. Here, for the first time, we compare blood traits in lizards along elevational gradients with replication. We tested the repeatability of blood traits in mesquite lizards between different elevations in three different mountains from the Trans-Mexican Volcanic Belt. We measured hematocrit, hemoglobin concentration, mean corpuscular hemoglobin concentration, and erythrocyte size in blood samples of low, medium, and high-elevation lizards. We obtained similar elevational patterns between mountains, but the blood traits differed among mountains. Middle-altitude populations had greater oxygen-carrying capacity than lizards from low and high altitudes. The differences found between mountain systems could be the result of phenotypic plasticity or genetic differentiation as a consequence of abiotic factors not considered.
Collapse
|
13
|
Brenzinger K, Maihoff F, Peters MK, Schimmer L, Bischler T, Classen A. Temperature and livestock grazing trigger transcriptome responses in bumblebees along an elevational gradient. iScience 2022; 25:105175. [PMID: 36204268 PMCID: PMC9530833 DOI: 10.1016/j.isci.2022.105175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/26/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
Climate and land-use changes cause increasing stress to pollinators but the molecular pathways underlying stress responses are poorly understood. Here, we analyzed the transcriptomic response of Bombus lucorum workers to temperature and livestock grazing. Bumblebees sampled along an elevational gradient, and from differently managed grassland sites (livestock grazing vs unmanaged) in the German Alps did not differ in the expression of genes known for thermal stress responses. Instead, metabolic energy production pathways were upregulated in bumblebees sampled in mid- or high elevations or during cool temperatures. Extensive grazing pressure led to an upregulation of genetic pathways involved in immunoregulation and DNA-repair. We conclude that widespread bumblebees are tolerant toward temperature fluctuations in temperate mountain environments. Moderate temperature increases may even release bumblebees from metabolic stress. However, transcriptome responses to even moderate management regimes highlight the completely underestimated complexity of human influence on natural pollinators. Upregulation of energy metabolism pathways in Bombus lucorum with increasing elevation Genes known for thermal stress responses did not change with increased elevation Bombus lucorum are tolerant toward relatively broad temperature fluctuations Grazing lead to an upregulation in genetic information processes in B. lucorum
Collapse
Affiliation(s)
- Kristof Brenzinger
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- Corresponding author
| | - Fabienne Maihoff
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Marcell K. Peters
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Leonie Schimmer
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Alice Classen
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
14
|
Fu Y, Song Y, Yang C, Liu X, Liu Y, Huang Y. Relationship between brain size and digestive tract length support the expensive-tissue hypothesis in Feirana quadranus. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.982590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The brain is among the most energetically costly organs in the vertebrate body, while the size of the brain varies within species. The expensive-tissue hypothesis (ETH) predicts that increasing the size of another costly organ, such as the gut, should compensate for the cost of a small brain. Here, the ETH was tested by analyzing the relationship between brain size variation and digestive tract length in a Swelled-vented frog (Feirana quadranus). A total of 125 individuals across 10 populations ranging from 586 to 1,702 m a.s.l. from the Qinling-Daba Mountains were sampled. With the increase in altitude, the brain size decreases and the digestive tract length increases. Different brain regions do not change their relative size in a consistent manner. The sizes of telencephalon and cerebellum decrease with the increase in altitude, while the olfactory nerve increases its size at high altitudes. However, the olfactory bulb and optic tectum have no significant relationship with altitude. After controlling for snout-vent length (SVL), a significant negative correlation could be found between brain size and digestive tract length in F. quadranus. Therefore, the intraspecific variation of brain size follows the general patterns of ETH in this species. The results suggest that annual mean temperature and annual precipitation are environmental factors influencing the adaptive evolution of brain size and digestive tract length. This study also suggests that food composition, activity times, and habitat complexity are the potential reasons driving the adaptive evolution of brain size and digestive tract length.
Collapse
|
15
|
Hinckley A, Sanchez-Donoso I, Comas M, Camacho-Sanchez M, Hawkins MTR, Hasan NH, Leonard JA. Challenging ecogeographical rules: Phenotypic variation in the Mountain Treeshrew (Tupaia montana) along tropical elevational gradients. PLoS One 2022; 17:e0268213. [PMID: 35714073 PMCID: PMC9205479 DOI: 10.1371/journal.pone.0268213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/22/2022] [Indexed: 11/19/2022] Open
Abstract
Bergmann’s and Allen’s rules were defined to describe macroecological patterns across latitudinal gradients. Bergmann observed a positive association between body size and latitude for endothermic species while Allen described shorter appendages as latitude increases. Almost two centuries later, there is still ongoing discussion about these patterns. Temperature, the common variable in these two rules, varies predictably across both latitude and elevation. Although these rules have been assessed extensively in mammals across latitude, particularly in regions with strong seasonality, studies on tropical montane mammals are scarce. We here test for these patterns and assess the variation of several other locomotory, diet-associated, body condition, and thermoregulatory traits across elevation in the Mountain Treeshrew (Tupaia montana) on tropical mountains in Borneo. Based on morphological measurements from both the field and scientific collections, we found a complex pattern: Bergmann’s rule was not supported in our tropical mountain system, since skull length, body size, and weight decreased from the lowest elevations (<1000 m) to middle elevations (2000–2500 m), and then increased from middle elevations to highest elevations. Allen’s rule was supported for relative tail length, which decreased with elevation, but not for ear and hindfoot length, with the former remaining constant and the latter increasing with elevation. This evidence together with changes in presumed diet-related traits (rostrum length, zygomatic breadth and upper tooth row length) along elevation suggest that selective pressures other than temperature, are playing a more important role shaping the morphological variation across the distribution of the Mountain Treeshrew. Diet, food acquisition, predation pressure, and/or intra- and inter-specific competition, are some of the potential factors driving the phenotypic variation of this study system. The lack of variation in body condition might suggest local adaptation of this species across its elevational range, perhaps due to generalist foraging strategies. Finally, a highly significant temporal effect was detected in several traits but not in others, representing the first phenotypic variation temporal trends described on treeshrews.
Collapse
Affiliation(s)
- Arlo Hinckley
- Conservation & Evolutionary Genetics Group, Estación Biológica de Doñana-CSIC, Seville, Spain
- Division of Mammals, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America
- Departamento de Zoología, Universidad de Sevilla, Seville, Spain
- * E-mail: (AH); (JAL)
| | - Ines Sanchez-Donoso
- Conservation & Evolutionary Genetics Group, Estación Biológica de Doñana-CSIC, Seville, Spain
| | - Mar Comas
- Conservation & Evolutionary Genetics Group, Estación Biológica de Doñana-CSIC, Seville, Spain
- Departamento de Zoología, Universidad de Granada, Granada, Spain
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States of America
| | - Miguel Camacho-Sanchez
- Conservation & Evolutionary Genetics Group, Estación Biológica de Doñana-CSIC, Seville, Spain
- Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA), Alcalá del Río, Seville, Spain
| | - Melissa T. R. Hawkins
- Division of Mammals, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America
| | - Noor Haliza Hasan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jennifer A. Leonard
- Conservation & Evolutionary Genetics Group, Estación Biológica de Doñana-CSIC, Seville, Spain
- * E-mail: (AH); (JAL)
| |
Collapse
|
16
|
Spence AR, LeWinter H, Tingley MW. Anna's hummingbird (Calypte anna) physiological response to novel thermal and hypoxic conditions at high elevations. J Exp Biol 2022; 225:275376. [PMID: 35617822 DOI: 10.1242/jeb.243294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/09/2022] [Indexed: 12/19/2022]
Abstract
Many species have not tracked their thermal niches upslope as predicted by climate change, potentially because higher elevations are associated with abiotic challenges beyond temperature. To better predict whether organisms can continue to move upslope with rising temperatures, we need to understand their physiological performance when subjected to novel high-elevation conditions. Here, we captured Anna's hummingbirds - a species expanding their elevational distribution in concordance with rising temperatures - from across their current elevational distribution and tested their physiological response to novel abiotic conditions. First, at a central aviary within their current elevational range, we measured hovering metabolic rate to assess their response to oxygen conditions and torpor use to assess their response to thermal conditions. Second, we transported the hummingbirds to a location 1200 m above their current elevational range limit to test for an acute response to novel oxygen and thermal conditions. Hummingbirds exhibited lower hovering metabolic rates above their current elevational range limit, suggesting lower oxygen availability may reduce performance after an acute exposure. Alternatively, hummingbirds showed a facultative response to thermal conditions by using torpor more frequently and for longer. Finally, post-experimental dissection found that hummingbirds originating from higher elevations within their range had larger hearts, a potential plastic response to hypoxic environments. Overall, our results suggest lower oxygen availability and low air pressure may be difficult challenges to overcome for hummingbirds shifting upslope as a consequence of rising temperatures, especially if there is little to no long-term acclimatization. Future studies should investigate how chronic exposure and acclimatization to novel conditions, as opposed to acute experiments, may result in alternative outcomes that help organisms better respond to abiotic challenges associated with climate-induced range shifts.
Collapse
Affiliation(s)
- Austin R Spence
- Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Unit 3043, Storrs, CT 06269, USA
| | - Hannah LeWinter
- Wildlife Conservation & Management, Humboldt State University, 1 Harpst St. Arcata, CA 95521, USA
| | - Morgan W Tingley
- Ecology & Evolutionary Biology, University of California - Los Angeles, 621 Charles E. Young Dr. S. #951606, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Population genetic differentiation and genomic signatures of adaptation to climate in an abundant lizard. Heredity (Edinb) 2022; 128:271-278. [PMID: 35277668 PMCID: PMC8987050 DOI: 10.1038/s41437-022-00518-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
Species distributed across climatic gradients will typically experience spatial variation in selection, but gene flow can prevent such selection from causing population genetic differentiation and local adaptation. Here, we studied genomic variation of 415 individuals across 34 populations of the common wall lizard (Podarcis muralis) in central Italy. This species is highly abundant throughout this region and populations belong to a single genetic lineage, yet there is extensive phenotypic variation across climatic regimes. We used redundancy analysis to, first, quantify the effect of climate and geography on population genomic variation in this region and, second, to test if climate consistently sorts specific alleles across the landscape. Climate explained 5% of the population genomic variation across the landscape, about half of which was collinear with geography. Linear models and redundancy analyses identified loci that were significantly differentiated across climatic regimes. These loci were distributed across the genome and physically associated with genes putatively involved in thermal tolerance, regulation of temperature-dependent metabolism and reproductive activity, and body colouration. Together, these findings suggest that climate can exercise sufficient selection in lizards to promote genetic differentiation across the landscape in spite of high gene flow.
Collapse
|
18
|
Contrasting environmental drivers of genetic and phenotypic divergence in an Andean poison frog (Epipedobates anthonyi). Heredity (Edinb) 2022; 128:33-44. [PMID: 34718332 PMCID: PMC8733028 DOI: 10.1038/s41437-021-00481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023] Open
Abstract
Phenotypic and genetic divergence are shaped by the homogenizing effects of gene flow and the differentiating processes of genetic drift and local adaptation. Herein, we examined the mechanisms that underlie phenotypic (size and color) and genetic divergence in 35 populations (535 individuals) of the poison frog Epipedobates anthonyi along four elevational gradients (0-1800 m asl) in the Ecuadorian Andes. We found phenotypic divergence in size and color despite relatively low genetic divergence at neutral microsatellite loci. Genetic and phenotypic divergence were both explained by landscape resistance between sites (isolation-by-resistance, IBR), likely due to a cold and dry mountain ridge between the northern and southern elevational transects that limits dispersal and separates two color morphs. Moreover, environmental differences among sites also explained genetic and phenotypic divergence, suggesting isolation-by-environment (IBE). When northern and southern transects were analyzed separately, genetic divergence was predicted either by distance (isolation-by-distance, IBD; northern) or environmental resistance between sites (IBR; southern). In contrast, phenotypic divergence was primarily explained by environmental differences among sites, supporting the IBE hypothesis. These results indicate that although distance and geographic barriers are important drivers of population divergence, environmental variation has a two-fold effect on population divergence. On the one hand, landscape resistance between sites reduces gene flow (IBR), while on the other hand, environmental differences among sites exert divergent selective pressures on phenotypic traits (IBE). Our work highlights the importance of studying both genetic and phenotypic divergence to better understand the processes of population divergence and speciation along ecological gradients.
Collapse
|
19
|
Tregenza T, Rodríguez-Muñoz R, Boonekamp JJ, Hopwood PE, Sørensen JG, Bechsgaard J, Settepani V, Hegde V, Waldie C, May E, Peters C, Pennington Z, Leone P, Munk EM, Greenrod STE, Gosling J, Coles H, Gruffydd R, Capria L, Potter L, Bilde T. Evidence for genetic isolation and local adaptation in the field cricket Gryllus campestris. J Evol Biol 2021; 34:1624-1636. [PMID: 34378263 DOI: 10.1111/jeb.13911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/01/2021] [Indexed: 12/31/2022]
Abstract
Understanding how species can thrive in a range of environments is a central challenge for evolutionary ecology. There is strong evidence for local adaptation along large-scale ecological clines in insects. However, potential adaptation among neighbouring populations differing in their environment has been studied much less. We used RAD sequencing to quantify genetic divergence and clustering of ten populations of the field cricket Gryllus campestris in the Cantabrian Mountains of northern Spain, and an outgroup on the inland plain. Our populations were chosen to represent replicate high and low altitude habitats. We identified genetic clusters that include both high and low altitude populations indicating that the two habitat types do not hold ancestrally distinct lineages. Using common-garden rearing experiments to remove environmental effects, we found evidence for differences between high and low altitude populations in physiological and life-history traits. As predicted by the local adaptation hypothesis, crickets with parents from cooler (high altitude) populations recovered from periods of extreme cooling more rapidly than those with parents from warmer (low altitude) populations. Growth rates also differed between offspring from high and low altitude populations. However, contrary to our prediction that crickets from high altitudes would grow faster, the most striking difference was that at high temperatures, growth was fastest in individuals from low altitudes. Our findings reveal that populations a few tens of kilometres apart have independently evolved adaptations to their environment. This suggests that local adaptation in a range of traits may be commonplace even in mobile invertebrates at scales of a small fraction of species' distributions.
Collapse
Affiliation(s)
- Tom Tregenza
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | | | - Jelle J Boonekamp
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK.,Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Paul E Hopwood
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Jesper Givskov Sørensen
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Jesper Bechsgaard
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Virginia Settepani
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Vinayaka Hegde
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Callum Waldie
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Emma May
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Caleb Peters
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Zinnia Pennington
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Paola Leone
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Emil M Munk
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Samuel T E Greenrod
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Joe Gosling
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Harry Coles
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Rhodri Gruffydd
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Loris Capria
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Laura Potter
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Trine Bilde
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
20
|
Yao Z, Qi Y, Yue B, Fu J. Brain size variation along altitudinal gradients in the Asiatic Toad ( Bufo gargarizans). Ecol Evol 2021; 11:3015-3027. [PMID: 33841763 PMCID: PMC8019028 DOI: 10.1002/ece3.7192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/05/2020] [Accepted: 12/21/2020] [Indexed: 11/23/2022] Open
Abstract
Size changes in brain and brain regions along altitudinal gradients provide insight into the trade-off between energetic expenditure and cognitive capacity. We investigated the brain size variations of the Asiatic Toad (Bufo gargarizans) across altitudes from 700 m to 3,200 m. A total of 325 individuals from 11 sites and two transects were sampled. To reduce confounding factors, all sampling sites within each transect were within a maximum distance of 85 km and an altitudinal difference close to 2,000 m. Brains were dissected, and five regions were both measured directly and with 3D CT scan. There is a significant negative correlation between the relative whole-brain volume (to snout-vent length) and altitude. Furthermore, the relative volumes (to whole-brain volume) of optic tectum and cerebellum also decrease along the altitudinal gradients, while the telencephalon increases its relative volume along the gradients. Therefore, our results are mostly consistent with the expensive brain hypothesis and the functional constraint hypothesis. We suggest that most current hypotheses are not mutually exclusive and data supporting one hypothesis are often partially consistent with others. More studies on mechanisms are needed to explain the brain size evolution in natural populations.
Collapse
Affiliation(s)
- Zhongyi Yao
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
- College of Life SciencesSichuan UniversityChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yin Qi
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Bisong Yue
- College of Life SciencesSichuan UniversityChengduChina
| | - Jinzhong Fu
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| |
Collapse
|
21
|
Montero-Mendieta S, De la Riva I, Irisarri I, Leonard JA, Webster MT, Vilà C. Phylogenomics and evolutionary history of Oreobates (Anura: Craugastoridae) Neotropical frogs along elevational gradients. Mol Phylogenet Evol 2021; 161:107167. [PMID: 33798672 DOI: 10.1016/j.ympev.2021.107167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Mountain ranges offer opportunities for understanding how species evolved and diversified across different environmental conditions. Neotropical frogs of the genus Oreobates (Anura: Craugastoridae) are adapted to highland and lowland habitats along the Andes, but many aspects of their evolution remain unknown. We studied their evolutionary history using ~18,000 exons enriched by targeted sequence-capture. Since capture success was very variable across samples, we evaluated to what degree differing data filtering produced robust inferences. The inferred evolutionary framework evidenced phylogenetic discordances among lowland species that can be explained by taxonomic misidentification or admixture of ancestral lineages. Highland species showed smaller effective populations than lowland frogs, probably due to greater habitat fragmentation in montane environments. Stronger genetic drift likely decreased the power of purifying selection and led to an increased proportion of nonsynonymous mutations in highland populations that could play an important role in their adaptation. Overall, our work sheds light on the evolutionary history and diversification of this group of Neotropical frogs along elevational gradients in the Andes as well as on their patterns of intraspecific diversity.
Collapse
Affiliation(s)
- Santiago Montero-Mendieta
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Ignacio De la Riva
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Iker Irisarri
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Jennifer A Leonard
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Carles Vilà
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.
| |
Collapse
|
22
|
Srygley RB. Elevational Changes in Mormon Cricket Life Histories: Minimum Temperature for Nymphal Growth Declines With Elevation. ENVIRONMENTAL ENTOMOLOGY 2021; 50:167-172. [PMID: 33219677 DOI: 10.1093/ee/nvaa151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 06/11/2023]
Abstract
As the mean temperature and the duration of the growing season decline with elevation, growth of immature insects should initiate at a lower temperature, but it should also be faster to complete development prior to season's end. Although flightless, Mormon crickets migrate in large aggregations across broad spatial and elevational distances that might limit adaptations to local environments. In addition, selection to be active at cooler temperatures might limit selection to maximize growth rate. I measured growth rate in controlled environments for nymphs from three populations that vary in altitude (87-2,688 m) but are similar in latitude (43.2-45.7°N). Growth rate increased significantly with mean rearing temperature between 22 and 30°C. The intercept of the regression of growth rate on temperature increased with elevation, whereas the slope did not change significantly. For any given rearing temperature, growth rate increased with elevation, which suggests that selection to initiate growth at cooler temperatures did not compromise growth rate. Body mass did not differ between the two lower elevations, whereas the highest elevation population had smaller hatchlings and adults. Critical thermal minimum (base temperature) declined with elevation (0.7°C per 1,000 m), and the degree days were 509 across all elevations. For pest management, a base temperature from midelevation of 15.3°C (60°F) and growing degree days of 509 (equivalent to 916 Fahrenheit-based degree days) are reasonable estimates for applications from sea level to 2,700 m.
Collapse
Affiliation(s)
- Robert B Srygley
- Pest Management Research Unit, Northern Plains Agricultural Research Laboratory, USDA-Agricultural Research Service, Sidney, MT, Australia
| |
Collapse
|
23
|
Barghi N, Hermisson J, Schlötterer C. Polygenic adaptation: a unifying framework to understand positive selection. Nat Rev Genet 2020; 21:769-781. [PMID: 32601318 DOI: 10.1038/s41576-020-0250-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
Most adaption processes have a polygenic genetic basis, but even with the recent explosive growth of genomic data we are still lacking a unified framework describing the dynamics of selected alleles. Building on recent theoretical and empirical work we introduce the concept of adaptive architecture, which extends the genetic architecture of an adaptive trait by factors influencing its adaptive potential and population genetic principles. Because adaptation can be typically achieved by many different combinations of adaptive alleles (redundancy), we describe how two characteristics - heterogeneity among loci and non-parallelism between replicated populations - are hallmarks for the characterization of polygenic adaptation in evolving populations. We discuss how this unified framework can be applied to natural and experimental populations.
Collapse
Affiliation(s)
- Neda Barghi
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Joachim Hermisson
- Mathematics and BioSciences Group, Faculty of Mathematics and Max Perutz Labs, University of Vienna, Vienna, Austria.
| | | |
Collapse
|
24
|
González-Morales JC, Rivera-Rea J, Moreno-Rueda G, Bastiaans E, Díaz-Albiter H, Díaz de la Vega-Pérez AH, Bautista A, Fajardo V. To be small and dark is advantageous for gaining heat in mezquite lizards, Sceloporus grammicus (Squamata: Phrynosomatidae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Body temperature is important in determining individual performance in ectotherms such as lizards. Environmental temperature decreases with increasing altitude, but nevertheless many lizards inhabit high-altitude environments. The ‘thermal melanism hypothesis’ proposes that a dark dorsal coloration enables darker individuals to heat up faster because they absorb more solar radiation and thus being darker may be advantageous in cold habitats. The aim of the present study is to evaluate how heating rate, cooling rate and net heat gain vary with body size and dorsal skin coloration in Sceloporus grammicus lizards along an altitudinal gradient. We measured these traits multiple times in the same individuals with a radiation heat source and spectrophotometry under laboratory conditions. Our results showed that S. grammicus lizards are smaller and darker at high elevations than at low elevations. In addition, the smallest and darkest lizards showed the greatest heating rate and net heat gain. Therefore, in S. grammicus, we suggest that small body size and dark dorsal coloration provide thermoregulatory benefits in high-altitude environments. Hence, this study supports the thermal melanism hypothesis in a lizard species under varied thermal environments.
Collapse
Affiliation(s)
- Juan Carlos González-Morales
- Posgrado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Km 1.5 Carretera Tlaxcala-Puebla S/N, AP, Tlaxcala, México
- Instituto para la Conservación de la cordillera Neovolcánica ante al Cambio Climático, Lago Atitlán, Colonia Nueva Oxtotitlán, Toluca, Estado de México, C.P., México
| | - Jimena Rivera-Rea
- Instituto para la Conservación de la cordillera Neovolcánica ante al Cambio Climático, Lago Atitlán, Colonia Nueva Oxtotitlán, Toluca, Estado de México, C.P., México
- Posgrado en Ciencias Agropecuarias y Recursos Naturales, Universidad Autónoma del Estado de México, México. Instituto Literario, Colonia Centro, Toluca, Estado de México, C.P., México
| | - Gregorio Moreno-Rueda
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva S/N, Granada, Spain
| | - Elizabeth Bastiaans
- Biology Department, State University of New York College at Oneonta, Oneonta, NY, USA
| | - Héctor Díaz-Albiter
- Centro Tlaxcala de Biología de Conducta, Universidad Autónoma de Tlaxcala, Km 1.5 Carretera Tlaxcala-Puebla S/N, Tlaxcala, México
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Amando Bautista
- Unidad Villahermosa, El Colegio de la Frontera Sur (ECOSUR), Tabasco CP, México
| | - Víctor Fajardo
- Instituto para la Conservación de la cordillera Neovolcánica ante al Cambio Climático, Lago Atitlán, Colonia Nueva Oxtotitlán, Toluca, Estado de México, C.P., México
- Universidad del Istmo, Campus Juchitán, Carretera Transísmica Juchitán - La Ventosa Km. 14, La Ventosa, C.P. Oaxaca, México
| |
Collapse
|
25
|
Trense D, Schmidt TL, Yang Q, Chung J, Hoffmann AA, Fischer K. Anthropogenic and natural barriers affect genetic connectivity in an Alpine butterfly. Mol Ecol 2020; 30:114-130. [PMID: 33108010 DOI: 10.1111/mec.15707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022]
Abstract
Dispersal is a key biological process serving several functions including connectivity among populations. Habitat fragmentation caused by natural or anthropogenic structures may hamper dispersal, thereby disrupting genetic connectivity. Investigating factors affecting dispersal and gene flow is important in the current era of anthropogenic global change, as dispersal comprises a vital part of a species' resilience to environmental change. Using finescale landscape genomics, we investigated gene flow and genetic structure of the Sooty Copper butterfly (Lycaena tityrus) in the Alpine Ötz valley system in Austria. We found surprisingly high levels of gene flow in L. tityrus across the region. Nevertheless, ravines, forests, and roads had effects on genetic structure, while rivers did not. The latter is surprising as roads and rivers have a similar width and run largely in parallel in our study area, pointing towards a higher impact of anthropogenic compared with natural linear structures. Additionally, we detected eleven loci potentially under thermal selection, including ones related to membranes, metabolism, and immune function. This study demonstrates the usefulness of molecular approaches in obtaining estimates of dispersal and population processes in the wild. Our results suggest that, despite high gene flow in the Alpine valley system investigated, L. tityrus nevertheless seems to be vulnerable to anthropogenically-driven habitat fragmentation. With anthropogenic rather than natural linear structures affecting gene flow, this may have important consequences for the persistence of species such as the butterfly studied here in altered landscapes.
Collapse
Affiliation(s)
- Daronja Trense
- Institute for Integrated Natural Sciences, Zoology, University Koblenz-Landau, Koblenz, Germany
| | - Thomas L Schmidt
- Pest & Environmental Adaptation Research Group, School of Biosciences, Bio21 Institute, Parkville, Vic., Australia
| | - Qiong Yang
- Pest & Environmental Adaptation Research Group, School of Biosciences, Bio21 Institute, Parkville, Vic., Australia
| | - Jessica Chung
- Pest & Environmental Adaptation Research Group, School of Biosciences, Bio21 Institute, Parkville, Vic., Australia
| | - Ary A Hoffmann
- Pest & Environmental Adaptation Research Group, School of Biosciences, Bio21 Institute, Parkville, Vic., Australia
| | - Klaus Fischer
- Institute for Integrated Natural Sciences, Zoology, University Koblenz-Landau, Koblenz, Germany
| |
Collapse
|
26
|
Bachmann JC, Van Buskirk J. Adaptation to elevation but limited local adaptation in an amphibian. Evolution 2020; 75:956-969. [PMID: 33063864 DOI: 10.1111/evo.14109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 01/10/2023]
Abstract
We performed a reciprocal transplant experiment to estimate "parallel" adaptation to elevation and "unique" adaptation to local sites at the same elevation, using the frog Rana temporaria in the Swiss Alps. It is important to distinguish these two processes because they have different implications for population structure and ecological specialization. Larvae were reared from hatching to metamorphosis within enclosures installed in their pond of origin, in three foreign ponds at the same elevation, and in four ponds at different elevation (1500-2000 m higher or lower). There were two source populations from each elevation, and adults were held in a common environment for 1 year before they were crossed to produce offspring for the experiment. Fitness was a measure that integrated larval survival, development rate, and body size. Parallel adaptation to elevation was indicated by an advantage at the home elevation (11.5% fitness difference at low elevation and 47% at high elevation). This effect was stronger than that observed in most other studies, according to a survey of previous transplant experiments across elevation (N = 8 animal species and 71 plants). Unique local adaptation within elevational zones was only 0.3-0.7 times as strong as parallel adaptation, probably because gene flow is comparatively high among nearby wetlands at the same elevation. The home-elevation advantage may reduce gene flow across the elevational gradient and enable the evolution of habitat races specialized on elevation.
Collapse
Affiliation(s)
- Judith C Bachmann
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Josh Van Buskirk
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Wagner M, Bathke AC, Cary SC, Green TGA, Junker RR, Trutschnig W, Ruprecht U. Myco- and photobiont associations in crustose lichens in the McMurdo Dry Valleys (Antarctica) reveal high differentiation along an elevational gradient. Polar Biol 2020. [DOI: 10.1007/s00300-020-02754-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractClimatically extreme regions such as the polar deserts of the McMurdo Dry Valleys (78° S) in Continental Antarctica are key areas for a better understanding of changes in ecosystems. Therefore, it is particularly important to analyze and communicate current patterns of biodiversity in these sensitive areas, where precipitation mostly occurs in form of snow and liquid water is rare. Humidity provided by dew, clouds, and fog are the main water sources, especially for rock-dwelling crustose lichens as one of the most common vegetation-forming organisms. We investigated the diversity and interaction specificity of myco-/photobiont associations of 232 crustose lichen specimens, collected along an elevational gradient (171–959 m a.s.l.) within the McMurdo Dry Valleys. The mycobiont species and photobiont OTUs were identified by using three markers each (nrITS, mtSSU, RPB1, and nrITS, psbJ-L, COX2). Elevation, positively associated with water availability, turned out to be the key factor explaining most of the distribution patterns of the mycobionts. Pairwise comparisons showed Lecidea cancriformis and Rhizoplaca macleanii to be significantly more common at higher elevations and Carbonea vorticosa and Lecidea polypycnidophora at lower elevations. Lichen photobionts were dominated by the globally distributed Trebouxia OTU, Tr_A02 which occurred at all habitats. Network specialization resulting from myco-/photobiont bipartite network structure varied with elevation and associated abiotic factors. Along an elevational gradient, the spatial distribution, diversity, and genetic variability of the lichen symbionts appear to be mainly influenced by improved water relations at higher altitudes.
Collapse
|
28
|
Pimsler ML, Oyen KJ, Herndon JD, Jackson JM, Strange JP, Dillon ME, Lozier JD. Biogeographic parallels in thermal tolerance and gene expression variation under temperature stress in a widespread bumble bee. Sci Rep 2020; 10:17063. [PMID: 33051510 PMCID: PMC7553916 DOI: 10.1038/s41598-020-73391-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Global temperature changes have emphasized the need to understand how species adapt to thermal stress across their ranges. Genetic mechanisms may contribute to variation in thermal tolerance, providing evidence for how organisms adapt to local environments. We determine physiological thermal limits and characterize genome-wide transcriptional changes at these limits in bumble bees using laboratory-reared Bombus vosnesenskii workers. We analyze bees reared from latitudinal (35.7-45.7°N) and altitudinal (7-2154 m) extremes of the species' range to correlate thermal tolerance and gene expression among populations from different climates. We find that critical thermal minima (CTMIN) exhibit strong associations with local minimums at the location of queen origin, while critical thermal maximum (CTMAX) was invariant among populations. Concordant patterns are apparent in gene expression data, with regional differentiation following cold exposure, and expression shifts invariant among populations under high temperatures. Furthermore, we identify several modules of co-expressed genes that tightly correlate with critical thermal limits and temperature at the region of origin. Our results reveal that local adaptation in thermal limits and gene expression may facilitate cold tolerance across a species range, whereas high temperature responses are likely constrained, both of which may have implications for climate change responses of bumble bees.
Collapse
Affiliation(s)
- Meaghan L Pimsler
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Kennan J Oyen
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - James D Herndon
- USDA-ARS Pollinating Insects Research Unit, Utah State University, Logan, UT, 84322, USA
| | - Jason M Jackson
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - James P Strange
- USDA-ARS Pollinating Insects Research Unit, Utah State University, Logan, UT, 84322, USA
- Department of Entomology, The Ohio State University, Columbus, OH, 44691, USA
| | - Michael E Dillon
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
29
|
Burraco P, Comas M, Reguera S, Zamora-Camacho FJ, Moreno-Rueda G. Telomere length mirrors age structure along a 2200-m altitudinal gradient in a Mediterranean lizard. Comp Biochem Physiol A Mol Integr Physiol 2020; 247:110741. [DOI: 10.1016/j.cbpa.2020.110741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022]
|
30
|
Feijó A, Ge D, Wen Z, Xia L, Yang Q. Divergent adaptations in resource‐use traits explain how pikas thrive on the roof of the world. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anderson Feijó
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Zhixin Wen
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| |
Collapse
|
31
|
Li B, Yaegashi S, Carvajal TM, Gamboa M, Chiu M, Ren Z, Watanabe K. Machine-learning-based detection of adaptive divergence of the stream mayfly Ephemera strigata populations. Ecol Evol 2020; 10:6677-6687. [PMID: 32724541 PMCID: PMC7381564 DOI: 10.1002/ece3.6398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/21/2020] [Accepted: 04/30/2020] [Indexed: 11/07/2022] Open
Abstract
Adaptive divergence is a key mechanism shaping the genetic variation of natural populations. A central question linking ecology with evolutionary biology is how spatial environmental heterogeneity can lead to adaptive divergence among local populations within a species. In this study, using a genome scan approach to detect candidate loci under selection, we examined adaptive divergence of the stream mayfly Ephemera strigata in the Natori River Basin in northeastern Japan. We applied a new machine-learning method (i.e., random forest) besides traditional distance-based redundancy analysis (dbRDA) to examine relationships between environmental factors and adaptive divergence at non-neutral loci. Spatial autocorrelation analysis based on neutral loci was employed to examine the dispersal ability of this species. We conclude the following: (a) E. strigata show altitudinal adaptive divergence among the populations in the Natori River Basin; (b) random forest showed higher resolution for detecting adaptive divergence than traditional statistical analysis; and (c) separating all markers into neutral and non-neutral loci could provide full insight into parameters such as genetic diversity, local adaptation, and dispersal ability.
Collapse
Affiliation(s)
- Bin Li
- Insititute of Environmental and EcologyShandong Normal UniversityJinanChina
- Department of Civil and Environmental EngineeringEhime UniversityMatsuyamaJapan
| | - Sakiko Yaegashi
- Department of Civil and Environmental EngineeringEhime UniversityMatsuyamaJapan
- Department of Civil and Environmental EngineeringUniversity of YamanashiYamanashiJapan
| | | | - Maribet Gamboa
- Department of Civil and Environmental EngineeringEhime UniversityMatsuyamaJapan
| | - Ming‐Chih Chiu
- Department of Civil and Environmental EngineeringEhime UniversityMatsuyamaJapan
| | - Zongming Ren
- Insititute of Environmental and EcologyShandong Normal UniversityJinanChina
| | - Kozo Watanabe
- Department of Civil and Environmental EngineeringEhime UniversityMatsuyamaJapan
| |
Collapse
|
32
|
Barghi N, Schlötterer C. Distinct Patterns of Selective Sweep and Polygenic Adaptation in Evolve and Resequence Studies. Genome Biol Evol 2020; 12:890-904. [PMID: 32282913 PMCID: PMC7313669 DOI: 10.1093/gbe/evaa073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
In molecular population genetics, adaptation is typically thought to occur via selective sweeps, where targets of selection have independent effects on the phenotype and rise to fixation, whereas in quantitative genetics, many loci contribute to the phenotype and subtle frequency changes occur at many loci during polygenic adaptation. The sweep model makes specific predictions about frequency changes of beneficial alleles and many test statistics have been developed to detect such selection signatures. Despite polygenic adaptation is probably the prevalent mode of adaptation, because of the traditional focus on the phenotype, we are lacking a solid understanding of the similarities and differences of selection signatures under the two models. Recent theoretical and empirical studies have shown that both selective sweep and polygenic adaptation models could result in a sweep-like genomic signature; therefore, additional criteria are needed to distinguish the two models. With replicated populations and time series data, experimental evolution studies have the potential to identify the underlying model of adaptation. Using the framework of experimental evolution, we performed computer simulations to study the pattern of selected alleles for two models: 1) adaptation of a trait via independent beneficial mutations that are conditioned for fixation, that is, selective sweep model and 2) trait optimum model (polygenic adaptation), that is adaptation of a quantitative trait under stabilizing selection after a sudden shift in trait optimum. We identify several distinct patterns of selective sweep and trait optimum models in populations of different sizes. These features could provide the foundation for development of quantitative approaches to differentiate the two models.
Collapse
Affiliation(s)
- Neda Barghi
- Institut für Populationsgenetik, Vetmeduni, Vienna, Austria
| | | |
Collapse
|
33
|
Van Buskirk J, Jansen van Rensburg A. Relative importance of isolation‐by‐environment and other determinants of gene flow in an alpine amphibian. Evolution 2020; 74:962-978. [DOI: 10.1111/evo.13955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Josh Van Buskirk
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich 8057 Switzerland
| | - Alexandra Jansen van Rensburg
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich 8057 Switzerland
- School of Biological SciencesUniversity of Bristol Bristol BS8 1TQ United Kingdom
| |
Collapse
|
34
|
Rudin-Bitterli TS, Evans JP, Mitchell NJ. Geographic variation in adult and embryonic desiccation tolerance in a terrestrial-breeding frog. Evolution 2020; 74:1186-1199. [PMID: 32255513 DOI: 10.1111/evo.13973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/03/2023]
Abstract
Intraspecific variation in the ability of individuals to tolerate environmental perturbations is often neglected when considering the impacts of climate change. Yet this information is potentially crucial for mitigating deleterious effects of climate change on threatened species. Here we assessed patterns of intraspecific variation in desiccation tolerance in the frog Pseudophryne guentheri, a terrestrial-breeding species experiencing a drying climate. Adult frogs were collected from six populations across a rainfall gradient and their dehydration and rehydration rates were assessed. We also compared desiccation tolerance of embryos and hatchlings originating from within-population parental crosses from four of the populations. Embryos were reared on soil at three soil-water potentials and their desiccation tolerance was assessed across a range of traits. We found significant and strong patterns of intraspecific variation in almost all traits, both in adults and first-generation offspring. Adult frogs exhibited clinal variation in their water balance responses, with populations from drier sites both dehydrating and rehydrating more slowly compared to frogs from more mesic sites. Similarly, desiccation tolerance of first-generation offspring was significantly greater in populations from xeric sites. Our findings suggest that populations within this species will respond differently to the regional reduction in rainfall predicted by climate change models.
Collapse
Affiliation(s)
- Tabitha Silja Rudin-Bitterli
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia.,Centre for Evolutionary Biology, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Jonathan Paul Evans
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia.,Centre for Evolutionary Biology, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Nicola Jane Mitchell
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
35
|
Bachmann JC, Jansen van Rensburg A, Cortazar-Chinarro M, Laurila A, Van Buskirk J. Gene Flow Limits Adaptation along Steep Environmental Gradients. Am Nat 2020; 195:E67-E86. [DOI: 10.1086/707209] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
36
|
Jackson JM, Pimsler ML, Oyen KJ, Strange JP, Dillon ME, Lozier JD. Local adaptation across a complex bioclimatic landscape in two montane bumble bee species. Mol Ecol 2020; 29:920-939. [PMID: 32031739 DOI: 10.1111/mec.15376] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 12/21/2022]
Abstract
Understanding evolutionary responses to variation in temperature and precipitation across species ranges is of fundamental interest given ongoing climate change. The importance of temperature and precipitation for multiple aspects of bumble bee (Bombus) biology, combined with large geographic ranges that expose populations to diverse environmental pressures, make these insects well-suited for studying local adaptation. Here, we analyzed genome-wide sequence data from two widespread bumble bees, Bombus vosnesenskii and Bombus vancouverensis, using multiple environmental association analysis methods to investigate climate adaptation across latitude and altitude. The strongest signatures of selection were observed in B. vancouverensis, but despite unique responses between species for most loci, we detected several shared responses. Genes relating to neural and neuromuscular function and ion transport were especially evident with respect to temperature variables, while genes relating to cuticle formation, tracheal and respiratory system development, and homeostasis were associated with precipitation variables. Our data thus suggest that adaptive responses for tolerating abiotic variation are likely to be complex, but that several parallels among species can emerge even for these complex traits and landscapes. Results provide the framework for future work into mechanisms of thermal and desiccation tolerance in bumble bees and a set of genomic targets that might be monitored for future conservation efforts.
Collapse
Affiliation(s)
- Jason M Jackson
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Meaghan L Pimsler
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Kennan J Oyen
- Department of Zoology & Physiology and Program in Ecology, University of Wyoming, Laramie, WY, USA.,Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - James P Strange
- Department of Entomology, The Ohio State University, Columbus, OH, USA
| | - Michael E Dillon
- Department of Zoology & Physiology and Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
37
|
de Souza AR, Mayorquin AZ, Sarmiento CE. Paper wasps are darker at high elevation. J Therm Biol 2020; 89:102535. [PMID: 32364980 DOI: 10.1016/j.jtherbio.2020.102535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/21/2020] [Accepted: 02/09/2020] [Indexed: 11/15/2022]
Abstract
High mountains are harsh environments in which colder temperatures and higher levels of UV-B radiation are common. These abiotic conditions strongly affect animals' biology, often constraining their survival and reproduction. As a result, adaptations to live in such habitats are expected to evolve. Body color is thought to be adaptive to the environment that animals experience. Tegument melanization improves heat gain and provides photoprotection. Therefore, at high elevation, ectotherms are expected to be darker (well-melanized). We test this prediction in the paper wasp Agelaia pallipes (Hymenoptera: Vespidae), a species distributed across an elevational gradient in the Colombian Andes. We used Malaise traps and sampled a total of 146 wasps along nine elevations, ranging from 2,600-3,380 m above sea level. Standard digital photography was used to measure the body luminance and colour patterning in different body parts of dry-preserved specimens. There was striking variation in body luminance (darker and lighter), color patterning (patched, smoothed, homogeneous) and surface texture (shiny and matte), but the kind and degree of variation depended on the body part examined. Wasps from higher elevations had darker thoraces, confirming our prediction. Besides, at high elevation, the frequency of wasps with a matte rather than a shiny face strongly increased. Overall, our findings support the thermal melanism hypothesis and suggest that intraspecific color variation might be an adaptation to the environment of paper wasps.
Collapse
Affiliation(s)
- André R de Souza
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, São Paulo, Brazil.
| | - Angie Z Mayorquin
- Universidad Nacional de Colombia, Instituto de Ciencias Naturales, Cr 30 No. 45 03 edif 425, of. 303, Bogotá, Colombia.
| | - Carlos E Sarmiento
- Universidad Nacional de Colombia, Instituto de Ciencias Naturales, Cr 30 No. 45 03 edif 425, of. 303, Bogotá, Colombia.
| |
Collapse
|
38
|
Slatyer RA, Schoville SD, Nufio CR, Buckley LB. Do different rates of gene flow underlie variation in phenotypic and phenological clines in a montane grasshopper community? Ecol Evol 2020; 10:980-997. [PMID: 32015859 PMCID: PMC6988534 DOI: 10.1002/ece3.5961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 01/13/2023] Open
Abstract
Species responses to environmental change are likely to depend on existing genetic and phenotypic variation, as well as evolutionary potential. A key challenge is to determine whether gene flow might facilitate or impede genomic divergence among populations responding to environmental change, and if emergent phenotypic variation is dependent on gene flow rates. A general expectation is that patterns of genetic differentiation in a set of codistributed species reflect differences in dispersal ability. In less dispersive species, we predict greater genetic divergence and reduced gene flow. This could lead to covariation in life-history traits due to local adaptation, although plasticity or drift could mirror these patterns. We compare genome-wide patterns of genetic structure in four phenotypically variable grasshopper species along a steep elevation gradient near Boulder, Colorado, and test the hypothesis that genomic differentiation is greater in short-winged grasshopper species, and statistically associated with variation in growth, reproductive, and physiological traits along this gradient. In addition, we estimate rates of gene flow under competing demographic models, as well as potential gene flow through surveys of phenological overlap among populations within a species. All species exhibit genetic structure along the elevation gradient and limited gene flow. The most pronounced genetic divergence appears in short-winged (less dispersive) species, which also exhibit less phenological overlap among populations. A high-elevation population of the most widespread species, Melanoplus sanguinipes, appears to be a sink population derived from low elevation populations. While dispersal ability has a clear connection to the genetic structure in different species, genetic distance does not predict growth, reproductive, or physiological trait variation in any species, requiring further investigation to clearly link phenotypic divergence to local adaptation.
Collapse
Affiliation(s)
| | | | - César R. Nufio
- University of Colorado Natural History MuseumUniversity of ColoradoBoulderCOUSA
- National Science FoundationAlexandriaVAUSA
| | | |
Collapse
|
39
|
Abstract
Predation usually selects for visual crypsis, the colour matching between an animal and its background. Geographic co-variation between animal and background colourations is well known, but how crypsis varies along elevational gradients remains unknown. We predict that dorsal colouration in the lizard Psammodromus algirus should covary with the colour of bare soil—where this lizard is mainly found—along a 2200 m elevational gradient in Sierra Nevada (SE Spain). Moreover, we predict that crypsis should decrease with elevation for two reasons: (1) Predation pressure typically decreases with elevation, and (2) at high elevation, dorsal colouration is under conflicting selection for both crypsis and thermoregulation. By means of standardised photographies of the substratum and colourimetric measurements of lizard dorsal skin, we tested the colour matching between lizard dorsum and background. We found that, along the gradient, lizard dorsal colouration covaried with the colouration of bare soil, but not with other background elements where the lizard is rarely detected. Moreover, supporting our prediction, the degree of crypsis against bare soil decreased with elevation. Hence, our findings suggest local adaptation for crypsis in this lizard along an elevational gradient, but this local adaptation would be hindered at high elevations.
Collapse
|
40
|
Dillon ME, Lozier JD. Adaptation to the abiotic environment in insects: the influence of variability on ecophysiology and evolutionary genomics. CURRENT OPINION IN INSECT SCIENCE 2019; 36:131-139. [PMID: 31698151 DOI: 10.1016/j.cois.2019.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Advances in tools to gather environmental, phenotypic, and molecular data have accelerated our ability to detect abiotic drivers of variation across the genome-to-phenome spectrum in model and non-model insects. However, differences in the spatial and temporal resolution of these data sets may create gaps in our understanding of linkages between environment, genotype, and phenotype that yield missed or misleading results about adaptive variation. In this review we highlight sources of variability that might impact studies of phenotypic and 'omic environmental adaptation, challenges to collecting data at relevant scales, and possible solutions that link intensive fine-scale reductionist studies of mechanisms to large-scale biogeographic patterns.
Collapse
Affiliation(s)
- Michael E Dillon
- Department of Zoology & Physiology and Program in Ecology, The University of Wyoming, Laramie, Wyoming 82071, USA.
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, Alabama 35487, USA
| |
Collapse
|
41
|
Tonzo V, Papadopoulou A, Ortego J. Genomic data reveal deep genetic structure but no support for current taxonomic designation in a grasshopper species complex. Mol Ecol 2019; 28:3869-3886. [DOI: 10.1111/mec.15189] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Vanina Tonzo
- Department of Integrative Ecology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| | - Anna Papadopoulou
- Department of Biological Sciences University of Cyprus Nicosia Cyprus
| | - Joaquín Ortego
- Department of Integrative Ecology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| |
Collapse
|
42
|
Mayrand P, Filotas É, Wittische J, James PMA. The role of dispersal, selection, and timing of sampling on the false discovery rate of loci under selection during geographic range expansion. Genome 2019; 62:715-727. [PMID: 31344331 DOI: 10.1139/gen-2019-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Identifying adaptive loci is important to understand the evolutionary potential of species undergoing range expansion. However, in expanding populations, spatial demographic processes such as allele surfing can create spatial patterns of neutral genetic variation that appear similar to those generated through adaptive processes. As a result, the false discovery rate of adaptive loci may be inflated in landscape genomic analyses. Here, we take a simulation modelling approach to investigate how range expansion affects our ability to correctly distinguish between neutral and adaptive genetic variation, using the mountain pine beetle outbreak system as a motivating example. We simulated the demographic and population genetic dynamics of populations undergoing range expansion using an individual-based genetic model CDMetaPOP. We investigated how the false discovery rate of adaptive loci is affected by (i) dispersal capacity, (ii) timing of sampling, and (iii) the strength of selection on an adaptive reference locus. We found that a combination of weak dispersal, weak selection, and early sampling presents the greatest risk of misidentifying loci under selection. Expanding populations present unique challenges to the reliable identification of adaptive loci. We demonstrate that there is a need for further methodological development to account for directional demographic processes in landscape genomics.
Collapse
Affiliation(s)
- Paul Mayrand
- Université de Montréal, Département de sciences biologiques, CP 6128 Succursale Centre-Ville Montréal, QC H3C 3J7, Canada
| | - Élise Filotas
- TÉLUQ (Université du Québec), Département Science et Technologie, 5800 rue Saint-Denis, Montréal, QC H2S 3L5, Canada
| | - Julian Wittische
- Université de Montréal, Département de sciences biologiques, CP 6128 Succursale Centre-Ville Montréal, QC H3C 3J7, Canada
| | - Patrick M A James
- Université de Montréal, Département de sciences biologiques, CP 6128 Succursale Centre-Ville Montréal, QC H3C 3J7, Canada
| |
Collapse
|
43
|
Meyer‐Lucht Y, Luquet E, Jóhannesdóttir F, Rödin‐Mörch P, Quintela M, Richter‐Boix A, Höglund J, Laurila A. Genetic basis of amphibian larval development along a latitudinal gradient: Gene diversity, selection and links with phenotypic variation in transcription factor
C/EBP‐1. Mol Ecol 2019; 28:2786-2801. [DOI: 10.1111/mec.15123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Yvonne Meyer‐Lucht
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Emilien Luquet
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés Université Lyon 1 Villeurbanne France
| | - Fríða Jóhannesdóttir
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York
- Ecology and Genetics Research Unit University of Oulu Oulu Finland
| | - Patrik Rödin‐Mörch
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - María Quintela
- Department of Population Genetics Institute of Marine Research Bergen Norway
| | - Alex Richter‐Boix
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Jacob Höglund
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| |
Collapse
|
44
|
Feijó A, Wen Z, Cheng J, Ge D, Xia L, Yang Q. Divergent selection along elevational gradients promotes genetic and phenotypic disparities among small mammal populations. Ecol Evol 2019; 9:7080-7095. [PMID: 31380035 PMCID: PMC6662404 DOI: 10.1002/ece3.5273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/10/2019] [Accepted: 05/04/2019] [Indexed: 01/15/2023] Open
Abstract
Species distributed along mountain slopes, facing contrasting habitats in short geographic scale, are of particular interest to test how ecologically based divergent selection promotes phenotypic and genetic disparities as well as to assess isolation-by-environment mechanisms. Here, we conduct the first broad comparative study of phenotypic variation along elevational gradients, integrating a large array of ecological predictors and disentangling population genetic driver processes. The skull form of nine ecologically distinct species distributed over a large altitudinal range (100-4200 m) was compared to assess whether phenotypic divergence is a common phenomenon in small mammals and whether it shows parallel patterns. We also investigated the relative contribution of biotic (competition and predation) and abiotic parameters on phenotypic divergence via mixed models. Finally, we assessed the population genetic structure of a rodent species (Niviventer confucianus) via analysis of molecular variance and FST along three mountain slopes and tested the isolation-by-environment hypothesis using Mantel test and redundancy analysis. We found a consistent phenotypic divergence and marked genetic structure along elevational gradients; however, the species showed mixed patterns of size and skull shape trends across mountain zones. Individuals living at lower altitudes differed greatly in both phenotype and genotype from those living at high elevations, while middle-elevation individuals showed more intermediate forms. The ecological parameters associated with phenotypic divergence along elevation gradients are partly related to species' ecological and evolutionary constraints. Fossorial and solitary animals are mainly affected by climatic factors, while terrestrial and more gregarious species are influenced by biotic and abiotic parameters. A novel finding of our study is that predator richness emerged as an important factor associated with the intraspecific diversification of the mammalian skull along elevational gradients, a previously overlooked parameter. Population genetic structure was mainly driven by environmental heterogeneity along mountain slopes, with no or a week spatial effect, fitting the isolation-by-environment scenario. Our study highlights the strong and multifaceted effects of heterogeneous steep habitats and ecologically based divergent selective forces in small mammal populations.
Collapse
Affiliation(s)
- Anderson Feijó
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Zhixin Wen
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Jilong Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
45
|
Trochet A, Deluen M, Bertrand R, Calvez O, Martínez-Silvestre A, Verdaguer-Foz I, Mossoll-Torres M, Souchet J, Darnet E, Le Chevalier H, Guillaume O, Aubret F. Body Size Increases with Elevation in Pyrenean Newts (Calotriton asper). HERPETOLOGICA 2019. [DOI: 10.1655/d-18-00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Audrey Trochet
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 CNRS—Université Paul Sabatier, 09200 Moulis, France
| | - Marine Deluen
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 CNRS—Université Paul Sabatier, 09200 Moulis, France
| | - Romain Bertrand
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 CNRS—Université Paul Sabatier, 09200 Moulis, France
| | - Olivier Calvez
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 CNRS—Université Paul Sabatier, 09200 Moulis, France
| | | | - Isabel Verdaguer-Foz
- CRARC (Catalonia Reptile and Amphibian Rescue Center), 08783 Masquefa, Barcelona, Spain
| | | | - Jérémie Souchet
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 CNRS—Université Paul Sabatier, 09200 Moulis, France
| | - Elodie Darnet
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 CNRS—Université Paul Sabatier, 09200 Moulis, France
| | - Hugo Le Chevalier
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 CNRS—Université Paul Sabatier, 09200 Moulis, France
| | - Olivier Guillaume
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 CNRS—Université Paul Sabatier, 09200 Moulis, France
| | - Fabien Aubret
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 CNRS—Université Paul Sabatier, 09200 Moulis, France
| |
Collapse
|
46
|
Moreno-Rueda G, Melero E, Reguera S, Zamora-Camacho FJ, Álvarez-Benito I. Prey availability, prey selection, and trophic niche width in the lizard Psammodromus algirus along an elevational gradient. Curr Zool 2018; 64:603-613. [PMID: 30323839 PMCID: PMC6178790 DOI: 10.1093/cz/zox077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/10/2017] [Accepted: 12/07/2017] [Indexed: 11/13/2022] Open
Abstract
Mountains imply enormous environmental variation, with alpine habitats entailing harsh environments, especially for ectotherms such as lizards. This environmental variability also may imply variation in prey availability. However, little is known about how lizard trophic ecology varies with elevation. In this study, we analyze diet, prey availability, prey selection, and trophic niche width in the lacertid lizard Psammodromus algirus along a 2,200-m elevational gradient in the Sierra Nevada (SE Spain). The analysis of fecal samples has shown that Orthoptera, Formicidae, Hemiptera, Coleoptera, and Araneae are the main prey, although, according to their abundance in pitfall traps, Formicidae and Coleoptera are rejected by the lizard whereas Orthoptera, Hemiptera, and Araneae are preferred. Prey abundance and diversity increase with elevation and diet subtly varies along with the elevational gradient. The consumption of Coleoptera increases with elevation probably as a consequence of the lizard foraging more in open areas while basking. The electivity for Araneae increases with elevation. Araneae are rejected in the lowlands—where they are relatively abundant—whereas, at high elevation, this lizard positively selects them, despite they being less abundant. The lizard trophic niche width expands with elevation due to concomitant greater prey diversity and hence this lizard feeds on more prey types in highlands. Although no sex difference in diet has been found, the trophic niche is broader in females than males. As a whole, alpine lizards show a trophic niche similar to that found at lower elevations, suggesting that P. algirus is well adapted to the harsh environment found in alpine areas.
Collapse
Affiliation(s)
- Gregorio Moreno-Rueda
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Elena Melero
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Senda Reguera
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Francisco J Zamora-Camacho
- Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales-CSIC, C/José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| | - Inés Álvarez-Benito
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|
47
|
Jackson JM, Pimsler ML, Oyen KJ, Koch‐Uhuad JB, Herndon JD, Strange JP, Dillon ME, Lozier JD. Distance, elevation and environment as drivers of diversity and divergence in bumble bees across latitude and altitude. Mol Ecol 2018; 27:2926-2942. [DOI: 10.1111/mec.14735] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Jason M. Jackson
- Department of Biological Sciences The University of Alabama Tuscaloosa Alabama
| | - Meaghan L. Pimsler
- Department of Biological Sciences The University of Alabama Tuscaloosa Alabama
| | - Kennan Jeannet Oyen
- Department of Zoology & Physiology and Program in Ecology University of Wyoming Laramie Wyoming
| | - Jonathan B. Koch‐Uhuad
- Tropical Conservation Biology & Environmental Science Graduate Program Department of Biology University of Hawaii at Hilo Hilo Hawaii
| | - James D. Herndon
- USDA‐ARS Pollinating Insect Research Unit Utah State University Logan Utah
| | - James P. Strange
- USDA‐ARS Pollinating Insect Research Unit Utah State University Logan Utah
| | - Michael E. Dillon
- Department of Zoology & Physiology and Program in Ecology University of Wyoming Laramie Wyoming
| | - Jeffrey D. Lozier
- Department of Biological Sciences The University of Alabama Tuscaloosa Alabama
| |
Collapse
|
48
|
Webster M. Morphological homeostasis in the fossil record. Semin Cell Dev Biol 2018; 88:91-104. [PMID: 29787861 DOI: 10.1016/j.semcdb.2018.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/31/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022]
Abstract
Morphological homeostasis limits the extent to which genetic and/or environmental variation is translated into phenotypic variation, providing generation-to-generation fitness advantage under a stabilizing selection regime. Depending on its lability, morphological homeostasis might also have a longer-term impact on evolution by restricting the variation-and thus the response to directional selection-of a trait. The fossil record offers an inviting opportunity to investigate whether and how morphological homeostasis constrained trait evolution in lineages or clades on long timescales (thousands to millions of years) that are not accessible to neontological studies. Fossils can also reveal insight into the nature of primitive developmental systems that might not be predictable from the study of modern organisms. The ability to study morphological homeostasis in fossils is strongly limited by taphonomic processes that can destroy, blur, or distort the original biological signal: genetic data are unavailable; phenotypic data can be modified by tectonic or compaction-related deformation; time-averaging limits temporal resolution; and environmental variation is hard to study and impossible to control. As a result of these processes, neither allelic sensitivity (and thus genetic canalization) nor macroenvironmental sensitivity (and thus environmental canalization) can be unambiguously assessed in the fossil record. However, homeorhesis-robustness against microenvironmental variation (developmental noise)-can be assessed in ancient developmental systems by measuring the level of fluctuating asymmetry (FA) in a nominally symmetric trait. This requires the analysis of multiple, minimally time-averaged samples of exquisite preservational quality. Studies of FA in fossils stand to make valuable contributions to our understanding of the deep-time significance of homeorhesis. Few empirical studies have been conducted to date, and future paleontological research focusing on how homeorhesis relates to evolutionary rate (including stasis), species survivorship, and purported macroevolutionary trends in evolvability would reap high reward.
Collapse
Affiliation(s)
- Mark Webster
- Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL, 60637, USA.
| |
Collapse
|
49
|
Halbritter AH, Fior S, Keller I, Billeter R, Edwards PJ, Holderegger R, Karrenberg S, Pluess AR, Widmer A, Alexander JM. Trait differentiation and adaptation of plants along elevation gradients. J Evol Biol 2018. [PMID: 29518274 DOI: 10.1111/jeb.13262] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Studies of genetic adaptation in plant populations along elevation gradients in mountains have a long history, but there has until now been neither a synthesis of how frequently plant populations exhibit adaptation to elevation nor an evaluation of how consistent underlying trait differences across species are. We reviewed studies of adaptation along elevation gradients (i) from a meta-analysis of phenotypic differentiation of three traits (height, biomass and phenology) from plants growing in 70 common garden experiments; (ii) by testing elevation adaptation using three fitness proxies (survival, reproductive output and biomass) from 14 reciprocal transplant experiments; (iii) by qualitatively assessing information at the molecular level, from 10 genomewide surveys and candidate gene approaches. We found that plants originating from high elevations were generally shorter and produced less biomass, but phenology did not vary consistently. We found significant evidence for elevation adaptation in terms of survival and biomass, but not for reproductive output. Variation in phenotypic and fitness responses to elevation across species was not related to life history traits or to environmental conditions. Molecular studies, which have focussed mainly on loci related to plant physiology and phenology, also provide evidence for adaptation along elevation gradients. Together, these studies indicate that genetically based trait differentiation and adaptation to elevation are widespread in plants. We conclude that a better understanding of the mechanisms underlying adaptation, not only to elevation but also to environmental change, will require more studies combining the ecological and molecular approaches.
Collapse
Affiliation(s)
- Aud H Halbritter
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Simone Fior
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Irene Keller
- Department of Clinical Research and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Regula Billeter
- Institute of Natural Resource Sciences, ZHAW Wädenswil, Wädenswil, Switzerland
| | - Peter J Edwards
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Rolf Holderegger
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.,Swiss Federal Research Institute for Forest, Snow and Landscape WSL, Birmensdorf, Switzerland
| | - Sophie Karrenberg
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Andrea R Pluess
- Swiss Federal Research Institute for Forest, Snow and Landscape WSL, Birmensdorf, Switzerland
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Jake M Alexander
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
50
|
Álvarez-Ruiz L, Megía-Palma R, Reguera S, Ruiz S, Zamora-Camacho FJ, Figuerola J, Moreno-Rueda G. Opposed elevational variation in prevalence and intensity of endoparasites and their vectors in a lizard. Curr Zool 2018; 64:197-204. [PMID: 30402060 PMCID: PMC5905508 DOI: 10.1093/cz/zoy002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/08/2018] [Indexed: 11/19/2022] Open
Abstract
Studying the causes of parasite geographic distribution is relevant to understand ecological and evolutionary processes that affect host populations as well as for species conservation. Temperature is one of the most important environmental variables affecting parasite distribution, as raising temperatures positively affect development, reproduction, and rate of transmission of both endo- and ectoparasites. In this context, it is generally accepted that, in mountains, parasite abundance decreases with elevation. However, empirical evidence on this topic is limited. In the present study, we analyzed the elevational variation of hemoparasites and ectoparasites of a lizard, Psammodromus algirus, along a 2,200-m elevational gradient in Sierra Nevada (SE Spain). As predicted, ectoparasite (mites, ticks, mosquitoes, and sandflies) abundance decreased with elevation. However, hemoparasite prevalence and intensity in the lizard augmented with altitude, showing a pattern contrary to their vectors (mites). We suggest that tolerance to hemoparasites may increase with elevation as a consequence of lizards at high altitudes taking advantage of increased body condition and food availability, and reduced oxidative stress. Moreover, lizards could have been selected for higher resistance against hemoparasites at lowlands (where higher rates of replication are expected), thus reducing hemoparasite prevalence and load. Our findings imply that, in a scenario of climate warming, populations of lizards at high elevation may face increased abundance of ectoparasites, accompanied with strong negative effects.
Collapse
Affiliation(s)
- Lola Álvarez-Ruiz
- Centro de Investigaciones sobre Desertificación-CSIC, Ctra. Náquera Km. 4.5, Moncada, Valencia, E-46113, Spain
| | - Rodrigo Megía-Palma
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, c/José Gutiérrez Abascal 2, Madrid, E-28006, Spain
| | - Senda Reguera
- Unit of Ethology and Animal Welfare, Faculty of Veterinary, University CEU Cardenal Herrera, Alfara del Patriarca, (Valencia), E-46113, Spain
| | - Santiago Ruiz
- Servicio de Control de Mosquitos, Diputación Provincial de Huelva, Centro de Investigación Biomédica en Red, Epidemiología y Salud Pública (CIBERESP), Huelva, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Francisco J Zamora-Camacho
- Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales-CSIC, C/José Gutiérrez Abascal 2, Madrid, E-28006, Spain
| | - Jordi Figuerola
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
- Departamento de Ecología de Humedales, Estación Biológica de Doñana-CSIC, c/Américo Vespucio s/n, Sevilla, E-41092, Spain
| | - Gregorio Moreno-Rueda
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, E-18071, Spain
| | | |
Collapse
|