1
|
Moraga-Amaro R, Vazquez-Matias DA, Nazario LR, Dierckx RAJO, Stehberg J, Doorduin J, de Vries EFJ. Increased dopamine D 2/D 3 receptor and serotonin transporter availability in male rats after spontaneous remission from repeated social defeat-induced depression; a PET study in rats. Neurobiol Dis 2024; 202:106727. [PMID: 39515530 DOI: 10.1016/j.nbd.2024.106727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Most pharmacological treatments for depression target monoamine transporters and about 50 % of treated patients attain symptomatic remission. Once remission is attained, it is hard to distinguish the changes on brain monoaminergic transmission induced by the antidepressants, from those associated to remission per se. In this study, we aimed at studying the brain of spontaneously remitted rats from repeated social defeat (RSD)-induced depression in terms of dopamine D2/D3 receptor and serotonin transporter (SERT) availability, showing absence of depressive symptoms 2 weeks after RSD. We combined behavioral tests and positron emission tomography (PET) with [11C]raclopride and [11C]DASB to explore the changes in dopamine D2/D3 receptor and serotonin transporter (SERT) availability, respectively. Male rats submitted to RSD showed increased peripheral corticosterone levels, decreased body weight and anhedonia, as measured with the sucrose preference test, 1 day after RSD, confirming depressive-like symptoms. These depressive-like symptoms were no longer present 2 weeks after RSD. Rats that recovered from depressive-like symptoms showed decreased D2/D3 receptor binding in the caudate putamen and increased SERT availability in the brainstem, insular cortex, midbrain and thalamus, compared to control non-stressed animals. Our study shows that remission of depressive-like symptoms does not just "normalize" monoaminergic transmission, as changes in dopaminergic and serotonergic neurotransmission linger in several brain regions even after depressive-like symptoms have already resolved. These results provide new insights into the brain changes associated to remission in the RSD-induced depression model in rats.
Collapse
Affiliation(s)
- Rodrigo Moraga-Amaro
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Daniel Aaron Vazquez-Matias
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Luiza Reali Nazario
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
2
|
Vijaya AK, Kuras S, Šimoliūnas E, Mingaila J, Makovskytė K, Buišas R, Daliri EBM, Meškys R, Baltriukienė D, Burokas A. Prebiotics Mitigate the Detrimental Effects of High-Fat Diet on memory, anxiety and microglia functionality in Ageing Mice. Brain Behav Immun 2024; 122:167-184. [PMID: 39142421 DOI: 10.1016/j.bbi.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024] Open
Abstract
Ageing is characterised by a progressive increase in systemic inflammation and especially neuroinflammation. Neuroinflammation is associated with altered brain states that affect behaviour, such as an increased level of anxiety with a concomitant decline in cognitive abilities. Although multiple factors play a role in the development of neuroinflammation, microglia have emerged as a crucial target. Microglia are the only macrophage population in the CNS parenchyma that plays a crucial role in maintaining homeostasis and in the immune response, which depends on the activation and subsequent deactivation of microglia. Therefore, microglial dysfunction has a major impact on neuroinflammation. The gut microbiota has been shown to significantly influence microglia from birth to adulthood in terms of development, proliferation, and function. Diet is a key modulating factor that influences the composition of the gut microbiota, along with prebiotics that support the growth of beneficial gut bacteria. Although the role of diet in neuroinflammation and behaviour has been well established, its relationship with microglia functionality is less explored. This article establishes a link between diet, animal behaviour and the functionality of microglia. The results of this research stem from experiments on mouse behaviour, i.e., memory, anxiety, and studies on microglia functionality, i.e., cytochemistry (phagocytosis, cellular senescence, and ROS assays), gene expression and protein quantification. In addition, shotgun sequencing was performed to identify specific bacterial families that may play a crucial role in the brain function. The results showed negative effects of long-term consumption of a high fat diet on ageing mice, epitomised by increased body weight, glucose intolerance, anxiety, cognitive impairment and microglia dysfunction compared to ageing mice on a control diet. These effects were a consequence of the changes in gut microbiota modulated by the diet. However, by adding the prebiotics fructo- and galacto-oligosaccharides, we were able to mitigate the deleterious effects of a long-term high-fat diet.
Collapse
Affiliation(s)
- Akshay Kumar Vijaya
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Simonas Kuras
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Egidijus Šimoliūnas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Jonas Mingaila
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Karolina Makovskytė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Rokas Buišas
- Department of Neurobiology and Biophysics, Institute of Bioscience, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Eric Banan-Mwine Daliri
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Daiva Baltriukienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania.
| | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
3
|
Chen XR, Yu R, Chen J, Wang J, Huang HJ, Li HY, Wu GC, Han QQ, Yu J. Cannabinoid type 2 receptors play a crucial role in social defeat-induced depression. J Affect Disord 2024; 348:333-344. [PMID: 38171418 DOI: 10.1016/j.jad.2023.12.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The endocannabinoid system plays a crucial role in regulating mood, but the specific involvement of cannabinoid receptor type 2 (CB2R) in depression remains poorly understood. Similarly, the mechanisms by which electroacupuncture (EA) provides therapeutic benefits for depression are not clearly defined. This research aims to explore the function of CB2R in depression and examine if the therapeutic effects of EA are associated with the hippocampal CB2R system. METHODS Mice experiencing social defeat stress (SDS) were used to model depression and anxiety behaviors. We quantified hippocampal CB2R and N-arachidonoylethanolamide (AEA) levels. The efficacy of a CB2R agonist, JWH133, in mitigating SDS-induced behaviors was evaluated. Additionally, EA's impact on CB2R and AEA was assessed, along with the influence of CB2R antagonist AM630 on EA's antidepressant effects. RESULTS SDS led to depressive and anxiety-like behaviors, with corresponding decreases in hippocampal CB2R and AEA. Treatment with JWH133 ameliorated these behaviors. EA treatment resulted in increased CB2R and AEA levels, while AM630 blocked these antidepressant effects. LIMITATIONS The study mainly focused on the SDS model, which may not entirely reflect other depression models. Besides, further investigation is needed to understand the precise mechanisms by which CB2R and AEA contribute to EA's effects. CONCLUSIONS The study suggests hippocampal downregulation of CB2R and AEA contributes to depression. Upregulation of CB2R and AEA in response to EA suggests their involvement in EA's antidepressant effects. These findings provide insights into the role of the hippocampal CB2R system in depression and the potential mechanisms underlying EA's therapeutic effects.
Collapse
Affiliation(s)
- Xiao-Rong Chen
- Department of Physiology, Laboratory of Neurodegenerative Diseases, Changzhi Medical College, Changzhi, Shanxi 046000, China; Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Rui Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Jing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hui-Jie Huang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hao-Yuan Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Gen-Cheng Wu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qiu-Qin Han
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai 200433, China.
| |
Collapse
|
4
|
PET imaging of animal models with depressive-like phenotypes. Eur J Nucl Med Mol Imaging 2023; 50:1564-1584. [PMID: 36642759 PMCID: PMC10119194 DOI: 10.1007/s00259-022-06073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/03/2022] [Indexed: 01/17/2023]
Abstract
Major depressive disorder is a growing and poorly understood pathology. Due to technical and ethical limitations, a significant proportion of the research on depressive disorders cannot be performed on patients, but needs to be investigated in animal paradigms. Over the years, animal studies have provided new insight in the mechanisms underlying depression. Several of these studies have used PET imaging for the non-invasive and longitudinal investigation of the brain physiology. This review summarises the findings of preclinical PET imaging in different experimental paradigms of depression and compares these findings with observations from human studies. Preclinical PET studies in animal models of depression can be divided into three main different approaches: (a) investigation of glucose metabolism as a biomarker for regional and network involvement, (b) evaluation of the availability of different neuroreceptor populations associated with depressive phenotypes, and (c) monitoring of the inflammatory response in phenotypes of depression. This review also assesses the relevance of the use of PET imaging techniques in animal paradigms for the understanding of specific aspects of the depressive-like phenotypes, in particular whether it might contribute to achieve a more detailed characterisation of the clinical depressive phenotypes for the development of new therapies for depression.
Collapse
|
5
|
The live biotherapeutic Blautia stercoris MRx0006 attenuates social deficits, repetitive behaviour, and anxiety-like behaviour in a mouse model relevant to autism. Brain Behav Immun 2022; 106:115-126. [PMID: 35995237 DOI: 10.1016/j.bbi.2022.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/27/2022] [Accepted: 08/13/2022] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by deficits in social behaviour, increased repetitive behaviour, anxiety and gastrointestinal symptoms. The aetiology of ASD is complex and involves an interplay of genetic and environmental factors. Emerging pre-clinical and clinical studies have documented a potential role for the gut microbiome in ASD, and consequently, the microbiota represents a potential target in the development of novel therapeutics for this neurodevelopmental disorder. In this study, we investigate the efficacy of the live biotherapeutic strain, Blautia stercoris MRx0006, in attenuating some of the behavioural deficits in the autism-relevant, genetic mouse model, BTBR T+ Itpr3tf/J (BTBR). We demonstrate that daily oral administration with MRx0006 attenuates social deficits while also decreasing repetitive and anxiety-like behaviour. MRx0006 administration increases the gene expression of oxytocin and its receptor in hypothalamic cells in vitro and increases the expression of hypothalamic arginine vasopressin and oxytocin mRNA in BTBR mice. Additionally at the microbiome level, we observed that MRx0006 administration decreases the abundance of Alistipes putredinis, and modulates the faecal microbial metabolite profile. This alteration in the metabolite profile possibly underlies the observed increase in expression of oxytocin, arginine vasopressin and its receptors, and the consequent improvements in behavioural outcomes. Taken together, these findings suggest that the live biotherapeutic MRx0006 may represent a viable and efficacious treatment option for the management of physiological and behavioural deficits associated with ASD.
Collapse
|
6
|
Topuz RD, Gorgulu Y, Kyazim Uluturk M. Could serum endocannabinoid and N-acylethanolamine levels be important in bipolar disorder? World J Biol Psychiatry 2022; 24:314-320. [PMID: 35950574 DOI: 10.1080/15622975.2022.2111713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
OBJECTIVES The endocannabinoid system (ECS) is a critical important neuromodulatory system that interacts with many neurohormonal and neurotransmitter systems in the brain. It plays a pivotal role in emotional responses and mood regulation. The ECS is related with psychotic disorders, depression, anxiety and autism. In this study, we aimed to investigate whether there is any relationship between endocannabinoid and N-acylethanolamine levels with bipolar disorder. METHODS Seventy-nine patients with bipolar disorder diagnosis, who are in the euthymic period, were included in the study. Clinical characteristics, symptoms and serum endocannabinoid and N-acylethanolamine levels were compared. Endocannabinoid and N-acylethanolamine levels were evaluated using liquid chromatography-tandem mass spectrometry. RESULTS In total of 79 patients, 44 (55.69%) were females and 35 (44.30%) were males. The mean age of the patients was 42.40 ± 1.10 years. Palmitoylethanolamide (PEA) levels were higher and oleoylethanolamide and 2-arachidonyl glycerol levels were lower in patients who had at least one depressive episode during their life-time illness than in patients who had no depressive episode while arachidonyl ethanolamide levels were unchanged. CONCLUSIONS PEA levels were correlated with the history and frequency of depressive episodes and the history of depressive symptoms in patients with bipolar disorder.
Collapse
Affiliation(s)
- Ruhan Deniz Topuz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Yasemin Gorgulu
- Department of Psychiatry Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Milkibar Kyazim Uluturk
- Department of Psychiatry Faculty of Medicine, Trakya University, Edirne, Turkey.,Department of Psychiatry, Can State Hospital, Canakkale, Turkey
| |
Collapse
|
7
|
Cannabinoid CB1 Receptor Involvement in the Actions of CBD on Anxiety and Coping Behaviors in Mice. Pharmaceuticals (Basel) 2022; 15:ph15040473. [PMID: 35455470 PMCID: PMC9027088 DOI: 10.3390/ph15040473] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
The anxiolytic and antidepressant properties of cannabidiol (CBD) have been evaluated in several studies. However, the molecular mechanisms involved in these actions remain unclear. A total of 130 male mice were used. CBD’s ability to modulate emotional disturbances (anxiety and depressive-like behaviors) was evaluated at different doses in wild-type (CD1; 10, 20 and 30 mg/kg; i.p.) and knockout (CB1KO, CB2KO; GPR55KO; 20 mg/kg) mice. Moreover, CBD effects (20 mg/kg; i.p.) were evaluated in mice previously treated with the CB1r-antagonist SR141716A (2mg/kg; i.p.). Relative gene expression analyses of Cnr1 and Cnr2, Gpr55 and GABA(A)α2 and γ2 receptor subunits were performed in the amygdala (AMY) and hippocampus (HIPP) of CD1 mice. CBD (10 and 20 mg/kg) showed anxiolytic and antidepressant actions in CD1 mice, being more effective at 20 mg/kg. Its administration did not induce anxiolytic actions in CB1KO mice, contrary to CB2KO and GPR55KO. In all of them, the lack of cannabinoid receptors did not modify the antidepressant activity of CBD. Interestingly, the administration of the CB1r antagonist SR141716A blocked the anxiolytic-like activity of CBD. Real-time PCR studies revealed a significant reduction in Cnr1 and GABA(A)α2 and γ2 gene expression in the HIPP and AMY of CD1 mice treated with CBD. Opposite changes were observed in the Cnr2. Indeed, Gpr55 was increased in the AMY and reduced in the HIPP. CB1r appears to play a relevant role in modulating the anxiolytic actions of CBD. Moreover, this study revealed that CBD also modified the gene expression of GABA(A) subunits α2 and γ2 and CB1r, CB2r and GPR55, in a dose- and brain-region-dependent manner, supporting a multimodal mechanism of action for CBD.
Collapse
|
8
|
Mayneris-Perxachs J, Castells-Nobau A, Arnoriaga-Rodríguez M, Garre-Olmo J, Puig J, Ramos R, Martínez-Hernández F, Burokas A, Coll C, Moreno-Navarrete JM, Zapata-Tona C, Pedraza S, Pérez-Brocal V, Ramió-Torrentà L, Ricart W, Moya A, Martínez-García M, Maldonado R, Fernández-Real JM. Caudovirales bacteriophages are associated with improved executive function and memory in flies, mice, and humans. Cell Host Microbe 2022; 30:340-356.e8. [PMID: 35176247 DOI: 10.1016/j.chom.2022.01.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/12/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022]
Abstract
Growing evidence implicates the gut microbiome in cognition. Viruses, the most abundant life entities on the planet, are a commonly overlooked component of the gut virome, dominated by the Caudovirales and Microviridae bacteriophages. Here, we show in a discovery (n = 114) and a validation cohort (n = 942) that subjects with increased Caudovirales and Siphoviridae levels in the gut microbiome had better performance in executive processes and verbal memory. Conversely, increased Microviridae levels were linked to a greater impairment in executive abilities. Microbiota transplantation from human donors with increased specific Caudovirales (>90% from the Siphoviridae family) levels led to increased scores in the novel object recognition test in mice and up-regulated memory-promoting immediate early genes in the prefrontal cortex. Supplementation of the Drosophila diet with the 936 group of lactococcal Siphoviridae bacteriophages resulted in increased memory scores and upregulation of memory-involved brain genes. Thus, bacteriophages warrant consideration as novel actors in the microbiome-brain axis.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Josep Garre-Olmo
- Research Group on Aging, Disability, and Health, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Serra-Hunter Fellow. Department of Nursing, University of Girona, Girona, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain; Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Department of Radiology (IDI), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Rafael Ramos
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Vascular Health Research Group of Girona (ISV-Girona), Jordi Gol Institute for Primary Care Research, (Institut Universitari per a la Recerca en Atenció Primària Jordi Gol I Gorina-IDIAPJGol), Girona Biomedical Research Institute, (IDIBGI), Dr. Josep Trueta University Hospital, Catalonia, Spain; Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, Catalonia, Spain
| | | | - Aurelijus Burokas
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Clàudia Coll
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - José Maria Moreno-Navarrete
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Cristina Zapata-Tona
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Salvador Pedraza
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Department of Radiology (IDI), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Lluís Ramió-Torrentà
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain; Neurodegeneration and Neuroinflammation research group. Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Andrés Moya
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC), Valencia, Spain
| | - Manuel Martínez-García
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.
| |
Collapse
|
9
|
Kuc J, Kettner H, Rosas F, Erritzoe D, Haijen E, Kaelen M, Nutt D, Carhart-Harris RL. Psychedelic experience dose-dependently modulated by cannabis: results of a prospective online survey. Psychopharmacology (Berl) 2022; 239:1425-1440. [PMID: 34734314 PMCID: PMC9110465 DOI: 10.1007/s00213-021-05999-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022]
Abstract
RATIONALE Classic psychedelics are currently being studied as novel treatments for a range of psychiatric disorders. However, research on how psychedelics interact with other psychoactive substances remains scarce. OBJECTIVES The current study aimed to explore the subjective effects of psychedelics when used alongside cannabis. METHODS Participants (n = 321) completed a set of online surveys at 2 time points: 7 days before, and 1 day after a planned experience with a serotonergic psychedelic. The collected data included demographics, environmental factors (so-called setting) and five validated questionnaires: Mystical Experience Questionnaire (MEQ), visual subscales of Altered States of Consciousness Questionnaire (ASC-Vis), Challenging Experience Questionnaire (CEQ), Ego Dissolution Inventory (EDI) and Emotional Breakthrough Inventory (EBI). Participants were grouped according to whether they had reported using no cannabis (n = 195) or low (n = 53), medium (n = 45) or high (n = 28) dose, directly concomitant with the psychedelic. Multivariate analysis of covariance (MANCOVA) and contrasts was used to analyse differences in subjective effects between groups while controlling for potential confounding contextual 'setting' variables. RESULTS The simultaneous use of cannabis together with classic serotonergic psychedelics was associated with more intense psychedelic experience across a range of measures: a linear relationship was found between dose and MEQ, ASC-Vis and EDI scores, while a quadratic relationship was found for CEQ scores. No relationship was found between the dose of cannabis and the EBI. CONCLUSIONS Results imply a possible interaction between the cannabis and psychedelic on acute subjective experiences; however, design limitations hamper our ability to draw firm inferences on directions of causality and the clinical implications of any such interactions.
Collapse
Affiliation(s)
- Joanna Kuc
- Department of Brain Sciences, Faculty of Medicine, Centre for Psychedelic Research, Imperial College London, London, W12 0NN, UK.
| | - Hannes Kettner
- Department of Brain Sciences, Faculty of Medicine, Centre for Psychedelic Research, Imperial College London, London, W12 0NN UK
| | - Fernando Rosas
- Department of Brain Sciences, Faculty of Medicine, Centre for Psychedelic Research, Imperial College London, London, W12 0NN UK
| | - David Erritzoe
- Department of Brain Sciences, Faculty of Medicine, Centre for Psychedelic Research, Imperial College London, London, W12 0NN UK
| | - Eline Haijen
- Department of Brain Sciences, Faculty of Medicine, Centre for Psychedelic Research, Imperial College London, London, W12 0NN UK
| | - Mendel Kaelen
- Department of Brain Sciences, Faculty of Medicine, Centre for Psychedelic Research, Imperial College London, London, W12 0NN UK
| | - David Nutt
- Department of Brain Sciences, Faculty of Medicine, Centre for Psychedelic Research, Imperial College London, London, W12 0NN UK
| | - Robin L. Carhart-Harris
- Department of Brain Sciences, Faculty of Medicine, Centre for Psychedelic Research, Imperial College London, London, W12 0NN UK
| |
Collapse
|
10
|
Shared metabolic and neuroimmune mechanisms underlying Type 2 Diabetes Mellitus and Major Depressive Disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110351. [PMID: 34000290 DOI: 10.1016/j.pnpbp.2021.110351] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022]
Abstract
Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disease with symptoms that go beyond the domain of glucose metabolism. In fact, research has shown that T2DM is accompanied by neurodegeneration and neuroinflammation. Interestingly, Major Depressive Disorder (MDD), a mood disorder characterized mainly by depressed mood and anhedonia is a key feature of T2DM. A body of evidence demonstrates that there are many shared neuroimmune mechanisms underlying the pathophysiology of T2DM and MDD. Therefore, here we review the state-of-art regarding the underlying factors common to both T2DM and MDD. Furthermore, we briefly discuss how depressive symptoms in diabetic patients could be tackled by using novel therapeutic approaches uncovered by these shared mechanisms. Understanding the comorbidity of depression in diabetic patients is essential to fully address T2DM pathophysiology and treatment.
Collapse
|
11
|
Miranda A, Bertoglio D, Stroobants S, Staelens S, Verhaeghe J. Translation of Preclinical PET Imaging Findings: Challenges and Motion Correction to Overcome the Confounding Effect of Anesthetics. Front Med (Lausanne) 2021; 8:753977. [PMID: 34746189 PMCID: PMC8569248 DOI: 10.3389/fmed.2021.753977] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Preclinical brain positron emission tomography (PET) in animals is performed using anesthesia to avoid movement during the PET scan. In contrast, brain PET scans in humans are typically performed in the awake subject. Anesthesia is therefore one of the principal limitations in the translation of preclinical brain PET to the clinic. This review summarizes the available literature supporting the confounding effect of anesthesia on several PET tracers for neuroscience in preclinical small animal scans. In a second part, we present the state-of-the-art methodologies to circumvent this limitation to increase the translational significance of preclinical research, with an emphasis on motion correction methods. Several motion tracking systems compatible with preclinical scanners have been developed, each one with its advantages and limitations. These systems and the novel experimental setups they can bring to preclinical brain PET research are reviewed here. While technical advances have been made in this field, and practical implementations have been demonstrated, the technique should become more readily available to research centers to allow for a wider adoption of the motion correction technique for brain research.
Collapse
Affiliation(s)
- Alan Miranda
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Daniele Bertoglio
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
- University Hospital Antwerp, Antwerp, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Colangeli R, Teskey GC, Di Giovanni G. Endocannabinoid-serotonin systems interaction in health and disease. PROGRESS IN BRAIN RESEARCH 2021; 259:83-134. [PMID: 33541682 DOI: 10.1016/bs.pbr.2021.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endocannabinoid (eCB) and serotonin (5-HT) neuromodulatory systems work both independently and together to finely orchestrate neuronal activity throughout the brain to strongly sculpt behavioral functions. Surprising parallelism between the behavioral effects of 5-HT and eCB activity has been widely reported, including the regulation of emotional states, stress homeostasis, cognitive functions, food intake and sleep. The distribution pattern of the 5-HT system and the eCB molecular elements in the brain display a strong overlap and several studies report a functional interplay and even a tight interdependence between eCB/5-HT signaling. In this review, we examine the available evidence of the interaction between the eCB and 5-HT systems. We first introduce the eCB system, then we describe the eCB/5-HT crosstalk at the neuronal and synaptic levels. Finally, we explore the potential eCB/5-HT interaction at the behavioral level with the implication for psychiatric and neurological disorders. The precise elucidation of how this neuromodulatory interaction dynamically regulates biological functions may lead to the development of more targeted therapeutic strategies for the treatment of depressive and anxiety disorders, psychosis and epilepsy.
Collapse
Affiliation(s)
- Roberto Colangeli
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - G Campbell Teskey
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
13
|
Soriano D, Brusco A, Caltana L. Further evidence of anxiety- and depression-like behavior for total genetic ablation of cannabinoid receptor type 1. Behav Brain Res 2020; 400:113007. [PMID: 33171148 DOI: 10.1016/j.bbr.2020.113007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
Cannabinoid receptor type 1 (CB1R) is the most abundant cannabinoid receptor in central nervous system. Clinical studies and animal models have shown that the attenuation of endocannabinoid system signaling correlates with the development of psychiatric disorders such as anxiety, depression and schizophrenia. In the present work, multiple behavioral tests were performed to evaluate behaviors related to anxiety and depression in CB1R+/- and CB1R-/-. CB1R+/- mice had anxiety-related behavior similar to wild type (CB1R+/+) mice, whereas CB1R-/- mice displayed an anxious-like phenotype, which indicates that lower expression of CB1R is sufficient to maintain the neural circuits modulating anxiety. In addition, CB1R-/- mice exhibited alterations in risk assessment and less exploration, locomotion, grooming, body weight and appetite. These phenotypic characteristics observed in CB1R-/- mice could be associated with symptoms observed in human psychiatric disorders such as depression. A better knowledge of the neuromodulatory role of CB1R may contribute to understand scope and limitations of the development of medical treatments.
Collapse
Affiliation(s)
- Delia Soriano
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina; Universidad de Buenos Aires. CONICET, Instituto de Biología Celular y Neurociencia Prof. E. de Robertis (IBCN), Buenos Aires, Argentina
| | - Alicia Brusco
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina; Universidad de Buenos Aires. CONICET, Instituto de Biología Celular y Neurociencia Prof. E. de Robertis (IBCN), Buenos Aires, Argentina
| | - Laura Caltana
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Unidad Académica del Departamento de Histología, Biología Celular, Embriología y Genética, Buenos Aires, Argentina; Universidad de Buenos Aires. CONICET, Instituto de Biología Celular y Neurociencia Prof. E. de Robertis (IBCN), Buenos Aires, Argentina.
| |
Collapse
|
14
|
Arnoriaga-Rodríguez M, Mayneris-Perxachs J, Burokas A, Contreras-Rodríguez O, Blasco G, Coll C, Biarnés C, Miranda-Olivos R, Latorre J, Moreno-Navarrete JM, Castells-Nobau A, Sabater M, Palomo-Buitrago ME, Puig J, Pedraza S, Gich J, Pérez-Brocal V, Ricart W, Moya A, Fernández-Real X, Ramió-Torrentà L, Pamplona R, Sol J, Jové M, Portero-Otin M, Maldonado R, Fernández-Real JM. Obesity Impairs Short-Term and Working Memory through Gut Microbial Metabolism of Aromatic Amino Acids. Cell Metab 2020; 32:548-560.e7. [PMID: 33027674 DOI: 10.1016/j.cmet.2020.09.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/12/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
The gut microbiome has been linked to fear extinction learning in animal models. Here, we aimed to explore the gut microbiome and memory domains according to obesity status. A specific microbiome profile associated with short-term memory, working memory, and the volume of the hippocampus and frontal regions of the brain differentially in human subjects with and without obesity. Plasma and fecal levels of aromatic amino acids, their catabolites, and vegetable-derived compounds were longitudinally associated with short-term and working memory. Functionally, microbiota transplantation from human subjects with obesity led to decreased memory scores in mice, aligning this trait from humans with that of recipient mice. RNA sequencing of the medial prefrontal cortex of mice revealed that short-term memory associated with aromatic amino acid pathways, inflammatory genes, and clusters of bacterial species. These results highlight the potential therapeutic value of targeting the gut microbiota for memory impairment, specifically in subjects with obesity.
Collapse
Affiliation(s)
- María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain; Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Aurelijus Burokas
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Oren Contreras-Rodríguez
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Psychiatry Department, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERSAM, Barcelona, Spain
| | - Gerard Blasco
- Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain; Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Clàudia Coll
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Carles Biarnés
- Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain
| | - Romina Miranda-Olivos
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Psychiatry Department, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERSAM, Barcelona, Spain
| | - Jèssica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - José-Maria Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain; Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Mònica Sabater
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - María Encarnación Palomo-Buitrago
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Josep Puig
- Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain; Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain; Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Salvador Pedraza
- Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain; Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Department of Radiology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Jordi Gich
- Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain; Girona Neurodegeneration and Neuroinflammation Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Vicente Pérez-Brocal
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain; Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain
| | - Andrés Moya
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC), Valencia, Spain
| | - Xavier Fernández-Real
- Institute of Mathematics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lluís Ramió-Torrentà
- Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain; Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain; Girona Neurodegeneration and Neuroinflammation Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Reinald Pamplona
- Metabolic Pathophysiology Research Group, Lleida Biomedical Research Institute (IRBLleida)-Universitat de Lleida, Lleida, Spain
| | - Joaquim Sol
- Metabolic Pathophysiology Research Group, Lleida Biomedical Research Institute (IRBLleida)-Universitat de Lleida, Lleida, Spain
| | - Mariona Jové
- Metabolic Pathophysiology Research Group, Lleida Biomedical Research Institute (IRBLleida)-Universitat de Lleida, Lleida, Spain
| | - Manuel Portero-Otin
- Metabolic Pathophysiology Research Group, Lleida Biomedical Research Institute (IRBLleida)-Universitat de Lleida, Lleida, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain; Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain.
| |
Collapse
|
15
|
Soriano D, Vacotto M, Brusco A, Caltana L. Neuronal and synaptic morphological alterations in the hippocampus of cannabinoid receptor type 1 knockout mice. J Neurosci Res 2020; 98:2245-2262. [DOI: 10.1002/jnr.24694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/28/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Delia Soriano
- Universidad de Buenos Aires. Facultad de Medicina. 1° Unidad Académica del Departamento de Histología, Embriología, Biología Celular y Genética. Buenos Aires. Argentina. Buenos Aires Argentina
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN) CONICET‐Universidad de Buenos Aires Buenos Aires Argentina
| | - Marina Vacotto
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN) CONICET‐Universidad de Buenos Aires Buenos Aires Argentina
| | - Alicia Brusco
- Universidad de Buenos Aires. Facultad de Medicina. 1° Unidad Académica del Departamento de Histología, Embriología, Biología Celular y Genética. Buenos Aires. Argentina. Buenos Aires Argentina
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN) CONICET‐Universidad de Buenos Aires Buenos Aires Argentina
| | - Laura Caltana
- Universidad de Buenos Aires. Facultad de Medicina. 1° Unidad Académica del Departamento de Histología, Embriología, Biología Celular y Genética. Buenos Aires. Argentina. Buenos Aires Argentina
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN) CONICET‐Universidad de Buenos Aires Buenos Aires Argentina
| |
Collapse
|
16
|
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J. Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry 2020; 11:315. [PMID: 32395111 PMCID: PMC7197485 DOI: 10.3389/fpsyt.2020.00315] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The high heterogeneity of psychiatric disorders leads to a lack of diagnostic precision. Therefore, the search of biomarkers is a fundamental aspect in psychiatry to reach a more personalized medicine. The endocannabinoid system (ECS) has gained increasing interest due to its involvement in many different functional processes in the brain, including the regulation of emotions, motivation, and cognition. This article reviews the role of the main components of the ECS as biomarkers in certain psychiatric disorders. Studies carried out in rodents evaluating the effects of pharmacological and genetic manipulation of cannabinoid receptors or endocannabinoids (eCBs) degrading enzymes were included. Likewise, the ECS-related alterations occurring at the molecular level in animal models reproducing some behavioral and/or neuropathological aspects of psychiatric disorders were reviewed. Furthermore, clinical studies evaluating gene or protein alterations in post-mortem brain tissue or in vivo blood, plasma, and cerebrospinal fluid (CSF) samples were analyzed. Also, the results from neuroimaging studies using positron emission tomography (PET) or functional magnetic resonance (fMRI) were included. This review shows the close involvement of cannabinoid receptor 1 (CB1r) in stress regulation and the development of mood disorders [anxiety, depression, bipolar disorder (BD)], in post-traumatic stress disorder (PTSD), as well as in the etiopathogenesis of schizophrenia, attention deficit hyperactivity disorder (ADHD), or eating disorders (i.e. anorexia and bulimia nervosa). On the other hand, recent results reveal the potential therapeutic action of the endocannabinoid tone manipulation by inhibition of eCBs degrading enzymes, as well as by the modulation of cannabinoid receptor 2 (CB2r) activity on anxiolytic, antidepressive, or antipsychotic associated effects. Further clinical research studies are needed; however, current evidence suggests that the components of the ECS may become promising biomarkers in psychiatry to improve, at least in part, the diagnosis and pharmacological treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rosa Jurado-Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Psicología, Facultad de Educación y Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Psychiatry, Complutense University of Madrid, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
17
|
Gopaldas M, Zanderigo F, Zhan S, Ogden RT, Miller JM, Rubin-Falcone H, Cooper TB, Oquendo MA, Sullivan G, Mann JJ, Sublette ME. Brain serotonin transporter binding, plasma arachidonic acid and depression severity: A positron emission tomography study of major depression. J Affect Disord 2019; 257:495-503. [PMID: 31319341 PMCID: PMC6886679 DOI: 10.1016/j.jad.2019.07.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/11/2019] [Accepted: 07/04/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Serotonin transporter (5-HTT) binding and polyunsaturated fatty acids (PUFAs) are implicated in major depressive disorder (MDD). Links between the two systems in animal models have not been investigated in humans. METHODS Using positron emission tomography (PET) and [11C]DASB, we studied relationships between 5-HTT binding potential and plasma levels of PUFAs docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (AA) in medication-free MDD patients (n = 21). PUFAs were quantified using transesterification and gas chromatography. Binding potential BPP, and alternative outcome measures BPF and BPND, were determined for [11C]DASB in six a priori brain regions of interest (ROIs) using likelihood estimation in graphical analysis (LEGA) to calculate radioligand total distribution volume (VT), and a validated hybrid deconvolution approach (HYDECA) that estimates radioligand non-displaceable distribution volume (VND) without a reference region. Linear mixed models used PUFA levels as predictors and binding potential measures as outcomes across the specified ROIs; age and sex as fixed effects; and subject as random effect to account for across-region binding correlations. As nonlinear relationships were observed, a quadratic term was added to final models. RESULTS AA predicted both 5-HTT BPP and depression severity nonlinearly, described by an inverted U-shaped curve. 5-HTT binding potential mediated the relationship between AA and depression severity. LIMITATIONS Given the small sample and multiple comparisons, results require replication. CONCLUSIONS Our findings suggest that AA status may impact depression pathophysiology through effects on serotonin transport. Future studies should examine whether these relationships explain therapeutic effects of PUFAs in the treatment of MDD.
Collapse
Affiliation(s)
- Manesh Gopaldas
- Department of Psychiatry, Columbia University, New York, NY, USA,Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA,Department of Psychiatry & Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Francesca Zanderigo
- Department of Psychiatry, Columbia University, New York, NY, USA,Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA
| | - Serena Zhan
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - R. Todd Ogden
- Department of Psychiatry, Columbia University, New York, NY, USA,Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA,Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - Jeffrey M. Miller
- Department of Psychiatry, Columbia University, New York, NY, USA,Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA
| | - Harry Rubin-Falcone
- Department of Psychiatry, Columbia University, New York, NY, USA,Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA
| | - Thomas B. Cooper
- Department of Psychiatry, Columbia University, New York, NY, USA,Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA,Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Maria A. Oquendo
- Psychiatry Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - J. John Mann
- Department of Psychiatry, Columbia University, New York, NY, USA,Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA,Department of Radiology, Columbia University, New York, NY, USA
| | - M. Elizabeth Sublette
- Department of Psychiatry, Columbia University, New York, NY, USA,Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA,To whom correspondence should be addressed: New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, Tel: 646 774-7514, Fax: 646 774-7589,
| |
Collapse
|
18
|
Abstract
OBJECTIVE Bipolar disorder (BD) is a debilitating, lifelong neuropsychiatric illness characterised by unsteady mood states which vacillate from (hypo)mania to depression. Despite the availability of pharmaceutical agents which can be effective in ameliorating the acute affective symptoms and prevent episodic relapse, BD is inadequately treated in a subset of patients. The endocannabinoid system (ECS) is known to exert neuromodulatory effects on other neurotransmitter systems critical in governing emotions. Several studies ranging from clinical to molecular, as well as anecdotal evidence, have placed a spotlight on the potential role of the ECS in the pathophysiology of BD. In this perspective, we present advantages and disadvantages of cannabis use in the management of illness course of BD and provide mechanistic insights into how this system might contribute to the pathophysiology of BD. RESULTS We highlight the putative role of selective cannabinoid receptor 2 (CB2) agonists in BD and briefly discuss findings which provide a rationale for targeting the ECS to assuage the symptoms of BD. Further, data encourage basic and clinical studies to determine how cannabis and cannabinoids (CBs) can affect mood and to investigate emerging CB-based options as probable treatment approaches. CONCLUSION The probable role of the ECS has been almost neglected in BD; however, from data available which suggest a role of ECS in mood control, it is justified to support conducting comprehensive studies to determine whether ECS manipulation could positively affect BD. Based on the limited available data, we suggest that activation of CB2 may stabilise mood in this disorder.
Collapse
|
19
|
Bogáthy E, Papp N, Tóthfalusi L, Vas S, Bagdy G. Additive effect of 5-HT2C and CB1 receptor blockade on the regulation of sleep-wake cycle. BMC Neurosci 2019; 20:14. [PMID: 30894126 PMCID: PMC6427841 DOI: 10.1186/s12868-019-0495-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
Background Previous data show that serotonin 2C (5-HT2C) and cannabinoid 1 (CB1) receptors have a role in the modulation of sleep–wake cycle. Namely, antagonists on these receptors promoted wakefulness and inhibited rapid eye movement sleep (REMS) in rodents. The interaction of these receptors are also present in other physiological functions, such as the regulation of appetite. Blockade of 5-HT2C receptors modulat the effect of CB1 receptor antagonist, presumably in consecutive or interdependent steps. Here we investigate, whether previous blockade of 5-HT2C receptors can affect CB1 receptor functions in the sleep–wake regulation. Results Wistar rats were equipped with electroencephalography (EEG) and electromyography (EMG) electrodes. Following the recovery and habituation after surgery, animals were injected intraperitoneally (ip.) with SB-242084, a 5-HT2C receptor antagonist (1.0 mg/kg) at light onset (beginning of passive phase) followed by an injection with AM-251, a CB1 receptor antagonist (5.0 or 10.0 mg/kg, ip.) 10 min later. EEG, EMG and motor activity were analyzed for the subsequent 2 h. Both SB-242084 and AM-251 increased the time spent in active wakefulness, while decreased the time spent in non-REMS and REMS stages in the first 2 h of passive phase. In combination, the effect of the agents were additive, furthermore, statistical analysis did not show any interaction between the effects of these drugs in the modulation of vigilance stages. Conclusions Our results suggest that 5-HT2C receptor blockade followed by blockade of CB1 receptors evoked additive effect on the regulation of sleep–wake pattern.
Collapse
Affiliation(s)
- Emese Bogáthy
- Department of Pharmacodynamics, Semmelweis University, Budapest, Nagyvárad tér 4, 1089, Hungary
| | - Noémi Papp
- Department of Pharmacodynamics, Semmelweis University, Budapest, Nagyvárad tér 4, 1089, Hungary
| | - Laszló Tóthfalusi
- Department of Pharmacodynamics, Semmelweis University, Budapest, Nagyvárad tér 4, 1089, Hungary
| | - Szilvia Vas
- Department of Pharmacodynamics, Semmelweis University, Budapest, Nagyvárad tér 4, 1089, Hungary.,MTA-SE, Neuropsychopharmacology and Neurochemistry Research Group, Budapest, 1089, Hungary.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - György Bagdy
- Department of Pharmacodynamics, Semmelweis University, Budapest, Nagyvárad tér 4, 1089, Hungary. .,MTA-SE, Neuropsychopharmacology and Neurochemistry Research Group, Budapest, 1089, Hungary. .,NAP-A-SE, New Antidepressant Target Research Group, Budapest, 1089, Hungary. .,NAP-2-SE, New Antidepressant Target Research Group, Budapest, 1089, Hungary.
| |
Collapse
|
20
|
Hemisphere-dependent endocannabinoid system activity in prefrontal cortex and hippocampus of the Flinders Sensitive Line rodent model of depression. Neurochem Int 2019; 125:7-15. [PMID: 30716357 DOI: 10.1016/j.neuint.2019.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 02/08/2023]
Abstract
Altered endocannabinoid (eCB) signalling is suggested as an important contributor to the pathophysiology of depression. To further elucidate this, we conducted a study using a genetic rat model of depression, the Flinders Sensitive Line (FSL), and their controls, the Flinders Resistant Line (FRL) rats. Plasma, right and left prefrontal cortex, and hippocampus were isolated from FSL and FRL rats. We analyzed each region for the eCB anandamide (AEA) and 2-arachidonoylglycerol (2-AG) levels by liquid chromatography/multiple reaction monitoring (LC/MRM), mRNA and protein levels of the cannabinoid type 1 receptor (CB1R), fatty acid amide hydrolase (FAAH) and monoacyl glycerol lipase (MAGL) by real time qPCR and Western blotting. Content of 2-AG was lower in the left side of the hippocampus and prefrontal cortex in FSL rats compared to FRL rats. Inversely, levels of AEA were higher in right hippocampus than in left hippocampus. In plasma, AEA levels were increased and 2-AG decreased. Cannabinoid receptor 1 (Cnr1), Faah and Magl mRNA levels were prominently decreased in right prefrontal cortex of FSL rats as compared to FRL rats. Protein expression of CB1R and FAAH were decreased in left hippocampus. In summary, our data suggest a decreased eCB signalling in the FSL rats, which could contribute to the depressive-like behaviour. Interestingly, the altered eCB system activity appear to be hemisphere-specific in the limbic regions. Our study support the existing literature and showed altered eCB system activity in this particular animal model of depression.
Collapse
|
21
|
Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K, Matsumoto Y, Okamoto M, Aoki S, Ishihara T. Juvenile stress induces behavioral change and affects perineuronal net formation in juvenile mice. BMC Neurosci 2018; 19:41. [PMID: 30012101 PMCID: PMC6048828 DOI: 10.1186/s12868-018-0442-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022] Open
Abstract
Background Many neuropsychiatric disorders develop in early life. Although the mechanisms involved have not been elucidated, it is possible that functional abnormalities of parvalbumin-positive interneurons (PV neurons) are present. Several previous studies have shown that juvenile stress is implicated in the development of neuropsychiatric disorders. We aimed to clarify the effects of juvenile stress on behavior and on the central nervous system. We investigated behavioral abnormalities of chronically-stressed mice during juvenilehood and the effect of juvenile stress on PV neurons and WFA-positive perineuronal nets (PNNs), which are associated with vulnerability and plasticity in the mouse brain. Results Due to juvenile stress, mice showed neurodevelopmental disorder-like behavior. Juvenile stressed mice did not show depressive-like behaviors, but on the contrary, they showed increased activity and decreased anxiety-like behavior. In the central nervous system of juvenile stressed mice, the fluorescence intensity of WFA-positive PNNs decreased, which may signify increased vulnerability. Conclusion This study suggested that juvenile stressed mice showed behavioral abnormalities, resembling those seen in neuropsychiatric disorders, and increased brain vulnerability.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288, Matsushima, Kurashiki, Okayama, 701-0193, Japan. .,Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan.
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Shozo Aoki
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| |
Collapse
|
22
|
Barry A, O'Halloran KD, McKenna JP, McCreary C, Harhen B, Kerr DM, Finn DP, Downer EJ. Plasma N-acylethanolamine and endocannabinoid levels in burning mouth syndrome: Potential role in disease pathogenesis. J Oral Pathol Med 2018; 47:440-442. [DOI: 10.1111/jop.12692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Alison Barry
- Department of Physiology; University College Cork; Cork Ireland
| | | | - Joseph P. McKenna
- Cork University Dental School and Hospital; University College Cork; Cork Ireland
| | - Christine McCreary
- Cork University Dental School and Hospital; University College Cork; Cork Ireland
| | - Brendan Harhen
- Pharmacology and Therapeutics; National University of Ireland Galway; Galway Ireland
- Galway Neuroscience Centre and Centre for Pain Research, NCBES; National University of Ireland Galway; Galway Ireland
| | - Daniel M. Kerr
- Pharmacology and Therapeutics; National University of Ireland Galway; Galway Ireland
- Galway Neuroscience Centre and Centre for Pain Research, NCBES; National University of Ireland Galway; Galway Ireland
| | - David P. Finn
- Pharmacology and Therapeutics; National University of Ireland Galway; Galway Ireland
- Galway Neuroscience Centre and Centre for Pain Research, NCBES; National University of Ireland Galway; Galway Ireland
| | - Eric J. Downer
- Discipline of Physiology; School of Medicine; Trinity Biomedical Sciences Institute; Trinity College Dublin; University of Dublin; Dublin Ireland
| |
Collapse
|
23
|
Tomas-Roig J, Piscitelli F, Gil V, Quintana E, Ramió-Torrentà LL, Del Río JA, Moore TP, Agbemenyah H, Salinas G, Pommerenke C, Lorenzen S, Beißbarth T, Hoyer-Fender S, Di Marzo V, Havemann-Reinecke U. Effects of repeated long-term psychosocial stress and acute cannabinoid exposure on mouse corticostriatal circuitries: Implications for neuropsychiatric disorders. CNS Neurosci Ther 2018; 24:528-538. [PMID: 29388323 PMCID: PMC5969305 DOI: 10.1111/cns.12810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 01/04/2023] Open
Abstract
Introduction Vulnerability to psychiatric manifestations is achieved by the influence of genetic and environment including stress and cannabis consumption. Here, we used a psychosocial stress model based on resident‐intruder confrontations to study the brain corticostriatal‐function, since deregulation of corticostriatal circuitries has been reported in many psychiatric disorders. CB1 receptors are widely expressed in the central nervous system and particularly, in both cortex and striatum brain structures. Aims and methods The investigation presented here is addressed to assess the impact of repeated stress following acute cannabinoid exposure on behavior and corticostriatal brain physiology by assessing mice behavior, the concentration of endocannabinoid and endocannabinoid‐like molecules and changes in the transcriptome. Results Stressed animals urinated frequently; showed exacerbated scratching activity, lower striatal N‐arachidonylethanolamine (AEA) levels and higher cortical expression of cholinergic receptor nicotinic alpha 6. The cannabinoid agonist WIN55212.2 diminished locomotor activity while the inverse agonist increased the distance travelled in the center of the open field. Upon CB1 activation, N‐oleoylethanolamide and N‐palmitoylethanolamide, two AEA congeners that do not interact directly with cannabinoid receptors, were enhanced in the striatum. The co‐administration with both cannabinoids induced an up‐regulation of striatal FK506 binding protein 5. The inverse agonist in controls reversed the effects of WIN55212.2 on motor activity. When Rimonabant was injected under stress, the cortical levels of 2‐arachidonoylglycerol were maximum. The agonist and the antagonist influenced the cortical expression of cholinergic receptor nicotinic alpha 6 and serotonin transporter neurotransmitter type 4 in opposite directions, while their co‐administration tended to produce a null effect under stress. Conclusions The endocannabinoid system had a direct effect on serotoninergic neurotransmission and glucocorticoid signaling. Cholinergic receptor nicotinic alpha‐6 was shown to be deregulated in response to stress and following synthetic cannabinoid drugs thus could confer vulnerability to cannabis addiction and psychosis. Targeting the receptors of endocannabinoids and endocannabinoid‐like mediators might be a valuable option for treating stress‐related neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Jordi Tomas-Roig
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEMTG), Dr. Josep Trueta University Hospital and Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Vanesa Gil
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Ester Quintana
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEMTG), Dr. Josep Trueta University Hospital and Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Lluís L Ramió-Torrentà
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEMTG), Dr. Josep Trueta University Hospital and Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jose Antonio Del Río
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Timothy Patrick Moore
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Department of Child and Adolescent Psychiatry, University Hospital Münster, Münster, Germany
| | - Hope Agbemenyah
- Laboratory for Aging and Cognitive Diseases, European Neuroscience Institute, Goettingen, Germany
| | - Gabriela Salinas
- Department of Developmental Biochemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Claudia Pommerenke
- Department of Developmental Biochemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Stephan Lorenzen
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany.,Department of Molecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Sigrid Hoyer-Fender
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Developmental Biology, Göttingen, Germany
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Ursula Havemann-Reinecke
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
24
|
Regulation of noradrenergic and serotonergic systems by cannabinoids: relevance to cannabinoid-induced effects. Life Sci 2018; 192:115-127. [DOI: 10.1016/j.lfs.2017.11.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/29/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022]
|
25
|
Burokas A, Arboleya S, Moloney RD, Peterson VL, Murphy K, Clarke G, Stanton C, Dinan TG, Cryan JF. Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice. Biol Psychiatry 2017; 82:472-487. [PMID: 28242013 DOI: 10.1016/j.biopsych.2016.12.031] [Citation(s) in RCA: 598] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND The realization that the microbiota-gut-brain axis plays a critical role in health and disease, including neuropsychiatric disorders, is rapidly advancing. Nurturing a beneficial gut microbiome with prebiotics, such as fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS), is an appealing but underinvestigated microbiota manipulation. Here we tested whether chronic prebiotic treatment modifies behavior across domains relevant to anxiety, depression, cognition, stress response, and social behavior. METHODS C57BL/6J male mice were administered FOS, GOS, or a combination of FOS+GOS for 3 weeks prior to testing. Plasma corticosterone, microbiota composition, and cecal short-chain fatty acids were measured. In addition, FOS+GOS- or water-treated mice were also exposed to chronic psychosocial stress, and behavior, immune, and microbiota parameters were assessed. RESULTS Chronic prebiotic FOS+GOS treatment exhibited both antidepressant and anxiolytic effects. Moreover, the administration of GOS and the FOS+GOS combination reduced stress-induced corticosterone release. Prebiotics modified specific gene expression in the hippocampus and hypothalamus. Regarding short-chain fatty acid concentrations, prebiotic administration increased cecal acetate and propionate and reduced isobutyrate concentrations, changes that correlated significantly with the positive effects seen on behavior. Moreover, FOS+GOS reduced chronic stress-induced elevations in corticosterone and proinflammatory cytokine levels and depression-like and anxiety-like behavior in addition to normalizing the effects of stress on the microbiota. CONCLUSIONS Taken together, these data strongly suggest a beneficial role of prebiotic treatment for stress-related behaviors. These findings strengthen the evidence base supporting therapeutic targeting of the gut microbiota for brain-gut axis disorders, opening new avenues in the field of nutritional neuropsychopharmacology.
Collapse
Affiliation(s)
| | - Silvia Arboleya
- APC Microbiome Institute, University College Cork, Cork; Teagasc Food Research Centre, Biosciences Department, Moorepark, Fermoy, Ireland
| | | | - Veronica L Peterson
- APC Microbiome Institute, University College Cork, Cork; Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork; Department of Anatomy and Neuroscience, University College Cork, Cork
| | - Kiera Murphy
- Teagasc Food Research Centre, Biosciences Department, Moorepark, Fermoy, Ireland
| | - Gerard Clarke
- APC Microbiome Institute, University College Cork, Cork
| | - Catherine Stanton
- APC Microbiome Institute, University College Cork, Cork; Teagasc Food Research Centre, Biosciences Department, Moorepark, Fermoy, Ireland
| | | | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork; Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork; Department of Anatomy and Neuroscience, University College Cork, Cork.
| |
Collapse
|
26
|
Robertson RC, Seira Oriach C, Murphy K, Moloney GM, Cryan JF, Dinan TG, Paul Ross R, Stanton C. Omega-3 polyunsaturated fatty acids critically regulate behaviour and gut microbiota development in adolescence and adulthood. Brain Behav Immun 2017; 59:21-37. [PMID: 27423492 DOI: 10.1016/j.bbi.2016.07.145] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neurodevelopment is strongly influenced by maternal and early-postnatal diet. Omega-3 polyunsaturated fatty acids (n-3 PUFA) are vital structural and functional components of the developing brain. The gut microbiota is also influenced by n-3 PUFA status, however, little is known about the role of maternal and early-life n-3 PUFA intake on offspring gut microbiota development and subsequent interactions with central nervous system functioning and behavioural outcomes. METHODS Pregnant female C57BL/6 mice and their male offspring were fed a control (CON), omega-3 deficient (O3-) or omega-3 supplemented (O3+) diet. Cognitive, depressive and social behaviours were assessed through a battery of behaviour tests in the male offspring at both adolescence (week 4-5) and adulthood (week 11-13). Hypothalamic-pituitary-adrenal axis (HPA) activation was assessed by analysis of stress-induced corticosterone production. Fecal microbiota composition was analysed by 16S sequencing at both adolescent and adulthood. In addition, stimulated spleen cytokine levels were assessed. RESULTS n-3 PUFA interventions induced subtle changes in offspring early-life and adolescent behaviours, which were further evident in adulthood, such that O3- animals displayed impaired communication, social and depression-related behaviours and O3+ animals displayed enhanced cognition. O3- mice displayed an elevated Firmicutes:Bacteroidetes ratio and blunted systemic LPS responsiveness. Contrastingly, O3+ mice displayed greater fecal Bifidobacterium and Lactobacillus abundance and dampened HPA-axis activity. CONCLUSIONS Neurobehavioural development related to cognitive, anxiety and social behaviours, is highly dependent upon in utero and lifelong n-3 PUFA availability. In addition, neurobehavioural changes induced by altering n-3 PUFA status are closely associated with comprehensive alterations in gut microbiota composition, HPA-axis activity and inflammation.
Collapse
Affiliation(s)
- Ruairi C Robertson
- School of Microbiology, University College Cork, Cork, Ireland; Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Clara Seira Oriach
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Ireland
| | - Kiera Murphy
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Ireland
| | - R Paul Ross
- School of Science Engineering and Food Science, University College Cork, Ireland
| | - Catherine Stanton
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Ireland.
| |
Collapse
|
27
|
Ferré S, Sebastião AM. Dissecting striatal adenosine-cannabinoid receptor interactions. New clues from rats over-expressing adenosine A2A receptors. J Neurochem 2016; 136:897-9. [PMID: 26806455 DOI: 10.1111/jnc.13520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 01/25/2023]
Abstract
This Editorial highlights a study by Chiodi et al. () showing that the effects mediated by cannabinoid CB1 receptor (CB1R) activation in the striatum are significantly reduced in rats with neuronal over-expression of adenosine A2A receptors (A2AR). Two hypotheses are derived from that study. Hypothesis A: two subpopulations of pre-synaptic CB1R in corticostriatal glutamatergic terminals exist, one forming and another not forming heteromers with A2AR. Hypothesis B: CB1R are predominantly forming heteromers with A2AR. In the case of hypothesis A, the A2AR might be required for CB1R-A2AR heteromeric signaling, whereas non-heteromeric CB1R activity is inhibited by A2ARs. In the case of hypothesis B, up-regulation of A2ARs may perturb heteromeric stoichiometry, thus reducing CB1R functioning. In any case, pre-synaptic striatal A2AR-CB1R heteromers emerge as important targets of the effects of cannabinoids demonstrated at the neuronal and behavioral level. Read the highlighted article 'Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors' on page 907.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
28
|
Chen C, Takahashi T, Nakagawa S, Inoue T, Kusumi I. Reinforcement learning in depression: A review of computational research. Neurosci Biobehav Rev 2015; 55:247-67. [PMID: 25979140 DOI: 10.1016/j.neubiorev.2015.05.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 04/20/2015] [Accepted: 05/04/2015] [Indexed: 01/05/2023]
Abstract
Despite being considered primarily a mood disorder, major depressive disorder (MDD) is characterized by cognitive and decision making deficits. Recent research has employed computational models of reinforcement learning (RL) to address these deficits. The computational approach has the advantage in making explicit predictions about learning and behavior, specifying the process parameters of RL, differentiating between model-free and model-based RL, and the computational model-based functional magnetic resonance imaging and electroencephalography. With these merits there has been an emerging field of computational psychiatry and here we review specific studies that focused on MDD. Considerable evidence suggests that MDD is associated with impaired brain signals of reward prediction error and expected value ('wanting'), decreased reward sensitivity ('liking') and/or learning (be it model-free or model-based), etc., although the causality remains unclear. These parameters may serve as valuable intermediate phenotypes of MDD, linking general clinical symptoms to underlying molecular dysfunctions. We believe future computational research at clinical, systems, and cellular/molecular/genetic levels will propel us toward a better understanding of the disease.
Collapse
Affiliation(s)
- Chong Chen
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Taiki Takahashi
- Department of Behavioral Science/Center for Experimental Research in Social Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - Shin Nakagawa
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Takeshi Inoue
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
29
|
Burokas A, Moloney RD, Dinan TG, Cryan JF. Microbiota regulation of the Mammalian gut-brain axis. ADVANCES IN APPLIED MICROBIOLOGY 2015; 91:1-62. [PMID: 25911232 DOI: 10.1016/bs.aambs.2015.02.001] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The realization that the microbiota-gut-brain axis plays a critical role in health and disease has emerged over the past decade. The brain-gut axis is a bidirectional communication system between the central nervous system (CNS) and the gastrointestinal tract. Regulation of the microbiota-brain-gut axis is essential for maintaining homeostasis, including that of the CNS. The routes of this communication are not fully elucidated but include neural, humoral, immune, and metabolic pathways. A number of approaches have been used to interrogate this axis including the use of germ-free animals, probiotic agents, antibiotics, or animals exposed to pathogenic bacterial infections. Together, it is clear that the gut microbiota can be a key regulator of mood, cognition, pain, and obesity. Understanding microbiota-brain interactions is an exciting area of research which may contribute new insights into individual variations in cognition, personality, mood, sleep, and eating behavior, and how they contribute to a range of neuropsychiatric diseases ranging from affective disorders to autism and schizophrenia. Finally, the concept of psychobiotics, bacterial-based interventions with mental health benefit, is also emerging.
Collapse
Affiliation(s)
- Aurelijus Burokas
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Rachel D Moloney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
30
|
Abstract
The physiological and pathophysiological functions of the endocannabinoid system have been studied extensively using transgenic and targeted knockout mouse models. The first gene deletions of the cannabinoid CB(1) receptor were described in the late 1990s, soon followed by CB(2) and FAAH mutations in early 2000. These mouse models helped to elucidate the fundamental role of endocannabinoids as retrograde transmitters in the CNS and in the discovery of many unexpected endocannabinoid functions, for example, in the skin, bone and liver. We now have knockout mouse models for almost every receptor and enzyme of the endocannabinoid system. Conditional mutant mice were mostly developed for the CB(1) receptor, which is widely expressed on many different neurons, astrocytes and microglia, as well as on many cells outside the CNS. These mouse strains include "floxed" CB(1) alleles and mice with a conditional re-expression of CB(1). The availability of these mice made it possible to decipher the function of CB(1) in specific neuronal circuits and cell populations or to discriminate between central and peripheral effects. Many of the genetic mouse models were also used in combination with viral expression systems. The purpose of this review is to provide a comprehensive overview of the existing genetic models and to summarize some of the most important discoveries that were made with these animals.
Collapse
MESH Headings
- Amidohydrolases/genetics
- Amidohydrolases/metabolism
- Animals
- Endocannabinoids/genetics
- Endocannabinoids/metabolism
- Gene Deletion
- Gene Expression Regulation
- Genotype
- Humans
- Hydrolysis
- Mice, Knockout
- Mice, Mutant Strains
- Monoacylglycerol Lipases/genetics
- Monoacylglycerol Lipases/metabolism
- Mutation
- Phenotype
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany.
| |
Collapse
|
31
|
Wyrofsky R, McGonigle P, Van Bockstaele EJ. Drug discovery strategies that focus on the endocannabinoid signaling system in psychiatric disease. Expert Opin Drug Discov 2014; 10:17-36. [PMID: 25488672 DOI: 10.1517/17460441.2014.966680] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The endocannabinoid (eCB) system plays an important role in the control of mood, and its dysregulation has been implicated in several psychiatric disorders. Targeting the eCB system appears to represent an attractive and novel approach to the treatment of depression and other mood disorders. However, several failed clinical trials have diminished enthusiasm for the continued development of eCB-targeted therapeutics for psychiatric disorders, despite the encouraging preclinical data and promising preliminary results obtained with the synthetic cannabinoid nabilone for treating post-traumatic stress disorder. AREAS COVERED This review describes the eCB system's role in modulating cell signaling within the brain. There is a specific focus on eCB's regulation of monoamine neurotransmission and the stress axis, as well as how dysfunction of this interaction can contribute to the development of psychiatric disorders. Additionally, the review provides discussion on compounds and drugs that target this system and might prove to be successful for the treatment of mood-related psychiatric disorders. EXPERT OPINION The discovery of increasingly selective modulators of CB receptors should enable the identification of optimal therapeutic strategies. It should also maximize the likelihood of developing safe and effective treatments for debilitating psychiatric disorders.
Collapse
Affiliation(s)
- Ryan Wyrofsky
- Drexel University, Department of Pharmacology and Physiology , Mail Stop 400, New College Building, 245 N. 15th Street, Philadelphia, PA 19102 , USA
| | | | | |
Collapse
|