1
|
Narah J, Streinzer M, Chakravorty J, Megu K, Spaethe J, Brockmann A, Schmitt T. Cuticular Hydrocarbon Profiles of Himalayan Bumble Bees (Hymenoptera: Bombus Latreille) are Species-Specific and Show Elevational Variation. J Chem Ecol 2024; 50:969-977. [PMID: 38470528 PMCID: PMC11717848 DOI: 10.1007/s10886-024-01486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024]
Abstract
Bumble bees are important pollinators in natural environments and agricultural farmlands, and they are in particular adapted to harsh environments like high mountain habitats. In these environments, animals are exposed to low temperature and face the risk of desiccation. The Eastern Himalayas are one of the recognized biodiversity hotspots worldwide. The area covers subtropical rainforest with warm temperature and high precipitation as well as high mountain ranges with peaks reaching up to 7,000 m, shaping a diverse floral and faunal community at the different elevational zones. To identify possible adaptation strategies, we investigated the cuticular hydrocarbon profiles of four bumble bee species occurring at different elevational ranges in Arunachal Pradesh, the northeastern most state in India. At 17 locations along an elevational gradient, we collected workers of two species from lower elevations (B. albopleuralis and B. breviceps; ~ 100 m - 3,000 m asl) and two species from higher elevations (B. prshewalskyi and B. mirus; ~ 2,800 m - 4,500 m asl). The CHC profiles of all four species showed a significant degree of variation in the composition of hydrocarbons, indicating species specificity. We also found clear correlation with elevation. The weighted mean chain length of the hydrocarbons significantly differed between the low and high elevation species, and the proportion of saturated hydrocarbons in CHC profiles significantly increased with the elevational range of the bumble bee species. Our results indicate that bumble bees living at high elevations reduce the risk of water loss by adapting their CHC composition on their cuticle, a phenomenon that has also been found in other insects like ants and fruit flies.
Collapse
Affiliation(s)
- Jaya Narah
- Rajiv Gandhi University, Papum Pare, Arunachal Pradesh, India
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | | | | | - Karsing Megu
- Rajiv Gandhi University, Papum Pare, Arunachal Pradesh, India
- Dera Natung Government College, Itanagar, Arunachal Pradesh, India
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Axel Brockmann
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Berardi S, Rhodes JA, Berner MC, Greenblum SI, Bitter MC, Behrman EL, Betancourt NJ, Bergland AO, Petrov DA, Rajpurohit S, Schmidt P. Drosophila melanogaster pigmentation demonstrates adaptive phenotypic parallelism but genomic unpredictability over multiple timescales. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607378. [PMID: 39211235 PMCID: PMC11361081 DOI: 10.1101/2024.08.09.607378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Populations are capable of responding to environmental change over ecological timescales via adaptive tracking. However, the translation from patterns of allele frequency change to rapid adaptation of complex traits remains unresolved. We used abdominal pigmentation in Drosophila melanogaster as a model phenotype to address the nature, genetic architecture, and repeatability of rapid adaptation in the field. We show that D. melanogaster pigmentation evolves as a highly parallel and deterministic response to shared environmental gradients across latitude and season in natural North American populations. We then experimentally evolved replicate, genetically diverse fly populations in field mesocosms to remove any confounding effects of demography and/or cryptic structure that may drive patterns in wild populations; we show that pigmentation rapidly responds, in parallel, in fewer than ten generations. Thus, pigmentation evolves concordantly in response to spatial and temporal climatic gradients. We next examined whether phenotypic differentiation was associated with allele frequency change at loci with established links to genetic variance in pigmentation in natural populations. We found that across all spatial and temporal scales, phenotypic patterns were associated with variation at pigmentation-related loci, and the sets of genes we identified in each context were largely nonoverlapping. Therefore, our findings suggest that parallel phenotypic evolution is associated with an unpredictable genomic response, with distinct components of the polygenic architecture shifting across each environmental gradient to produce redundant adaptive patterns. Significance Statement Shifts in global climate conditions have heightened our need to understand the dynamics and pace of adaptation in natural populations. In order to anticipate the population-level response to rapidly changing environmental conditions, we need to understand whether trait evolution is predictable over short timescales, and whether the genetic basis of adaptation is shared or distinct across multiple timescales. Here, we explored parallelism in the adaptive response of a complex phenotype, D. melanogaster pigmentation, to shared conditions that varied over multiple spatiotemporal scales. Our results demonstrate that while phenotypic adaptation proceeds as a predictable response to environmental gradients, even over short timescales, the genetic basis of the adaptive response is variable and nuanced across spatial and temporal contexts.
Collapse
|
3
|
Golian MJ, Friedman DA, Harrison M, McMahon DP, Buellesbach J. Chemical and transcriptomic diversity do not correlate with ascending levels of social complexity in the insect order Blattodea. Ecol Evol 2024; 14:e70063. [PMID: 39091327 PMCID: PMC11289792 DOI: 10.1002/ece3.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/21/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
Eusocial insects, such as ants and termites, are characterized by high levels of coordinated social organization. This is contrasted by solitary insects that display more limited forms of collective behavior. It has been hypothesized that this gradient in sociobehavioral sophistication is positively correlated with chemical profile complexity, due to a potentially increased demand for diversity in chemical communication mechanisms in insects with higher levels of social complexity. However, this claim has rarely been assessed empirically. Here, we compare different levels of chemical and transcriptomic complexity in selected species of the order Blattodea that represent different levels of social organization, from solitary to eusocial. We primarily focus on cuticular hydrocarbon (CHC) complexity, since it has repeatedly been demonstrated that CHCs are key signaling molecules conveying a wide variety of chemical information in solitary as well as eusocial insects. We assessed CHC complexity and divergence between our studied taxa of different social complexity levels as well as the differentiation of their respective repertoires of CHC biosynthesis gene transcripts. Surprisingly, we did not find any consistent pattern of chemical complexity correlating with social complexity, nor did the overall chemical divergence or transcriptomic repertoire of CHC biosynthesis genes reflect on the levels of social organization. Our results challenge the assumption that increasing social complexity is generally reflected in more complex chemical profiles and point toward the need for a more cautious and differentiated view on correlating complexity on a chemical, genetic, and social level.
Collapse
Affiliation(s)
- Marek J. Golian
- Institute for Evolution & BiodiversityUniversity of MünsterMünsterGermany
| | - Daniel A. Friedman
- Department of Entomology & NematologyUniversity of California – DavisDavisCaliforniaUSA
| | - Mark Harrison
- Institute for Evolution & BiodiversityUniversity of MünsterMünsterGermany
| | - Dino P. McMahon
- Institute of Biology – Zoology, Freie Universität BerlinBerlinGermany
- Department for Materials and EnvironmentBAM Federal Institute for Materials Research and TestingBerlinGermany
| | - Jan Buellesbach
- Institute for Evolution & BiodiversityUniversity of MünsterMünsterGermany
| |
Collapse
|
4
|
Yang Y, Flaven-Pouchon J, Cortot J, Ferveur JF, Moussian B. Colorimetric surface lipid quantification in Drosophila. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22091. [PMID: 38385805 DOI: 10.1002/arch.22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Insects are covered with free neutral cuticular hydrocarbons (CHC) that may be linear, branched, and unsaturated and vary in their chain length. The CHC composition is species-specific and contributes to the adaptation of the animal to its ecological niche. Commonly, CHCs contribute substantially to the inward and outward barrier function of the cuticle and serve pheromonal communication. They are generally determined by gas-chromatography, a time-consuming method requiring detailed expertize, but it is not available in many laboratories. Here, we report on the establishment of a colorimetric method allowing semi-quantitative determination of unsaturated CHCs in Drosophila flies. This method is based on the in vitro reaction of vanillin with double bounds in lipid molecules in an acidic solution to generate a reddish color. We found a robust correlation between gas chromatographic and vanillin-colorimetric data on unsaturated CHCs amounts in single flies. As the role of unsaturated CHCs in the performance of insects in their environment is only partly understood, we think that this novel method would allow fast and broad analyses of this type of CHCs in insects both in the field and in laboratories and thereby contribute to a substantial improvement in the investigation of this matter.
Collapse
Affiliation(s)
- Yang Yang
- Interfaculty Institute for Cell Biology, Animal Genetics, Universität Tübingen, Tübingen, Germany
| | - Justin Flaven-Pouchon
- Interfaculty Institute for Cell Biology, Animal Genetics, Universität Tübingen, Tübingen, Germany
| | - Jerôme Cortot
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Universite ́ de Bourgogne, Dijon, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Universite ́ de Bourgogne, Dijon, France
| | - Bernard Moussian
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| |
Collapse
|
5
|
Mitchell C, Wylde Z, Del Castillo E, Rapkin J, House CM, Hunt J. Beauty or function? The opposing effects of natural and sexual selection on cuticular hydrocarbons in male black field crickets. J Evol Biol 2023; 36:1266-1281. [PMID: 37534753 DOI: 10.1111/jeb.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 08/04/2023]
Abstract
Although many theoretical models of male sexual trait evolution assume that sexual selection is countered by natural selection, direct empirical tests of this assumption are relatively uncommon. Cuticular hydrocarbons (CHCs) are known to play an important role not only in restricting evaporative water loss but also in sexual signalling in most terrestrial arthropods. Insects adjusting their CHC layer for optimal desiccation resistance is often thought to come at the expense of successful sexual attraction, suggesting that natural and sexual selection are in opposition for this trait. In this study, we sampled the CHCs of male black field crickets (Teleogryllus commodus) using solid-phase microextraction and then either measured their evaporative water loss or mating success. We then used multivariate selection analysis to quantify the strength and form of natural and sexual selection targeting male CHCs. Both natural and sexual selection imposed significant linear and stabilizing selection on male CHCs, although for very different combinations. Natural selection largely favoured an increase in the total abundance of CHCs, especially those with a longer chain length. In contrast, mating success peaked at a lower total abundance of CHCs and declined as CHC abundance increased. However, mating success did improve with an increase in a number of specific CHC components that also increased evaporative water loss. Importantly, this resulted in the combination of male CHCs favoured by natural selection and sexual selection being strongly opposing. Our findings suggest that the balance between natural and sexual selection is likely to play an important role in the evolution of male CHCs in T. commodus and may help explain why CHCs are so divergent across populations and species.
Collapse
Affiliation(s)
- Christopher Mitchell
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, UK
| | - Zachariah Wylde
- School of Science, Western Sydney University, Hawkesbury Campus, Penrith, New South Wales, Australia
| | - Enrique Del Castillo
- Department of Industrial & Manufacturing Engineering and Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - James Rapkin
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, UK
| | - Clarissa M House
- School of Science, Western Sydney University, Hawkesbury Campus, Penrith, New South Wales, Australia
| | - John Hunt
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, UK
- School of Science, Western Sydney University, Hawkesbury Campus, Penrith, New South Wales, Australia
| |
Collapse
|
6
|
Caselli A, Favaro R, Petacchi R, Valicenti M, Angeli S. The Cuticular Hydrocarbons of Dasineura Oleae Show Differences Between Sex, Adult Age and Mating Status. J Chem Ecol 2023; 49:369-383. [PMID: 37093418 PMCID: PMC10611616 DOI: 10.1007/s10886-023-01428-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
In insects, cuticular lipids prevent water loss and act as semiochemicals. Because of their ecological function, the profile change across the insects' sex and development offers insight into insect biology and possible tools for pest management. Here, the first work on cecidomyiid cuticular extracts is proposed considering Dasineura oleae (Diptera: Cecidomyiidae) males and females at different adult ages (0-12 h, 12-24 h, 24-36 h) and distinct sexual conditions (virgin and mated). A set of 49 compounds were recorded (12 alkanes, 1 monomethyl alkane, 11 fatty acids, 4 esters, 1 aldehyde, 1 allylbenzene, 1 amine, 1 flavonoid, 1 ketone, 1 phenol, 1 steradiene, 1 sterol, 1 terpene, 1 triterpene and 11 unknown compounds), and 18 of them showed significant differences between groups. Among alkanes, hexacosane (nC26) exhibited a decreasing trend from the youngest to the oldest females, while pentacosane (nC25) and nonacosane (nC29) showed a decreasing trend from 0 to 12 h to 12-24 h virgin females. In addition, nonadecane (nC19) was significantly more abundant in the youngest males compared to older males and females. The alkanes nC25, nC26 and nC29 have been reported to be age-related also in other dipterans, while nC19 has been described as gender-specific chemical cue for platygastrid parasitoids. Further behavioural trials and analyses are required to assign the specific ecological roles to the characterized compounds. Our results may contribute to develop new low-impact control strategies relying on the manipulation of D. oleae's chemical communication (e.g. disruption of mating or species recognition). HIGHLIGHTS: • Cuticular hydrocarbons are often involved in dipteran intraspecific communication. • We explored the cuticular profile of D. oleae at different age, sex, mating condition. • Five alkanes and one mono-methyl alkane showed differences among groups. • Linoleic acid is the most abundant compound in virgins, absent in mated insects. • Eleven compounds disappear in mated insects, but were present in all virgins.
Collapse
Affiliation(s)
- Alice Caselli
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy.
| | - Riccardo Favaro
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, 39100, Italy
| | - Ruggero Petacchi
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Marta Valicenti
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Sergio Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 1, Bolzano, 39100, Italy
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Piazza Università 1, 39100, Bolzano, Italy
| |
Collapse
|
7
|
Maihoff F, Sahler S, Schoger S, Brenzinger K, Kallnik K, Sauer N, Bofinger L, Schmitt T, Nooten SS, Classen A. Cuticular hydrocarbons of alpine bumble bees (Hymenoptera: Bombus) are species-specific, but show little evidence of elevation-related climate adaptation. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1082559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Alpine bumble bees are the most important pollinators in temperate mountain ecosystems. Although they are used to encounter small-scale successions of very different climates in the mountains, many species respond sensitively to climatic changes, reflected in spatial range shifts and declining populations worldwide. Cuticular hydrocarbons (CHCs) mediate climate adaptation in some insects. However, whether they predict the elevational niche of bumble bees or their responses to climatic changes remains poorly understood. Here, we used three different approaches to study the role of bumble bees’ CHCs in the context of climate adaptation: using a 1,300 m elevational gradient, we first investigated whether the overall composition of CHCs, and two potentially climate-associated chemical traits (proportion of saturated components, mean chain length) on the cuticle of six bumble bee species were linked to the species’ elevational niches. We then analyzed intraspecific variation in CHCs of Bombus pascuorum along the elevational gradient and tested whether these traits respond to temperature. Finally, we used a field translocation experiment to test whether CHCs of Bombus lucorum workers change, when translocated from the foothill of a cool and wet mountain region to (a) higher elevations, and (b) a warm and dry region. Overall, the six species showed distinctive, species-specific CHC profiles. We found inter- and intraspecific variation in the composition of CHCs and in chemical traits along the elevational gradient, but no link to the elevational distribution of species and individuals. According to our expectations, bumble bees translocated to a warm and dry region tended to express longer CHC chains than bumble bees translocated to cool and wet foothills, which could reflect an acclimatization to regional climate. However, chain lengths did not further decrease systematically along the elevational gradient, suggesting that other factors than temperature also shape chain lengths in CHC profiles. We conclude that in alpine bumble bees, CHC profiles and traits respond at best secondarily to the climate conditions tested in this study. While the functional role of species-specific CHC profiles in bumble bees remains elusive, limited plasticity in this trait could restrict species’ ability to adapt to climatic changes.
Collapse
|
8
|
Kula C, Amendt J, Drijfhout FP, Moore HE. Geographical Variation of Cuticular Hydrocarbon Profiles of Adult Flies and Empty Puparia Amongst Three Populations of Calliphora vicina (Diptera: Calliphoridae). JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:14-23. [PMID: 36373612 DOI: 10.1093/jme/tjac167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 06/16/2023]
Abstract
Blowflies (Diptera: Calliphoridae) are of great importance in forensic entomology and in determining the minimum post-mortem interval, as they may be the first group of insects to colonize decomposing remains. Reliable species identification is an essential prerequisite. Classically, morphological characters or DNA sequences are used for this purpose. However, depending on the species and the condition of the specimen, this can be difficult, e.g., in the case of empty fly puparia. Recent studies have shown that cuticular hydrocarbon (CHC) profiles are species-specific in necrophagous taxa and represent another promising tool for identification. However, the population-specific variability of these substances as a function of e.g., local climatic parameters has not yet been sufficiently investigated. The aim of this study was to determine the geographical variation of CHC profiles of the blowfly Calliphora vicina (Robineau-Desvoidy, 1830) depending on different countries of origin. Flies were reared in the United Kingdom, Germany, and Turkey in common garden experiments under ambient conditions. CHC profiles of the resulting adult flies and their empty puparia were analyzed using gas chromatography-mass spectrometry. Data were visualized by principal component analysis and clustered by population. The populations of the United Kingdom and Germany, both having similar climates and being geographically close to each other, showed greater similarities in CHC profiles. However, the CHC profile of the Turkish population, whose climate is significantly different from the other two populations, was very different. Our study confirms the high potential of CHC analysis in forensic entomology but highlights the need to investigate geographical variability in chemical profiles.
Collapse
Affiliation(s)
- Canan Kula
- Cranfield Forensic Institute, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, Wiltshire SN6 8LA, UK
| | - Jens Amendt
- Institute of Legal Medicine, University Hospital Frankfurt/Main, Goethe-University, 60323 Frankfurt/Main, Germany
| | - Falko P Drijfhout
- Chemical Ecology Group, School of Chemical and Physical Science, Keele University, Keele ST5 5BG, UK
| | - Hannah E Moore
- Cranfield Forensic Institute, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, Wiltshire SN6 8LA, UK
| |
Collapse
|
9
|
Mayekar HV, Ramkumar DK, Garg D, Nair A, Khandelwal A, Joshi K, Rajpurohit S. Clinal variation as a tool to understand climate change. Front Physiol 2022; 13:880728. [PMID: 36304576 PMCID: PMC9593049 DOI: 10.3389/fphys.2022.880728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Clines are observable gradients that reflect continuous change in biological traits of species across geographical ranges. Clinal gradients could vary at geographic scales (latitude and altitude). Since clinal variations represent active genomic responses at the population level they (clines) provide an immense power to address questions related to climatic change. With the fast pace of climate change i.e. warming, populations are also likely to exhibit rapid responses; at both the phenotypic and genotypic levels. We seek to understand how clinal variation could be used to anticipate climatic responses using Drosophila, a pervasively used inter-disciplinary model system owing to its molecular repertoire. The genomic information coupled with the phenotypic variation greatly facilitates our understanding of the Drosophilidae response to climate change. We discuss traits associated with clinal variation at the phenotypic level as well as their underlying genetic regulators. Given prevailing climatic conditions and future projections for climate change, clines could emerge as monitoring tools to track the cross-talk between climatic variables and organisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Subhash Rajpurohit
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, GJ, India
| |
Collapse
|
10
|
Baumgart L, Schaa EM, Menzel F, Joel AC. Change of mechanical characteristics in spider silk capture threads after contact with prey. Acta Biomater 2022; 153:355-363. [PMID: 36167237 DOI: 10.1016/j.actbio.2022.09.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022]
Abstract
Most spiders rely on specialized capture threads to subdue prey. Cribellate spiders use capture threads, whose adhesion is based on thousands of nanofibers instead of specialized glue. The nanofibers adhere due to van der Waals and hygroscopic forces, but the adhesion is strengthened by an interaction with the cuticular hydrocarbons (CHCs) covering almost all insects. The interaction between CHCs and cribellate threads becomes visible through migration of the CHCs into the thread even far beyond the point of contact. In this study, we were able to show that the migrated CHCs not only influence adhesion but also change the mechanical characteristics of the thread. While adhesion, extensibility and total energy decreased in threads treated with CHCs from different insects, we observed an increasing force required to break threads. Such mechanical changes could be beneficial for the spider: Upon the first impact of the insect in the web, it is important to absorb all the energy without breaking. Afterwards, a reduction in extensibility could cause the insect to stay closer to the web and thus become additionally entangled in neighboring threads. An increased tensile force would additionally ensure that for insects already in the web, it is even harder to free themselves. Taken together, all these changes make it unlikely that cribellate spiders reuse their capture threads, if not reacting rapidly and removing the prey insect before the CHCs can spread across the thread. STATEMENT OF SIGNIFICANCE: Cribellate spiders use capture threads that, unlike other spiders, consist of nanofibers and do not rely glue. Instead, prey adheres mainly because their surface compounds, so-called cuticular hydrocarbons (CHCs), interact with the thread, this way generating strong adhesion forces. Previous studies on biomechanics and adhesion of cribellate threads only dealt with artificial surfaces, neglecting any interaction with surface compounds. This study examines the dramatical mechanical changes of a cribellate thread after interaction with prey CHCs, showing modifications of the thread's extensibility, tensile force and total energy. Our results highlight the importance of studying mechanical properties of silk not only in an artificial context, but also in real life.
Collapse
Affiliation(s)
- Lucas Baumgart
- Institute of Zoology, RWTH Aachen University, Aachen, Germany.
| | - Eva-Marie Schaa
- Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Florian Menzel
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany
| | - Anna-Christin Joel
- Institute of Zoology, RWTH Aachen University, Aachen, Germany; Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
11
|
Baumgart L, Wittke M, Morsbach S, Abou B, Menzel F. Why do ants differ in acclimatory ability? Biophysical mechanisms behind cuticular hydrocarbon acclimation across species. J Exp Biol 2022; 225:275883. [PMID: 35775442 DOI: 10.1242/jeb.243847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 06/27/2022] [Indexed: 11/20/2022]
Abstract
Maintaining water balance is vital for terrestrial organisms. Insects protect themselves against desiccation via cuticular hydrocarbons (CHCs). CHC layers are complex mixtures of solid and liquid hydrocarbons, with a surprisingly diverse composition across species. This variation may translate to differential phase behaviour, and hence varying waterproofing capacity. This is especially relevant when temperatures change, which requires acclimatory CHC changes to maintain waterproofing. Nevertheless, the physical consequences of CHC variation are still little understood. We studied acclimatory responses and their consequences for CHC composition, phase behaviour, and drought survival in three congeneric ant species. Colony fragments were kept under cool, warm, and fluctuating temperature regimes. Lasius niger and platythorax, both of which are rich in methyl-branched alkanes, showed largely predictable acclimatory changes of the CHC profile. In both species, warm acclimation increased drought resistance. Warm acclimation increased the proportion of solid compounds in L. niger but not in L. platythorax. In both species, the CHC layer formed a liquid matrix of constantly low viscosity, which contained highly viscous and solid parts. This phase heterogeneity may be adaptive, increasing robustness to temperature fluctuations. In L. brunneus, which is rich in unsaturated hydrocarbons, acclimatory CHC changes were less predictable, and warm acclimation did not enhance drought survival. The CHC layer was more homogenous, but matrix viscosity changed with acclimation. We showed that ant species use different physical mechanisms to enhance waterproofing during acclimation. Hence, the ability to acclimate, and thus climatic niche breadth, may strongly depend on species-specific CHC profile.
Collapse
Affiliation(s)
- Lucas Baumgart
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany.,Institute of Biology II, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.,Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université de Paris, 75205 Paris Cedex 13, France
| | - Marti Wittke
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Bérengère Abou
- Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université de Paris, 75205 Paris Cedex 13, France
| | - Florian Menzel
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| |
Collapse
|
12
|
Yang Y, Li X, Liu D, Pei X, Khoso AG. Rapid Changes in Composition and Contents of Cuticular Hydrocarbons in Sitobion avenae (Hemiptera: Aphididae) Clones Adapting to Desiccation Stress. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:508-518. [PMID: 35022723 DOI: 10.1093/jee/toab240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 06/14/2023]
Abstract
Cuticular hydrocarbons (CHCs) are diverse in insects, and include variable classes of cuticular lipids, contributing to waterproofing for insects under desiccation environments. However, this waterproofing function of CHCs is still not well characterized in aphids. In this study, we compared CHC profiles for desiccation-resistant and nonresistant genotypes of the grain aphid, Sitobion avenae (Fabricius), in responses to desiccation. Our result showed that a total of 27 CHCs were detected in S. avenae, and linear alkanes (e.g., n-C29) were found to be the predominant components. Long-chain monomethyl alkanes were found to associate closely with water loss rates in S. avenae in most cases. Resistant genotypes of both wing morphs had higher contents of short-chain n-alkanes under control than nonresistant genotypes, showing the importance of short-chain n-alkanes in constitutive desiccation resistance. Among these, n-C25 might provide a CHC signature to distinguish between desiccation-resistant and nonresistant individuals. Compared with linear alkanes, methyl-branched CHCs appeared to display higher plasticity in rapid responses to desiccation, especially for 2-MeC26, implying that methyl-branched CHCs could be more sensitive to desiccation, and play more important roles in induced desiccation-resistance. Thus, both constitutive and induced CHCs (linear or methyl-branched) can contribute to adaptive responses of S. avenae populations under desiccation environments. Our results provide substantial evidence for adaptive changes of desiccation resistance and associated CHCs in S. avenae, and have significant implications for aphid evolution and management in the context of global climate change.
Collapse
Affiliation(s)
- Yujing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi, 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaosai Li
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi, 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi, 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojin Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi, 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Abdul Ghaffar Khoso
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University), Yangling, Shaanxi, 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
13
|
Intraspecific Genetic Variation for Behavioral Isolation Loci in Drosophila. Genes (Basel) 2021; 12:genes12111703. [PMID: 34828309 PMCID: PMC8619000 DOI: 10.3390/genes12111703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/04/2023] Open
Abstract
Behavioral isolation is considered to be the primary mode of species isolation, and the lack of identification of individual genes for behavioral isolation has hindered our ability to address fundamental questions about the process of speciation. One of the major questions that remains about behavioral isolation is whether the genetic basis of isolation between species also varies within a species. Indeed, the extent to which genes for isolation may vary across a population is rarely explored. Here, we bypass the problem of individual gene identification by addressing this question using a quantitative genetic comparison. Using strains from eight different populations of Drosophila simulans, we genetically mapped the genomic regions contributing to behavioral isolation from their closely related sibling species, Drosophila mauritiana. We found extensive variation in the size of contribution of different genomic regions to behavioral isolation among the different strains, in the location of regions contributing to isolation, and in the ability to redetect loci when retesting the same strain.
Collapse
|
14
|
Malmos KG, Lüdeking AH, Vosegaard T, Aagaard A, Bechsgaard J, Sørensen JG, Bilde T. Behavioural and physiological responses to thermal stress in a social spider. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kirsten Gade Malmos
- Interdisciplinary Nano Science Center (iNANO) Aarhus University Aarhus C Denmark
| | | | - Thomas Vosegaard
- Interdisciplinary Nano Science Center (iNANO) Aarhus University Aarhus C Denmark
- Department of Chemistry Aarhus University Aarhus C Denmark
| | - Anne Aagaard
- Department of Biology Aarhus University Aarhus C Denmark
| | | | | | - Trine Bilde
- Department of Biology Aarhus University Aarhus C Denmark
| |
Collapse
|
15
|
Davis JS, Pearcy MJ, Yew JY, Moyle LC. A shift to shorter cuticular hydrocarbons accompanies sexual isolation among Drosophila americana group populations. Evol Lett 2021; 5:521-540. [PMID: 34621538 PMCID: PMC8484720 DOI: 10.1002/evl3.246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/08/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022] Open
Abstract
Because sensory signals often evolve rapidly, they could be instrumental in the emergence of reproductive isolation between species. However, pinpointing their specific contribution to isolating barriers, and the mechanisms underlying their divergence, remains challenging. Here, we demonstrate sexual isolation due to divergence in chemical signals between two populations of Drosophila americana (SC and NE) and one population of D. novamexicana, and dissect its underlying phenotypic and genetic mechanisms. Mating trials revealed strong sexual isolation between Drosophila novamexicana males and SC Drosophila americana females, as well as more moderate bi-directional isolation between D. americana populations. Mating behavior data indicate SC D. americana males have the highest courtship efficiency and, unlike males of the other populations, are accepted by females of all species. Quantification of cuticular hydrocarbon (CHC) profiles-chemosensory signals that are used for species recognition and mate finding in Drosophila-shows that the SC D. americana population differs from the other populations primarily on the basis of compound carbon chain-length. Moreover, manipulation of male CHC composition via heterospecific perfuming-specifically perfuming D. novamexicana males with SC D. americana males-abolishes their sexual isolation from these D. americana females. Of a set of candidates, a single gene-elongase CG17821-had patterns of gene expression consistent with a role in CHC differences between species. Sequence comparisons indicate D. novamexicana and our Nebraska (NE) D. americana population share a derived CG17821 truncation mutation that could also contribute to their shared "short" CHC phenotype. Together, these data suggest an evolutionary model for the origin and spread of this allele and its consequences for CHC divergence and sexual isolation in this group.
Collapse
Affiliation(s)
- Jeremy S. Davis
- Department of BiologyIndiana UniversityBloomingtonIndiana47405
- Department of BiologyUniversity of KentuckyLexingtonKentucky40508
| | | | - Joanne Y. Yew
- Pacific Biosciences Research CenterUniversity of Hawaii at MānoaHonoluluHawaii96822
| | - Leonie C. Moyle
- Department of BiologyIndiana UniversityBloomingtonIndiana47405
| |
Collapse
|
16
|
Rodrigues MF, Vibranovski MD, Cogni R. Clinal and seasonal changes are correlated in Drosophila melanogaster natural populations. Evolution 2021; 75:2042-2054. [PMID: 34184262 DOI: 10.1111/evo.14300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022]
Abstract
Spatial and seasonal variations in the environment are ubiquitous. Environmental heterogeneity can affect natural populations and lead to covariation between environment and allele frequencies. Drosophila melanogaster is known to harbor polymorphisms that change both with latitude and seasons. Identifying the role of selection in driving these changes is not trivial, because nonadaptive processes can cause similar patterns. Given the environment changes in similar ways across seasons and along the latitudinal gradient, one promising approach may be to look for parallelism between clinal and seasonal changes. Here, we test whether there is a genome-wide correlation between clinal and seasonal changes, and whether the pattern is consistent with selection. Allele frequency estimates were obtained from pooled samples from seven different locations along the east coast of the United States, and across seasons within Pennsylvania. We show that there is a genome-wide correlation between clinal and seasonal variations, which cannot be explained by linked selection alone. This pattern is stronger in genomic regions with higher functional content, consistent with natural selection. We derive a way to biologically interpret these correlations and show that around 3.7% of the common, autosomal variants could be under parallel seasonal and spatial selection. Our results highlight the contribution of natural selection in driving fluctuations in allele frequencies in natural fly populations and point to a shared genomic basis to climate adaptation that happens over space and time in D. melanogaster.
Collapse
Affiliation(s)
- Murillo F Rodrigues
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, 05508-090, Brazil.,Current Address: Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403
| | - Maria D Vibranovski
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, 05508-090, Brazil
| | - Rodrigo Cogni
- Department of Ecology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, 05508-090, Brazil
| |
Collapse
|
17
|
Machado HE, Bergland AO, Taylor R, Tilk S, Behrman E, Dyer K, Fabian DK, Flatt T, González J, Karasov TL, Kim B, Kozeretska I, Lazzaro BP, Merritt TJS, Pool JE, O'Brien K, Rajpurohit S, Roy PR, Schaeffer SW, Serga S, Schmidt P, Petrov DA. Broad geographic sampling reveals the shared basis and environmental correlates of seasonal adaptation in Drosophila. eLife 2021; 10:e67577. [PMID: 34155971 PMCID: PMC8248982 DOI: 10.7554/elife.67577] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
To advance our understanding of adaptation to temporally varying selection pressures, we identified signatures of seasonal adaptation occurring in parallel among Drosophila melanogaster populations. Specifically, we estimated allele frequencies genome-wide from flies sampled early and late in the growing season from 20 widely dispersed populations. We identified parallel seasonal allele frequency shifts across North America and Europe, demonstrating that seasonal adaptation is a general phenomenon of temperate fly populations. Seasonally fluctuating polymorphisms are enriched in large chromosomal inversions, and we find a broad concordance between seasonal and spatial allele frequency change. The direction of allele frequency change at seasonally variable polymorphisms can be predicted by weather conditions in the weeks prior to sampling, linking the environment and the genomic response to selection. Our results suggest that fluctuating selection is an important evolutionary force affecting patterns of genetic variation in Drosophila.
Collapse
Affiliation(s)
- Heather E Machado
- Department of Biology, Stanford UniversityStanfordUnited States
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | - Alan O Bergland
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Ryan Taylor
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Susanne Tilk
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Emily Behrman
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Kelly Dyer
- Department of Genetics, University of GeorgiaAthensUnited States
| | - Daniel K Fabian
- Institute of Population Genetics, Vetmeduni ViennaViennaAustria
- Centre for Pathogen Evolution, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Thomas Flatt
- Institute of Population Genetics, Vetmeduni ViennaViennaAustria
- Department of Biology, University of FribourgFribourgSwitzerland
| | - Josefa González
- Institute of Evolutionary Biology, CSIC- Universitat Pompeu FabraBarcelonaSpain
| | - Talia L Karasov
- Department of Biology, University of UtahSalt Lake CityUnited States
| | - Bernard Kim
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Iryna Kozeretska
- Taras Shevchenko National University of KyivKyivUkraine
- National Antarctic Scientific Centre of Ukraine, Taras Shevchenko Blvd.KyivUkraine
| | - Brian P Lazzaro
- Department of Entomology, Cornell UniversityIthacaUnited States
| | - Thomas JS Merritt
- Department of Chemistry & Biochemistry, Laurentian UniversitySudburyCanada
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-MadisonMadisonUnited States
| | - Katherine O'Brien
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Subhash Rajpurohit
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Paula R Roy
- Department of Ecology and Evolutionary Biology, University of KansasLawrenceUnited States
| | - Stephen W Schaeffer
- Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Svitlana Serga
- Taras Shevchenko National University of KyivKyivUkraine
- National Antarctic Scientific Centre of Ukraine, Taras Shevchenko Blvd.KyivUkraine
| | - Paul Schmidt
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Dmitri A Petrov
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
18
|
Serrato-Capuchina A, Schwochert TD, Zhang S, Roy B, Peede D, Koppelman C, Matute DR. Pure species discriminate against hybrids in the Drosophila melanogaster species subgroup. Evolution 2021; 75:1753-1774. [PMID: 34043234 DOI: 10.1111/evo.14259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
Introgression, the exchange of alleles between species, is a common event in nature. This transfer of alleles between species must happen through fertile hybrids. Characterizing the traits that cause defects in hybrids illuminates how and when gene flow is expected to occur. Inviability and sterility are extreme examples of fitness reductions but are not the only type of defects in hybrids. Some traits specific to hybrids are more subtle but are important to determine their fitness. In this report, we study whether F1 hybrids between two species pairs of Drosophila are as attractive as the parental species. We find that in both species pairs, the sexual attractiveness of the F1 hybrids is reduced and that pure species discriminate strongly against them. We also find that the cuticular hydrocarbon (CHC) profile of the female hybrids is intermediate between the parental species. Perfuming experiments show that modifying the CHC profile of the female hybrids to resemble pure species improves their chances of mating. Our results show that behavioral discrimination against hybrids might be an important component of the persistence of species that can hybridize.
Collapse
Affiliation(s)
- Antonio Serrato-Capuchina
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Timothy D Schwochert
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Stephania Zhang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Baylee Roy
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - David Peede
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Caleigh Koppelman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Daniel R Matute
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| |
Collapse
|
19
|
Betancourt NJ, Rajpurohit S, Durmaz E, Fabian DK, Kapun M, Flatt T, Schmidt P. Allelic polymorphism at foxo contributes to local adaptation in Drosophila melanogaster. Mol Ecol 2021; 30:2817-2830. [PMID: 33914989 PMCID: PMC8693798 DOI: 10.1111/mec.15939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 04/13/2021] [Indexed: 01/09/2023]
Abstract
The insulin/insulin-like growth factor signalling pathway has been hypothesized as a major determinant of life-history profiles that vary adaptively in natural populations. In Drosophila melanogaster, multiple components of this pathway vary predictably with latitude; this includes foxo, a conserved gene that regulates insulin signalling and has pleiotropic effects on a variety of fitness-associated traits. We hypothesized that allelic variation at foxo contributes to genetic variance for size-related traits that vary adaptively with latitude. We first examined patterns of variation among natural populations along a latitudinal transect in the eastern United States and show that thorax length, wing area, wing loading, and starvation tolerance exhibit significant latitudinal clines for both males and females but that development time does not vary predictably with latitude. We then generated recombinant outbred populations and show that naturally occurring allelic variation at foxo, which exhibits stronger clinality than expected, is associated with the same traits that vary with latitude in the natural populations. Our results suggest that allelic variation at foxo contributes to adaptive patterns of life-history variation in natural populations of this genetic model.
Collapse
Affiliation(s)
| | - Subhash Rajpurohit
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Division of Biological and Life Sciences, Ahmedabad University, Ahmedabad, India
| | - Esra Durmaz
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Daniel K. Fabian
- Department of Genetics, University of Cambridge, Cambridge, UK
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Martin Kapun
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Hamida ZC, Farine JP, Ferveur JF, Soltani N. Pre-imaginal exposure to Oberon® disrupts fatty acid composition, cuticular hydrocarbon profile and sexual behavior in Drosophila melanogaster adults. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108981. [PMID: 33493665 DOI: 10.1016/j.cbpc.2021.108981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Oberon® is a commercial formulation of spiromesifen, a pesticide inhibitor of lipid biosynthesis via acetyl CoA carboxylase, widely used in agricultural crop protection. However, its mode of action requires further analysis. We currently examined the effect of this product on Drosophila melanogaster as a non-target and model organism. Different concentrations of spiromesifen were administered by ingestion (and contact) during pre-imaginal development, and we evaluated its delayed action on adults. Our results suggest that spiromesifen induced insecticidal activity on D. melanogaster. Moreover, spiromesifen treatment significantly increased the duration of larval and pupal development at all tested concentrations while it shortened longevity in exposed males as compared to control males. Also, pre-imaginal exposure to spiromesifen quantitatively affected fatty acids supporting its primary mode of action on lipid synthesis. In addition, this product was found to modify cuticular hydrocarbon profiles in exposed female and male flies as well as their sexual behavior and reproductive capacity.
Collapse
Affiliation(s)
- Z C Hamida
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria; Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - J P Farine
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - J F Ferveur
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - N Soltani
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria.
| |
Collapse
|
21
|
Cuticle Hydrocarbons Show Plastic Variation under Desiccation in Saline Aquatic Beetles. INSECTS 2021; 12:insects12040285. [PMID: 33806018 PMCID: PMC8064485 DOI: 10.3390/insects12040285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/27/2022]
Abstract
In the context of aridification in Mediterranean regions, desiccation resistance and physiological plasticity will be key traits for the persistence of aquatic insects exposed to increasing desiccation stress. Control of cuticular transpiration through changes in the quantity and composition of epicuticular hydrocarbons (CHCs) is one of the main mechanisms of desiccation resistance in insects, but it remains largely unexplored in aquatic ones. We studied acclimation responses to desiccation in adults of two endemic water beetles from distant lineages living in Mediterranean intermittent saline streams: Enochrus jesusarribasi (Hydrophilidae) and Nebrioporus baeticus (Dytiscidae). Cuticular water loss and CHC composition were measured in specimens exposed to a prior non-lethal desiccation stress, allowed to recover and exposed to a subsequent desiccation treatment. E. jesusarribasi showed a beneficial acclimation response to desiccation: pre-desiccated individuals reduced cuticular water loss rate in a subsequent exposure by increasing the relative abundance of cuticular methyl-branched compounds, longer chain alkanes and branched alkanes. In contrast, N. baeticus lacked acclimation capacity for controlling water loss and therefore may have a lower physiological capacity to cope with increasing aridity. These results are relevant to understanding biochemical adaptations to drought stress in inland waters in an evolutionary and ecological context.
Collapse
|
22
|
Wang Y, Ferveur JF, Moussian B. Eco-genetics of desiccation resistance in Drosophila. Biol Rev Camb Philos Soc 2021; 96:1421-1440. [PMID: 33754475 DOI: 10.1111/brv.12709] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Climate change globally perturbs water circulation thereby influencing ecosystems including cultivated land. Both harmful and beneficial species of insects are likely to be vulnerable to such changes in climate. As small animals with a disadvantageous surface area to body mass ratio, they face a risk of desiccation. A number of behavioural, physiological and genetic strategies are deployed to solve these problems during adaptation in various Drosophila species. Over 100 desiccation-related genes have been identified in laboratory and wild populations of the cosmopolitan fruit fly Drosophila melanogaster and its sister species in large-scale and single-gene approaches. These genes are involved in water sensing and homeostasis, and barrier formation and function via the production and composition of surface lipids and via pigmentation. Interestingly, the genetic strategy implemented in a given population appears to be unpredictable. In part, this may be due to different experimental approaches in different studies. The observed variability may also reflect a rich standing genetic variation in Drosophila allowing a quasi-random choice of response strategies through soft-sweep events, although further studies are needed to unravel any underlying principles. These findings underline that D. melanogaster is a robust species well adapted to resist climate change-related desiccation. The rich data obtained in Drosophila research provide a framework to address and understand desiccation resistance in other insects. Through the application of powerful genetic tools in the model organism D. melanogaster, the functions of desiccation-related genes revealed by correlative studies can be tested and the underlying molecular mechanisms of desiccation tolerance understood. The combination of the wealth of available data and its genetic accessibility makes Drosophila an ideal bioindicator. Accumulation of data on desiccation resistance in Drosophila may allow us to create a world map of genetic evolution in response to climate change in an insect genome. Ultimately these efforts may provide guidelines for dealing with the effects of climate-related perturbations on insect population dynamics in the future.
Collapse
Affiliation(s)
- Yiwen Wang
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, 6, Bd Gabriel, Dijon, 21000, France
| | - Bernard Moussian
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,Institute of Biology Valrose, Université Côte d'Azur, CNRS, Inserm, Parc Valrose, Nice CEDEX 2, 06108, France
| |
Collapse
|
23
|
Grainger TN, Rudman SM, Schmidt P, Levine JM. Competitive history shapes rapid evolution in a seasonal climate. Proc Natl Acad Sci U S A 2021; 118:e2015772118. [PMID: 33536336 PMCID: PMC8017725 DOI: 10.1073/pnas.2015772118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eco-evolutionary dynamics will play a critical role in determining species' fates as climatic conditions change. Unfortunately, we have little understanding of how rapid evolutionary responses to climate play out when species are embedded in the competitive communities that they inhabit in nature. We tested the effects of rapid evolution in response to interspecific competition on subsequent ecological and evolutionary trajectories in a seasonally changing climate using a field-based evolution experiment with Drosophila melanogaster Populations of D. melanogaster were either exposed, or not exposed, to interspecific competition with an invasive competitor, Zaprionus indianus, over the summer. We then quantified these populations' ecological trajectories (abundances) and evolutionary trajectories (heritable phenotypic change) when exposed to a cooling fall climate. We found that competition with Z. indianus in the summer affected the subsequent evolutionary trajectory of D. melanogaster populations in the fall, after all interspecific competition had ceased. Specifically, flies with a history of interspecific competition evolved under fall conditions to be larger and have lower cold fecundity and faster development than flies without a history of interspecific competition. Surprisingly, this divergent fall evolutionary trajectory occurred in the absence of any detectible effect of the summer competitive environment on phenotypic evolution over the summer or population dynamics in the fall. This study demonstrates that competitive interactions can leave a legacy that shapes evolutionary responses to climate even after competition has ceased, and more broadly, that evolution in response to one selective pressure can fundamentally alter evolution in response to subsequent agents of selection.
Collapse
Affiliation(s)
- Tess Nahanni Grainger
- Ecology and Evolutionary Biology Department, Princeton University, Princeton NJ 08544;
| | - Seth M Rudman
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
- School of Biological Sciences, Washington State University, Vancouver, WA 98686
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Jonathan M Levine
- Ecology and Evolutionary Biology Department, Princeton University, Princeton NJ 08544
| |
Collapse
|
24
|
Holze H, Schrader L, Buellesbach J. Advances in deciphering the genetic basis of insect cuticular hydrocarbon biosynthesis and variation. Heredity (Edinb) 2021; 126:219-234. [PMID: 33139902 PMCID: PMC8027674 DOI: 10.1038/s41437-020-00380-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/01/2023] Open
Abstract
Cuticular hydrocarbons (CHCs) have two fundamental functions in insects. They protect terrestrial insects against desiccation and serve as signaling molecules in a wide variety of chemical communication systems. It has been hypothesized that these pivotal dual traits for adaptation to both desiccation and signaling have contributed to the considerable evolutionary success of insects. CHCs have been extensively studied concerning their variation, behavioral impact, physiological properties, and chemical compositions. However, our understanding of the genetic underpinnings of CHC biosynthesis has remained limited and mostly biased towards one particular model organism (Drosophila). This rather narrow focus has hampered the establishment of a comprehensive view of CHC genetics across wider phylogenetic boundaries. This review attempts to integrate new insights and recent knowledge gained in the genetics of CHC biosynthesis, which is just beginning to incorporate work on more insect taxa beyond Drosophila. It is intended to provide a stepping stone towards a wider and more general understanding of the genetic mechanisms that gave rise to the astonishing diversity of CHC compounds across different insect taxa. Further research in this field is encouraged to aim at better discriminating conserved versus taxon-specific genetic elements underlying CHC variation. This will be instrumental in greatly expanding our knowledge of the origins and variation of genes governing the biosynthesis of these crucial phenotypic traits that have greatly impacted insect behavior, physiology, and evolution.
Collapse
Affiliation(s)
- Henrietta Holze
- Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149, Münster, Germany
| | - Lukas Schrader
- Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149, Münster, Germany
| | - Jan Buellesbach
- Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149, Münster, Germany.
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, 130 Mulford Hall #3114, Berkeley, CA, 94720-3114, USA.
| |
Collapse
|
25
|
Hartke J, Waldvogel A, Sprenger PP, Schmitt T, Menzel F, Pfenninger M, Feldmeyer B. Little parallelism in genomic signatures of local adaptation in two sympatric, cryptic sister species. J Evol Biol 2021; 34:937-952. [DOI: 10.1111/jeb.13742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Juliane Hartke
- Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany
- Institute of Organismic and Molecular Evolution Johannes‐Gutenberg‐University Mainz Mainz Germany
| | - Ann‐Marie Waldvogel
- Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany
- Institute for Zoology University of Cologne Cologne Germany
| | - Philipp P. Sprenger
- Institute of Organismic and Molecular Evolution Johannes‐Gutenberg‐University Mainz Mainz Germany
- Department of Animal Ecology and Tropical Biology, Biocentre, Am Hubland University of Würzburg Würzburg Germany
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, Biocentre, Am Hubland University of Würzburg Würzburg Germany
| | - Florian Menzel
- Institute of Organismic and Molecular Evolution Johannes‐Gutenberg‐University Mainz Mainz Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany
- Institute of Organismic and Molecular Evolution Johannes‐Gutenberg‐University Mainz Mainz Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG) Frankfurt am Main Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany
| |
Collapse
|
26
|
Low temperatures induce physiological changes in lipids, fatty acids and hydrocarbons, in two rare winter scorpions of genus Urophonius (Scorpiones, Bothriuridae). J Therm Biol 2021; 96:102841. [PMID: 33627278 DOI: 10.1016/j.jtherbio.2021.102841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 11/20/2022]
Abstract
Different organisms (mainly poikilotherms) are subject to environmental fluctuations that could affect their normal physiological functioning (e.g., by destabilization of biomembranes and rupture of biomolecules). As a result, animals regulate their body temperature and adapt to different environmental conditions through various physiological strategies. These adaptations are crucial in all organisms, although they are more relevant in those that have reached a great adaptive diversity such as scorpions. Within scorpions, the genus Urophonius presents species with winter activity, being this a peculiarity within the Order and an opportunity to study the strategies deployed by these organisms when facing different temperatures. Here, we explore three basic issues of lipid remodeling under high and low temperatures, using adults and juveniles of Urophonius achalensis and U. brachycentrus. First, as an indicator of metabolic state, we analyzed the lipidic changes in different tissues observing that low temperatures generate higher quantities of triacylglycerols and fewer amount of structural lipids and sphyngomielin. Furthermore, we studied the participation of fatty acids in adaptive homeoviscosity, showing that there are changes in the quantity of saturated and unsaturated fatty acids at low temperature (mainly 16:0, 18:0, 18:1 and 18:2). Finally, we observe that there are quantitative and qualitative variations in the cuticular hydrocarbons (with possible water barrier and chemical recognition function). These fluctuations are in some cases species-specific, metabolic-specific, tissue-specific and in others depend on the ontogenetic state.
Collapse
|
27
|
Bensafi-Gheraibia H, Kissoum N, Hamida ZC, Farine JP, Soltani N. Topical bioassay of Oberon® on Drosophila melanogaster pupae: delayed effects on ovarian proteins, cuticular hydrocarbons and sexual behaviour. INVERTEBR REPROD DEV 2021. [DOI: 10.1080/07924259.2020.1862315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hanene Bensafi-Gheraibia
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Nesrine Kissoum
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Zahia Cirine Hamida
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Jean Pierre Farine
- Centre des Sciences du Goût et de l’Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Noureddine Soltani
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| |
Collapse
|
28
|
Rajpurohit S, Vrkoslav V, Hanus R, Gibbs AG, Cvačka J, Schmidt PS. Post-eclosion temperature effects on insect cuticular hydrocarbon profiles. Ecol Evol 2021; 11:352-364. [PMID: 33437434 PMCID: PMC7790616 DOI: 10.1002/ece3.7050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022] Open
Abstract
The insect cuticle is the interface between internal homeostasis and the often harsh external environment. Cuticular hydrocarbons (CHCs) are key constituents of this hard cuticle and are associated with a variety of functions including stress response and communication. CHC production and deposition on the insect cuticle vary among natural populations and are affected by developmental temperature; however, little is known about CHC plasticity in response to the environment experienced following eclosion, during which time the insect cuticle undergoes several crucial changes. We targeted this crucial to important phase and studied post-eclosion temperature effects on CHC profiles in two natural populations of Drosophila melanogaster. A forty-eight hour post-eclosion exposure to three different temperatures (18, 25, and 30°C) significantly affected CHCs in both ancestral African and more recently derived North American populations of D. melanogaster. A clear shift from shorter to longer CHCs chain length was observed with increasing temperature, and the effects of post-eclosion temperature varied across populations and between sexes. The quantitative differences in CHCs were associated with variation in desiccation tolerance among populations. Surprisingly, we did not detect any significant differences in water loss rate between African and North American populations. Overall, our results demonstrate strong genetic and plasticity effects in CHC profiles in response to environmental temperatures experienced at the adult stage as well as associations with desiccation tolerance, which is crucial in understanding holometabolan responses to stress.
Collapse
Affiliation(s)
- Subhash Rajpurohit
- Division of Biological and Life SciencesSchool of Arts and SciencesAhmedabad UniversityAhmedabadIndia
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry AS CRPragueCzech Republic
| | - Robert Hanus
- Institute of Organic Chemistry and Biochemistry AS CRPragueCzech Republic
| | - Allen G. Gibbs
- School of Life SciencesUniversity of NevadaLas VegasNVUSA
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry AS CRPragueCzech Republic
| | - Paul S Schmidt
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
29
|
Highly divergent cuticular hydrocarbon profiles in the cleptobiotic ants of the Ectatomma ruidum species complex. CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00334-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Erickson PA, Weller CA, Song DY, Bangerter AS, Schmidt P, Bergland AO. Unique genetic signatures of local adaptation over space and time for diapause, an ecologically relevant complex trait, in Drosophila melanogaster. PLoS Genet 2020; 16:e1009110. [PMID: 33216740 PMCID: PMC7717581 DOI: 10.1371/journal.pgen.1009110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/04/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Organisms living in seasonally variable environments utilize cues such as light and temperature to induce plastic responses, enabling them to exploit favorable seasons and avoid unfavorable ones. Local adapation can result in variation in seasonal responses, but the genetic basis and evolutionary history of this variation remains elusive. Many insects, including Drosophila melanogaster, are able to undergo an arrest of reproductive development (diapause) in response to unfavorable conditions. In D. melanogaster, the ability to diapause is more common in high latitude populations, where flies endure harsher winters, and in the spring, reflecting differential survivorship of overwintering populations. Using a novel hybrid swarm-based genome wide association study, we examined the genetic basis and evolutionary history of ovarian diapause. We exposed outbred females to different temperatures and day lengths, characterized ovarian development for over 2800 flies, and reconstructed their complete, phased genomes. We found that diapause, scored at two different developmental cutoffs, has modest heritability, and we identified hundreds of SNPs associated with each of the two phenotypes. Alleles associated with one of the diapause phenotypes tend to be more common at higher latitudes, but these alleles do not show predictable seasonal variation. The collective signal of many small-effect, clinally varying SNPs can plausibly explain latitudinal variation in diapause seen in North America. Alleles associated with diapause are segregating in Zambia, suggesting that variation in diapause relies on ancestral polymorphisms, and both pro- and anti-diapause alleles have experienced selection in North America. Finally, we utilized outdoor mesocosms to track diapause under natural conditions. We found that hybrid swarms reared outdoors evolved increased propensity for diapause in late fall, whereas indoor control populations experienced no such change. Our results indicate that diapause is a complex, quantitative trait with different evolutionary patterns across time and space.
Collapse
Affiliation(s)
- Priscilla A. Erickson
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Cory A. Weller
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Daniel Y. Song
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alyssa S. Bangerter
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alan O. Bergland
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
31
|
Wang Y, Farine JP, Yang Y, Yang J, Tang W, Gehring N, Ferveur JF, Moussian B. Transcriptional Control of Quality Differences in the Lipid-Based Cuticle Barrier in Drosophila suzukii and Drosophila melanogaster. Front Genet 2020; 11:887. [PMID: 32849846 PMCID: PMC7423992 DOI: 10.3389/fgene.2020.00887] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/20/2020] [Indexed: 11/19/2022] Open
Abstract
Cuticle barrier efficiency in insects depends largely on cuticular lipids. To learn about the evolution of cuticle barrier function, we compared the basic properties of the cuticle inward and outward barrier function in adults of the fruit flies Drosophila suzukii and Drosophila melanogaster that live on fruits sharing a similar habitat. At low air humidity, D. suzukii flies desiccate faster than D. melanogaster flies. We observed a general trend indicating that in this respect males are less robust than females in both species. Xenobiotics penetration occurs at lower temperatures in D. suzukii than in D. melanogaster. Likewise, D. suzukii flies are more susceptible to contact insecticides than D. melanogaster flies. Thus, both the inward and outward barriers of D. suzukii are less efficient. Consistently, D. suzukii flies have less cuticular hydrocarbons (CHC) that participate as key components of the cuticle barrier. Especially, the relative amounts of branched and desaturated CHCs, known to enhance desiccation resistance, show reduced levels in D. suzukii. Moreover, the expression of snustorr (snu) that encodes an ABC transporter involved in barrier construction and CHC externalization, is strongly suppressed in D. suzukii. Hence, species-specific genetic programs regulate the quality of the lipid-based cuticle barrier in these two Drosophilae. Together, we conclude that the weaker inward and outward barriers of D. suzukii may be partly explained by differences in CHC composition and by a reduced Snu-dependent transport rate of CHCs to the surface. In turn, this suggests that snu is an ecologically adjustable and therefore relevant gene in cuticle barrier efficiency.
Collapse
Affiliation(s)
- Yiwen Wang
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Jean-Pierre Farine
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, Dijon, France
| | - Yang Yang
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Jing Yang
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Weina Tang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Nicole Gehring
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, Dijon, France
| | - Bernard Moussian
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Nice, France
| |
Collapse
|
32
|
Manheim JM, Milton JR, Zhang Y, Kenttämaa HI. Fragmentation of Saturated Hydrocarbons upon Atmospheric Pressure Chemical Ionization Is Caused by Proton-Transfer Reactions. Anal Chem 2020; 92:8883-8892. [PMID: 32453940 DOI: 10.1021/acs.analchem.0c00681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jeremy M. Manheim
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jacob R. Milton
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Y. Zhang
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Hilkka I. Kenttämaa
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
33
|
Zhao X, Yang Y, Niu N, Zhao Y, Liu W, Ma E, Moussian B, Zhang J. The fatty acid elongase gene LmELO7 is required for hydrocarbon biosynthesis and cuticle permeability in the migratory locust, Locusta migratoria. JOURNAL OF INSECT PHYSIOLOGY 2020; 123:104052. [PMID: 32259526 DOI: 10.1016/j.jinsphys.2020.104052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Insect cuticular lipids are a complex cocktail of highly diverse cuticular hydrocarbons (CHCs), which form a hydrophobic surface coat to maintain water balance and to prevent desiccation and penetration of exogenous substances. Fatty acid elongases (ELOs) are key enzymes that participate in a common CHC synthesis pathway in insects. However, the importance of ELOs for CHC synthesis and function remains understudied. Using transcriptomic data, we have identified seven ELO genes (LmELO1-7) in the migratory locust Locusta migratoria. We determined their tissue-specific and temporal expression profiles in fifth instar nymphs. As we are interested in cuticle barrier formation, we performed RNA interference against LmELO7, which is mainly expressed in the integument. Suppression of LmELO7 significantly decreased its expression and caused lethality during or shortly after molting. CHC quantification by GC-MS analysis indicated that suppression of LmELO7 resulted in a decrease in total CHC amounts. By consequence, CHC deficiency reduced desiccation resistance and enhanced cuticle permeability in LmELO7-suppressed L. migratoria. Interestingly, LmELO7 expression is induced at low air humidity. Our results indicate that LmELO7 plays a vital role in the production of CHCs and, hence, cuticle permeability. Induction of LmELO7 expression in drought conditions suggests a key role of this gene in regulating desiccation resistance. This work is expected to help developing new strategies for insect pest management based on CHC function.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yang Yang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Niu Niu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yiyan Zhao
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Weimin Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Bernard Moussian
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice CEDEX 2, France
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
34
|
Ala-Honkola O, Kauranen H, Tyukmaeva V, Boetzl FA, Hoikkala A, Schmitt T. Diapause affects cuticular hydrocarbon composition and mating behavior of both sexes in Drosophila montana. INSECT SCIENCE 2020; 27:304-316. [PMID: 30176124 DOI: 10.1111/1744-7917.12639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/09/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
Environmental cues, mainly photoperiod and temperature, are known to control female adult reproductive diapause in several insect species. Diapause enhances female survival during adverse conditions and postpones progeny production to the favorable season. Male diapause (a reversible inability to inseminate receptive females) has been studied much less than female diapause. However, if the males maximized their chances to fertilize females while minimizing their energy expenditure, they would be expected to be in diapause at the same time as females. We investigated Drosophila montana male mating behavior under short-day conditions that induce diapause in females and found the males to be reproductively inactive. We also found that males reared under long-day conditions (reproducing individuals) court reproducing postdiapause females, but not diapausing ones. The diapausing flies of both sexes had more long-chain and less short-chain hydrocarbons on their cuticle than the reproducing ones, which presumably increase their survival under stressful conditions, but at the same time decrease their attractiveness. Our study shows that the mating behavior of females and males is well coordinated during and after overwintering and it also gives support to the dual role of insect cuticular hydrocarbons in adaptation and mate choice.
Collapse
Affiliation(s)
- Outi Ala-Honkola
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Hannele Kauranen
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Venera Tyukmaeva
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Fabian A Boetzl
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
35
|
Krupp JJ, Nayal K, Wong A, Millar JG, Levine JD. Desiccation resistance is an adaptive life-history trait dependent upon cuticular hydrocarbons, and influenced by mating status and temperature in D. melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2020; 121:103990. [PMID: 31830467 DOI: 10.1016/j.jinsphys.2019.103990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/31/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Terrestrial insects are susceptible to desiccation and conserve internal water stores by preventing the loss of water due to transpiration across the cuticle. The epicuticle, a thin waxy layer on the outer surface of the insect cuticle is comprised primarily of a complex blend of cuticular hydrocarbons (CHCs) and is integral to preventing cuticular water loss. How the composition of epicuticular lipids (quantity and quality of the specific hydrocarbons) relates to desiccation resistance, however, has been difficult to determine. Here, we establish a model system to test the capacity of CHCs to protect against desiccation in the vinegar fly, Drosophila melanogaster. Using this system, we demonstrate that the oenocytes and CHCs produced by these cells are critically important for desiccation resistance, as measured by survival under desiccative conditions. Additionally, we show that both mating status and developmental temperature influence desiccation resistance. Prior mating increased desiccation survival through the direct transfer of CHCs between sexual partners, as well as through a female-specific response to a male-derived factor transferred during copulation. Together, our results demonstrate that desiccation resistance is an adaptive life-history trait dependent upon CHCs and influenced by prior social interactions and environmental conditions.
Collapse
Affiliation(s)
- Joshua J Krupp
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Kamar Nayal
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Amy Wong
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Jocelyn G Millar
- Department of Entomology, University of California, 3401 Watkins Drive, Riverside, CA 92521, USA
| | - Joel D Levine
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.
| |
Collapse
|
36
|
Environmental and genetic constraints on cuticular hydrocarbon composition and nestmate recognition in ants. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2019.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Anholt RRH, O'Grady P, Wolfner MF, Harbison ST. Evolution of Reproductive Behavior. Genetics 2020; 214:49-73. [PMID: 31907301 PMCID: PMC6944409 DOI: 10.1534/genetics.119.302263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
Behaviors associated with reproduction are major contributors to the evolutionary success of organisms and are subject to many evolutionary forces, including natural and sexual selection, and sexual conflict. Successful reproduction involves a range of behaviors, from finding an appropriate mate, courting, and copulation, to the successful production and (in oviparous animals) deposition of eggs following mating. As a consequence, behaviors and genes associated with reproduction are often under strong selection and evolve rapidly. Courtship rituals in flies follow a multimodal pattern, mediated through visual, chemical, tactile, and auditory signals. Premating behaviors allow males and females to assess the species identity, reproductive state, and condition of their partners. Conflicts between the "interests" of individual males, and/or between the reproductive strategies of males and females, often drive the evolution of reproductive behaviors. For example, seminal proteins transmitted by males often show evidence of rapid evolution, mediated by positive selection. Postmating behaviors, including the selection of oviposition sites, are highly variable and Drosophila species span the spectrum from generalists to obligate specialists. Chemical recognition features prominently in adaptation to host plants for feeding and oviposition. Selection acting on variation in pre-, peri-, and postmating behaviors can lead to reproductive isolation and incipient speciation. Response to selection at the genetic level can include the expansion of gene families, such as those for detecting pheromonal cues for mating, or changes in the expression of genes leading to visual cues such as wing spots that are assessed during mating. Here, we consider the evolution of reproductive behavior in Drosophila at two distinct, yet complementary, scales. Some studies take a microevolutionary approach, identifying genes and networks involved in reproduction, and then dissecting the genetics underlying complex behaviors in D. melanogaster Other studies take a macroevolutionary approach, comparing reproductive behaviors across the genus Drosophila and how these might correlate with environmental cues. A full synthesis of this field will require unification across these levels.
Collapse
Affiliation(s)
- Robert R H Anholt
- Center for Human Genetics, Clemson University, Greenwood, South Carolina 29646
- Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina 29646
| | - Patrick O'Grady
- Department of Entomology, Cornell University, Ithaca, New York 14853
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Susan T Harbison
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
38
|
Awouters M, Vanderschueren D, Antonio L. Aromatase inhibitors and selective estrogen receptor modulators: Unconventional therapies for functional hypogonadism? Andrology 2019; 8:1590-1597. [DOI: 10.1111/andr.12725] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Marijke Awouters
- Department of Pediatrics University Hospitals Leuven Leuven Belgium
| | - Dirk Vanderschueren
- Department of Endocrinology University Hospitals Leuven Leuven Belgium
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) Laboratory of Clinical and Experimental Endocrinology KU Leuven Leuven Belgium
| | - Leen Antonio
- Department of Endocrinology University Hospitals Leuven Leuven Belgium
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) Laboratory of Clinical and Experimental Endocrinology KU Leuven Leuven Belgium
| |
Collapse
|
39
|
Lovegrove MR, Dearden PK, Duncan EJ. Ancestral hymenopteran queen pheromones do not share the broad phylogenetic repressive effects of honeybee queen mandibular pheromone. JOURNAL OF INSECT PHYSIOLOGY 2019; 119:103968. [PMID: 31669583 DOI: 10.1016/j.jinsphys.2019.103968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Queen pheromones effect the reproductive division of labour, a defining feature of eusociality. Reproductive division of labour ensures that one, or a small number of, females are responsible for the majority of reproduction within a colony. Much work on the evolution and function of these pheromones has focussed on Queen Mandibular Pheromone (QMP) which is produced by the Western or European honeybee (Apis mellifera). QMP has phylogenetically broad effects, repressing reproduction in a variety of arthropods, including those distantly related to the honeybee such as the fruit fly Drosophila melanogaster. QMP is highly derived and has little chemical similarity to the majority of hymenopteran queen pheromones which are derived from cuticular hydrocarbons. This raises the question of whether the phylogenetically widespread repression of reproduction by QMP also occurs with more basal saturated hydrocarbon-based queen-pheromones. Using D. melanogaster we show that saturated hydrocarbons are incapable of repressing reproduction, unlike QMP. We also show no interaction between the four saturated hydrocarbons tested or between the saturated hydrocarbons and QMP, implying that there is no conservation in the mechanism of detection or action between these compounds. We propose that the phylogenetically broad reproductive repression seen in response to QMP is not a feature of all queen pheromones, but unique to QMP itself, which has implications for our understanding of how queen pheromones act and evolve.
Collapse
Affiliation(s)
- Mackenzie R Lovegrove
- Genomics Aotearoa and Biochemistry Department, University of Otago, P.O. Box 56, Dunedin, Aotearoa, New Zealand; School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Peter K Dearden
- Genomics Aotearoa and Biochemistry Department, University of Otago, P.O. Box 56, Dunedin, Aotearoa, New Zealand
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
40
|
Berdan E, Enge S, Nylund GM, Wellenreuther M, Martens GA, Pavia H. Genetic divergence and phenotypic plasticity contribute to variation in cuticular hydrocarbons in the seaweed fly Coelopa frigida. Ecol Evol 2019; 9:12156-12170. [PMID: 31832150 PMCID: PMC6854331 DOI: 10.1002/ece3.5690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022] Open
Abstract
Cuticular hydrocarbons (CHCs) form the boundary between insects and their environments and often act as essential cues for species, mate, and kin recognition. This complex polygenic trait can be highly variable both among and within species, but the causes of this variation, especially the genetic basis, are largely unknown. In this study, we investigated phenotypic and genetic variation of CHCs in the seaweed fly, Coelopa frigida, and found that composition was affected by both genetic (sex and population) and environmental (larval diet) factors. We subsequently conducted behavioral trials that show CHCs are likely used as a sexual signal. We identified general shifts in CHC chemistry as well as individual compounds and found that the methylated compounds, mean chain length, proportion of alkenes, and normalized total CHCs differed between sexes and populations. We combined these data with whole genome resequencing data to examine the genetic underpinnings of these differences. We identified 11 genes related to CHC synthesis and found population-level outlier SNPs in 5 that are concordant with phenotypic differences. Together these results reveal that the CHC composition of C. frigida is dynamic, strongly affected by the larval environment, and likely under natural and sexual selection.
Collapse
Affiliation(s)
- Emma Berdan
- Department of Marine SciencesUniversity of GothenburgGöteborgSweden
| | - Swantje Enge
- Institute for Chemistry and Biology of the Marine EnvironmentCarl‐von‐Ossietzky University OldenburgWilhelmshavenGermany
- Department of Marine Sciences – TjärnöUniversity of GothenburgStrömstadSweden
| | - Göran M. Nylund
- Department of Marine Sciences – TjärnöUniversity of GothenburgStrömstadSweden
| | - Maren Wellenreuther
- Plant & Food Research LimitedNelsonNew Zealand
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | | | - Henrik Pavia
- Department of Marine Sciences – TjärnöUniversity of GothenburgStrömstadSweden
| |
Collapse
|
41
|
Flying Drosophila show sex-specific attraction to fly-labelled food. Sci Rep 2019; 9:14947. [PMID: 31628403 PMCID: PMC6802089 DOI: 10.1038/s41598-019-51351-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/26/2019] [Indexed: 11/08/2022] Open
Abstract
Animals searching for food and sexual partners often use odourant mixtures combining food-derived molecules and pheromones. For orientation, the vinegar fly Drosophila melanogaster uses three types of chemical cues: (i) the male volatile pheromone 11-cis-vaccenyl acetate (cVA), (ii) sex-specific cuticular hydrocarbons (CHs; and CH-derived compounds), and (iii) food-derived molecules resulting from microbiota activity. To evaluate the effects of these chemicals on odour-tracking behaviour, we tested Drosophila individuals in a wind tunnel. Upwind flight and food preference were measured in individual control males and females presented with a choice of two food sources labelled by fly lines producing varying amounts of CHs and/or cVA. The flies originated from different species or strains, or their microbiota was manipulated. We found that (i) fly-labelled food could attract—but never repel—flies; (ii) the landing frequency on fly-labelled food was positively correlated with an increased flight duration; (iii) male—but not female or non-sex-specific—CHs tended to increase the landing frequency on fly-labelled food; (iv) cVA increased female—but not male—preference for cVA-rich food; and (v) microbiota-derived compounds only affected male upwind flight latency. Therefore, sex pheromones interact with food volatile chemicals to induce sex-specific flight responses in Drosophila.
Collapse
|
42
|
Dong W, Dobler R, Dowling DK, Moussian B. The cuticle inward barrier in Drosophila melanogaster is shaped by mitochondrial and nuclear genotypes and a sex-specific effect of diet. PeerJ 2019; 7:e7802. [PMID: 31592352 PMCID: PMC6779114 DOI: 10.7717/peerj.7802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/31/2019] [Indexed: 01/23/2023] Open
Abstract
An important role of the insect cuticle is to prevent wetting (i.e., permeation of water) and also to prevent penetration of potentially harmful substances. This barrier function mainly depends on the hydrophobic cuticle surface composed of lipids including cuticular hydrocarbons (CHCs). We investigated to what extent the cuticle inward barrier function depends on the genotype, comprising mitochondrial and nuclear genes in the fruit fly Drosophila melanogaster, and investigated the contribution of interactions between mitochondrial and nuclear genotypes (mito-nuclear interactions) on this function. In addition, we assessed the effects of nutrition and sex on the cuticle barrier function. Based on a dye penetration assay, we find that cuticle barrier function varies across three fly lines that were captured from geographically separated regions in three continents. Testing different combinations of mito-nuclear genotypes, we show that the inward barrier efficiency is modulated by the nuclear and mitochondrial genomes independently. We also find an interaction between diet and sex. Our findings provide new insights into the regulation of cuticle inward barrier function in nature.
Collapse
Affiliation(s)
- Wei Dong
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Ralph Dobler
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Damian K. Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Bernard Moussian
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
- Université Côte d’Azur, CNRS—Inserm, iBV, Parc Valrose, Nice, France
| |
Collapse
|
43
|
Rudman SM, Greenblum S, Hughes RC, Rajpurohit S, Kiratli O, Lowder DB, Lemmon SG, Petrov DA, Chaston JM, Schmidt P. Microbiome composition shapes rapid genomic adaptation of Drosophila melanogaster. Proc Natl Acad Sci U S A 2019; 116:20025-20032. [PMID: 31527278 PMCID: PMC6778213 DOI: 10.1073/pnas.1907787116] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Population genomic data has revealed patterns of genetic variation associated with adaptation in many taxa. Yet understanding the adaptive process that drives such patterns is challenging; it requires disentangling the ecological agents of selection, determining the relevant timescales over which evolution occurs, and elucidating the genetic architecture of adaptation. Doing so for the adaptation of hosts to their microbiome is of particular interest with growing recognition of the importance and complexity of host-microbe interactions. Here, we track the pace and genomic architecture of adaptation to an experimental microbiome manipulation in replicate populations of Drosophila melanogaster in field mesocosms. Shifts in microbiome composition altered population dynamics and led to divergence between treatments in allele frequencies, with regions showing strong divergence found on all chromosomes. Moreover, at divergent loci previously associated with adaptation across natural populations, we found that the more common allele in fly populations experimentally enriched for a certain microbial group was also more common in natural populations with high relative abundance of that microbial group. These results suggest that microbiomes may be an agent of selection that shapes the pattern and process of adaptation and, more broadly, that variation in a single ecological factor within a complex environment can drive rapid, polygenic adaptation over short timescales.
Collapse
Affiliation(s)
- Seth M Rudman
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104;
| | | | - Rachel C Hughes
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| | - Subhash Rajpurohit
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ozan Kiratli
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Dallin B Lowder
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| | - Skyler G Lemmon
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA 94305
| | - John M Chaston
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
44
|
Sprenger PP, Hartke J, Feldmeyer B, Orivel J, Schmitt T, Menzel F. Influence of Mutualistic Lifestyle, Mutualistic Partner, and Climate on Cuticular Hydrocarbon Profiles in Parabiotic Ants. J Chem Ecol 2019; 45:741-754. [DOI: 10.1007/s10886-019-01099-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/31/2019] [Accepted: 08/15/2019] [Indexed: 11/29/2022]
|
45
|
|
46
|
Wang CY, Bong LJ, Neoh KB. Adult Paederus fuscipes (Coleoptera: Staphylinidae) Beetles Overcome Water Loss With Increased Total Body Water Content, Energy Metabolite Storage, and Reduced Cuticular Permeability: Age, Sex-Specific, and Mating Status Effects on Desiccation. ENVIRONMENTAL ENTOMOLOGY 2019; 48:911-922. [PMID: 31177281 DOI: 10.1093/ee/nvz065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Indexed: 06/09/2023]
Abstract
The ability of Paederus beetles to resist desiccation stress is vital to their adaptability in various ecological niches. How water relations and their response to desiccation vary among adult beetles of different age, sex, and mating status is unclear. We examined the water relations of adult Paederus fuscipes Curtis and the mechanisms used to reduce desiccation stress. One-day-old beetles had an exceptionally high percent total body water (%TBW) content and tolerated a high level of %TBW loss. Newly emerged beetles contained a high level of trehalose and 40 to 60% lipid content of their total dry mass, which allowed them to endure desiccation. Beetles that were 10 wk old and older exhibited reduced cuticular permeability. Glucose, glycogen, and lipid contents were crucial throughout most of the adult life span, as they helped compensate for water loss via increased water vapor absorption and metabolic water. In particular, the accumulation of lipid after mating was significant and may further confer tolerance to water loss. The effect of melanization on the desiccation tolerance of beetles was not significant. Females had better tolerance in response to desiccation stress compared with males. We suggest that the observed differences between sexes likely were a function of water relations and an effect of energy metabolite reserves. However, the mortality of females at 24-h postdesiccating stage was marginally significant compared with males. These results demonstrate that P. fuscipes adults prevent dehydration using multiple mechanisms that collectively reduce desiccation stress and increase dehydration tolerance.
Collapse
Affiliation(s)
- Chia-Yu Wang
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Lee-Jin Bong
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Kok-Boon Neoh
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
47
|
Botella-Cruz M, Pallarés S, Millán A, Velasco J. Role of cuticle hydrocarbons composition in the salinity tolerance of aquatic beetles. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103899. [PMID: 31202853 DOI: 10.1016/j.jinsphys.2019.103899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/24/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Salinity tolerance has enabled the colonization of inland saline waters and promoted species diversification in some lineages of aquatic insects. However, the mechanisms behind this tolerance, particularly the role of cuticle hydrocarbons (CHCs), are not well-known. We characterized the CHC profile of eight species of two water beetle genera (Nebrioporus, Adephaga: Dytiscidae and Enochrus, Polyphaga: Hydrophilidae), which span the fresh-hypersaline gradient, to: i) determine the interspecific variation of CHC composition in relation to species' salinity tolerance; ii) explore plastic adjustments in CHC profiles in response to salinity changes at the intraspecific level in saline-tolerant species. CHC profiles were highly species-specific, more complex and diverse in composition, and characterized by longer-chain-length compounds in the species with higher salinity tolerance within each genus. Higher salinity tolerance in the Enochrus species was also associated with an increase in the relative abundance of branched alkanes, and with a lower proportion of n-alkanes and unsaturated compounds. These CHC characteristics are related with improved waterproofing capacity and suggest that reducing cuticle permeability was one of the key mechanisms to adapt to saline waters. Similar CHC composition patterns were found at the intraspecific level between populations from lower and higher salinity sites within saline-tolerant species of each genus. These saline species also displayed an extraordinary ability to adjust CHC profiles to changing salinity conditions in the laboratory in a relatively short time, which reflects great plasticity and a high potential to deal with daily and seasonal environmental fluctuations in the highly dynamic saline habitats.
Collapse
Affiliation(s)
| | - Susana Pallarés
- Department of Zoology, University of Sevilla, Sevilla, Spain; Instituto de Ciencias Ambientales (ICAM), University of Castilla-La Mancha, Toledo, Spain
| | - Andrés Millán
- Department of Ecology and Hydrology, University of Murcia, Spain
| | - Josefa Velasco
- Department of Ecology and Hydrology, University of Murcia, Spain
| |
Collapse
|
48
|
Massey JH, Akiyama N, Bien T, Dreisewerd K, Wittkopp PJ, Yew JY, Takahashi A. Pleiotropic Effects of ebony and tan on Pigmentation and Cuticular Hydrocarbon Composition in Drosophila melanogaster. Front Physiol 2019; 10:518. [PMID: 31118901 PMCID: PMC6504824 DOI: 10.3389/fphys.2019.00518] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly Drosophila melanogaster also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes, ebony and tan, which encode enzymes catalyzing reciprocal reactions in the melanin biosynthesis pathway, also affect cuticular hydrocarbon (CHC) composition in D. melanogaster females. More specifically, we report that ebony loss-of-function mutants have a CHC profile that is biased toward long (>25C) chain CHCs, whereas tan loss-of-function mutants have a CHC profile that is biased toward short (<25C) chain CHCs. Moreover, pharmacological inhibition of dopamine synthesis, a key step in the melanin synthesis pathway, reversed the changes in CHC composition seen in ebony mutants, making the CHC profiles similar to those seen in tan mutants. These observations suggest that genetic variation affecting ebony and/or tan activity might cause correlated changes in pigmentation and CHC composition in natural populations. We tested this possibility using the Drosophila Genetic Reference Panel (DGRP) and found that CHC composition covaried with pigmentation as well as levels of ebony and tan expression in newly eclosed adults in a manner consistent with the ebony and tan mutant phenotypes. These data suggest that the pleiotropic effects of ebony and tan might contribute to covariation of pigmentation and CHC profiles in Drosophila.
Collapse
Affiliation(s)
- Jonathan H. Massey
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Noriyoshi Akiyama
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Tanja Bien
- Institute for Hygiene, University of Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | - Klaus Dreisewerd
- Institute for Hygiene, University of Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | - Patricia J. Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
49
|
Buellesbach J, Whyte BA, Cash E, Gibson JD, Scheckel KJ, Sandidge R, Tsutsui ND. Desiccation Resistance and Micro-Climate Adaptation: Cuticular Hydrocarbon Signatures of Different Argentine Ant Supercolonies Across California. J Chem Ecol 2018; 44:1101-1114. [PMID: 30430363 DOI: 10.1007/s10886-018-1029-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/01/2018] [Accepted: 10/23/2018] [Indexed: 12/24/2022]
Abstract
Cuticular hydrocarbons (CHCs), the dominant fraction of the insects' epicuticle and the primary barrier to desiccation, form the basis for a wide range of chemical signaling systems. In eusocial insects, CHCs are key mediators of nestmate recognition, and colony identity appears to be maintained through a uniform CHC profile. In the unicolonial Argentine ant Linepithema humile, an unparalleled invasive expansion has led to vast supercolonies whose nestmates can still recognize each other across thousands of miles. CHC profiles are expected to display considerable variation as they adapt to fundamentally differing environmental conditions across the Argentine ant's expanded range, yet this variation would largely conflict with the vastly extended nestmate recognition based on CHC uniformity. To shed light on these seemingly contradictory selective pressures, we attempt to decipher which CHC classes enable adaptation to such a wide array of environmental conditions and contrast them with the overall CHC profile uniformity postulated to maintain nestmate recognition. n-Alkanes and n-alkenes showed the largest adaptability to environmental conditions most closely associated with desiccation, pointing at their function for water-proofing. Trimethyl alkanes, on the other hand, were reduced in environments associated with higher desiccation stress. However, CHC patterns correlated with environmental conditions were largely overriden when taking overall CHC variation across the expanded range of L. humile into account, resulting in conserved colony-specific CHC signatures. This delivers intriguing insights into the hierarchy of CHC functionality integrating both adaptation to a wide array of different climatic conditions and the maintenance of a universally accepted chemical profile.
Collapse
Affiliation(s)
- Jan Buellesbach
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA. .,Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149, Münster, Germany.
| | - Brian A Whyte
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA
| | - Elizabeth Cash
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA
| | - Joshua D Gibson
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA.,Department of Biology, Georgia Southern University, P.O. Box 8042-1, Statesboro, GA, 30460, USA
| | - Kelsey J Scheckel
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA
| | - Rebecca Sandidge
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA
| | - Neil D Tsutsui
- Department of Environmental Science, Policy, & Management, University of California, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA
| |
Collapse
|
50
|
Rajpurohit S, Gefen E, Bergland AO, Petrov DA, Gibbs AG, Schmidt P. Spatiotemporal dynamics and genome-wide association genome-wide association analysis of desiccation tolerance in Drosophila melanogaster. Mol Ecol 2018; 27:3525-3540. [PMID: 30051644 PMCID: PMC6129450 DOI: 10.1111/mec.14814] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022]
Abstract
Water availability is a major environmental challenge to a variety of terrestrial organisms. In insects, desiccation tolerance varies predictably over spatial and temporal scales and is an important physiological determinant of fitness in natural populations. Here, we examine the dynamics of desiccation tolerance in North American populations of Drosophila melanogaster using: (a) natural populations sampled across latitudes and seasons; (b) experimental evolution in field mesocosms over seasonal time; (c) genome-wide associations to identify SNPs/genes associated with variation for desiccation tolerance; and (d) subsequent analysis of patterns of clinal/seasonal enrichment in existing pooled sequencing data of populations sampled in both North America and Australia. A cline in desiccation tolerance was observed, for which tolerance exhibited a positive association with latitude; tolerance also varied predictably with culture temperature, demonstrating a significant degree of thermal plasticity. Desiccation tolerance evolved rapidly in field mesocosms, although only males showed differences in desiccation tolerance between spring and autumn collections from natural populations. Water loss rates did not vary significantly among latitudinal or seasonal populations; however, changes in metabolic rates during prolonged exposure to dry conditions are consistent with increased tolerance in higher latitude populations. Genome-wide associations in a panel of inbred lines identified twenty-five SNPs in twenty-one loci associated with sex-averaged desiccation tolerance, but there is no robust signal of spatially varying selection on genes associated with desiccation tolerance. Together, our results suggest that desiccation tolerance is a complex and important fitness component that evolves rapidly and predictably in natural populations.
Collapse
Affiliation(s)
- Subhash Rajpurohit
- Department of Biology, University of Pennsylvania, 433 S. University Ave, Philadelphia, PA 19104, USA
| | - Eran Gefen
- Department of Biology, University of Haifa-Oranim, Tivon 36006, Israel
| | - Alan O. Bergland
- Department of Biology, University of Virginia, Charlottesville, VA 22903
| | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Allen G. Gibbs
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, 433 S. University Ave, Philadelphia, PA 19104, USA
| |
Collapse
|