1
|
Zhang B, Yang H, Cai G, Nie Q, Sun Y. The interactions between the host immunity and intestinal microorganisms in fish. Appl Microbiol Biotechnol 2024; 108:30. [PMID: 38170313 DOI: 10.1007/s00253-023-12934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024]
Abstract
There is a huge quantity of microorganisms in the gut of fish, which exert pivotal roles in maintaining host intestinal and general health. The fish immunity can sense and shape the intestinal microbiota and maintain the intestinal homeostasis. In the meantime, the intestinal commensal microbes regulate the fish immunity, control the extravagant proliferation of pathogenic microorganisms, and ensure the intestinal health of the host. This review summarizes developments and progress on the known interactions between host immunity and intestinal microorganisms in fish, focusing on the recent advances in zebrafish (Danio rerio) showing the host immunity senses and shapes intestinal microbiota, and intestinal microorganisms tune host immunity. This review will offer theoretical references for the development, application, and commercialization of intestinal functional microorganisms in fish. KEY POINTS: • The interactions between the intestinal microorganisms and host immunity in zebrafish • Fish immunity senses and shapes the microbiota • Intestinal microbes tune host immunity in fish.
Collapse
Affiliation(s)
- Biyun Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Hongling Yang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Guohe Cai
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Qingjie Nie
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China
| | - Yunzhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, Fujian, China.
| |
Collapse
|
2
|
Aboulaghras S, Bouyahya A, El Kadri K, Khalid A, Abdalla AN, Hassani R, Lee LH, Bakrim S. Protective and stochastic correlation between infectious diseases and autoimmune disorders. Microb Pathog 2024; 196:106919. [PMID: 39245422 DOI: 10.1016/j.micpath.2024.106919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
A priori, early exposure to a wide range of bacteria, viruses, and parasites appears to fortify and regulate the immune system, potentially reducing the risk of autoimmune diseases. However, improving hygiene conditions in numerous societies has led to a reduction in these microbial exposures, which, according to certain theories, could contribute to an increase in autoimmune diseases. Indeed, molecular mimicry is a key factor triggering immune system reactions; while it seeks pathogens, it can bind to self-molecules, leading to autoimmune diseases associated with microbial infections. On the other hand, a hygiene-based approach aimed at reducing the load of infectious agents through better personal hygiene can be beneficial for such pathologies. This review sheds light on how the evolution of the innate immune system, following the evolution of molecular patterns associated with microbes, contributes to our protection but may also trigger autoimmune diseases linked to microbes. Furthermore, it addresses how hygiene conditions shield us against autoimmune diseases related to microbes but may lead to autoimmune pathologies not associated with microbes.
Collapse
Affiliation(s)
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco.
| | - Kawtar El Kadri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco.
| | - Asaad Khalid
- Health Research Centre, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
| | - Rym Hassani
- Environment and Nature Research Centre, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; Biology Department, University College AlDarb, Jazan University, Jazan 45142, Saudi Arabia.
| | - Learn-Han Lee
- Microbiome Research Group, Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, 315000, Ningbo, China; Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, 47500, Malaysia.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, 80000, Morocco.
| |
Collapse
|
3
|
Li Y, Wu S, Huang J, Zhao L. Integration of physiological, miRNA-mRNA interaction and functional analysis reveals the molecular mechanism underlying hypoxia stress tolerance in crucian carp (Carassius auratus). FASEB J 2024; 38:e23722. [PMID: 38934365 DOI: 10.1096/fj.202302629rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Hypoxia has become one of the most critical factors limiting the development of aquaculture. Crucian carp (Carassius auratus) is widely consumed fish in China, with excellent tolerance to hypoxic environment. However, the molecular mechanisms underlying hypoxia adaptation and tolerance in crucian carp remain unclear. Compared with the control, increased T-SOD, CAT, GSH-Px, T-AOC, ALT, and AST activities and MDA, TCHO, and TG contents, and decreased TP and ATP contents were observed after hypoxia stress. Based on RNA-seq, 2479 differentially expressed (DE) mRNAs and 60 DE miRNAs were identified, and numerous DE mRNAs involved in HIF signaling pathway (hif-1α, epo, vegfa, and ho), anaerobic metabolism (hk1/hk2, pfk, gapdh, pk, and ldh) and immune response (nlrp12, cxcr1, cxcr4, ccr9, and cxcl12) were significantly upregulated after hypoxia exposure. Integrated analysis found that ho, igfbp1, hsp70, and hk2 were predicted to be regulated by novel_867, dre-miR-125c-3p/novel_173, dre-miR-181b-5p, and dre-miR-338-5p/dre-miR-17a-3p, respectively, and targets of DE miRNAs were significantly enriched in MAPK signaling pathway, FoxO signaling pathway, and glycolysis/gluconeogenesis. Expression analysis showed that the mRNA levels of vegfa, epo, ho, hsp70, hsp90aa.1, igfbp1, ldh, hk1, pfk, pk, and gapdh exhibited a remarkable increase, whereas sdh and mdh were downregulated in the H3h, H12h, and H24h groups compared with the control. Furthermore, research found that hk2 is a target of dre-miR-17a-3p, overexpression of dre-miR-17a-3p significantly decreased the expression level of hk2, while the opposite results were obtained after dre-miR-17a-3p silencing. These results contribute to our understanding of the molecular mechanisms of hypoxia tolerance in crucian carp.
Collapse
Affiliation(s)
- Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Wang Y, Yang S, Cai X, Huang Z, Tan K, Xu P. Functional characterization of NOD1 from golden pompano Trachinotus ovatus. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109566. [PMID: 38636735 DOI: 10.1016/j.fsi.2024.109566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/23/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Fish rely on innate immune system for immunity, and nucleotide-binding oligomerization domain-like receptors (NLRs) are a vital group of receptor for recognition. In the present study, NOD1 gene was cloned and characterized from golden pompano Trachinotus ovatus, a commercially important aquaculture fish species. The ORF of T. ovatus NOD1 was 2820 bp long, encoding 939 amino acid residues with a highly conserved domains containing CARD-NACHT-LRRs. Phylogenetic analysis revealed that the T. ovatus NOD1 clustered with those of fish and separated from those of birds and mammals. T. ovatus NOD1 has wide tissue distribution with the highest expression in gills. Bacterial challenges (Streptococcus agalactiae and Vibrio alginolyticus) significantly up-regulated the expression of NOD1 with different response time. The results of T. ovatus NOD1 ligand recognition and signaling pathway analysis revealed that T. ovatus NOD1 could recognize iE-DAP at the concentration of ≧ 100 ng/mL and able to activate NF-κB signaling pathway. This study confirmed that NOD1 play a crucial role in the innate immunity of T. ovatus. The findings of this study improve our understanding on the immune function of NOD1 in teleost, especially T. ovatus.
Collapse
Affiliation(s)
- Yadan Wang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Shaoyu Yang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Xiaohui Cai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Zhuang Huang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China.
| | - Peng Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China.
| |
Collapse
|
5
|
Wang S, Tan W, Zhang L, Jiang H. Pachymic Acid Protects Against Bleomycin-Induced Pulmonary Fibrosis by Suppressing Fibrotic, Inflammatory, and Oxidative Stress Pathways in Mice. Appl Biochem Biotechnol 2024; 196:3344-3355. [PMID: 37650950 DOI: 10.1007/s12010-023-04686-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Pachymic acid (PA), a natural extract from Poria cocos (Schw.) Wolf, possesses anti-inflammatory and anti-oxidative properties. However, it is still unknown whether PA can protect against bleomycin (BLM)-induced pulmonary fibrosis (PF). In this study, we investigated the effects of PA in mice administered BLM. Our results showed that PA significantly improved lung damage and pathological manifestations. Additionally, PA reduced the levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α, while increasing the level of IL-10. PA also decreased the levels of hydroxyproline and malondialdehyde, and increased the activities of superoxide dismutase and glutathione peroxidase in lung tissue. Furthermore, PA inhibited the increases in pyrin domain-containing protein 3 (NLRP3), ASC, IL-1β, P20, and TXNIP induced by BLM. In conclusion, our study demonstrated the protective effects of PA against BLM-induced PF in mice by suppressing fibrotic, inflammatory, and oxidative stress pathways.
Collapse
Affiliation(s)
- Shanmei Wang
- Department of Emergency, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Yangpu District, Shanghai, 200433, China
| | - Wei Tan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Yangpu District, Shanghai, 200433, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Yangpu District, Shanghai, 200433, China
| | - Hongbin Jiang
- Department of Emergency, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507 Zhengmin Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
6
|
Jan K, Ahmed I, Dar NA, Farah MA, Khan FR, Shah BA. Towards a comprehensive understanding of the muscle proteome in Schizothorax labiatus: Insights from seasonal variations, metabolic responses, and reproductive signatures in the River Jhelum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170840. [PMID: 38340828 DOI: 10.1016/j.scitotenv.2024.170840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Proteomics is a very advanced technique used for defining correlations, compositions and activities of hundreds of proteins from organisms as well as effectively used in identifying particular proteins with varying peptide lengths and amino acid counts. In the present study, an endeavour has been put forth to create muscle proteome expression of snow trout, Schizothorax labiatus. Liquid chromatography-mass spectrometry (LC-MS) using label free quantification (LFQ) technique has extensively been carried out to explore changes in protein metabolism and its composition to discriminate across species, clarify functions and pinpoint protein biomarkers from organisms. In LFQ technique, the abundances of proteins are determined based on the signal intensities of their corresponding peptides in mass spectrometry. The main benefit of using this method is that it doesn't require pre-labelling proteins with isotopic tags, which streamlines the experimental procedure and gets rid of any bias that might have been caused by the labelling process. LFQ techniques frequently offer a wider dynamic range, making it possible to detect and quantify proteins over a broad range of abundances obtained from the complex biological materials including fish muscle. The results of proteomic analysis could provide an insight in understanding about how various proteins are expressed in response to environmental challenges. For proteomic study, two different weight groups of S. labiatus were taken from River Jhelum based on biological, physiological and logistical factors. These groups corresponded to different life stages, such as younger size and adults/brooders in order to capture potential variations in the muscle proteome related to growth and development. The proteomic analysis of S. labiatus depicted that an overall of 220 proteins in male and 228 in female fish of group 1 were noted. However, when male and female S. labiatus were examined based on spectral count and peptide abundance using ProteinLynx Global Software, a total of 10 downregulated and 32 upregulated proteins were found. In group 2 of S. labiatus, a total of 249 proteins in male and 301 in female fish were documented. When the two genders of S. labiatus were likened to one another by LFQ technique, a total of 41 downregulated and 06 upregulated proteins were identified. The variability in the protein numbers between two fish weight groups reflected biological differences, influenced by factors such as age, developmental stages, physiological condition and reproductive activities. During the study, it was observed that S. labiatus exhibited downregulated levels of proteins that were involved in feeding and growth. The contributing factors to this manifestation could be explained by lower feeding and metabolic activity of fish and decreased food availability during winter in River Jhelum. Contrarily, the fish immune response proteins were found to be significantly over-expressed in S. labiatus, indicating that the environment was more likely to undergo increased microbial infection, pollution load and anthropogenic activities. In addition, it was also discovered that there was an upregulated expression of the reproductive proteins in S. labiatus, which could be linked to the fish's pre-spawning time as the fish used in this study was collected in the winter season which is the pre-spawning period of the fish. Therefore, the present study would be useful in obtaining new insights regarding the molecular makeup of species, methods of adaptation and reactions to environmental stresses. This information contributes to our understanding of basic science and may have applications in environmental monitoring, conservation and preservation of fish species.
Collapse
Affiliation(s)
- Kousar Jan
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, India
| | - Imtiaz Ahmed
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, India.
| | - Nazir Ahmad Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fatin Raza Khan
- Departmentof Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Basit Amin Shah
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, India
| |
Collapse
|
7
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
8
|
Chuphal B, Sathoria P, Rai U, Roy B. Sexual dimorphism in NLR transcripts and its downstream signaling protein IL-1ꞵ in teleost Channa punctata (Bloch, 1793). Sci Rep 2024; 14:1923. [PMID: 38253695 PMCID: PMC10803744 DOI: 10.1038/s41598-024-51702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Nucleotide-binding oligomerization domain-like receptors (NOD-like receptors or NLRs) are a family of intracellular pattern recognition receptors (PRRs) that initiates as well as regulate inflammatory responses. NLRs are characterized by a centrally located nucleotide binding domain and a leucine rich repeat domain at the C-terminal responsible for the recognition of intracellular microbe-associated molecular patterns (MAMPs) and danger-associated molecular patterns (DAMPs). In the present study in adult spotted snakehead we have investigated the sex-dependent tissue distribution of NLRs known to be associated with inflammation in teleost namely NOD1, NOD2, NLRC3, NLRC5, and NLRX1. Further, the sexual dimorphism in the expression of NLR transcript as well as the pro-inflammatory protein IL-1β was explored in fish under normal conditions, and in fish exposed to bacterial lipopolysaccharide (LPS). The NLRs show ubiquitous and constitutive expression in all the tissues. Moreover, a prominent disparity between males and females was observed in the basal expression of these genes in various tissues. The sexual dimorphism in NLR expression was also prominent when fish were exposed to LPS. Similarly, IL-1β exhibited sexual dimorphism in both normal as well as LPS-exposed fish.
Collapse
Affiliation(s)
- Bhawna Chuphal
- Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India
| | - Priyanka Sathoria
- Department of Zoology, Maitreyi College, University of Delhi, Chanakyapuri, Delhi, 110021, India
| | - Umesh Rai
- University of Jammu, Jammu and Kashmir, Jammu, 180006, India.
| | - Brototi Roy
- Department of Zoology, Maitreyi College, University of Delhi, Chanakyapuri, Delhi, 110021, India.
| |
Collapse
|
9
|
Chen Q, Wei T, Li M, Liu S, Wu J, Xu G, Zou J, Xie S. Effect of aqueous extract of Millettia speciosa Champ on intestinal health maintenance and immune enhancement of Cyprinus carpio. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109227. [PMID: 37984616 DOI: 10.1016/j.fsi.2023.109227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Millettia speciosa Champ (MSP) is a natural Chinese herb that improves gastrointestinal health and enhances animal immunity. An 8-week feeding trial with different MSP levels (0, 150, 300, and 600 mg/kg) was conducted to evaluate the promotive effects of MSP in Cyprinus carpio. Results indicate that MSP improved intestinal immunity to some extent evidenced by the immuno-antioxidant parameters and the 16S rRNA in the Illumina MiSeq platform. With the analysis of transcriptome sequencing, 4685 differentially expressed genes (DEGs) were identified, including 2149 up-regulated and 2536 down-regulated. According to the GO and KEGG enrichments, DEGs were mainly involved in the immune system. Transcriptional expression of the NOD-like signaling pathway and key genes retrieved from the transcriptome database confirmed that innate immunity was improved in response to dietary MSP administration. Therefore, MSP could be used as a feed supplement that enhances immunity. This may provide insight into Chinese herb additive application in aquaculture production.
Collapse
Affiliation(s)
- Qingshi Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Tianli Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Min Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jinxia Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, 361005, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Chuphal B, Sathoria P, Rai U, Roy B. Exploring the effect of dihydrotestosterone on nucleotide-binding and oligomerization domain-like receptor expression in spotted snakehead Channa punctata (Bloch 1793). JOURNAL OF FISH BIOLOGY 2023; 103:1476-1487. [PMID: 37641389 DOI: 10.1111/jfb.15546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Sex steroids are known to modulate immune responses and as a result many of the immune parameters in seasonally breeding organisms show reproductive-phase dependent variation. Androgens, the male sex steroids, are largely reported to be immunosuppressive. Together with other pattern recognition receptors, the nucleotide-binding and oligomerization domain-like receptors (NLRs) serve as intracellular sentinels and are essential to defense mechanisms. Interestingly, to date the transcriptional modulation of NLRs by androgens has not been explored. In the present study, we investigated the reproductive-phase dependent expression of NLRs in the male spotted snakehead Channa punctata. Furthermore, the effect of dihydrotestosterone (DHT) on NLR expression was studied. The expression of NLRs was observed to be most pronounced during the spawning phase of the fish, which is marked by the highest testosterone level. In vivo as well as in vitro studies showed the diverse effect of DHT on NLR expression depending on the duration and mode of treatment, as well as the immune tissue studied.
Collapse
Affiliation(s)
- Bhawna Chuphal
- Department of Zoology, University of Delhi, Delhi, India
| | - Priyanka Sathoria
- Department of Zoology, Maitreyi College, University of Delhi, Delhi, India
| | | | - Brototi Roy
- Department of Zoology, Maitreyi College, University of Delhi, Delhi, India
| |
Collapse
|
11
|
Gao C, Cai X, Lymbery AJ, Ma L, Li C. The evolution of NLRC3 subfamily genes in Sebastidae teleost fishes. BMC Genomics 2023; 24:683. [PMID: 37964222 PMCID: PMC10648357 DOI: 10.1186/s12864-023-09785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND With more than 36,000 valid fish species, teleost fishes constitute the most species-rich vertebrate clade and exhibit extensive genetic and phenotypic variation, including diverse immune defense strategies. NLRC3 subfamily genes, which are specific to fishes, play vital roles in the immune system of teleosts. The evolution of teleosts has been impacted by several whole-genome duplication (WGD) events, which might be a key reason for the expansions of the NLRC3 subfamily, but detailed knowledge of NLRC3 subfamily evolution in the family Sebastidae is still limited. RESULTS Phylogenetic inference of NLRC3 subfamily protein sequences were conducted to evaluate the orthology of NLRC3 subfamily genes in black rockfish (Sebastes schlegilii), 13 other fish species from the families Sebastidae, Serranidae, Gasterosteidae and Cyclopteridae, and three species of high vertebrates (bird, reptile and amphibian). WGD analyses were used to estimate expansions and contractions of the NLRC3 subfamily, and patterns of expression of NLRC3 subfamily genes in black rockfish following bacterial infections were used to investigate the functional roles of these genes in the traditional and mucosal immune system of the Sebastidae. Different patterns of gene expansions and contractions were observed in 17 fish and other species examined, and one and two whole-genome duplication events were observed in two members of family Sebastidae (black rockfish and honeycomb rockfish, Sebastes umbrosus), respectively. Subsequently, 179 copy numbers of NLRC3 genes were found in black rockfish and 166 in honeycomb rockfish. Phylogenetic analyses corroborated the conservation and evolution of NLRC3 orthologues between Sebastidae and other fish species. Finally, differential expression analyses provided evidence of the immune roles of NLRC3 genes in black rockfish during bacterial infections and gene ontology analysis also indicated other functional roles. CONCLUSIONS We hypothesize that NLRC3 genes have evolved a variety of different functions, in addition to their role in the immune response, as a result of whole genome duplication events during teleost diversification. Importantly, this study had underscored the importance of sampling across taxonomic groups, to better understand the evolutionary patterns of the innate immunity system on which complex immunological novelties arose. Moreover, the results in this study could extend current knowledge of the plasticity of the immune system.
Collapse
Affiliation(s)
- Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, 266109, Qingdao, China
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 6150, Murdoch, WA, Australia
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, 266109, Qingdao, China
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 6150, Murdoch, WA, Australia
| | - Alan J Lymbery
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 6150, Murdoch, WA, Australia
| | - Le Ma
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 6150, Murdoch, WA, Australia
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, 266109, Qingdao, China.
| |
Collapse
|
12
|
Liu Y, Sheng X, Tang X, Xing J, Chi H, Zhan W. Genome-wide identification, phylogenetic relationships and expression patterns of the NOD-like receptor (NLR) gene family in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109083. [PMID: 37722442 DOI: 10.1016/j.fsi.2023.109083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
NOD-like receptors (NLRs) are one of the pattern recognition receptors which have been widely known for identifying pathogens and regulating innate immunity in mammals, but the functions of the NLR gene family in teleost fish remain poorly understood. In this study, we conducted a comprehensive identification and analysis of the flounder (Paralichthys olivaceus) NLR gene family, including bioinformatics information, evolutionary relationships, gene structures, conserved motifs, domain composition, expression patterns and protein-protein interaction (PPI). We identified 22 NLRs in flounder (flNLRs) which were clustered into three subfamilies according to their domain organizations and phylogenetic features, i.e., NLR-A (6 members) resembling mammalian NODs, NLR-B (1 member) resembling mammalian NLRPs, and NLR-C (15 members) unique to teleost fish. All flNLRs shared a conserved NACHT domain including an N-terminal nucleotide-binding domain, a middle helical domain 1, and a winged helix domain. Gene structure analysis displayed that flNLRs were significantly different, with exon numbers from 1 to 52. Conserved domain analysis showed that the N-terminus of flNLRs possessed different characteristics of the domains including CARD domain, PYRIN domain, RING domain, and fish-specific FISNA domain, and the C-terminus of seven NLR-C members contained an extra B30.2 domain, named NLRC-B30.2 group. Notably, flNLRs were expressed in all nine tested tissues, showing higher expressions in the systemic and mucosal immune tissues (e.g., kidney, spleen, hindgut, gills, skin, liver) in healthy flounder, and significant responses to intraperitoneal injection and immersion immunization of inactivated Vibrio anguillarum in mucosal tissues, especially the NLR-C members. In addition, PPI analysis demonstrated that some flNLRs of NLR-A and NLR-C shared the same interacting proteins such as RIPK2, TRAF6, MAVS, CASP, ASC, and ATG5, suggesting they might play crucial roles in host defense, antiviral innate immunity, inflammation, apoptosis and autophagy. This study for the first time characterized the NLR gene family of flounder at the genome-wide level, and the results provided a better understanding of the evolution of the NLR gene family and their immune functions in innate immunity in fish.
Collapse
Affiliation(s)
- Yingqin Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| |
Collapse
|
13
|
Chen D, Chen Y, Lu L, Zhu H, Zhang X, Huang X, Li Z, Ouyang P, Zhang X, Li L, Geng Y. Transcriptome Revealed the Macrophages Inflammatory Response Mechanism and NOD-like Receptor Characterization in Siberian Sturgeon ( Acipenser baerii). Int J Mol Sci 2023; 24:ijms24119518. [PMID: 37298469 DOI: 10.3390/ijms24119518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Nucleotide-binding and oligomerization domain-like receptors (NOD-like receptors, NLRs) can regulate the inflammatory response to eliminate pathogens and maintain the host's homeostasis. In this study, the head kidney macrophages of Siberian sturgeon were treated with lipopolysaccharide (LPS) to induce inflammation by evaluating the expression of cytokines. The high-throughput sequencing for macrophages after 12 h treatment showed that 1224 differentially expressed genes (DEGs), including 779 upregulated and 445 downregulated, were identified. DEGs mainly focus on pattern recognition receptors (PRRs) and the adaptor proteins, cytokines, and cell adhesion molecules. In the NOD-like receptor signaling pathway, multiple NOD-like receptor family CARD domains containing 3-like (NLRC3-like) were significantly downregulated, and pro-inflammatory cytokines were upregulated. Based on the transcriptome database, 19 NLRs with NACHT structural domains were mined and named in Siberian sturgeon, including 5 NLR-A, 12 NLR-C, and 2 other NLRs. The NLR-C subfamily had the characteristics of expansion of the teleost NLRC3 family and lacked the B30.2 domain compared with other fish. This study revealed the inflammatory response mechanism and NLRs family characterization in Siberian sturgeon by transcriptome and provided basic data for further research on inflammation in teleost.
Collapse
Affiliation(s)
- Defang Chen
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yinqiu Chen
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Lu
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Zhu
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Zhang
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoli Huang
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiqiong Li
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Ouyang
- Research Center of Aquatic Animal Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoli Zhang
- Institute of Fisheries Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu 611130, China
| | - Liangyu Li
- Institute of Fisheries Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu 611130, China
| | - Yi Geng
- Research Center of Aquatic Animal Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
14
|
Chuphal B, Sathoria P, Rai U, Roy B. Crosstalk between reproductive and immune systems: the teleostean perspective. JOURNAL OF FISH BIOLOGY 2023; 102:302-316. [PMID: 36477945 DOI: 10.1111/jfb.15284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The bidirectional interaction between the hypothalamic-pituitary-gonadal (HPG) axis and the immune system plays a crucial role in the adaptation of an organism to its environment, its survival and the continuance of a species. Nonetheless, very little is known about this interaction among teleost, the largest group of extant vertebrates. Fishes being seasonal breeders, their immune system is exposed to seasonally changing levels of HPG hormones. On the contrary, the presence and infiltration of leukocytes, the expression of pattern recognition receptors as well as cytokines in gonads suggest their key role in teleostean gametogenesis as in the case of mammals. Moreover, the modulation of gametogenesis and steroidogenesis by lipopolysaccharide implicates the pathological significance of inflammation on reproduction. Thus, it is important to engage in the understanding of the interaction between these two important physiological systems, not only from a phylogenetic perspective but also due to the importance of fish as an important economic resource. In view of this, the authors have reviewed the crosstalk between the reproductive and immune systems in teleosts and tried to explore the importance of this interaction in their survival and reproductive fitness.
Collapse
Affiliation(s)
- Bhawna Chuphal
- Department of Zoology, University of Delhi, Delhi, India
| | - Priyanka Sathoria
- Department of Zoology, Maitreyi College, University of Delhi, Delhi, India
| | - Umesh Rai
- University of Jammu, Jammu, Jammu and Kashmir, India
| | - Brototi Roy
- Department of Zoology, Maitreyi College, University of Delhi, Delhi, India
| |
Collapse
|
15
|
Chuphal B, Rai U, Roy B. Teleost NOD-like receptors and their downstream signaling pathways: A brief review. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100056. [DOI: 10.1016/j.fsirep.2022.100056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 02/08/2023] Open
|
16
|
Wu S, Huang J, Li Y, Lei M, Zhao L, Liu Z. Integrated analysis of immune parameters, miRNA-mRNA interaction, and immune genes expression in the liver of rainbow trout following infectious hematopoietic necrosis virus infection. Front Immunol 2022; 13:970321. [PMID: 36119061 PMCID: PMC9479325 DOI: 10.3389/fimmu.2022.970321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) is an important economical cold-water fish worldwide. However, infection with infectious hematopoietic necrosis virus (IHNV) has severely restricted the development of aquaculture and caused huge economic losses. Currently, little is known about the immune defense mechanisms of rainbow trout against IHNV. In this study, we detected the changes of immune parameters over different post-infection periods (6-, 12-, 24-, 48-, 72-, 96-, 120-, and 144 hours post-infection (hpi)), mRNA and miRNA expression profiles under 48 hpi (T48L) compared to control (C48L), and key immune-related genes expression patterns in rainbow trout liver following IHNV challenge through biochemical methods, RNA-seq, and qRT-PCR, and the function of miR-330-y was verified by overexpression and silencing in vitro and in vivo. The results revealed that alkaline phosphatase (AKP), alanine aminotransferase (ALT), catalase (CAT), and total superoxide dismutase (T-SOD) activities, and lysozyme (LZM) content showed significant peaks at 48 hpi, whereas malondialdehyde (MDA) content and aspartate aminotransferase (AST) activity decreased continuously during infection, and acid phosphatase (ACP) activity varied slightly. From RNA-seq, a total of 6844 genes and 86 miRNAs were differentially expressed, and numerous immune-related differentially expressed genes (DEGs) involved in RIG-I-like receptor signaling pathway, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, cytokine-cytokine receptor interaction, and antigen processing and presentation were significantly upregulated in T48Lm group, including IFIH1, DHX58, MAVS, TRAF3, IRF3, IRF7, MX1, TLR3, TLR8, MYD88, NOD1, NOD2, IL-8, CXCR1, CD209, CD83, and TAP1. Integrated analysis identified seven miRNAs (miR-425-x, miR-185-x, miR-338-x, miR-330-y, miR-361-x, miR-505-y, and miR-191-x) that target at least three key immune-related DEGs. Expression analysis showed that IFIH1, DHX58, IRF3, IRF7, MX1, TLR3, TLR8, and MYD88 showed a marked increase after 24 hpi during infection. Further research confirmed TAP1 as one of the targets of miR-330-y, overexpression of miR-330-y with mimics or agomir significantly reduced the expression levels of TAP1, IRF3, and IFN, and the opposite effects were obtained by inhibitor. These results facilitate in-depth understanding of the immune mechanisms in rainbow trout against IHNV.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Jinqiang Huang,
| | - Yongjuan Li
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Mingquan Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
17
|
Sudhakaran G, Guru A, Haridevamuthu B, Murugan R, Arshad A, Arockiaraj J. Molecular properties of postbiotics and their role in controlling aquaculture diseases. AQUACULTURE RESEARCH 2022; 53:3257-3273. [DOI: 10.1111/are.15846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/13/2022] [Indexed: 10/16/2023]
Affiliation(s)
- Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Ajay Guru
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Port Dickson Malaysia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
- Foundation for Aquaculture Innovations and Technology Transfer (FAITT) Chennai India
| |
Collapse
|
18
|
Hui F, Guo S, Liu J, Li M, Geng M, Xia Y, Liu X, Li Q, Li J, Zhu T. Genome-wide identification and characterization of NLR genes in lamprey (Lethenteron reissneri) and their responses to lipopolysaccharide/poly(I:C) challenge. Mol Immunol 2022; 143:122-134. [DOI: 10.1016/j.molimm.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/18/2022]
|
19
|
Figueiredo F, Kristoffersen H, Bhat S, Zhang Z, Godfroid J, Peruzzi S, Præbel K, Dalmo RA, Xu X. Immunostimulant Bathing Influences the Expression of Immune- and Metabolic-Related Genes in Atlantic Salmon Alevins. BIOLOGY 2021; 10:980. [PMID: 34681079 PMCID: PMC8533105 DOI: 10.3390/biology10100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/03/2022]
Abstract
Disease resistance of fish larvae may be improved by bath treatment in water containing immunostimulants. Pattern recognition receptors, such as TLR3, TLR7, and MDA5, work as an "early warning" to induce intracellular signaling and facilitate an antiviral response. A single bath of newly hatched larvae, with Astragalus, upregulated the expression of IFNα, IFNc, ISG15, MDA5, PKR, STAT1, TLR3, and TLR7 immune genes, on day 4 post treatment. Similar patterns were observed for Hyaluronic acid and Poly I:C. Increased expression was observed for ISG15, MDA5, MX, STAT1, TLR3, TLR7, and RSAD2, on day 9 for Imiquimod. Metabolic gene expression was stimulated on day 1 after immunostimulant bath in ULK1, MYC, SLC2A1, HIF1A, MTOR, and SIX1, in Astragalus, Hyaluronic acid, and Imiquimod. Expression of NOS2 in Poly I:C was an average fourfold above that of control at the same timepoint. Throughout the remaining sampling days (2, 4, 9, 16, 32, and 45 days post immunostimulant bath), NOS2 and IL1B were consistently overexpressed. In conclusion, the immunostimulants induced antiviral gene responses, indicating that a single bath at an early life stage could enable a more robust antiviral defense in fish. Additionally, it was demonstrated, based on gene expression data, that cell metabolism was perturbed, where several metabolic genes were co-regulated with innate antiviral genes.
Collapse
Affiliation(s)
- Filipe Figueiredo
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Harald Kristoffersen
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Shripathi Bhat
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Zuobing Zhang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China;
| | - Jacques Godfroid
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (J.G.); (S.P.)
| | - Stefano Peruzzi
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (J.G.); (S.P.)
| | - Kim Præbel
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Xiaoli Xu
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| |
Collapse
|
20
|
Liao Z, Su J. Progresses on three pattern recognition receptor families (TLRs, RLRs and NLRs) in teleost. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104131. [PMID: 34022258 DOI: 10.1016/j.dci.2021.104131] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Pattern recognition receptors (PRRs) are a class of immune sensors that play crucial roles in detecting and responding to the conserved patterns of microorganisms. To date, many PRRs, such as TLRs, RLRs and NLRs, as well as their downstream molecules have been identified and characterized in teleost, while their ligands and immunoregulatory mechanisms remain largely unknown. In the present review, we described and discussed the main members of TLR/RLR/NLR families, including their expression profiles, signaling transductions and functions in teleost. And some splicing isoforms from TLR/RLR/NLR families were also addressed, which play synergistic and/or antagonistic roles in response to pathogen infections in teleost. TLRs sense different pathogens by forming homodimer and/or heterodimer. Beyond, functions of TLRs can also be affected by migrating. And some endolysosomal TLRs undergo proteolytic cleavage and in a pH-dependent mechanism to attain a mature functional form that mediate ligand recognition and downstream signaling. Until now, more than 80 members in TLR/RLR/NLR families have been identified in teleost, while only TLR5, TLR9, TLR19, TLR21, TLR22, MDA5, LGP2, NOD1 and NOD2 have direct evidence of ligand recognition in teleost. Meanwhile, new ligands as well as signaling pathways do occur during evolution of teleost. This review summarizes progresses on the TLRs/RLRs/NLRs in teleost. We attempt to insight into the ligands recognition and signaling transmission of TLRs/RLRs/NLRs in teleost.
Collapse
Affiliation(s)
- Zhiwei Liao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
21
|
Li Y, Jin L, Xia P, Sui W, Huang A, Bu G, Meng F, Kong F, Cao X, Han X, Yu G, Pan X, Yang S, Zheng C, Zeng X, Du X. Identification and functional analysis of NOD2 and its two splicing variants associated with a novel pattern of signal regulation in teleost fishes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:104049. [PMID: 33609614 DOI: 10.1016/j.dci.2021.104049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/14/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
The nucleotide-binding oligomerization domain 2 (NOD2) has been identified as an important sensor for microorganic invasion in both mammals and teleost fishes. In this study, two splicing variants of NOD2 (NOD2-v1 and NOD2-v2) were identified as truncating the functional domains of wild-type NOD2 in the teleost fish Schizothorax prenanti. NOD2-v1 included an intron sequence that terminated within the third leucine-rich repeat (LRR) domain, while NOD2-v2 incorporated an insertion of one and half intron sequences and truncated within the second caspase activation and recruitment domain (CARD). NOD2, NOD2-v1 and NOD2-v2 genes were ubiquitously expressed. All three genes positively responded to exposure of Aeromonas hydrophila and lipopolysaccharide stimulation in varying degrees. Using luciferase activity assays in HEK293T cells, our results revealed that NOD2 activated the NF-κB signal and recognized muramyl dipeptide (MDP). NOD2-v1 exhibited deficiency in the LRR domains and could not sense MDP, but maintained the ability to activate NF-κB and enhanced NOD2-mediated MDP recognition. Given the significant change to the functional structure, NOD2-v2 lost its capacity for NF-κB activation, but interestingly repressed NOD2-mediated MDP sensing and NF-κB activation, and even NOD2-v1-induced NF-κB activation. Altogether, our study reveals a novel pattern of signal regulation by splicing variants in teleost fishes.
Collapse
Affiliation(s)
- Yunkun Li
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - La Jin
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Puzhen Xia
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Weikai Sui
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Anqi Huang
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Guixian Bu
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Fengyan Meng
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Fanli Kong
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Xiaohan Cao
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Xingfa Han
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Guozhi Yu
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Xiaofu Pan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, PR China
| | - Shiyong Yang
- Department of Aquaculture, Sichuan Agricultural University, 625014, Sichuan, PR China
| | - Chongquan Zheng
- Yunnan Water Conservancy and Hydropower Investment Niulan River to Dianchi Lake Water Diversion Project Co.,Ltd, Kunming, 650051, PR China
| | - Xianyin Zeng
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China.
| | - Xiaogang Du
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China.
| |
Collapse
|
22
|
Qi L, Chen Y, Shi K, Ma H, Wei S, Sha Z. Combining of transcriptomic and proteomic data to mine immune-related genes and proteins in the liver of Cynoglossus semilaevis challenged with Vibrio anguillarum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100864. [PMID: 34146917 DOI: 10.1016/j.cbd.2021.100864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022]
Abstract
The liver is a multi-functional organ including metabolism, substance synthesis, detoxification, and various immune functions, and its role in immunity has attracted more and more attention. However, research on the liver immune response of fish infected by pathogenic bacteria is currently lacking. In this study, the transcriptomics and proteomics of the liver of Cynoglossus semilaevis infected with Vibrio anguillarum were analyzed. A total of 1470 genes and 497 proteins were differentially expressed in the pairwise comparison of obvious symptoms of infection (HOSG), no obvious symptoms of infection (NOSG) and PBS treatment (CG). Gene ontology and KEGG enrichment pathways analysis showed that differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were mainly enriched in toll-like receptors (TLRs), complement and coagulation cascades, nucleotide oligomerization domain (NOD)-like receptors (NLRs), mitogen-activated protein kinase (MAPK) and phagosome signaling pathways, which suggested the combined action of the five pathways were significant to enhance the liver immune defense. The combination of transcriptomic and proteomic analysis showed that ITGβ1, C3, C5 and MRC1 were significantly up-regulated, which might play an important role in the liver immune response to the recognition of V. anguillarum, inflammatory response and phagocytosis. The transcriptome and proteome data we obtained provide information on some key genes and proteins for further study of the mechanism of liver immune response.
Collapse
Affiliation(s)
- Longjiang Qi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yadong Chen
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| | - Kunpeng Shi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Hui Ma
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Shu Wei
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zhenxia Sha
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
23
|
Chuphal B, Rai U, Kumar R, Roy B. Molecular and functional characterization of spotted snakehead NOD1 with an emphasis on structural insights into iE-DAP binding motifs employing advanced bioinformatic tools. J Biomol Struct Dyn 2021; 40:7483-7495. [PMID: 33710949 DOI: 10.1080/07391102.2021.1898472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are cytosolic receptors implicated in recognition of intracellular pathogen associated molecular patterns (PAMPs) and danger associated molecular patterns (DAMPs). Depending upon their effector binding domain (EBD) at the C-terminal, the NLRs are categorized into NLRA, NLRB, NLRC, NLRP and NLRX. NOD1 is a pivotal player in immune responses against bacterial and viral invasions and interacts with pathogens via C-terminal leucine rich repeat (LRR) domain. This study aims at characterizing NOD1 in an economically important teleost of the Indian subcontinent, spotted snakehead Channa punctata. The understanding of pathogen-receptor interaction in teleosts is still obscure. In light of this, combinatorial approach involving protein modeling, docking, MD simulation and binding free energy calculation were employed to identify key motifs involved in binding iE-DAP. In silico analysis revealed that NOD1 consists of 943 amino acids comprising of one caspase recruitment domain (CARD) at N-terminal, one central NACHT domain and nine leucine rich repeat (LRR) regions at C-terminal. Structural dynamics study showed that the C-terminal β-sheet LRR4-7 region is involved in iE-DAP binding. NOD1 was ubiquitously and constitutively expressed in all tissues studied. Differential expression profile of NOD1 induced by Aeromonas hydrophila infection was also investigated. Lymphoid organs and phagocytes of infected spotted snakehead showed significant downregulation of NOD1 expression. The current study thus gives an insight into structural and functional dynamics of NOD1 which might have future prospect for structure-based drug designing in teleosts.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhawna Chuphal
- Department of Zoology, University of Delhi, Delhi, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi, India
| | - Rakesh Kumar
- School of Life Sciences, Jawaharlal Nehru University, Delhi, India
| | - Brototi Roy
- Maitreyi College, University of Delhi, New Delhi, India
| |
Collapse
|
24
|
Zhang L, Cao M, Li Q, Yan X, Xue T, Song L, Su B, Li C. Genome-wide identification of NOD-like receptors and their expression profiling in mucosal tissues of turbot (Scophthalmus maximus L.) upon bacteria challenge. Mol Immunol 2021; 134:48-61. [PMID: 33713957 DOI: 10.1016/j.molimm.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 02/08/2023]
Abstract
The innate immune system plays an important role in host defense against pathogenic infections. In the innate immune system, several families of innate pattern recognition receptors, including Toll-like receptors, RIG-I-like receptors, NOD-like receptors (NLRs), and DNA receptors (cytosolic sensors for DNA), are known to play vital roles in detecting and responding to various pathogens. In this study, we identified 29 NLRs in turbot including 4 NLRs from subfamily A: NOD1, NOD2, CIITA, NLRC5, 1 NLR from subfamily B: NLRB1, 21 NLRs from subfamily C: NLR-C3.1∼NLRC3.21, 1 from NLRX subfamily, and two that do not fall within these subfamilies: APAF1, NWD1. Phylogenetic analysis showed that these NLR genes were clearly divided into five subfamilies. Protein-protein interaction network analysis showed that some of these NLR genes shared same interacting genes and might participate in signal transductions associated with immunity. The evolutionary pressure selection analysis showed that the Ka/Ks ratios for all detected NLR genes were much less than one, implying more synonymous changes than non-synonymous changes. In addition, tissue expression analysis showed that the relative higher expression levels were observed in gill, skin and intestine. Meanwhile, NLR genes expression after bacterial infection results showed that most NLR genes participated in the process of defense of V. anguillarum and A. salmonicida infections in mucosal tissues. Taken together, identification and expression profiling analysis of NLR genes can provide valuable information for further functional characterization of these genes in turbot.
Collapse
Affiliation(s)
- Lu Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qi Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xu Yan
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266011, China
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ling Song
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266011, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
25
|
He J, Meng Z, Lu D, Liu X, Lin H. Recognition of DAP and activation of NF-κB by cytosolic sensor NOD1 in Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2021; 110:75-85. [PMID: 33444736 DOI: 10.1016/j.fsi.2020.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
As a lower vertebrate, the immune defense mechanism of fish mainly depends on the innate immune system. Nucleotide-binding oligomerization domain-like receptors (NLRs) are an important class of pattern recognition receptors in the innate immune system. In this study, NOD1 gene was cloned and characterized in Nile tilapia (Oreochromis niloticus). The ORF of Nile tilapia NOD1 gene was 2826 bp long and encoded 941 amino acid residues with a structure of CARD-NACHT-LRRs that was similar to the other counterparts in mammals and fishes. Phylogenetic and synteny analysis showed that NOD1 was conserved among different fishes and existed at least in the early stage of fish evolution. Expression pattern revealed that NOD1 mRNA was constitutively expressed in the tested tissues, while had high expression level in main immune organs and mucosal immune tissues (liver, head kidney, spleen, blood, gill, and intestine). Following Streptococcus agalactiae challenge, Nile tilapia NOD1 mRNA expression levels were altered in immune organs (liver, head kidney, spleen, blood), and the expression pattern was similar in liver, spleen and blood. Furthermore, the ligand recognition and signaling pathway of Nile tilapia NOD1 were also analyzed, it showed that NOD1 could recognize Tri-DAP intracellularly and activated NF-κB signaling pathway. In summary, our results indicated that the Nile tilapia NOD1 may play an important role in innate immune system and provided a basis for the functional study of NOD1 in teleost.
Collapse
Affiliation(s)
- Jianan He
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zining Meng
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China; Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, China
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China; Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, China.
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
26
|
Chen Y, Yang H, Chen Y, Song M, Liu B, Song J, Liu X, Li H. Full-length transcriptome sequencing and identification of immune-related genes in the critically endangered Hucho bleekeri. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103934. [PMID: 33242569 DOI: 10.1016/j.dci.2020.103934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Hucho bleekeri is a glacial relict and critically endangered fish restricted to the Yangtze River drainage in China. The lack of basic genomic information and immune characteristics will hinder the way toward protecting this species. In the present study, we conducted the first transcriptome analysis of H. bleekeri using the combination of SMRT and Illumina sequencing technology. Transcriptome sequencing generated a total of 93,330 non-redundant full-length unigenes with a mean length of 3072 bp. A total of 92,472 (99.08%) unigenes were annotated in at least one of the Nr protein, Swiss-Prot, KEGG, KOG, GO, Nt and Pfam databases. KEGG analysis showed that a total of 7240 unigenes belonging to 28 immune pathways were annotated to the immune system category. Meanwhile, differentially expressed genes between mucosa-associated tissues (skin, gill and hindgut) and systemic-immune tissues (spleen, head kidney and liver) were obtained. Importantly, genes participating in diverse immune signalling pathways and their expression profiles in H. bleekeri were discussed. In addition, a large number of long non-coding RNAs (lncRNAs) and simple sequence repeats (SSRs) were obtained in the H. bleekeri transcriptome. The present study will provide basic genomic information for H. bleekeri and for further research on analysing the characteristics of both the innate and adaptive immune systems of this critically endangered species.
Collapse
Affiliation(s)
- Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Huanchao Yang
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Yanling Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Mingjiang Song
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China
| | - Bo Liu
- Ya'an Fishery Development Center, Ya'an, 625000, China
| | - Jingguo Song
- Sichuan Zumuzu River Basin Hydropower Development Co., Ltd, Chengdu, 610094, China
| | - Xin Liu
- Sichuan Zumuzu River Basin Hydropower Development Co., Ltd, Chengdu, 610094, China
| | - Hua Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China.
| |
Collapse
|
27
|
Zhou X, Zhang GR, Ji W, Shi ZC, Ma XF, Luo ZL, Wei KJ. The Dynamic Immune Response of Yellow Catfish ( Pelteobagrus fulvidraco) Infected With Edwardsiella ictaluri Presenting the Inflammation Process. Front Immunol 2021; 12:625928. [PMID: 33732247 PMCID: PMC7959794 DOI: 10.3389/fimmu.2021.625928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Edwardsiella ictaluri is a highly destructive pathogen in cultured yellow catfish, thus it was very necessary to study the immune response of yellow catfish against bacterial infection. In this study, RNA-Seq technology was used to study the immune response in two distinct tissues of yellow catfish at eight different time points (h) after E. ictaluri infection. The number of differentially expressed genes (DEGs) in the spleen and liver was low at 3 h and 6 h post-infection, respectively. Afterwards, the most number of DEGs in the spleen was detected at 72 h, while the number of DEGs in the liver maintained a high level from 24 h to 120 h. The GO and KEGG enrichment analyses of DEGs at different time points uncovered that cytokines were continuously transcribed at 6 h to 120 h; whereas the liver is the main organ that secretes the components of the complement system, and metabolic regulation was activated from 12 h to 120 h. Moreover, an overview of the inflammation response of yellow catfish was exhibited including pattern-recognition receptors, inflammatory cytokines, chemokines, complements, and inflammation-related signal pathways. The similar expression tendency of nine genes by qRT-PCR validated the accuracy of transcriptome analyses. The different transcriptomic profiles obtained from the spleen and liver will help to better understand the dynamic immune response of fish against bacterial infection, and will provide basic information for establishing effective measures to prevent and control diseases in fish.
Collapse
Affiliation(s)
- Xu Zhou
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Gui-Rong Zhang
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wei Ji
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ze-Chao Shi
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xu-Fa Ma
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zun-Lan Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Kai-Jian Wei
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
28
|
Sangaran PG, Ibrahim ZA, Chik Z, Mohamed Z, Ahmadiani A. LPS Preconditioning Attenuates Apoptosis Mechanism by Inhibiting NF-κB and Caspase-3 Activity: TLR4 Pre-activation in the Signaling Pathway of LPS-Induced Neuroprotection. Mol Neurobiol 2021; 58:2407-2422. [PMID: 33421016 DOI: 10.1007/s12035-020-02227-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Neuroinflammation, an inflammatory response within the nervous system, has been shown to be implicated in the progression of various neurodegenerative diseases. Recent in vivo studies showed that lipopolysaccharide (LPS) preconditioning provides neuroprotection by activating Toll-like receptor 4 (TLR4), one of the members for pattern recognition receptor (PRR) family that play critical role in host response to tissue injury, infection, and inflammation. Pre-exposure to low dose of LPS could confer a protective state against cellular apoptosis following subsequent stimulation with LPS at higher concentration, suggesting a role for TLR4 pre-activation in the signaling pathway of LPS-induced neuroprotection. However, the precise molecular mechanism associated with this protective effect is not well understood. In this article, we provide an overall review of the current state of our knowledge about LPS preconditioning in attenuating apoptosis mechanism and conferring neuroprotection via TLR4 signaling pathway.
Collapse
Affiliation(s)
- Pushpa Gandi Sangaran
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zaridatul Aini Ibrahim
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zamri Chik
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Abolhassan Ahmadiani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Evin, PO Box 19839-63113, Tehran, Iran.
| |
Collapse
|
29
|
Sahoo BR. Structure of fish Toll-like receptors (TLR) and NOD-like receptors (NLR). Int J Biol Macromol 2020; 161:1602-1617. [PMID: 32755705 PMCID: PMC7396143 DOI: 10.1016/j.ijbiomac.2020.07.293] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022]
Abstract
Innate immunity driven by pattern recognition receptor (PRR) protects the host from invading pathogens. Aquatic animals like fish where the adaptive immunity is poorly developed majorly rely on their innate immunity modulated by PRRs like toll-like receptors (TLR) and NOD-like receptors (NLR). However, current development to improve the fish immunity via TLR/NLR signaling is affected by a poor understanding of its mechanistic and structural features. This review discusses the structure of fish TLRs/NLRs and its interaction with pathogen associated molecular patterns (PAMPs) and downstream signaling molecules. Over the past one decade, significant progress has been done in studying the structure of TLRs/NLRs in higher eukaryotes; however, structural studies on fish innate immune receptors are undermined. Several novel TLR genes are identified in fish that are absent in higher eukaryotes, but the function is still poorly understood. Unlike the fundamental progress achieved in developing antagonist/agonist to modulate human innate immunity, analogous studies in fish are nearly lacking due to structural inadequacy. This underlies the importance of exploring the structural and mechanistic details of fish TLRs/NLRs at an atomic and molecular level. This review outlined the mechanistic and structural basis of fish TLR and NLR activation.
Collapse
|
30
|
Semple SL, Dixon B. Salmonid Antibacterial Immunity: An Aquaculture Perspective. BIOLOGY 2020; 9:E331. [PMID: 33050557 PMCID: PMC7599743 DOI: 10.3390/biology9100331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
The aquaculture industry is continuously threatened by infectious diseases, including those of bacterial origin. Regardless of the disease burden, aquaculture is already the main method for producing fish protein, having displaced capture fisheries. One attractive sector within this industry is the culture of salmonids, which are (a) uniquely under pressure due to overfishing and (b) the most valuable finfish per unit of weight. There are still knowledge gaps in the understanding of fish immunity, leading to vaccines that are not as effective as in terrestrial species, thus a common method to combat bacterial disease outbreaks is the use of antibiotics. Though effective, this method increases both the prevalence and risk of generating antibiotic-resistant bacteria. To facilitate vaccine design and/or alternative treatment efforts, a deeper understanding of the teleost immune system is essential. This review highlights the current state of teleost antibacterial immunity in the context of salmonid aquaculture. Additionally, the success of current techniques/methods used to combat bacterial diseases in salmonid aquaculture will be addressed. Filling the immunology knowledge gaps highlighted here will assist in reducing aquaculture losses in the future.
Collapse
Affiliation(s)
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
31
|
Li JN, Zhao YT, Cao SL, Wang H, Zhang JJ. Integrated transcriptomic and proteomic analyses of grass carp intestines after vaccination with a double-targeted DNA vaccine of Vibrio mimicus. FISH & SHELLFISH IMMUNOLOGY 2020; 98:641-652. [PMID: 31678536 DOI: 10.1016/j.fsi.2019.10.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/12/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Intestinal mucosal immunity plays a vital role against Vibrio mimicus infection because it is an enteric pathogen causing serious vibriosis in fish. In the previous studies, we developed an oral double-targeted DNA vaccine of V. mimicus and demonstrated that the vaccine could elicit significantly higher intestinal mucosal immune response than did naked DNA vaccine. But, little is known underlying regulatory molecular mechanisms of the enhanced intestinal mucosal immunity. Here the transcriptome and proteome in the intestines of the grass carps immunized or not with the double-targeted DNA vaccine were investigated by using RNA-seq and iTRAQ-coupled LC-MS/MS. Compared with the control group, a total of 5339 differentially expressed genes (DEGs) and 1173 differentially expressed proteins (DEPs) were identified in the immunized fish intestines. Subsequently, the integrated analysis between transcriptome and proteome data revealed that 250 DEPs were matched with the corresponding DEGs (named associated DEPs/DEGs) at both transcriptome and proteome levels. Fifty of all the associated DEPs/DEGs were immune-related and mainly enriched in phagosome, antigen-processing and presentation, complement and coagulation cascades, NLRs and MAPK signaling pathways via Gene Ontology and KEGG pathway analyses, which suggested the coordination of the five activated pathways was essential to the enhanced intestinal mucosal immune response in the immunized fish. The protein-protein interaction analysis showed that 60 of the 63 immune-related DEPs to form an integrated network. Additionally, randomly selected DEGs and DEPs were respectively validated by quantitative real-time RT-PCR and multiple reaction monitoring (MRM) assay, indicating that the both RNA-Seq and iTRAQ results in the study were reliable. Overall, our comprehensive transcriptome and proteome data provide some key genes and their protein products for further research on the regulatory molecular mechanisms underlying the enhanced intestinal mucosal immunity.
Collapse
Affiliation(s)
- Jin-Nian Li
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Yu-Ting Zhao
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Shou-Lin Cao
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Hong Wang
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Jia-Jun Zhang
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China.
| |
Collapse
|
32
|
Dong D, Xie W, Liu M. Alteration of cell junctions during viral infection. Thorac Cancer 2020; 11:519-525. [PMID: 32017415 PMCID: PMC7049484 DOI: 10.1111/1759-7714.13344] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
Cell junctions serve as a protective barrier for cells and provide an important channel for information transmission between cells and the surrounding environment. Viruses are parasites that invade and commandeer components of host cells in order to survive and replicate, and they have evolved various mechanisms to alter cell junctions to facilitate viral infection. In this review, we examined the current state of knowledge on the action of viruses on host cell junctions. The existing evidence suggests that targeting the molecules involved in the virus-cell junction interaction can prevent the spread of viral diseases.
Collapse
Affiliation(s)
- Dan Dong
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wei Xie
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
33
|
Adrian-Kalchhauser I, Blomberg A, Larsson T, Musilova Z, Peart CR, Pippel M, Solbakken MH, Suurväli J, Walser JC, Wilson JY, Alm Rosenblad M, Burguera D, Gutnik S, Michiels N, Töpel M, Pankov K, Schloissnig S, Winkler S. The round goby genome provides insights into mechanisms that may facilitate biological invasions. BMC Biol 2020; 18:11. [PMID: 31992286 PMCID: PMC6988351 DOI: 10.1186/s12915-019-0731-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background The invasive benthic round goby (Neogobius melanostomus) is the most successful temperate invasive fish and has spread in aquatic ecosystems on both sides of the Atlantic. Invasive species constitute powerful in situ experimental systems to study fast adaptation and directional selection on short ecological timescales and present promising case studies to understand factors involved the impressive ability of some species to colonize novel environments. We seize the unique opportunity presented by the round goby invasion to study genomic substrates potentially involved in colonization success. Results We report a highly contiguous long-read-based genome and analyze gene families that we hypothesize to relate to the ability of these fish to deal with novel environments. The analyses provide novel insights from the large evolutionary scale to the small species-specific scale. We describe expansions in specific cytochrome P450 enzymes, a remarkably diverse innate immune system, an ancient duplication in red light vision accompanied by red skin fluorescence, evolutionary patterns of epigenetic regulators, and the presence of osmoregulatory genes that may have contributed to the round goby’s capacity to invade cold and salty waters. A recurring theme across all analyzed gene families is gene expansions. Conclusions The expanded innate immune system of round goby may potentially contribute to its ability to colonize novel areas. Since other gene families also feature copy number expansions in the round goby, and since other Gobiidae also feature fascinating environmental adaptations and are excellent colonizers, further long-read genome approaches across the goby family may reveal whether gene copy number expansions are more generally related to the ability to conquer new habitats in Gobiidae or in fish. Electronic supplementary material The online version of this article (10.1186/s12915-019-0731-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene Adrian-Kalchhauser
- Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland. .,University of Bern, Institute for Fish and Wildlife Health, Länggassstrasse 122, 3012, Bern, Austria.
| | - Anders Blomberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 41390, Gothenburg, Sweden
| | - Tomas Larsson
- Department of Marine Sciences, University of Gothenburg, Medicinaregatan 9C, 41390, Gothenburg, Sweden
| | - Zuzana Musilova
- Department of Zoology, Charles University, Vinicna 7, 12844, Prague, Czech Republic
| | - Claire R Peart
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, 82152 Planegg-, Martinsried, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Monica Hongroe Solbakken
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Blindernveien 31, 0371, Oslo, Norway
| | - Jaanus Suurväli
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47a, 50674, Köln, Germany
| | - Jean-Claude Walser
- Genetic Diversity Centre, ETH, Universitätsstrasse 16, 8092, Zurich, Switzerland
| | - Joanna Yvonne Wilson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Magnus Alm Rosenblad
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 41390, Gothenburg, Sweden.,NBIS Bioinformatics Infrastructure for Life Sciences, University of Gothenburg, Medicinaregatan 9C, 41390, Gothenburg, Sweden
| | - Demian Burguera
- Department of Zoology, Charles University, Vinicna 7, 12844, Prague, Czech Republic
| | - Silvia Gutnik
- Biocenter, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Nico Michiels
- Institute of Evolution and Ecology, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Mats Töpel
- University of Bern, Institute for Fish and Wildlife Health, Länggassstrasse 122, 3012, Bern, Austria
| | - Kirill Pankov
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Siegfried Schloissnig
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| |
Collapse
|
34
|
Abstract
All organisms encounter pathogens, and birds are especially susceptible to infection by malaria parasites and other haemosporidians. It is important to understand how immune genes, primarily innate immune genes which are the first line of host defense, have evolved across birds, a highly diverse group of tetrapods. Here, we find that innate immune genes are highly conserved across the avian tree of life and that although most show evidence of positive or diversifying selection within specific lineages or clades, the number of sites is often proportionally low in this broader context of putative constraint. Rather, the evidence shows a much higher level of negative or purifying selection in these innate immune genes - rather than adaptive immune genes - which is consistent with birds' long coevolutionary history with pathogens and the need to maintain a rapid response to infection. We further explored avian responses to haemosporidians by comparing differential gene expression in wild birds (1) uninfected with haemosporidians, (2) infected with Plasmodium, and (3) infected with Haemoproteus (Parahaemoproteus). We found patterns of significant differential expression with some genes unique to infection with each genus and a few shared between "treatment" groups, but none that overlapped with the genes included in the phylogenetic study.
Collapse
|
35
|
Marnis H, Kania PW, Syahputra K, Zuo S, Dirks RP, Buchmann K. Transcriptomic analysis of Baltic cod (Gadus morhua) liver infected with Contracaecum osculatum third stage larvae indicates parasitic effects on growth and immune response. FISH & SHELLFISH IMMUNOLOGY 2019; 93:965-976. [PMID: 31419536 DOI: 10.1016/j.fsi.2019.08.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
High infection levels due to third-stage larvae of the anisakid nematode Contracaecum osculatum have been documented in cod from the eastern part of the Baltic sea during the latest decades. The nematode larvae mainly infect the liver of Baltic cod and prevalence of infection has reached 100% with a mean intensity up to 80 parasites per host in certain areas and size classes. Low condition factors of the cod have been observed concomitant with the rise in parasite abundance suggesting a parasitic effect on growth parameters. To investigate any association between parasite infection and physiological status of the host we performed a comparative transcriptomic analysis of liver obtained from C. osculatum infected and non-infected cod. A total of 47,025 predicted gene models showed expression in cod liver and sequences corresponding to 2084 (4.43%) unigenes were differentially expressed in infected liver when compared to non-infected liver. Of the differentially expressed unigenes (DEGs) 1240 unigenes were up-regulated while 844 unigenes were down-regulated. The Gene Ontology (GO) enrichment analysis showed that 1304 DEGs were represented in cellular process and single-organism process, cell and cell part, binding and catalytic activity. As determined by the Kyoto Encyclopedia of Gene and Genomes (KEGG) Pathways analysis, 454 DEGs were involved in 138 pathways. Ninety-seven genes were related to metabolic pathways including carbohydrate, lipid, and amino acid metabolism. Thirteen regulated genes were playing a role in immune response such as Toll-like receptor signaling, NOD-like receptor signaling, RIG-I-like receptor signalling and thirty-six genes were associated with growth processes. This indicates that the nematode infection in Baltic cod may affect on molecular mechanisms involving metabolism, immune function and growth.
Collapse
Affiliation(s)
- Huria Marnis
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Per W Kania
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Khairul Syahputra
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Shaozhi Zuo
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ron P Dirks
- Future Genomics Technologies B.V, Leiden, the Netherlands
| | - Kurt Buchmann
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
36
|
Comparative study on pattern recognition receptors in non-teleost ray-finned fishes and their evolutionary significance in primitive vertebrates. SCIENCE CHINA-LIFE SCIENCES 2019; 62:566-578. [PMID: 30929190 DOI: 10.1007/s11427-019-9481-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022]
Abstract
Pattern recognition receptors (PRRs) play important roles in innate immunity system and trigger the specific pathogen recognition by detecting the pathogen-associated molecular patterns. The main four PRRs components including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like receptors (NLRs) and C-type lectin receptors (CLRs) were surveyed in the five genomes of non-teleost ray-finned fishes (NTR) including bichir (Polypterus senegalus), American paddlefish (Polyodon spathula), alligator gar (Atractosteus spatula), spotted gar (Lepisosteus oculatus) and bowfin (Amia calva), representing all the four major basal groups of ray-finned fishes. The result indicates that all the four PRRs components have been well established in these NTR fishes. In the RLR-MAVS signal pathway, which detects intracellular RNA ligands to induce production of type I interferons (IFNs), the MAVS was lost in bichir particularly. Also, the essential genes of recognition of Lipopolysaccharide (LPS) commonly in mammals like MD2, LY96 and LBP could not be identified in NTR fishes. It is speculated that TLR4 in NTR fishes may act as a cooperator with other PRRs and has a different pathway of recognizing LPS compared with that in mammals. In addition, we provide a survey of NLR and CLR in NTR fishes. The CLRs results suggest that Group V receptors are absent in fishes and Group II and VI receptors are well established in the early vertebrate evolution. Our comprehensive research of PRRs involving NTR fishes provides a new insight into PRR evolution in primitive vertebrate.
Collapse
|
37
|
Ran J, Zhou J. Targeted inhibition of histone deacetylase 6 in inflammatory diseases. Thorac Cancer 2019; 10:405-412. [PMID: 30666796 PMCID: PMC6397899 DOI: 10.1111/1759-7714.12974] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/22/2018] [Accepted: 12/22/2018] [Indexed: 12/16/2022] Open
Abstract
Targeting epigenetic modification of gene expression represents a promising new approach under investigation for the treatment of inflammatory diseases. Accumulating evidence suggests that epigenetic mechanisms, such as histone modification, play a crucial role in a number of inflammatory diseases, including rheumatoid arthritis, asthma, and contact hypersensitivity. Consistent with this role, histone deacetylase (HDAC) inhibitors have shown efficacy in the treatment of inflammatory diseases. In particular, selective inhibitors of HDAC6, a cytoplasmic member of the HDAC family that contains two deacetylase domains, are under investigation as a potential treatment strategy for inflammatory diseases due to their ability to regulate inflammatory cells and cytokines. Here, we review recent findings highlighting the critical roles of HDAC6 in a variety of inflammatory diseases, and discuss the therapeutic potential of HDAC6 inhibitors in these settings.
Collapse
Affiliation(s)
- Jie Ran
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|