1
|
Li D, Hao A, Shao W, Zhang W, Jiao F, Zhang H, Dong X, Zhan Y, Liu X, Mu C, Ding Z, Xue D, Chen J, Wang M. Maize kernel nutritional quality-an old challenge for modern breeders. PLANTA 2025; 261:43. [PMID: 39856412 DOI: 10.1007/s00425-025-04627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
MAIN CONCLUSION This article offers a comprehensive overview of the starch, protein, oil, and carotenoids content in maize kernels, while also outlining future directions for research in this area. Maize is one of the most important cereal crops globally. Maize kernels serve as a vital source of feed and food, and their nutritional quality directly impacts the dietary intake of both animals and humans. Maize kernels contain starch, protein, oil, carotenoids, and a variety of vitamins and minerals, all of which are important for maintaining life and promoting health. This review presents the current understanding of the content of starch, protein, amino acids, oil, and carotenoids in maize kernels, while also highlighting knowledge gaps that need to be addressed.
Collapse
Affiliation(s)
- Decui Li
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Anqi Hao
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wen Shao
- Shandong Seed Industry Group Yellow River Delta Co., Ltd, Dongying, 257000, China
| | - Weiwei Zhang
- Shandong Seed Industry Group Yellow River Delta Co., Ltd, Dongying, 257000, China
| | - Fuchao Jiao
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haiyan Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xueyan Dong
- Shandong Seed Industry Group Yellow River Delta Co., Ltd, Dongying, 257000, China
| | - Yuan Zhan
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xia Liu
- Shandong Academy of Agricultural Science, Jinan, 250100, China
| | - Chunhua Mu
- Shandong Academy of Agricultural Science, Jinan, 250100, China
| | - Zhaohua Ding
- Shandong Academy of Agricultural Science, Jinan, 250100, China
| | - De Xue
- Zibo Boxin Agricultural Technology Co., Ltd, Zibo, 255000, China
| | - Jingtang Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
- Zibo Boxin Agricultural Technology Co., Ltd, Zibo, 255000, China.
| | - Ming Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Wu P, Yuan Y, Ma Z, Zhang K, Deng L, Ren H, Yang W, Wang W. Comparative transcriptome profiling reveals the mechanism of increasing lysine and tryptophan content through pyramiding opaque2, opaque16 and waxy1 genes in maize. BREEDING SCIENCE 2024; 74:311-323. [PMID: 39872326 PMCID: PMC11769590 DOI: 10.1270/jsbbs.23051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/25/2024] [Indexed: 01/30/2025]
Abstract
To explore the molecular mechanism behind maize grain quality and use of different gene stacking to improve the nutritional quality of grain, marker-assisted selection (MAS) was used to select three recessive mutant lines containing o2o16wx, along with the double-recessive mutant lines containing o2o16, o2wx, and o16wx. The resulting seeds were taken for transcriptome sequencing analysis 18 days after pollination (DAP). Results: Compared with the recurrent parent genes, in the lysine synthesis pathway, the gene pyramiding lines (o2o16wx, o2wx, and o16wx) revealed that the gene encoding aspartate kinase (AK) was up-regulated and promoted lysine synthesis. In the lysine degradation pathway, 'QCL8010_1' (o2o16wx) revealed that the gene encoding saccharopine dehydrogenase (LKR/SDH) was down-regulated. In addition, the gene pyramiding lines (o2o16wx, o2o16, and o16wx) indicated that the gene encoding 2-oxoglutarate dehydrogenase E1 component (OGDH) was down-regulated, inhibiting the degradation of lysine. In the tryptophan synthesis pathway, the genes encoding anthranilate synthase (AS), anthranilate synthase (APT), and tryptophan synthase (TS) were up-regulated (in o2o16wx, o2o16, o2wx, and o16wx), and promote tryptophan synthesis. In the tryptophan degradation pathway, it was revealed that the genes encoding indole-3-producing oxidase (IAAO) and indole-3-pyruvate monooxygenase (YUCCA) were down-regulated. These results provide a reference for revealing the mechanism of the o2, o16, and wx with different gene pyramiding to improve grain quality in maize.
Collapse
Affiliation(s)
- Peizhen Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Yanli Yuan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Zhoujie Ma
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Kaiwu Zhang
- Guizhou Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou Province, China
- Key Laboratory of Maize Biology and Genetic Breeding in Karst Mountainous Region (Ministry of Agriculture and Rural Affairs), Guiyang, 550006, Guizhou Province, China
| | - Lei Deng
- Guizhou Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou Province, China
- Key Laboratory of Maize Biology and Genetic Breeding in Karst Mountainous Region (Ministry of Agriculture and Rural Affairs), Guiyang, 550006, Guizhou Province, China
| | - Hong Ren
- Guizhou Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou Province, China
- Key Laboratory of Maize Biology and Genetic Breeding in Karst Mountainous Region (Ministry of Agriculture and Rural Affairs), Guiyang, 550006, Guizhou Province, China
| | - Wenpeng Yang
- Guizhou Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou Province, China
- Key Laboratory of Maize Biology and Genetic Breeding in Karst Mountainous Region (Ministry of Agriculture and Rural Affairs), Guiyang, 550006, Guizhou Province, China
| | - Wei Wang
- Guizhou Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou Province, China
- Key Laboratory of Maize Biology and Genetic Breeding in Karst Mountainous Region (Ministry of Agriculture and Rural Affairs), Guiyang, 550006, Guizhou Province, China
| |
Collapse
|
3
|
Govta N, Fatiukha A, Govta L, Pozniak C, Distelfeld A, Fahima T, Beckles DM, Krugman T. Nitrogen deficiency tolerance conferred by introgression of a QTL derived from wild emmer into bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:187. [PMID: 39020219 PMCID: PMC11255033 DOI: 10.1007/s00122-024-04692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
KEY MESSAGE Genetic dissection of a QTL from wild emmer wheat, QGpc.huj.uh-5B.2, introgressed into bread wheat, identified candidate genes associated with tolerance to nitrogen deficiency, and potentially useful for improving nitrogen-use efficiency. Nitrogen (N) is an important macronutrient critical to wheat growth and development; its deficiency is one of the main factors causing reductions in grain yield and quality. N availability is significantly affected by drought or flooding, that are dependent on additional factors including soil type or duration and severity of stress. In a previous study, we identified a high grain protein content QTL (QGpc.huj.uh-5B.2) derived from the 5B chromosome of wild emmer wheat, that showed a higher proportion of explained variation under water-stress conditions. We hypothesized that this QTL is associated with tolerance to N deficiency as a possible mechanism underlying the higher effect under stress. To validate this hypothesis, we introgressed the QTL into the elite bread wheat var. Ruta, and showed that under N-deficient field conditions the introgression IL99 had a 33% increase in GPC (p < 0.05) compared to the recipient parent. Furthermore, evaluation of IL99 response to severe N deficiency (10% N) for 14 days, applied using a semi-hydroponic system under controlled conditions, confirmed its tolerance to N deficiency. Fine-mapping of the QTL resulted in 26 homozygous near-isogenic lines (BC4F5) segregating to N-deficiency tolerance. The QTL was delimited from - 28.28 to - 1.29 Mb and included 13 candidate genes, most associated with N-stress response, N transport, and abiotic stress responses. These genes may improve N-use efficiency under severely N-deficient environments. Our study demonstrates the importance of WEW as a source of novel candidate genes for sustainable improvement in tolerance to N deficiency in wheat.
Collapse
Affiliation(s)
- Nikolai Govta
- Wild Cereal Gene Bank, Institute of Evolution, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
| | - Andrii Fatiukha
- Department of Evolutionary and Environmental Biology, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Liubov Govta
- Department of Evolutionary and Environmental Biology, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
| | - Curtis Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Assaf Distelfeld
- Department of Evolutionary and Environmental Biology, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
| | - Tzion Fahima
- Department of Evolutionary and Environmental Biology, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
| | - Diane M Beckles
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Tamar Krugman
- Wild Cereal Gene Bank, Institute of Evolution, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel.
| |
Collapse
|
4
|
Xu C, Wang X, Wu Y, Gao J, Zhang P, Zhao Y, Liu X, Wang P, Huang S. Molecular mechanisms underlying low temperature inhibition of grain filling in maize (Zea mays L.): coordination of growth and cold responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:982-997. [PMID: 38743909 DOI: 10.1111/tpj.16811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/30/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Low temperature (LT) greatly restricts grain filling in maize (Zea mays L.), but the relevant molecular mechanisms are not fully understood. To better understand the effect of LT on grain development, 17 hybrids were subjected to LT stress in field trials over 3 years, and two hybrids of them with contrasting LT responses were exposed to 30/20°C and 20/10°C for 7 days during grain filling in a greenhouse. At LT, thousand-kernel weight declined, especially in LT-sensitive hybrid FM985, while grain-filling rate was on average about 48% higher in LT-tolerant hybrid DK159 than FM985. LT reduced starch synthesis in kernel mainly by suppression of transcript levels and enzyme activities for sucrose synthase and hexokinase. Brassinolide (BR) was abundant in DK159 kernel, and genes involved in BR and cytokinin signals were inducible by stress. LT downregulated the genes in light-harvesting complex and photosystem I/II subunits, accompanied by reduced photosynthetic rate and Fv/Fm in ear leaf. The LT-tolerant hybrid could maintain a high soluble sugar content and fast interconversion between sucrose and hexose in the stem internode and cob, improving assimilate allocation to kernel at LT stress and paving the way for simultaneous growth and LT stress responses.
Collapse
Affiliation(s)
- Chenchen Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Beijing University of Agriculture, Beijing, 100096, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yi Wu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jia Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yating Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaoli Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
5
|
Li Y, Li D, E L, Yang J, Liu W, Xu M, Ye J. ZmDRR206 Regulates Nutrient Accumulation in Endosperm through Its Role in Cell Wall Biogenesis during Maize Kernel Development. Int J Mol Sci 2023; 24:ijms24108735. [PMID: 37240079 DOI: 10.3390/ijms24108735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Dirigent proteins (DIRs) contribute to plant fitness by dynamically reorganizing the cell wall and/or by generating defense compounds during plant growth, development, and interactions with environmental stresses. ZmDRR206 is a maize DIR, it plays a role in maintaining cell wall integrity during seedling growth and defense response in maize, but its role in regulating maize kernel development is unclear. Association analysis of candidate genes indicated that the natural variations of ZmDRR206 were significantly associated with maize hundred-kernel weight (HKW). ZmDRR206 plays a dominant role in storage nutrient accumulation in endosperm during maize kernel development, ZmDRR206 overexpression resulted in small and shrunken maize kernel with significantly reduced starch content and significantly decreased HKW. Cytological characterization of the developing maize kernels revealed that ZmDRR206 overexpression induced dysfunctional basal endosperm transfer layer (BETL) cells, which were shorter with less wall ingrowth, and defense response was constitutively activated in developing maize kernel at 15 and 18 DAP by ZmDRR206 overexpression. The BETL-development-related genes and auxin signal-related genes were down-regulated, while cell wall biogenesis-related genes were up-regulated in developing BETL of the ZmDRR206-overexpressing kernel. Moreover, the developing ZmDRR206-overexpressing kernel had significantly reduced contents of the cell wall components such as cellulose and acid soluble lignin. These results suggest that ZmDRR206 may play a regulatory role in coordinating cell development, storage nutrient metabolism, and stress responses during maize kernel development through its role in cell wall biogenesis and defense response, and provides new insights into understanding the mechanisms of kernel development in maize.
Collapse
Affiliation(s)
- Yanmei Li
- National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Dongdong Li
- National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Lizhu E
- National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Jiayi Yang
- National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Wenjing Liu
- National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Mingliang Xu
- National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Jianrong Ye
- National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Yang Q, Yuan Y, Liu J, Han M, Li J, Jin F, Feng B. Transcriptome analysis reveals new insights in the starch biosynthesis of non-waxy and waxy broomcorn millet (Panicum miliaceum L.). Int J Biol Macromol 2023; 230:123155. [PMID: 36610580 DOI: 10.1016/j.ijbiomac.2023.123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Broomcorn millet is a popular cereal with health benefits, and its grains are rich in starch. However, the differences in the pathway and key genes involved in starch biosynthesis of waxy and non-waxy broomcorn millet grain remain unclear. Therefore, the grain and starch physicochemical index and transcriptomic analyses of two genotypes of broomcorn millet were conducted at 3, 6, 9, 12, 15, 18, and 21 days after pollination. The phenotypic and physiological results indicated that the starch synthetic process of non-waxy and waxy broomcorn millet was significantly different. The amylose, amylopectin, and total starch contents of non-waxy broomcorn millet were 1.99, 4.74, and 6.73 mg/grain, while those of waxy broomcorn millet were 0.34, 5.94, and 6.28 mg/grain, respectively. The transcriptomic analysis revealed that 106 differentially expressed genes were identified, which were mainly enriched in the "amino sugar and nucleotide sugar metabolism", "pyruvate metabolism", "galactose metabolism", and "starch and sucrose metabolism" pathways. The WGCNA suggested that a total of 31 hub genes were correlated with starch biosynthesis. These findings provide a new approach to studying the starch synthesis in broomcorn millet.
Collapse
Affiliation(s)
- Qinghua Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yuhao Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jiajia Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Mengru Han
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Fei Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
7
|
Zhang X, Wang M, Zhang C, Dai C, Guan H, Zhang R. Genetic dissection of QTLs for starch content in four maize DH populations. FRONTIERS IN PLANT SCIENCE 2022; 13:950664. [PMID: 36275573 PMCID: PMC9583244 DOI: 10.3389/fpls.2022.950664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/30/2022] [Indexed: 05/17/2023]
Abstract
Starch is the principal carbohydrate source in maize kernels. Understanding the genetic basis of starch content (SC) benefits greatly in improving maize yield and optimizing end-use quality. Here, four double haploid (DH) populations were generated and were used to identify quantitative trait loci (QTLs) associated with SC. The phenotype of SC exhibited continuous and approximate normal distribution in each population. A total of 13 QTLs for SC in maize kernels was detected in a range of 3.65-16.18% of phenotypic variation explained (PVE). Among those, only some partly overlapped with QTLs previously known to be related to SC. Meanwhile, 12 genes involved in starch synthesis and metabolism located within QTLs were identified in this study. These QTLs will lay the foundation to explore candidate genes regulating SC in maize kernel and facilitate the application of molecular marker-assisted selection for a breeding program to cultivate maize varieties with a deal of grain quality.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Min Wang
- Institute of Advanced Agricultural Technology, Qilu Normal University, Jinan, China
| | | | - Changjun Dai
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Haitao Guan
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ruiying Zhang
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- *Correspondence: Ruiying Zhang
| |
Collapse
|
8
|
Luo W, Liu J, Ding P, Li C, Liu H, Mu Y, Tang H, Jiang Q, Liu Y, Chen G, Chen G, Jiang Y, Qi P, Zheng Y, Wei Y, Liu C, Lan X, Ma J. Transcriptome analysis of near-isogenic lines for glume hairiness of wheat. Gene 2020; 739:144517. [PMID: 32113949 DOI: 10.1016/j.gene.2020.144517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/29/2022]
Abstract
Hairiness, which is a phenotypic trait common among land plants, primarily affects the stem, leaf, and floral organs. Plant hairiness is associated with complex functions. For example, glume hairiness in wheat is related to the resistance to biotic and abiotic stresses, and may also influence human health. In the present study, two pairs of near-isogenic lines (NILs) for glume hairiness, which were derived from a cross between a Tibetan semi-wild wheat accession (Triticum aestivum ssp. tibetanum Q1028) and a common wheat cultivar (T. aestivum 'Zhengmai 9023'), underwent a glume transcriptome analysis. We detected 27,935 novel genes, of which 18,027 were annotated. Additionally, 488 and 600 differentially expressed genes (DEGs) were detected in NIL1 and NIL2, respectively, with 37 DEGs detected in both NIL pairs. Moreover, 987 and 1584 single nucleotide polymorphisms (SNPs) were detected in NIL1 and NIL2, respectively, with 39 SNPs detected in both NIL pairs, of which most were located in the Hairy glume (Hg) gene region on chromosome arm 1AS. The annotation of the DEGs with gene ontology terms revealed that genes associated with hairiness in Arabidopsis and rice were similarly enriched. The possible functions of these genes related to glume hairiness were examined. The study results provide useful information for identifying candidate genes and the fine-mapping of Hg in the wheat genome.
Collapse
Affiliation(s)
- Wei Luo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiajun Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Puyang Ding
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Cong Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yang Mu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Huaping Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chunji Liu
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Xiujin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
9
|
Zhang X, Xie S, Han J, Zhou Y, Liu C, Zhou Z, Wang F, Cheng Z, Zhang J, Hu Y, Hao Z, Li M, Zhang D, Yong H, Huang Y, Weng J, Li X. Integrated transcriptome, small RNA, and degradome analysis reveals the complex network regulating starch biosynthesis in maize. BMC Genomics 2019; 20:574. [PMID: 31296166 PMCID: PMC6625009 DOI: 10.1186/s12864-019-5945-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background Starch biosynthesis in endosperm is a key process influencing grain yield and quality in maize. Although a number of starch biosynthetic genes have been well characterized, the mechanisms by which the expression of these genes is regulated, especially in regard to microRNAs (miRNAs), remain largely unclear. Results Sequence data for small RNAs, degradome, and transcriptome of maize endosperm at 15 and 25 d after pollination (DAP) from inbred lines Mo17 and Ji419, which exhibit distinct starch content and starch granule structure, revealed the mediation of starch biosynthetic pathways by miRNAs. Transcriptome analysis of these two lines indicated that 33 of 40 starch biosynthetic genes were differentially expressed, of which 12 were up-regulated in Ji419 at 15 DAP, one was up-regulated in Ji419 at 25 DAP, 14 were up-regulated in Ji419 at both 15 and 25 DAP, one was down-regulated in Ji419 at 15 DAP, two were down-regulated in Ji419 at 25 DAP, and three were up-regulated in Ji419 at 15 DAP and down-regulated in Ji419 at 25 DAP, compared with Mo17. Through combined analyses of small RNA and degradome sequences, 22 differentially expressed miRNAs were identified, including 14 known and eight previously unknown miRNAs that could target 35 genes. Furthermore, a complex co-expression regulatory network was constructed, in which 19 miRNAs could modulate starch biosynthesis in endosperm by tuning the expression of 19 target genes. Moreover, the potential operation of four miRNA-mediated pathways involving transcription factors, miR169a-NF-YA1-GBSSI/SSIIIa and miR169o-GATA9-SSIIIa/SBEIIb, was validated via analyses of expression pattern, transient transformation assays, and transactivation assays. Conclusion Our results suggest that miRNAs play a critical role in starch biosynthesis in endosperm, and that miRNA-mediated networks could modulate starch biosynthesis in this tissue. These results have provided important insights into the molecular mechanism of starch biosynthesis in developing maize endosperm. Electronic supplementary material The online version of this article (10.1186/s12864-019-5945-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaocong Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sidi Xie
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jienan Han
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhiqiang Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feifei Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zixiang Cheng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yufeng Hu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhuanfang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingshun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Degui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjun Yong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yubi Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
10
|
Wang Y, Wang X, Deng D, Wang Y. Maize transcriptomic repertoires respond to gibberellin stimulation. Mol Biol Rep 2019; 46:4409-4421. [PMID: 31144186 DOI: 10.1007/s11033-019-04896-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022]
Abstract
Phytohormone gibberellin (GA) serves as hub modulator of diverse biological events. Understanding the transcriptomic features of GA-mediated processes has scientific significance. The transcriptomic landscapes of cereal crops upon GA stimulation remains largely unknown. Herein, to reveal the transcriptomic changes in cereal crop maize under GA treatment, we first selected normal height and GA-sensitive maize dwarf plants from advanced backcross population for GA treatment. RNA-seq analysis discovered multiple protein-coding transcripts that were differentially expressed in GA-treated samples compared to distilled water-treated ones. Some differentially expressed transcripts, namely GA-responsive transcripts in this study, encoded the components of GA pathway, including CPS, KS, and KO enzymes for GA biosynthesis, GA2ox enzymes for GA degradation, DELLA repressors and GID1 receptor for GA signaling. A total of 214 shared GA-responsive transcripts were identified both in GA3-treated normal height and GA-sensitive dwarf samples. Shared GA-responsive transcripts were involved in GA signaling, auxin biosynthesis, ethylene response, the composition and structure of cell wall, chlorophyll biogenesis, and sugar homeostasis. In addition, the convergence and divergence in expression of shared GA-responsive transcripts were observed in GA3-treated normal height and GA-sensitive dwarf plants. Interaction network modeling indicated that some shared GA-responsive transcripts tended to be co-regulated, which increases the complexity of GA-triggered regulation at transcriptomic layer. Results presented here will extend our knowledge of GA-mediated regulatory cascade, and enhance our ability to apply hormone GA knowledge in agricultural practice.
Collapse
Affiliation(s)
- Yali Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Xin Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang, 233100, China
| | - Dexiang Deng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yijun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
11
|
Global transcriptome analysis uncovers the gene co-expression regulation network and key genes involved in grain development of wheat (Triticum aestivum L.). Funct Integr Genomics 2019; 19:853-866. [PMID: 31115762 PMCID: PMC6797667 DOI: 10.1007/s10142-019-00678-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/24/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023]
Abstract
Wheat grain development is a robust biological process that largely determines grain quality and yield. In this study, we investigated the grain transcriptome of winter wheat cv. Xiaoyan-6 at four developmental stages (5, 10, 15, and 20 days post-anthesis), using high-throughput RNA sequencing (RNA-Seq). We identified 427 grain-specific transcription factors (TFs) and 1653 differentially expressed TFs during grain development as well as a grain co-expression regulation network (GrainNet) of the TFs and their predicted co-expressed genes. Our study identified ten putative key TFs and the predicted regulatory genes of these TFs in wheat grain development of Xiaoyan-6. The analysis was given a firm basis through the study of additional wheat tissues, including root, stem, leaf, flag leaf, grain, spikes (from wheat plants at booting or heading stages) to provide a dataset of 92,478 high-confidence protein-coding genes that were mostly evenly distributed among subgenomes, but unevenly distributed across each of the chromosomes or each of the seven homeologous groups. Within this larger framework of the transcriptomes, we identified 4659 grain-specific genes (SEGs) and 26,500 differentially expressed genes (DEGs) throughout grain development stages tested. The SEGs identified mainly associate with regulation and signaling-related biological processes, while the DEGs mainly involve in cellular component organization or biogenesis and nutrient reservoir activity during grain development of Xiaoyan-6. This study establishes new targets for modifying genes related to grain development and yield, to fine-tune expression in different varieties and environments.
Collapse
|
12
|
An Y, Chen L, Li YX, Li C, Shi Y, Song Y, Zhang D, Li Y, Wang T. Candidate loci for the kernel row number in maize revealed by a combination of transcriptome analysis and regional association mapping. BMC PLANT BIOLOGY 2019; 19:201. [PMID: 31096901 PMCID: PMC6521486 DOI: 10.1186/s12870-019-1811-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/30/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND The kernel row number (KRN) of an ear is an important trait related to yield and domestication in maize. Exploring the underlying genetic mechanisms of KRN has great research significance and application potential. RESULTS In the present study, N531 with a KRN of 18-22 and SLN with a KRN of 4-6 were used as the recurrent parent and the donor parent, respectively, to develop two introgression lines (ILs), IL_A and IL_B, both of which have common negative-effect alleles from SLN on chromosomes 1, 5 and 10 and significantly reduced inflorescence meristem (IM) diameter and KRN compared with those of N531. We used RNA-Seq to investigate the transcriptome profiles of 5-mm immature ears of N531, IL_A and IL_B. We identified a total of 2872 differentially expressed genes (DEGs) between N531 and IL_A, 2428 DEGs between N531 and IL_B and 1811 DEGs between IL_A and IL_B. A total of 1252 DEGs were detected as overlapping DEGs, and 89 DEGs were located on the common introgression fragments. Furthermore, three DEGs (Zm00001d013277, Zm00001d015310 and Zm00001d015377) containing three SNPs associated with KRN were identified using regional association mapping. CONCLUSIONS These results will facilitate our understanding of ear development and provide important candidate genes for further study on KRN.
Collapse
Affiliation(s)
- Yixin An
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Lin Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yong-Xiang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chunhui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yunsu Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yanchun Song
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Dengfeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Tianyu Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
13
|
Abstract
Studying seed oil metabolism. The seeds of higher plants represent valuable factories capable of converting photosynthetically derived sugars into a variety of storage compounds, including oils. Oils are the most energy-dense plant reserves and fatty acids composing these oils represent an excellent nutritional source. They supply humans with much of the calories and essential fatty acids required in their diet. These oils are then increasingly being utilized as renewable alternatives to petroleum for the chemical industry and for biofuels. Plant oils therefore represent a highly valuable agricultural commodity, the demand for which is increasing rapidly. Knowledge regarding seed oil production is extensively exploited in the frame of breeding programs and approaches of metabolic engineering for oilseed crop improvement. Complementary aspects of this research include (1) the study of carbon metabolism responsible for the conversion of photosynthetically derived sugars into precursors for fatty acid biosynthesis, (2) the identification and characterization of the enzymatic actors allowing the production of the wide set of fatty acid structures found in seed oils, and (3) the investigation of the complex biosynthetic pathways leading to the production of storage lipids (waxes, triacylglycerols). In this review, we outline the most recent developments in our understanding of the underlying biochemical and molecular mechanisms of seed oil production, focusing on fatty acids and oils that can have a significant impact on the emerging bioeconomy.
Collapse
Affiliation(s)
- Sébastien Baud
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France.
| |
Collapse
|
14
|
Aguilera-Alvarado GP, Sánchez-Nieto S. Plant Hexokinases are Multifaceted Proteins. PLANT & CELL PHYSIOLOGY 2017; 58:1151-1160. [PMID: 28449056 DOI: 10.1093/pcp/pcx062] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/19/2017] [Indexed: 05/09/2023]
Abstract
Sugars are the main carbon and energy source in cells, but they can also act as signaling molecules that affect the whole plant life cycle. Certain tissues can produce sugars and supply them to others, and this plant tissue heterogeneity makes sugar signaling a highly complex process that requires elements capable of perceiving changes in sugar concentrations among different tissues, cell compartments and developmental stages. In plants, the regulatory effects of glucose (Glc) have been the most studied to date. The first Glc sensor identified in plants was hexokinase (HXK), which is currently recognized as a dual-function protein. In addition to its catalytic activity, this enzyme can also repress the expression of some photosynthetic genes in response to high internal Glc concentrations. Additionally, the catalytic activity of HXKs has a profound impact on cell metabolism and other sugar signaling pathways that depend on phosphorylated hexoses and intermediate glycolytic products. HXKs are the only proteins that are able to phosphorylate Glc in plants, since no evidence has been provided to date concerning the existence of a glucokinase. Moreover, the intracellular localization of HXKs seems to be crucial to their activity and sensor functions. Recently, two new and surprising functions have been described for HXKs. In this review, we discuss the versatility of HXKs in regard to their catalytic and glucose sensor activities, intracellular location, protein-protein and hormone interactions, as well as how these HXK characteristics influence plant growth and development, in an effort to understand this enzyme's role in improving plant productivity.
Collapse
Affiliation(s)
- G Paulina Aguilera-Alvarado
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, México 04510, DF, México
| | - Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, México 04510, DF, México
| |
Collapse
|
15
|
Xu X, Ji J, Xu Q, Qi X, Chen X. Inheritance and quantitative trail loci mapping of adventitious root numbers in cucumber seedlings under waterlogging conditions. Mol Genet Genomics 2016; 292:353-364. [PMID: 27988808 DOI: 10.1007/s00438-016-1280-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022]
Abstract
The hypocotyl-derived adventitious root (AR) is an important morphological acclimation to waterlogging stress; however, its genetic basis has not been adequately understood. In the present study, a mixed major gene plus polygene inheritance model was used to analyze AR numbers (ARN) 7 days after waterlogging treatment in six generations (P1, P2, F1, B1, B2, and F2), using cucumber waterlogging tolerant line Zaoer-N and sensitive Pepino as parents. The results showed that the genetic model D-4, mixed one negative dominance major gene and additive-dominance polygenes, is the best-fitting genetic model for waterlogging-triggered ARN phenotype. A genetic linkage map spanning 550.8 cM and consisting of 149 simple sequence repeat (SSR) markers segregating into seven linkage groups was constructed. Three QTLs (ARN3.1, ARN5.1, and ARN6.1) distributed on chromosomes 3, 5, and 6 were identified by composite interval mapping. The major-effect QTL, ARN6.1, located between SSR12898 and SSR04751, was the only locus detected in three seasons, with least likelihood (LOD) scores of 8.8, 10.4, and 9.5 and account for 17.6, 24, and 19.8% of the phenotypic variance, respectively. Using five additional single nucleotide polymorphism (SNP) makers, the ARN6.1 was narrowed down to a 0.79 Mb interval franked by SSR12898 and SNP25558853. Illumina RNA-sequencing data generated on hypocotyls of two parents 48 h after waterlogging treatment revealed 15 genes in the 0.79 Mb interval were differentially expressed, including Csa6G503880 encoding a salicylic acid methyl transferase-like protein, Csa6G504590 encoding a cytochrome P450 monooxygenase, and Csa6G505230 encoding a heavy metal-associated protein. Our findings shed light on the genetic architecture underlying adventitious rooting during waterlogging stress in cucumber, and provide a list of potential gene targets for further elucidating waterlogging tolerance in plants.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jing Ji
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Qiang Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xiaohua Qi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|