1
|
Li J, Liu Y, Yin C, Zeng Y, Mei Y. Structural and functional remodeling of neural networks in β-amyloid driven hippocampal hyperactivity. Ageing Res Rev 2024; 101:102468. [PMID: 39218080 DOI: 10.1016/j.arr.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Early detection of Alzheimer's disease (AD) is essential for improving the patients outcomes and advancing our understanding of disease, allowing for timely intervention and treatment. However, accurate biomarkers are still lacking. Recent evidence indicates that hippocampal hyperexcitability precedes the diagnosis of AD decades ago, can predict cognitive decline. Thus, could hippocampal hyperactivity be a robust biomarker for early-AD, and what drives hippocampal hyperactivity in early-AD? these critical questions remain to be answered. Increasing clinical and experimental studies suggest that early hippocampal activation is closely associated with longitudinal β-amyloid (Aβ) accumulation, Aβ aggregates, in turn, enhances hippocampal activity. Therefore, in this narrative review, we discuss the role of Aβ-induced altered intrinsic neuronal properties as well as structural and functional remodeling of glutamatergic, GABAergic, cholinergic, noradrenergic, serotonergic circuits in hippocampal hyperactivity. In addition, we analyze the available therapies and trials that can potentially be used clinically to attenuate hippocampal hyperexcitability in AD. Overall, the present review sheds lights on the mechanism behind Aβ-induced hippocampal hyperactivity, and highlights that hippocampal hyperactivity could be a robust biomarker and therapeutic target in prodromal AD.
Collapse
Affiliation(s)
- Jinquan Li
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yanjun Liu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chuhui Yin
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yan Zeng
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
2
|
Cranston AL, Kraev I, Stewart MG, Horsley D, Santos RX, Robinson L, Dreesen E, Armstrong P, Palliyil S, Harrington CR, Wischik CM, Riedel G. Rescue of synaptosomal glutamate release defects in tau transgenic mice by the tau aggregation inhibitor hydromethylthionine. Cell Signal 2024; 121:111269. [PMID: 38909930 DOI: 10.1016/j.cellsig.2024.111269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Glutamatergic neurotransmission, important for learning and memory, is disrupted in different ways in patients with Alzheimer's disease (AD) and frontotemporal dementia (FTD) tauopathies. We have previously reported that two tau transgenic mouse models, L1 and L66, produce different phenotypes resembling AD and FTD, respectively. The AD-like L1 model expresses the truncated core aggregation domain of the AD paired helical filament (PHF) form of tau (tau296-390) whereas the FTD-like L66 model expresses full-length tau carrying two mutations at P301S/G335D. We have used synaptosomes isolated from these mice to investigate K+-evoked glutamate release and, if abnormal, to determine responsiveness to hydromethylthionine, a tau aggregation inhibitor previously shown to reduce tau pathology in these models. We report that the transgenes in these two mouse lines cause opposite abnormalities in glutamate release. Over-expression of the core tau unit in L1 produces a significant reduction in glutamate release and a loss of Ca2+-dependency compared with wild-type control mice. Full-length mutant tau produces an increase in glutamate release that retains normal Ca2+-dependency. Chronic pre-treatment with hydromethylthionine normalises both reduced (L1) and excessive glutamate (L66) and restores normal Ca2+-dependency in L1 mice. This implies that both patterns of impairment are the result of tau aggregation, but that the direction and Ca2+-dependency of the abnormality is determined by expression of the disease-specific transgene. Our results lead to the conclusion that the tauopathies need not be considered a single entity in terms of the downstream effects of pathological aggregation of tau protein. In this case, directionally opposite abnormalities in glutamate release resulting from different types of tau aggregation in the two mouse models can be corrected by hydromethylthionine. This may help to explain the activity of hydromethylthionine on cognitive decline and brain atrophy in both AD and behavioural-variant FTD.
Collapse
Affiliation(s)
- Anna L Cranston
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Igor Kraev
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Mike G Stewart
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - David Horsley
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Renato X Santos
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Lianne Robinson
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Eline Dreesen
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Paul Armstrong
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Soumya Palliyil
- Scottish Biologics Facility, University of Aberdeen, Foresterhill AB25 2ZP, UK
| | - Charles R Harrington
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK; TauRx Therapeutics Ltd, 395 King Street, Aberdeen, AB24 5RP, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK; TauRx Therapeutics Ltd, 395 King Street, Aberdeen, AB24 5RP, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK.
| |
Collapse
|
3
|
Pfitzer J, Pinky PD, Perman S, Redmon E, Cmelak L, Suppiramaniam V, Coric V, Qureshi IA, Gramlich MW, Reed MN. Troriluzole rescues glutamatergic deficits, amyloid and tau pathology, and synaptic and memory impairments in 3xTg-AD mice. J Neurochem 2024. [PMID: 39214859 DOI: 10.1111/jnc.16215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/18/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition in which clinical symptoms are highly correlated with the loss of glutamatergic synapses. While later stages of AD are associated with markedly decreased glutamate levels due to neuronal loss, in the early stages, pathological accumulation of glutamate and hyperactivity contribute to AD pathology and cognitive dysfunction. There is increasing awareness that presynaptic dysfunction, particularly synaptic vesicle (SV) alterations, play a key role in mediating this early-stage hyperactivity. In the current study, we sought to determine whether the 3xTg mouse model of AD that exhibits both beta-amyloid (Aβ) and tau-related pathology would exhibit similar presynaptic changes as previously observed in amyloid or tau models separately. Hippocampal cultures from 3xTg mice were used to determine whether presynaptic vesicular glutamate transporters (VGlut) and glutamate are increased at the synaptic level while controlling for postsynaptic activity. We observed that 3xTg hippocampal cultures exhibited increased VGlut1 associated with an increase in glutamate release, similar to prior observations in cultures from tau mouse models. However, the SV pool size was also increased in 3xTg cultures, an effect not previously observed in tau mouse models but observed in Aβ models, suggesting the changes in pool size may be due to Aβ and not tau. Second, we sought to determine whether treatment with troriluzole, a novel 3rd generation tripeptide prodrug of the glutamate modulator riluzole, could reduce VGlut1 and glutamate release to restore cognitive deficits in 8-month-old 3xTg mice. Treatment with troriluzole reduced VGlut1 expression, decreased basal and evoked glutamate release, and restored cognitive deficits in 3xTg mice. Together, these findings suggest presynaptic alterations are early events in AD that represent potential targets for therapeutic intervention, and these results support the promise of glutamate-modulating drugs such as troriluzole in Alzheimer's disease.
Collapse
Affiliation(s)
- Jeremiah Pfitzer
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Priyanka D Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Savannah Perman
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Emma Redmon
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Luca Cmelak
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama, USA
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, Georgia, USA
| | - Vladimir Coric
- Biohaven Pharmaceuticals Inc., New Haven, Connecticut, USA
| | | | - Michael W Gramlich
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama, USA
- Department of Physics, Auburn University, Auburn, Alabama, USA
| | - Miranda N Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
4
|
Yang X, Wang Z, Li H, Qin W, Liu N, Liu Z, Wang S, Xu J, Wang J. Polygenic Score for Conscientiousness Is a Protective Factor for Reversion from Mild Cognitive Impairment to Normal Cognition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309889. [PMID: 38838096 PMCID: PMC11304237 DOI: 10.1002/advs.202309889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Spontaneous reversion from mild cognitive impairment (MCI) to normal cognition (NC) is little known. Based on the data of the Genetics of Personality Consortium and MCI participants from Alzheimer's Disease Neuroimaging Initiative, the authors investigate the effect of polygenic scores (PGS) for personality traits on the reversion of MCI to NC and its underlying neurobiology. PGS analysis reveals that PGS for conscientiousness (PGS-C) is a protective factor that supports the reversion from MCI to NC. Gene ontology enrichment analysis and tissue-specific enrichment analysis indicate that the protective effect of PGS-C may be attributed to affecting the glutamatergic synapses of subcortical structures, such as hippocampus, amygdala, nucleus accumbens, and caudate nucleus. The structural covariance network (SCN) analysis suggests that the left whole hippocampus and its subfields, and the left whole amygdala and its subnuclei show significantly stronger covariance with several high-cognition relevant brain regions in the MCI reverters compared to the stable MCI participants, which may help illustrate the underlying neural mechanism of the protective effect of PGS-C.
Collapse
Affiliation(s)
- Xuan Yang
- Department of RadiologyTianjin Key Lab of Functional Imaging & Tianjin Institute of RadiologyTianjin Medical University General HospitalTianjin300052P. R. China
- Department of RadiologyJining No.1 People's HospitalJiningShandong272000P. R. China
| | - Zirui Wang
- Department of RadiologyTianjin Key Lab of Functional Imaging & Tianjin Institute of RadiologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Haonan Li
- Department of RadiologyTianjin Key Lab of Functional Imaging & Tianjin Institute of RadiologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Wen Qin
- Department of RadiologyTianjin Key Lab of Functional Imaging & Tianjin Institute of RadiologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Nana Liu
- Department of RadiologyTianjin Key Lab of Functional Imaging & Tianjin Institute of RadiologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Zhixuan Liu
- Department of RadiologyTianjin Key Lab of Functional Imaging & Tianjin Institute of RadiologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Siqi Wang
- Department of RadiologyTianjin Key Lab of Functional Imaging & Tianjin Institute of RadiologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Jiayuan Xu
- Department of RadiologyTianjin Key Lab of Functional Imaging & Tianjin Institute of RadiologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Junping Wang
- Department of RadiologyTianjin Key Lab of Functional Imaging & Tianjin Institute of RadiologyTianjin Medical University General HospitalTianjin300052P. R. China
| | | |
Collapse
|
5
|
Golmohammadi M, Mahmoudian M, Hasan EK, Alshahrani SH, Romero-Parra RM, Malviya J, Hjazi A, Najm MAA, Almulla AF, Zamanian MY, Kadkhodaei M, Mousavi N. Neuroprotective effects of riluzole in Alzheimer's disease: A comprehensive review. Fundam Clin Pharmacol 2024; 38:225-237. [PMID: 37753585 DOI: 10.1111/fcp.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Despite several hundred clinical trials of drugs that initially showed promise, there has been limited clinical improvement in Alzheimer's disease (AD). This may be attributed to the existence of at least 25 abnormal cellular pathways that underlie the disease. It is improbable for a single drug to address all or most of these pathways, thus even drugs that show promise when administered alone are unlikely to produce significant results. According to previous studies, eight drugs, namely, dantrolene, erythropoietin, lithium, memantine, minocycline, piracetam, riluzole, and silymarin, have been found to target multiple pathways that are involved in the development of AD. Among these drugs, riluzole is currently indicated for the treatment of medical conditions in both adult patients and children and has gained increased attention from scientists due to its potential in the excitotoxic hypothesis of neurodegenerative diseases. OBJECTIVE The aim of this study was to investigate the effects of drugs on AD based on cellular and molecular mechanisms. METHODS The literature search for this study utilized the Scopus, ScienceDirect, PubMed, and Google Scholar databases to identify relevant articles. RESULTS Riluzole exerts its effects in AD through diverse pathways including the inhibition of voltage-dependent sodium and calcium channels, blocking AMPA and NMDA receptors and inhibiting the release of glutamic acid release and stimulation of EAAT1-EAAT2. CONCLUSION In this review article, we aimed to review the neuroprotective properties of riluzole, a glutamate modulator, in AD, which could benefit patients with the disease.
Collapse
Affiliation(s)
- Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | - Jitendra Malviya
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mazin A A Najm
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mona Kadkhodaei
- Department of Surgery, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Nazanin Mousavi
- Department of Psychology, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
6
|
Hartnell IJ, Woodhouse D, Jasper W, Mason L, Marwaha P, Graffeuil M, Lau LC, Norman JL, Chatelet DS, Buee L, Nicoll JAR, Blum D, Dorothee G, Boche D. Glial reactivity and T cell infiltration in frontotemporal lobar degeneration with tau pathology. Brain 2024; 147:590-606. [PMID: 37703311 PMCID: PMC10834257 DOI: 10.1093/brain/awad309] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/23/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
Frontotemporal lobar degeneration with tau (FTLD-tau) is a group of tauopathies that underlie ∼50% of FTLD cases. Identification of genetic risk variants related to innate/adaptive immunity have highlighted a role for neuroinflammation and neuroimmune interactions in FTLD. Studies have shown microglial and astrocyte activation together with T cell infiltration in the brain of THY-Tau22 tauopathy mice. However, this remains to be confirmed in FTLD-tau patients. We conducted a detailed post-mortem study of FTLD-tau cases including 45 progressive supranuclear palsy with clinical frontotemporal dementia, 33 Pick's disease, 12 FTLD-MAPT and 52 control brains to characterize the link between phosphorylated tau (pTau) epitopes and the innate and adaptive immunity. Tau pathology was assessed in the cerebral cortex using antibodies directed against: Tau-2 (phosphorylated and unphosphorylated tau), AT8 (pSer202/pThr205), AT100 (pThr212/pSer214), CP13 (pSer202), PHF1 (pSer396/pSer404), pThr181 and pSer356. The immunophenotypes of microglia and astrocytes were assessed with phenotypic markers (Iba1, CD68, HLA-DR, CD64, CD32a, CD16 for microglia and GFAP, EAAT2, glutamine synthetase and ALDH1L1 for astrocytes). The adaptive immune response was explored via CD4+ and CD8+ T cell quantification and the neuroinflammatory environment was investigated via the expression of 30 inflammatory-related proteins using V-Plex Meso Scale Discovery. As expected, all pTau markers were increased in FTLD-tau cases compared to controls. pSer356 expression was greatest in FTLD-MAPT cases versus controls (P < 0.0001), whereas the expression of other markers was highest in Pick's disease. Progressive supranuclear palsy with frontotemporal dementia consistently had a lower pTau protein load compared to Pick's disease across tau epitopes. The only microglial marker increased in FTLD-tau was CD16 (P = 0.0292) and specifically in FTLD-MAPT cases (P = 0.0150). However, several associations were detected between pTau epitopes and microglia, supporting an interplay between them. GFAP expression was increased in FTLD-tau (P = 0.0345) with the highest expression in Pick's disease (P = 0.0019), while ALDH1L1 was unchanged. Markers of astrocyte glutamate cycling function were reduced in FTLD-tau (P = 0.0075; Pick's disease: P < 0.0400) implying astrocyte reactivity associated with a decreased glutamate cycling activity, which was further associated with pTau expression. Of the inflammatory proteins assessed in the brain, five chemokines were upregulated in Pick's disease cases (P < 0.0400), consistent with the recruitment of CD4+ (P = 0.0109) and CD8+ (P = 0.0014) T cells. Of note, the CD8+ T cell infiltration was associated with pTau epitopes and microglial and astrocytic markers. Our results highlight that FTLD-tau is associated with astrocyte reactivity, remarkably little activation of microglia, but involvement of adaptive immunity in the form of chemokine-driven recruitment of T lymphocytes.
Collapse
Affiliation(s)
- Iain J Hartnell
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Declan Woodhouse
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - William Jasper
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Luke Mason
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Pavan Marwaha
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Manon Graffeuil
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Laurie C Lau
- Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, University of Southampton, Southampton O16 6YD, UK
| | - Jeanette L Norman
- Histochemistry Research Unit, Clinical and Experimental Sciences, Faculty of Medicine University of Southampton, Southampton SO16 6YD, UK
| | - David S Chatelet
- Biomedical Imaging Unit, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK
| | - Luc Buee
- University of Lille, Inserm, CHU Lille, UMR-S1172—Lille Neurosciences and Cognition, Lille 59045, France
- Alzheimer and Tauopathies, LabEX DISTALZ, Lille 59000, France
| | - James A R Nicoll
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK
| | - David Blum
- University of Lille, Inserm, CHU Lille, UMR-S1172—Lille Neurosciences and Cognition, Lille 59045, France
- Alzheimer and Tauopathies, LabEX DISTALZ, Lille 59000, France
| | - Guillaume Dorothee
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris 75012, France
| | - Delphine Boche
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
7
|
Pinky PD, Bloemer J, Smith WD, Du Y, Heslin RT, Setti SE, Pfitzer JC, Chowdhury K, Hong H, Bhattacharya S, Dhanasekaran M, Dityatev A, Reed MN, Suppiramaniam V. Prenatal Cannabinoid Exposure Elicits Memory Deficits Associated with Reduced PSA-NCAM Expression, Altered Glutamatergic Signaling, and Adaptations in Hippocampal Synaptic Plasticity. Cells 2023; 12:2525. [PMID: 37947603 PMCID: PMC10648717 DOI: 10.3390/cells12212525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
Cannabis is now one of the most commonly used illicit substances among pregnant women. This is particularly concerning since developmental exposure to cannabinoids can elicit enduring neurofunctional and cognitive alterations. This study investigates the mechanisms of learning and memory deficits resulting from prenatal cannabinoid exposure (PCE) in adolescent offspring. The synthetic cannabinoid agonist WIN55,212-2 was administered to pregnant rats, and a series of behavioral, electrophysiological, and immunochemical studies were performed to identify potential mechanisms of memory deficits in the adolescent offspring. Hippocampal-dependent memory deficits in adolescent PCE animals were associated with decreased long-term potentiation (LTP) and enhanced long-term depression (LTD) at hippocampal Schaffer collateral-CA1 synapses, as well as an imbalance between GluN2A- and GluN2B-mediated signaling. Moreover, PCE reduced gene and protein expression of neural cell adhesion molecule (NCAM) and polysialylated-NCAM (PSA-NCAM), which are critical for GluN2A and GluN2B signaling balance. Administration of exogenous PSA abrogated the LTP deficits observed in PCE animals, suggesting PSA mediated alterations in GluN2A- and GluN2B- signaling pathways may be responsible for the impaired hippocampal synaptic plasticity resulting from PCE. These findings enhance our current understanding of how PCE affects memory and how this process can be manipulated for future therapeutic purposes.
Collapse
Affiliation(s)
- Priyanka D. Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY 10036, USA
| | - Warren D. Smith
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Yifeng Du
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Ryan T. Heslin
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Sharay E. Setti
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Jeremiah C. Pfitzer
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Kawsar Chowdhury
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Hao Hong
- Key Laboratory of Neuropsychiatric Diseases, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Subhrajit Bhattacharya
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
- Keck Graduate Institute, School of Pharmacy and Health Sciences, Claremont Colleges, Claremont, CA 91711, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 37075 Magdeburg, Germany
| | - Alexander Dityatev
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 37075 Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke University, 39106 Magdeburg, Germany
| | - Miranda N. Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
8
|
Esteban-Linares A, Zhang X, Lee HH, Risner ML, Weiss SM, Xu YQ, Levine E, Li D. Graphene-based microfluidic perforated microelectrode arrays for retinal electrophysiological studies. LAB ON A CHIP 2023; 23:2193-2205. [PMID: 36891773 PMCID: PMC10159897 DOI: 10.1039/d3lc00064h] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Perforated microelectrode arrays (pMEAs) have become essential tools for ex vivo retinal electrophysiological studies. pMEAs increase the nutrient supply to the explant and alleviate the accentuated curvature of the retina, allowing for long-term culture and intimate contacts between the retina and electrodes for electrophysiological measurements. However, commercial pMEAs are not compatible with in situ high-resolution optical imaging and lack the capability of controlling the local microenvironment, which are highly desirable features for relating function to anatomy and probing physiological and pathological mechanisms in retina. Here we report on microfluidic pMEAs (μpMEAs) that combine transparent graphene electrodes and the capability of locally delivering chemical stimulation. We demonstrate the potential of μpMEAs by measuring the electrical response of ganglion cells to locally delivered high K+ stimulation under controlled microenvironments. Importantly, the capability for high-resolution confocal imaging of the retina tissue on top of the graphene electrodes allows for further analyses of the electrical signal source. The new capabilities provided by μpMEAs could allow for retinal electrophysiology assays to address key questions in retinal circuitry studies.
Collapse
Affiliation(s)
| | - Xiaosi Zhang
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Hannah H Lee
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Michael L Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Sharon M Weiss
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ya-Qiong Xu
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA
| | - Edward Levine
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Deyu Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
9
|
Dysfunction of the glutamatergic photoreceptor synapse in the P301S mouse model of tauopathy. Acta Neuropathol Commun 2023; 11:5. [PMID: 36631898 PMCID: PMC9832799 DOI: 10.1186/s40478-022-01489-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/04/2022] [Indexed: 01/13/2023] Open
Abstract
Tauopathies, including Alzheimer's disease, are characterized by retinal ganglion cell loss associated with amyloid and phosphorylated tau deposits. We investigated the functional impact of these histopathological alterations in the murine P301S model of tauopathy. Visual impairments were demonstrated by a decrease in visual acuity already detectable at 6 months, the onset of disease. Visual signals to the cortex and retina were delayed at 6 and 9 months, respectively. Surprisingly, the retinal output signal was delayed at the light onset and advanced at the light offset. This antagonistic effect, due to a dysfunction of the cone photoreceptor synapse, was associated with changes in the expression of the vesicular glutamate transporter and a microglial reaction. This dysfunction of retinal glutamatergic synapses suggests a novel interpretation for visual deficits in tauopathies and it highlights the potential value of the retina for the diagnostic assessment and the evaluation of therapies in Alzheimer's disease and other tauopathies.
Collapse
|
10
|
Castro CCM, Silva SP, Rabelo LN, Queiroz JPG, Campos LD, Silva LC, Fiuza FP. Age, Education Years, and Biochemical Factors Are Associated with Selective Neuronal Changes in the Elderly Hippocampus. Cells 2022; 11:cells11244033. [PMID: 36552799 PMCID: PMC9777473 DOI: 10.3390/cells11244033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Brain aging involves regional alterations of specific cellular subpopulations in the human hippocampus: a network hub for memory consolidation. The present study investigates whether age, sex, education years, and the concentration of neuropathological and inflammatory proteins influence neuronal-type marker expression in the elderly hippocampus. We analyzed the digital images (1 µm/pixel) of postmortem hippocampal sections from 19 non-demented individuals (from 78 to 99 years). This material was obtained from the "Aging Dementia and TBI Study" open database. Brain samples were processed through in situ hybridization (ISH) for the immunodetection of VGLUT1 (glutamatergic transporter) and GAT1 (GABAergic transporter) and mRNAs and Luminex protein quantifications. After image acquisition, we delineated the dentate gyrus, CA 3/2, and CA1 hippocampal subdivisions. Then, we estimated the area fraction in which the ISH markers were expressed. Increased VGLUT1 was observed in multiple hippocampal subfields at late ages. This glutamatergic marker is positively correlated with beta-amyloid and tau proteins and negatively correlated with interleukin-7 levels. Additionally, education years are positively correlated with GAT1 in the hippocampus of elderly women. This GABAergic marker expression is associated with interferon-gamma and brain-derived neurotrophic factor levels. These associations can help to explain how hippocampal sub-regions and neurotransmitter systems undergo distinct physiological changes during normal aging.
Collapse
|
11
|
Taipala E, Pfitzer JC, Hellums M, Reed MN, Gramlich MW. rTg(TauP301L)4510 mice exhibit increased VGlut1 in hippocampal presynaptic glutamatergic vesicles and increased extracellular glutamate release. Front Synaptic Neurosci 2022; 14:925546. [PMID: 35989711 PMCID: PMC9383415 DOI: 10.3389/fnsyn.2022.925546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular pathways that contribute to the onset of symptoms in tauopathy models, including Alzheimer’s disease (AD), are difficult to distinguish because multiple changes can happen simultaneously at different stages of disease progression. Understanding early synaptic alterations and their supporting molecular pathways is essential to develop better pharmacological targets to treat AD. Here, we focus on an early onset rTg(TauP301L)4510 tauopathy mouse model that exhibits hyperexcitability in hippocampal neurons of adult mice that is correlated with presynaptic changes and increased extracellular glutamate levels. However, it is not clear if increased extracellular glutamate is caused by presynaptic changes alone, or if presynaptic changes are a contributing factor among other factors. To determine whether pathogenic tau alters presynaptic function and glutamate release, we studied cultured hippocampal neurons at 14–18 days in vitro (DIV) from animals of both sexes to measure presynaptic changes in tauP301L positive mice. We observed that presynaptic vesicles exhibit increased vesicular glutamate transporter 1 (VGlut1) using immunohistochemistry of fixed cells and an established pH-sensitive green fluorescent protein approach. We show that tauP301L positive neurons exhibit a 40% increase in VGlut1 per vesicle compared to tauP301L negative littermates. Further, we use the extracellular glutamate reporter iGluSnFR to show that increased VGlut1 per vesicle directly translates into a 40% increase in extracellular glutamate. Together, these results show that increased extracellular glutamate levels observed in tauP301L mice are not caused by increased vesicle exocytosis probability but rather are directly related to increased VGlut1 transporters per synaptic vesicle.
Collapse
Affiliation(s)
- Erika Taipala
- Department of Physics, Auburn University, Auburn, AL, United States
| | | | - Morgan Hellums
- Department of Physics, Auburn University, Auburn, AL, United States
| | - Miranda N. Reed
- Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Michael W. Gramlich
- Department of Physics, Auburn University, Auburn, AL, United States
- *Correspondence: Michael W. Gramlich,
| |
Collapse
|
12
|
Cox MF, Hascup ER, Bartke A, Hascup KN. Friend or Foe? Defining the Role of Glutamate in Aging and Alzheimer’s Disease. FRONTIERS IN AGING 2022; 3:929474. [PMID: 35821835 PMCID: PMC9261322 DOI: 10.3389/fragi.2022.929474] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022]
Abstract
Aging is a naturally occurring decline of physiological processes and biological pathways that affects both the structural and functional integrity of the body and brain. These physiological changes reduce motor skills, executive function, memory recall, and processing speeds. Aging is also a major risk factor for multiple neurodegenerative disorders including Alzheimer’s disease (AD). Identifying a biomarker, or biomarkers, that signals the transition from physiological to pathological aging would aid in earlier therapeutic options or interventional strategies. Considering the importance of glutamate signaling in synaptic plasticity, motor movement, and cognition, this neurotransmitter serves as a juncture between cognitive health and disease. This article discusses glutamatergic signaling during physiological aging and the pathological changes observed in AD patients. Findings from studies in mouse models of successful aging and AD are reviewed and provide a biological context for this transition. Finally, current techniques to monitor brain glutamate are highlighted. These techniques may aid in elucidating time-point specific therapeutic windows to modify disease outcome.
Collapse
Affiliation(s)
- MaKayla F. Cox
- Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Erin R. Hascup
- Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Andrzej Bartke
- Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Kevin N. Hascup
- Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States
- *Correspondence: Kevin N. Hascup,
| |
Collapse
|
13
|
Peña-Ortega F, Robles-Gómez ÁA, Xolalpa-Cueva L. Microtubules as Regulators of Neural Network Shape and Function: Focus on Excitability, Plasticity and Memory. Cells 2022; 11:cells11060923. [PMID: 35326374 PMCID: PMC8946818 DOI: 10.3390/cells11060923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Neuronal microtubules (MTs) are complex cytoskeletal protein arrays that undergo activity-dependent changes in their structure and function as a response to physiological demands throughout the lifespan of neurons. Many factors shape the allostatic dynamics of MTs and tubulin dimers in the cytosolic microenvironment, such as protein–protein interactions and activity-dependent shifts in these interactions that are responsible for their plastic capabilities. Recently, several findings have reinforced the role of MTs in behavioral and cognitive processes in normal and pathological conditions. In this review, we summarize the bidirectional relationships between MTs dynamics, neuronal processes, and brain and behavioral states. The outcomes of manipulating the dynamicity of MTs by genetic or pharmacological approaches on neuronal morphology, intrinsic and synaptic excitability, the state of the network, and behaviors are heterogeneous. We discuss the critical position of MTs as responders and adaptative elements of basic neuronal function whose impact on brain function is not fully understood, and we highlight the dilemma of artificially modulating MT dynamics for therapeutic purposes.
Collapse
|
14
|
Setti SE, Reed MN. Network activity changes in the pathophysiology of Alzheimer's disease: the role of aging and early entorhinal cortex dysfunction. Metab Brain Dis 2022; 37:289-298. [PMID: 34591222 DOI: 10.1007/s11011-021-00848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 09/23/2021] [Indexed: 11/24/2022]
Abstract
The greatest risk factor for development of the deadly neurodegenerative disorder known as Alzheimer's disease (AD) is advancing age. Currently unknown is what mediates the impact of advanced age on development of AD. Also unknown is what impact activity alterations in the entorhinal cortex (EC) has on the spread of AD pathology such as pathological tau through the brain as AD progresses. This review focuses on evidence in the literature that describes how one potential age-related change, that of glutamate-mediated increases in neuronal activity, may ultimately increase the risk of developing AD and promote the spread of tau pathology in AD-affected brains from the EC to later regions such as the hippocampus and prefrontal cortex. A better understanding of these detrimental alterations may allow for earlier detection of AD, offering a better prognosis for affected individuals.
Collapse
Affiliation(s)
- Sharay E Setti
- Department of Drug Discovery and Development, Auburn University, 720 South Donahue, Auburn, AL, 36849, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Miranda N Reed
- Department of Drug Discovery and Development, Auburn University, 720 South Donahue, Auburn, AL, 36849, USA.
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA.
| |
Collapse
|
15
|
Pinky PD, Pfitzer JC, Senfeld J, Hong H, Bhattacharya S, Suppiramaniam V, Qureshi I, Reed MN. Recent Insights on Glutamatergic Dysfunction in Alzheimer's Disease and Therapeutic Implications. Neuroscientist 2022:10738584211069897. [PMID: 35073787 DOI: 10.1177/10738584211069897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) poses a critical public health challenge, and there is an urgent need for novel treatment options. Glutamate, the principal excitatory neurotransmitter in the human brain, plays a critical role in mediating cognitive and behavioral functions; and clinical symptoms in AD patients are highly correlated with the loss of glutamatergic synapses. In this review, we highlight how dysregulated glutamatergic mechanisms can underpin cognitive and behavioral impairments and contribute to the progression of AD via complex interactions with neuronal and neural network hyperactivity, Aβ, tau, glial dysfunction, and other disease-associated factors. We focus on the tripartite synapse, where glutamatergic neurotransmission occurs, and evidence elucidating how the tripartite synapse can be pathologically altered in AD. We also discuss promising therapeutic approaches that have the potential to rescue these deficits. These emerging data support the development of novel glutamatergic drug candidates as compelling approaches for treating AD.
Collapse
Affiliation(s)
- Priyanka D Pinky
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jeremiah C Pfitzer
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Jared Senfeld
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Hao Hong
- Department of Pharmacy, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Subhrajit Bhattacharya
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.,Center for Neuroscience, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.,Center for Neuroscience, Auburn University, Auburn, AL, USA
| | | | - Miranda N Reed
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.,Center for Neuroscience, Auburn University, Auburn, AL, USA
| |
Collapse
|
16
|
Differential Effects of Human P301L Tau Expression in Young versus Aged Mice. Int J Mol Sci 2021; 22:ijms222111637. [PMID: 34769068 PMCID: PMC8583766 DOI: 10.3390/ijms222111637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
The greatest risk factor for developing Alzheimer’s disease (AD) is increasing age. Understanding the changes that occur in aging that make an aged brain more susceptible to developing AD could result in novel therapeutic targets. In order to better understand these changes, the current study utilized mice harboring a regulatable mutant P301L human tau transgene (rTg(TauP301L)4510), in which P301L tau expression can be turned off or on by the addition or removal of doxycycline in the drinking water. This regulatable expression allowed for assessment of aging independent of prolonged mutant tau expression. Our results suggest that P301L expression in aged mice enhances memory deficits in the Morris water maze task. These behavioral changes may be due to enhanced late-stage tau pathology, as evidenced by immunoblotting and exacerbated hippocampal dysregulation of glutamate release and uptake measured by the microelectrode array technique. We additionally observed changes in proteins important for the regulation of glutamate and tau phosphorylation that may mediate these age-related changes. Thus, age and P301L tau interact to exacerbate tau-induced detrimental alterations in aged animals.
Collapse
|
17
|
Somogyi A, Wolf E. Increased Signal Delays and Unaltered Synaptic Input Pattern Recognition in Layer III Neocortical Pyramidal Neurons of the rTg4510 Mouse Model of Tauopathy: A Computer Simulation Study With Passive Membrane. Front Neurosci 2021; 15:721773. [PMID: 34733131 PMCID: PMC8558261 DOI: 10.3389/fnins.2021.721773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Abnormal tau proteins are involved in pathology of many neurodegenerative disorders. Transgenic rTg4510 mice express high levels of human tau protein with P301L mutation linked to chromosome 17 that has been associated with frontotemporal dementia with parkinsonism. By 9 months of age, these mice recapitulate key features of human tauopathies, including presence of hyperphosphorylated tau and neurofibrillary tangles (NFTs) in brain tissue, atrophy and loss of neurons and synapses, and hyperexcitability of neurons, as well as cognitive deficiencies. We investigated effects of such human mutant tau protein on neuronal membrane, subthreshold dendritic signaling, and synaptic input pattern recognition/discrimination in layer III frontal transgenic (TG) pyramidal neurons of 9-month-old rTg4510 mice and compared these characteristics to those of wild-type (WT) pyramidal neurons from age-matched control mice. Passive segmental cable models of WT and TG neurons were set up in the NEURON simulator by using three-dimensionally reconstructed morphology and electrophysiological data of these cells. Our computer simulations predict leakage resistance and capacitance of neuronal membrane to be unaffected by the mutant tau protein. Computer models of TG neurons showed only modest alterations in distance dependence of somatopetal voltage and current transfers along dendrites and in rise times and half-widths of somatic Excitatory Postsynaptic Potential (EPSPs) relative to WT control. In contrast, a consistent and statistically significant slowdown was detected in the speed of simulated subthreshold dendritic signal propagation in all regions of the dendritic surface of mutant neurons. Predictors of synaptic input pattern recognition/discrimination remained unaltered in model TG neurons. This suggests that tau pathology is primarily associated with failures/loss in synaptic connections rather than with altered intraneuronal synaptic integration in neurons of affected networks.
Collapse
Affiliation(s)
- Attila Somogyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Emergency Medicine, University of Debrecen, Debrecen, Hungary
| | - Ervin Wolf
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
18
|
Pluta R, Czuczwar SJ, Januszewski S, Jabłoński M. The Many Faces of Post-Ischemic Tau Protein in Brain Neurodegeneration of the Alzheimer's Disease Type. Cells 2021; 10:cells10092213. [PMID: 34571862 PMCID: PMC8465797 DOI: 10.3390/cells10092213] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Recent data suggest that post-ischemic brain neurodegeneration in humans and animals is associated with the modified tau protein in a manner typical of Alzheimer’s disease neuropathology. Pathological changes in the tau protein, at the gene and protein level due to cerebral ischemia, can lead to the development of Alzheimer’s disease-type neuropathology and dementia. Some studies have shown increased tau protein staining and gene expression in neurons following ischemia-reperfusion brain injury. Recent studies have found the tau protein to be associated with oxidative stress, apoptosis, autophagy, excitotoxicity, neuroinflammation, blood-brain barrier permeability, mitochondrial dysfunction, and impaired neuronal function. In this review, we discuss the interrelationship of these phenomena with post-ischemic changes in the tau protein in the brain. The tau protein may be at the intersection of many pathological mechanisms due to severe neuropathological changes in the brain following ischemia. The data indicate that an episode of cerebral ischemia activates the damage and death of neurons in the hippocampus in a tau protein-dependent manner, thus determining a novel and important mechanism for the survival and/or death of neuronal cells following ischemia. In this review, we update our understanding of proteomic and genomic changes in the tau protein in post-ischemic brain injury and present the relationship between the modified tau protein and post-ischemic neuropathology and present a positive correlation between the modified tau protein and a post-ischemic neuropathology that has characteristics of Alzheimer’s disease-type neurodegeneration.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Str. Pawińskiego, 02-106 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-6086-540
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 8b Str. Jaczewskiego, 20-090 Lublin, Poland;
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Str. Pawińskiego, 02-106 Warsaw, Poland;
| | - Mirosław Jabłoński
- Department of Rehabilitation and Orthopedics, Medical University of Lublin, 8 Str. Jaczewskiego, 20-090 Lublin, Poland;
| |
Collapse
|
19
|
Tok S, Ahnaou A, Drinkenburg W. Functional Neurophysiological Biomarkers of Early-Stage Alzheimer's Disease: A Perspective of Network Hyperexcitability in Disease Progression. J Alzheimers Dis 2021; 88:809-836. [PMID: 34420957 PMCID: PMC9484128 DOI: 10.3233/jad-210397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Network hyperexcitability (NH) has recently been suggested as a potential neurophysiological indicator of Alzheimer’s disease (AD), as new, more accurate biomarkers of AD are sought. NH has generated interest as a potential indicator of certain stages in the disease trajectory and even as a disease mechanism by which network dysfunction could be modulated. NH has been demonstrated in several animal models of AD pathology and multiple lines of evidence point to the existence of NH in patients with AD, strongly supporting the physiological and clinical relevance of this readout. Several hypotheses have been put forward to explain the prevalence of NH in animal models through neurophysiological, biochemical, and imaging techniques. However, some of these hypotheses have been built on animal models with limitations and caveats that may have derived NH through other mechanisms or mechanisms without translational validity to sporadic AD patients, potentially leading to an erroneous conclusion of the underlying cause of NH occurring in patients with AD. In this review, we discuss the substantiation for NH in animal models of AD pathology and in human patients, as well as some of the hypotheses considering recently developed animal models that challenge existing hypotheses and mechanisms of NH. In addition, we provide a preclinical perspective on how the development of animal models incorporating AD-specific NH could provide physiologically relevant translational experimental data that may potentially aid the discovery and development of novel therapies for AD.
Collapse
Affiliation(s)
- Sean Tok
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, The Netherlands
| | - Abdallah Ahnaou
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Wilhelmus Drinkenburg
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, The Netherlands
| |
Collapse
|
20
|
Gasiorowska A, Wydrych M, Drapich P, Zadrozny M, Steczkowska M, Niewiadomski W, Niewiadomska G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci 2021; 13:654931. [PMID: 34326765 PMCID: PMC8315271 DOI: 10.3389/fnagi.2021.654931] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
The elderly population is growing worldwide, with important health and socioeconomic implications. Clinical and experimental studies on aging have uncovered numerous changes in the brain, such as decreased neurogenesis, increased synaptic defects, greater metabolic stress, and enhanced inflammation. These changes are associated with cognitive decline and neurobehavioral deficits. Although aging is not a disease, it is a significant risk factor for functional worsening, affective impairment, disease exaggeration, dementia, and general disease susceptibility. Conversely, life events related to mental stress and trauma can also lead to accelerated age-associated disorders and dementia. Here, we review human studies and studies on mice and rats, such as those modeling human neurodegenerative diseases, that have helped elucidate (1) the dynamics and mechanisms underlying the biological and pathological aging of the main projecting systems in the brain (glutamatergic, cholinergic, and dopaminergic) and (2) the effect of defective glutamatergic, cholinergic, and dopaminergic projection on disabilities associated with aging and neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Detailed knowledge of the mechanisms of age-related diseases can be an important element in the development of effective ways of treatment. In this context, we briefly analyze which adverse changes associated with neurodegenerative diseases in the cholinergic, glutaminergic and dopaminergic systems could be targeted by therapeutic strategies developed as a result of our better understanding of these damaging mechanisms.
Collapse
Affiliation(s)
- Anna Gasiorowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Wydrych
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Drapich
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Zadrozny
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Steczkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
21
|
Cloyd RA, Koren J, Abisambra JF, Smith BN. Effects of altered tau expression on dentate granule cell excitability in mice. Exp Neurol 2021; 343:113766. [PMID: 34029610 DOI: 10.1016/j.expneurol.2021.113766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 12/18/2022]
Abstract
Tauopathies, including Alzheimer's disease, are characterized by progressive accumulation of hyperphosphorylated and pathologic tau protein in association with onset of cognitive and behavioral impairment. Tau pathology is also associated with increased susceptibility to seizures and epilepsy, with tau-/- mice showing seizure resistance in some epilepsy models. To better understand how tau pathology is related to neuronal excitability, we performed whole-cell patch-clamp electrophysiology in dentate gyrus granule cells of tau-/- and human-tau expressing, htau mice. The htau mouse is unique from other transgenic tau models in that the endogenous murine tau gene has been and replaced with readily phosphorylated human tau. We assessed several measures of neuronal excitability, including evoked action potential frequency and excitatory synaptic responses in dentate granule cells from tau-/-, htau, and non-transgenic control mice at 1.5, 4, and 9 months of age. Compared to age matched controls, dentate granule cells from both tau-/- and htau mice had a lower peak frequency of evoked action potentials and greater paired pulse facilitation, suggesting reduced neuronal excitability. Our results suggest that neuronal excitability is more strongly influenced by the absence of functional tau than by the presence of pathologic tau. These results also suggest that tau's effect on neuronal excitability is more complex than previously understood.
Collapse
Affiliation(s)
- Ryan A Cloyd
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - John Koren
- Department of Neuroscience & Center for Translational Research in Neurodegenerative Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Jose F Abisambra
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Department of Neuroscience & Center for Translational Research in Neurodegenerative Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Bret N Smith
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
22
|
Ungerleider K, Beck J, Lissa D, Turnquist C, Horikawa I, Harris BT, Harris CC. Astrocyte senescence and SASP in neurodegeneration: tau joins the loop. Cell Cycle 2021; 20:752-764. [PMID: 33818291 DOI: 10.1080/15384101.2021.1909260] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tau accumulation is a core component of Alzheimer's disease and other neurodegenerative tauopathies. While tau's impact on neurons is a major area of research, the effect of extracellular tau on astrocytes is largely unknown. This article summarizes our recent studies showing that astrocyte senescence plays a critical role in neurodegenerative diseases and integrates extracellular tau into the regulatory loop of senescent astrocyte-mediated neurotoxicity. Human astrocytes in vitro undergoing senescence were shown to acquire the inflammatory senescence-associated secretory phenotype (SASP) and toxicity to neurons, which may recapitulate aging- and disease-associated neurodegeneration. Here, we show that human astrocytes exposed to extracellular tau in vitro also undergo cellular senescence and acquire a neurotoxic SASP (e.g. IL-6 secretion), with oxidative stress response (indicated by upregulated NRF2 target genes) and a possible activation of inflammasome (indicated by upregulated ASC and IL-1β). These findings suggest that senescent astrocytes induced by various conditions and insults, including tau exposure, may represent a therapeutic target to inhibit or delay the progression of neurodegenerative diseases. We also discuss the pathological activity of extracellular tau in microglia and astrocytes, the disease relevance and diversity of tau forms, therapeutics targeting senescence in neurodegeneration, and the roles of p53 and its isoforms in astrocyte-mediated neurotoxicity and neuroprotection.
Collapse
Affiliation(s)
- Kyra Ungerleider
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jessica Beck
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Comparative Pathobiology, Purdue University, West Layfette, Indiana, USA
| | - Delphine Lissa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Casmir Turnquist
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,University of Oxford Medical School, John Radcliffe Hospital, Oxford, UK
| | - Izumi Horikawa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brent T Harris
- Department of Neurology, Georgetown University Medical Center, Washington, DC, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Brymer KJ, Barnes JR, Parsons MP. Entering a new era of quantifying glutamate clearance in health and disease. J Neurosci Res 2021; 99:1598-1617. [PMID: 33618436 DOI: 10.1002/jnr.24810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022]
Abstract
Glutamate transporter proteins, expressed on both neurons and glia, serve as the main gatekeepers that dictate the spatial and temporal actions of extracellular glutamate. Glutamate is essential to the function of the healthy brain yet paradoxically contributes to the toxicity associated with many neurodegenerative diseases. Rapid transporter-mediated glutamate uptake, primarily occurring at astrocytic processes, tightens the efficiency of excitatory network activity and prevents toxic glutamate build-up in the extracellular space. Glutamate transporter dysfunction is thought to underlie myriad central nervous system (CNS) diseases including Alzheimer and Huntington disease. Over the past few decades, techniques such as biochemical uptake assays and electrophysiological recordings of transporter currents from individual astrocytes have revealed the remarkable ability of the CNS to efficiently clear extracellular glutamate. In more recent years, the rapidly evolving glutamate-sensing "sniffers" now allow researchers to visualize real-time glutamate transients on a millisecond time scale with single synapse spatial resolution in defined cell populations. As we transition to an increased reliance on optical-based methods of glutamate visualization and quantification, it is of utmost importance to understand not only the advantages that glutamate biosensors bring to the table but also the associated caveats and their implications for data interpretation. In this review, we summarize the strengths and limitations of the commonly used methods to quantify glutamate uptake. We then discuss what these techniques, when viewed as a complementary whole, have told us about the brain's ability to regulate glutamate levels, in both health and in the context of neurodegenerative disease.
Collapse
Affiliation(s)
- Kyle J Brymer
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jocelyn R Barnes
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew P Parsons
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
24
|
Nakajima R, Hattori S, Funasaka T, Huang FL, Miyakawa T. Decreased nesting behavior, selective increases in locomotor activity in a novel environment, and paradoxically increased open arm exploration in Neurogranin knockout mice. Neuropsychopharmacol Rep 2020; 41:111-116. [PMID: 33270377 PMCID: PMC8182962 DOI: 10.1002/npr2.12150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Aims Neurogranin (NRGN) is a postsynaptic protein kinase substrate that binds calmodulin in the absence of calcium. Recent studies suggest that NRGN is involved in neuropsychiatric disorders, including schizophrenia, ADHD, and Alzheimer's disease. Previous behavioral studies of Nrgn knockout (Nrgn KO) mice identified hyperactivity, deficits in spatial learning, impaired sociability, and decreased prepulse inhibition, which suggest that these mice recapitulate some symptoms of neuropsychiatric disorders. To further validate Nrgn KO mice as a model of neuropsychiatric disorders, we assessed multiple domains of behavioral phenotypes in Nrgn KO mice using a comprehensive behavioral test battery including tests of homecage locomotor activity and nesting behavior. Methods Adult Nrgn KO mice (28‐54 weeks old) were subjected to a battery of comprehensive behavioral tests, which examined general health, nesting behavior, neurological characteristics, motor function, pain sensitivity, locomotor activity, anxiety‐like behavior, social behavior, sensorimotor gating, depression‐like behavior, and working memory. Results The Nrgn KO mice displayed a pronounced decrease in nesting behavior, impaired motor function, and elevated pain sensitivity. While the Nrgn KO mice showed increased locomotor activity in the open field test, these mice did not show hyperactivity in a familiar environment as measured in the homecage locomotor activity test. The Nrgn KO mice exhibited a decreased number of transitions in the light‐dark transition test and decreased stay time in the center of the open field test, which is consistent with previous reports of increased anxiety‐like behavior. Interestingly, however, these mice stayed on open arms significantly longer than wild‐type mice in the elevated plus maze. Consistent with previous studies, the mutant mice exhibited decreased prepulse inhibition, impaired working memory, and decreased sociability. Conclusions In the current study, we identified behavioral phenotypes of Nrgn KO mice that mimic some of the typical symptoms of neuropsychiatric diseases, including impaired executive function, motor dysfunction, and altered anxiety. Most behavioral phenotypes that had been previously identified, such as hyperlocomotor activity, impaired sociability, tendency for working memory deficiency, and altered sensorimotor gating, were reproduced in the present study. Collectively, the behavioral phenotypes of Nrgn KO mice detected in the present study indicate that Nrgn KO mice are a valuable animal model that recapitulates a variety of symptoms of neuropsychiatric disorders, such as schizophrenia, ADHD, and Alzheimer's disease. We found that Neurogranin knockout mice exhibit decreased nesting behavior, selective increases in locomotor activity in a novel environment, and paradoxically increased open arm exploration. Considering the behavioral phenotypes that had been previously identified, we propose that Neurogranin KO mice are a valuable animal model that recapitulates a variety of symptoms of neuropsychiatric disorders, such as schizophrenia, ADHD, and Alzheimer's disease.![]()
Collapse
Affiliation(s)
- Ryuichi Nakajima
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Teppei Funasaka
- Department of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Freesia L Huang
- Program of Developmental Neurobiology, NICHD, NIH, Bethesda, MD, USA
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
25
|
Hascup KN, Findley CA, Sime LN, Hascup ER. Hippocampal alterations in glutamatergic signaling during amyloid progression in AβPP/PS1 mice. Sci Rep 2020; 10:14503. [PMID: 32879385 PMCID: PMC7467928 DOI: 10.1038/s41598-020-71587-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/18/2020] [Indexed: 11/17/2022] Open
Abstract
Our previous research demonstrated that soluble amyloid-β (Aβ)42, elicits presynaptic glutamate release. We hypothesized that accumulation and deposition of Aβ altered glutamatergic neurotransmission in a temporally and spatially dependent manner. To test this hypothesis, a glutamate selective microelectrode array (MEA) was used to monitor dentate (DG), CA3, and CA1 hippocampal extracellular glutamate levels in 2–4, 6–8, and 18–20 month-old male AβPP/PS1 and age-matched C57BL/6J control mice. Starting at 6 months of age, AβPP/PS1 basal glutamate levels are elevated in all three hippocampal subregions that becomes more pronounced at the oldest age group. Evoked glutamate release was elevated in all three age groups in the DG, but temporally delayed to 18–20 months in the CA3 of AβPP/PS1 mice. However, CA1 evoked glutamate release in AβPP/PS1 mice was elevated at 2–4 months of age and declined with age. Plaque deposition was anatomically aligned (but temporally delayed) with elevated glutamate levels; whereby accumulation was first observed in the CA1 and DG starting at 6–8 months that progressed throughout all hippocampal subregions by 18–20 months of age. The temporal hippocampal glutamate changes observed in this study may serve as a biomarker allowing for time point specific therapeutic interventions in Alzheimer’s disease patients.
Collapse
Affiliation(s)
- Kevin N Hascup
- Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neurosciences Institute, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL, 62794-9628, USA.,Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA.,Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Caleigh A Findley
- Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neurosciences Institute, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL, 62794-9628, USA.,Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Lindsey N Sime
- Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neurosciences Institute, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL, 62794-9628, USA
| | - Erin R Hascup
- Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neurosciences Institute, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL, 62794-9628, USA. .,Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| |
Collapse
|
26
|
Pietrancosta N, Djibo M, Daumas S, El Mestikawy S, Erickson JD. Molecular, Structural, Functional, and Pharmacological Sites for Vesicular Glutamate Transporter Regulation. Mol Neurobiol 2020; 57:3118-3142. [PMID: 32474835 PMCID: PMC7261050 DOI: 10.1007/s12035-020-01912-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) control quantal size of glutamatergic transmission and have been the center of numerous studies over the past two decades. VGLUTs contain two independent transport modes that facilitate glutamate packaging into synaptic vesicles and phosphate (Pi) ion transport into the synaptic terminal. While a transmembrane proton electrical gradient established by a vacuolar-type ATPase powers vesicular glutamate transport, recent studies indicate that binding sites and flux properties for chloride, potassium, and protons within VGLUTs themselves regulate VGLUT activity as well. These intrinsic ionic binding and flux properties of VGLUTs can therefore be modulated by neurophysiological conditions to affect levels of glutamate available for release from synapses. Despite their extraordinary importance, specific and high-affinity pharmacological compounds that interact with these sites and regulate VGLUT function, distinguish between the various modes of transport, and the different isoforms themselves, are lacking. In this review, we provide an overview of the physiologic sites for VGLUT regulation that could modulate glutamate release in an over-active synapse or in a disease state.
Collapse
Affiliation(s)
- Nicolas Pietrancosta
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Laboratoire des Biomolécules, Sorbonne Université, CNRS, ENS, LBM, 75005, Paris, France.
| | - Mahamadou Djibo
- Sorbonne Paris Cité, Université Paris Descartes, LCBPT, UMR 8601, 75006, Paris, France
| | - Stephanie Daumas
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Salah El Mestikawy
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 boulevard Lasalle, Verdun, Montreal, QC, Canada.
| | - Jeffrey D Erickson
- Neuroscience Center, Louisiana State University, New Orleans, LA, 70112, USA. .,Department of Pharmacology, Louisiana State University, New Orleans, LA, 70112, USA.
| |
Collapse
|
27
|
Chen X, Jiang H. Tau as a potential therapeutic target for ischemic stroke. Aging (Albany NY) 2019; 11:12827-12843. [PMID: 31841442 PMCID: PMC6949092 DOI: 10.18632/aging.102547] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
Tau is a protein mainly expressed in adult human brain. It plays important roles both in neurodegenerative diseases and stroke. Stroke is an important cause of adult death and disability, ischemic stroke almost account for 80% in all cases. Abundant studies have proven that the increase of dysfunctional tau may act as a vital factor in pathological changes after ischemic stroke. However, the relationship between tau and ischemic stroke remains ununified. Based on present studies, we firstly introduced the structure and biological function of tau protein. Secondly, we summarized the potential regulatory mechanisms of tau protein in the process of ischemic stroke. Thirdly, we discussed about the findings in therapeutic researches of ischemic stroke. This review may be helpful in implementing new therapies for ischemic stroke and may be beneficial for the clinical and experimental studies.
Collapse
Affiliation(s)
- Xin Chen
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hua Jiang
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Abstract
The symptoms of Alzheimer disease reflect a loss of neural circuit integrity in the brain, but neurons do not work in isolation. Emerging evidence suggests that the intricate balance of interactions between neurons, astrocytes, microglia and vascular cells required for healthy brain function becomes perturbed during the disease, with early changes likely protecting neural circuits from damage, followed later by harmful effects when the balance cannot be restored. Moving beyond a neuronal focus to understand the complex cellular interactions in Alzheimer disease and how these change throughout the course of the disease may provide important insight into developing effective therapeutics.
Collapse
|
29
|
Butler CR, Boychuk JA, Pomerleau F, Alcala R, Huettl P, Ai Y, Jakobsson J, Whiteheart SW, Gerhardt GA, Smith BN, Slevin JT. Modulation of epileptogenesis: A paradigm for the integration of enzyme-based microelectrode arrays and optogenetics. Epilepsy Res 2019; 159:106244. [PMID: 31816591 DOI: 10.1016/j.eplepsyres.2019.106244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/22/2019] [Accepted: 11/22/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Genesis of acquired epilepsy includes transformations spanning genetic-to- network-level modifications, disrupting the regional excitatory/inhibitory balance. Methodology concurrently tracking changes at multiple levels is lacking. Here, viral vectors are used to differentially express two opsin proteins in neuronal populations within dentate gyrus (DG) of hippocampus. When activated, these opsins induced excitatory or inhibitory neural output that differentially affected neural networks and epileptogenesis. In vivo measures included behavioral observation coupled to real-time measures of regional glutamate flux using ceramic-based amperometric microelectrode arrays (MEAs). RESULTS Using MEA technology, phasic increases of extracellular glutamate were recorded immediately upon application of blue light/488 nm to DG of rats previously transfected with an AAV 2/5 vector containing an (excitatory) channelrhodopsin-2 transcript. Rats receiving twice-daily 30-sec light stimulation to DG ipsilateral to viral transfection progressed through Racine seizure stages. AAV 2/5 (inhibitory) halorhodopsin-transfected rats receiving concomitant amygdalar kindling and DG light stimuli were kindled significantly more slowly than non-stimulated controls. In in vitro slice preparations, both excitatory and inhibitory responses were independently evoked in dentate granule cells during appropriate light stimulation. Latency to response and sensitivity of responses suggest a degree of neuron subtype-selective functional expression of the transcripts. CONCLUSIONS This study demonstrates the potential for coupling MEA technology and optogenetics for real-time neurotransmitter release measures and modification of seizure susceptibility in animal models of epileptogenesis. This microelectrode/optogenetic technology could prove useful for characterization of network and system level dysfunction in diseases involving imbalanced excitatory/inhibitory control of neuron populations and guide development of future treatment strategies.
Collapse
Affiliation(s)
- Corwin R Butler
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States
| | - Jeffery A Boychuk
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Epilepsy Center, University of Kentucky, Lexington, KY, 40536, United States
| | - Francois Pomerleau
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Brain Restoration Center, University of Kentucky, Lexington, KY, 40356, United States
| | - Ramona Alcala
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States
| | - Peter Huettl
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Brain Restoration Center, University of Kentucky, Lexington, KY, 40356, United States
| | - Yi Ai
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States
| | - Johan Jakobsson
- Wallenburg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sidney W Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, United States; Veterans Affairs Medical Center, Lexington, KY, 40536, United States
| | - Greg A Gerhardt
- Epilepsy Center, University of Kentucky, Lexington, KY, 40536, United States; Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY, 40536, United States; Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Brain Restoration Center, University of Kentucky, Lexington, KY, 40356, United States
| | - Bret N Smith
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Epilepsy Center, University of Kentucky, Lexington, KY, 40536, United States; Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY, 40536, United States; Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States
| | - John T Slevin
- Epilepsy Center, University of Kentucky, Lexington, KY, 40536, United States; Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Veterans Affairs Medical Center, Lexington, KY, 40536, United States; Brain Restoration Center, University of Kentucky, Lexington, KY, 40356, United States.
| |
Collapse
|
30
|
Amadoro G, Latina V, Corsetti V, Calissano P. N-terminal tau truncation in the pathogenesis of Alzheimer's disease (AD): Developing a novel diagnostic and therapeutic approach. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165584. [PMID: 31676377 DOI: 10.1016/j.bbadis.2019.165584] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/04/2023]
Abstract
Tau truncation occurs at early stages during the development of human Alzheimer's disease (AD) and other tauopathy dementias. Tau cleavage, particularly in its N-terminal projection domain, is able to drive per se neurodegeneration, regardless of its pro-aggregative pathway(s) and in fragment(s)-dependent way. In this short review, we highlight the pathological relevance of the 20-22 kDa NH2-truncated tau fragment which is endowed with potent neurotoxic "gain-of-function" action(s), both in vitro and in vivo. An extensive comment on its clinical value as novel progression/diagnostic biomarker and potential therapeutic target in the context of tau-mediated neurodegeneration is also provided.
Collapse
Affiliation(s)
- G Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - V Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - V Corsetti
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - P Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| |
Collapse
|
31
|
Foster JB, Lashley R, Zhao F, Wang X, Kung N, Askwith CC, Lin L, Shultis MW, Hodgetts KJ, Lin CLG. Enhancement of tripartite synapses as a potential therapeutic strategy for Alzheimer's disease: a preclinical study in rTg4510 mice. Alzheimers Res Ther 2019; 11:75. [PMID: 31439023 PMCID: PMC6706914 DOI: 10.1186/s13195-019-0530-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The lack of effective treatment options for Alzheimer's disease (AD) is of momentous societal concern. Synaptic loss is the hallmark of AD that correlates best with impaired memory and occurs early in the disease process, before the onset of clinical symptoms. We have developed a small-molecule, pyridazine-based series that enhances the structure and function of both the glial processes and the synaptic boutons that form the tripartite synapse. Previously, we have shown that these pyridazine derivatives exhibit profound efficacy in an amyloid precursor protein AD model. Here, we evaluated the efficacy of an advanced compound, LDN/OSU-0215111, in rTg4510 mice-an aggressive tauopathy model. METHODS rTg4510 mice were treated orally with vehicle or LDN/OSU-0215111 (10 mg/kg) daily from the early symptomatic stage (2 months old) to moderate (4 months old) and severe (8 months old) disease stages. At each time point, mice were subjected to a battery of behavioral tests to assess the activity levels and cognition. Also, tissue collections were performed on a subset of mice to analyze the tripartite synaptic changes, neurodegeneration, gliosis, and tau phosphorylation as assessed by immunohistochemistry and Western blotting. At 8 months of age, a subset of rTg4510 mice treated with compound was switched to vehicle treatment and analyzed behaviorally and biochemically 30 days after treatment cessation. RESULTS At both the moderate and severe disease stages, compound treatment normalized cognition and behavior as well as reduced synaptic loss, neurodegeneration, tau hyperphosporylation, and neuroinflammation. Importantly, after 30 days of treatment cessation, the benefits of compound treatment were sustained, indicating disease modification. We also found that compound treatment rapidly and robustly reduced tau hyperphosphorylation/deposition possibly via the inhibition of GSK3β. CONCLUSIONS The results show that LDN/OSU-0215111 provides benefits for multiple aspects of tauopathy-dependent pathology found in Alzheimer's disease including tripartite synapse normalization and reduction of toxic tau burden, which, in turn, likely accounted for normalized cognition and activity levels in compound-treated rTg4510 mice. This study, in combination with our previous work regarding the benefit of pyridazine derivatives against amyloid-dependent pathology, strongly supports pyridazine derivatives as a viable, clinically relevant, and disease-modifying treatment for many of the facets of Alzheimer's disease.
Collapse
Affiliation(s)
- Joshua B. Foster
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Rashelle Lashley
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Fangli Zhao
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Xueqin Wang
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Nydia Kung
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Candice C. Askwith
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Lin Lin
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA USA
| | - Michael W. Shultis
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA USA
| | - Kevin J. Hodgetts
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA USA
| | - Chien-Liang Glenn Lin
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH USA
| |
Collapse
|
32
|
The role of APOE4 in Alzheimer's disease: strategies for future therapeutic interventions. Neuronal Signal 2019; 3:NS20180203. [PMID: 32269835 PMCID: PMC7104324 DOI: 10.1042/ns20180203] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia affecting almost 50 million people worldwide. The ε4 allele of Apolipoprotein E (APOE) is the strongest known genetic risk factor for late-onset AD cases, with homozygous APOE4 carriers being approximately 15-times more likely to develop the disease. With 25% of the population being APOE4 carriers, understanding the role of this allele in AD pathogenesis and pathophysiology is crucial. Though the exact mechanism by which ε4 allele increases the risk for AD is unknown, the processes mediated by APOE, including cholesterol transport, synapse formation, modulation of neurite outgrowth, synaptic plasticity, destabilization of microtubules, and β-amyloid clearance, suggest potential therapeutic targets. This review will summarize the impact of APOE on neurons and neuronal signaling, the interactions between APOE and AD pathology, and the association with memory decline. We will then describe current treatments targeting APOE4, complications associated with the current therapies, and suggestions for future areas of research and treatment.
Collapse
|
33
|
Zhang SH, Liu DX, Wang L, Li YH, Wang YH, Zhang H, Su ZK, Fang WG, Qin XX, Shang DS, Li B, Han XN, Zhao WD, Chen YH. A CASPR1-ATP1B3 protein interaction modulates plasma membrane localization of Na +/K +-ATPase in brain microvascular endothelial cells. J Biol Chem 2019; 294:6375-6386. [PMID: 30792309 DOI: 10.1074/jbc.ra118.006263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/13/2019] [Indexed: 01/01/2023] Open
Abstract
Contactin-associated protein 1 (CASPR1 or CNTNAP1) was recently reported to be expressed in brain microvascular endothelial cells (BMECs), the major component of the blood-brain barrier. To investigate CASPR1's physiological role in BMECs, here we used CASPR1 as a bait in a yeast two-hybrid screen to identify CASPR1-interacting proteins and identified the β3 subunit of Na+/K+-ATPase (ATP1B3) as a CASPR1-binding protein. Using recombinant and purified CASPR1, RNAi, GST-pulldown, immunofluorescence, immunoprecipitation, and Na+/K+-ATPase activity assays, we found that ATP1B3's core proteins, but not its glycosylated forms, interact with CASPR1, which was primarily located in the endoplasmic reticulum of BMECs. CASPR1 knockdown reduced ATP1B3 glycosylation and prevented its plasma membrane localization, phenotypes that were reversed by expression of full-length CASPR1. We also found that the CASPR1 knockdown reduces the plasma membrane distribution of the α1 subunit of Na+/K+-ATPase, which is the major component assembled with ATP1B3 in the complete Na+/K+-ATPase complex. The binding of CASPR1 with ATP1B3, but not the α1 subunit, indicated that CASPR1 binds with ATP1B3 to facilitate the assembly of Na+/K+-ATPase. Furthermore, the activity of Na+/K+-ATPase was reduced in CASPR1-silenced BMECs. Interestingly, shRNA-mediated CASPR1 silencing reduced glutamate efflux through the BMECs. These results demonstrate that CASPR1 binds with ATP1B3 and thereby contributes to the regulation of Na+/K+-ATPase maturation and trafficking to the plasma membrane in BMECs. We conclude that CASPR1-mediated regulation of Na+/K+-ATPase activity is important for glutamate transport across the blood-brain barrier.
Collapse
Affiliation(s)
- Shu-Hong Zhang
- From the Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang 110122, China and.,the Department of Cell Biology, School of Basic Medicine, Jiamusi University, 258 Xuefu Street, Jiamusi 154007, Heilongjiang Province, China
| | - Dong-Xin Liu
- From the Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang 110122, China and
| | - Li Wang
- From the Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang 110122, China and
| | - Yu-Hua Li
- From the Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang 110122, China and
| | - Yan-Hua Wang
- From the Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang 110122, China and
| | - Hu Zhang
- From the Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang 110122, China and
| | - Zheng-Kang Su
- From the Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang 110122, China and
| | - Wen-Gang Fang
- From the Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang 110122, China and
| | - Xiao-Xue Qin
- From the Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang 110122, China and
| | - De-Shu Shang
- From the Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang 110122, China and
| | - Bo Li
- From the Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang 110122, China and
| | - Xiao-Ning Han
- From the Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang 110122, China and
| | - Wei-Dong Zhao
- From the Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang 110122, China and
| | - Yu-Hua Chen
- From the Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang 110122, China and
| |
Collapse
|
34
|
Siano G, Varisco M, Caiazza MC, Quercioli V, Mainardi M, Ippolito C, Cattaneo A, Di Primio C. Tau Modulates VGluT1 Expression. J Mol Biol 2019; 431:873-884. [PMID: 30664870 DOI: 10.1016/j.jmb.2019.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 02/07/2023]
Abstract
Tau displacement from microtubules is the first step in the onset of tauopathies and is followed by toxic protein aggregation. However, other non-canonical functions of Tau might have a role in these pathologies. Here, we demonstrate that a small amount of Tau localizes in the nuclear compartment and accumulates in both the soluble and chromatin-bound fractions. We show that favoring Tau nuclear translocation and accumulation, by Tau overexpression or detachment from MTs, increases the expression of VGluT1, a disease-relevant gene directly involved in glutamatergic synaptic transmission. Remarkably, the P301L mutation, related to frontotemporal dementia FTDP-17, impairs this mechanism leading to a loss of function. Altogether, our results provide the demonstration of a direct physiological role of Tau on gene expression. Alterations of this mechanism may be at the basis of the onset of neurodegeneration.
Collapse
Affiliation(s)
- Giacomo Siano
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Martina Varisco
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | | | | | - Marco Mainardi
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonino Cattaneo
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | | |
Collapse
|
35
|
Diagnostic and prognostic biomarkers for HAND. J Neurovirol 2019; 25:686-701. [PMID: 30607890 DOI: 10.1007/s13365-018-0705-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023]
Abstract
In 2007, the nosology for HIV-1-associated neurocognitive disorders (HAND) was updated to a primarily neurocognitive disorder. However, currently available diagnostic tools lack the sensitivity and specificity needed for an accurate diagnosis for HAND. Scientists and clinicians, therefore, have been on a quest for an innovative biomarker to diagnose (i.e., diagnostic biomarker) and/or predict (i.e., prognostic biomarker) the progression of HAND in the post-combination antiretroviral therapy (cART) era. The present review examined the utility and challenges of four proposed biomarkers, including neurofilament light (NFL) chain concentration, amyloid (i.e., sAPPα, sAPPβ, amyloid β) and tau proteins (i.e., total tau, phosphorylated tau), resting-state functional magnetic resonance imaging (fMRI), and prepulse inhibition (PPI). Although significant genotypic differences have been observed in NFL chain concentration, sAPPα, sAPPβ, amyloid β, total tau, phosphorylated tau, and resting-state fMRI, inconsistencies and/or assessment limitations (e.g., invasive procedures, lack of disease specificity, cost) challenge their utility as a diagnostic and/or prognostic biomarker for milder forms of neurocognitive impairment (NCI) in the post-cART era. However, critical evaluation of the literature supports the utility of PPI as a powerful diagnostic biomarker with high accuracy (i.e., 86.7-97.1%), sensitivity (i.e., 89.3-100%), and specificity (i.e., 79.5-94.1%). Additionally, the inclusion of multiple CSF and/or plasma markers, rather than a single protein, may provide a more sensitive diagnostic biomarker for HAND; however, a pressing need for additional research remains. Most notably, PPI may serve as a prognostic biomarker for milder forms of NCI, evidenced by its ability to predict later NCI in higher-order cognitive domains with regression coefficients (i.e., r) greater than 0.8. Thus, PPI heralds an opportunity for the development of a brief, noninvasive diagnostic and promising prognostic biomarker for milder forms of NCI in the post-cART era.
Collapse
|
36
|
Lippi SLP, Smith ML, Flinn JM. A Novel hAPP/htau Mouse Model of Alzheimer's Disease: Inclusion of APP With Tau Exacerbates Behavioral Deficits and Zinc Administration Heightens Tangle Pathology. Front Aging Neurosci 2018; 10:382. [PMID: 30524268 PMCID: PMC6263092 DOI: 10.3389/fnagi.2018.00382] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/31/2018] [Indexed: 11/13/2022] Open
Abstract
The brains of those with Alzheimer's disease have amyloid and tau pathology; thus, mice modeling AD should have both markers. In this study, we characterize offspring from the cross of the J20 (hAPP) and rTg4510 (htau) strains (referred to as dual Tg). Behavior was assessed at both 3.5 and 7 months, and biochemical differences were assessed at 8 months. Additionally, mice were placed on zinc (Zn) water or standard lab water in order to determine the role of this essential biometal. Behavioral measures examined cognition, emotion, and aspects of daily living. Transgenic mice (dual Tg and htau) showed significant deficits in spatial memory in the Barnes Maze at both 3.5 and 7 months compared to controls. At 7 months, dual Tg mice performed significantly worse than htau mice (p < 0.01). Open field and elevated zero maze (EZM) data indicated that dual Tg and htau mice displayed behavioral disinhibition compared to control mice at both 3.5 and 7 months (p < 0.001). Transgenic mice showed significant deficits in activities of daily living, including burrowing and nesting, at both 3.5 and 7 months compared to control mice (p < 0.01). Dual Tg mice built very poor nests, indicating that non-cognitive tasks are also impacted by AD. Overall, dual Tg mice demonstrated behavioral deficits earlier than those shown by the htau mice. In the brain, dual Tg mice had significantly less free Zn compared to control mice in both the dentate gyrus and the CA3 of the hippocampus (p < 0.01). Dual Tg mice had increased tangles and plaques in the hippocampus compared to htau mice and the dual Tg mice given Zn water displayed increased tangle pathology in the hippocampus compared to htau mice on Zn water (p < 0.05). The dual Tg mouse described here displays pathology reminiscent of the human AD condition and is impaired early on in both cognitive and non-cognitive behaviors. This new mouse model allows researchers to assess how both amyloid and tau in combination impact behavior and brain pathology.
Collapse
Affiliation(s)
- Stephen L P Lippi
- Psychology Department, George Mason University, Fairfax, VA, United States
| | - Meghann L Smith
- Psychology Department, George Mason University, Fairfax, VA, United States
| | - Jane M Flinn
- Psychology Department, George Mason University, Fairfax, VA, United States
| |
Collapse
|
37
|
Neuronal levels and sequence of tau modulate the power of brain rhythms. Neurobiol Dis 2018; 117:181-188. [PMID: 29859869 DOI: 10.1016/j.nbd.2018.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 01/15/2023] Open
Abstract
Neural network dysfunction may contribute to functional decline and disease progression in neurodegenerative disorders. Diverse lines of evidence suggest that neuronal accumulation of tau promotes network dysfunction and cognitive decline. The A152T-variant of human tau (hTau-A152T) increases the risk of Alzheimer's disease (AD) and several other tauopathies. When overexpressed in neurons of transgenic mice, it causes age-dependent neuronal loss and cognitive decline, as well as non-convulsive epileptic activity, which is also seen in patients with AD. Using intracranial EEG recordings with electrodes implanted over the parietal cortex, we demonstrate that hTau-A152T increases the power of brain oscillations in the 0.5-6 Hz range more than wildtype human tau in transgenic lines with comparable levels of human tau protein in brain, and that genetic ablation of endogenous tau in Mapt-/- mice decreases the power of these oscillations as compared to wildtype controls. Suppression of hTau-A152T production in doxycycline-regulatable transgenic mice reversed their abnormal network activity. Treatment of hTau-A152T mice with the antiepileptic drug levetiracetam also rapidly and persistently reversed their brain dysrhythmia and network hypersynchrony. These findings suggest that both the level and the sequence of tau modulate the power of specific brain oscillations. The potential of EEG spectral changes as a biomarker deserves to be explored in clinical trials of tau-lowering therapeutics. Our results also suggest that levetiracetam treatment is able to counteract tau-dependent neural network dysfunction. Tau reduction and levetiracetam treatment may be of benefit in AD and other conditions associated with brain dysrhythmias and network hypersynchrony.
Collapse
|
38
|
Ianov L, De Both M, Chawla MK, Rani A, Kennedy AJ, Piras I, Day JJ, Siniard A, Kumar A, Sweatt JD, Barnes CA, Huentelman MJ, Foster TC. Hippocampal Transcriptomic Profiles: Subfield Vulnerability to Age and Cognitive Impairment. Front Aging Neurosci 2017; 9:383. [PMID: 29276487 PMCID: PMC5727020 DOI: 10.3389/fnagi.2017.00383] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/07/2017] [Indexed: 01/11/2023] Open
Abstract
The current study employed next-generation RNA sequencing to examine gene expression differences related to brain aging, cognitive decline, and hippocampal subfields. Young and aged rats were trained on a spatial episodic memory task. Hippocampal regions CA1, CA3, and the dentate gyrus were isolated. Poly-A mRNA was examined using two different sequencing platforms, Illumina, and Ion Proton. The Illumina platform was used to generate seed lists of genes that were statistically differentially expressed across regions, ages, or in association with cognitive function. The gene lists were then retested using the data from the Ion Proton platform. The results indicate hippocampal subfield differences in gene expression and point to regional differences in vulnerability to aging. Aging was associated with increased expression of immune response-related genes, particularly in the dentate gyrus. For the memory task, impaired performance of aged animals was linked to the regulation of Ca2+ and synaptic function in region CA1. Finally, we provide a transcriptomic characterization of the three subfields regardless of age or cognitive status, highlighting and confirming a correspondence between cytoarchitectural boundaries and molecular profiling.
Collapse
Affiliation(s)
- Lara Ianov
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matt De Both
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Monica K Chawla
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Asha Rani
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Andrew J Kennedy
- Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, United States
| | - Ignazio Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Jeremy J Day
- Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, United States
| | - Ashley Siniard
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Ashok Kumar
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - J David Sweatt
- Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States.,Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ, United States
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States.,Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Thomas C Foster
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
39
|
Setti SE, Hunsberger HC, Reed MN. Alterations in Hippocampal Activity and Alzheimer's Disease. TRANSLATIONAL ISSUES IN PSYCHOLOGICAL SCIENCE 2017; 3:348-356. [PMID: 29862310 DOI: 10.1037/tps0000124] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The aging population and those with amnestic mild cognitive impairment (aMCI) are at increased risk for developing Alzheimer's disease (AD). Individuals with aMCI in particular may display pathological changes in brain function that may ultimately result in a diagnosis of AD. This review focuses specifically on hippocampal hyperexcitability, a pathology that is sometimes detectable years before diagnosis, which has been observed in individuals with aMCI. We describe how changes in hippocampal activity are associated with, or in some cases may be permissive for, the development of AD. Finally, we describe how lifestyle changes, including exercise and dietary changes can attenuate cognitive decline and hippocampal hyperexcitability, potentially reducing the risk of developing AD.
Collapse
Affiliation(s)
- Sharay E Setti
- Department of Drug Discovery & Development, Auburn University
| | - Holly C Hunsberger
- Department of Psychiatry, Columbia University.,Department of Psychology, West Virginia University
| | - Miranda N Reed
- Department of Drug Discovery & Development, Auburn University
| |
Collapse
|
40
|
Angulo SL, Orman R, Neymotin SA, Liu L, Buitrago L, Cepeda-Prado E, Stefanov D, Lytton WW, Stewart M, Small SA, Duff KE, Moreno H. Tau and amyloid-related pathologies in the entorhinal cortex have divergent effects in the hippocampal circuit. Neurobiol Dis 2017; 108:261-276. [PMID: 28860088 DOI: 10.1016/j.nbd.2017.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/09/2017] [Accepted: 08/26/2017] [Indexed: 02/02/2023] Open
Abstract
The entorhinal cortex (EC) is affected early in Alzheimer's disease, an illness defined by a co-occurrence of tau and amyloid-related pathologies. How the co-occurrence of these pathologies in the EC affects the hippocampal circuit remains unknown. Here we address this question by performing electrophysiological analyses of the EC circuit in mice that express mutant human amyloid precursor protein (hAPP) or tau (hTau), or both in the EC. We show that the alterations in the hippocampal circuit are divergent, with hAPP increasing but hTau decreasing neuronal/circuit excitability. Most importantly, mice co-expressing hAPP and hTau show that hTau has a dominant effect, dampening the excitatory effects of hAPP. Additionally, compensatory synaptic downscaling, in response to increased excitability in EC was observed in subicular neurons of hAPP mice. Based on simulations, we propose that EC interneuron pruning can account for both EC hyperexcitability and subicular synaptic downscaling found in mice expressing hAPP.
Collapse
Affiliation(s)
- S L Angulo
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY 11203, United States; The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology/Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, United States
| | - R Orman
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology/Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, United States
| | - S A Neymotin
- Department of Neuroscience, Brown University, Providence, RI 02912, United States
| | - L Liu
- Department of Pathology, Cell Biology, Columbia University Medical Center, NY 10032, United States; Department of Psychiatry, Columbia University Medical Center, NY 10032, United States
| | - L Buitrago
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY 11203, United States; The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology/Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, United States
| | - E Cepeda-Prado
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY 11203, United States; The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology/Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, United States
| | - D Stefanov
- Scientific Computer Center, SUNY Downstate Medical Center, Brooklyn, NY 11203, United States
| | - W W Lytton
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY 11203, United States; The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology/Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, United States
| | - M Stewart
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology/Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, United States
| | - S A Small
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, NY 10032, United States; Department of Neurology, Columbia University Medical Center, NY 10032, United States
| | - K E Duff
- Department of Pathology, Cell Biology, Columbia University Medical Center, NY 10032, United States; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, NY 10032, United States; Department of Psychiatry, Columbia University Medical Center, NY 10032, United States
| | - H Moreno
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY 11203, United States; The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology/Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, United States.
| |
Collapse
|
41
|
Abstract
Intracellular accumulation of abnormally phosphorylated tau in different types of neurons is a pathological characteristic of Alzheimer's disease (AD). While tau modification and associated neuronal loss and hypometabolism start in the entorhinal cortex (EC) in early AD patients, the mechanism by which mutant P301L hTau leads to dementia is not fully elucidated. Here, we studied the effects of P301L hTau transduction in the medial EC (MEC) of mice on tau phosphorylation and accumulation, and cognitive deficit. We found that the exogenous mutant tau protein was restricted in MEC without spreading to other brain regions at one month after transduction. Interestingly, expression of the mutant tau in MEC induces endogenous tau hyperphosphorylation and accumulation in hippocampus and cortex, and inhibits neuronal activity with attenuated PP-DG synapse plasticity, leading to hippocampus-dependent memory deficit with intact olfactory function. These findings suggest a novel neuropathological mechanism of early AD, which is initiated by tau accumulation in MEC, and demonstrate a tau pathological model of early stage AD.
Collapse
|
42
|
Calcineurin/NFAT Signaling in Activated Astrocytes Drives Network Hyperexcitability in Aβ-Bearing Mice. J Neurosci 2017; 37:6132-6148. [PMID: 28559377 DOI: 10.1523/jneurosci.0877-17.2017] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/25/2022] Open
Abstract
Hyperexcitable neuronal networks are mechanistically linked to the pathologic and clinical features of Alzheimer's disease (AD). Astrocytes are a primary defense against hyperexcitability, but their functional phenotype during AD is poorly understood. Here, we found that activated astrocytes in the 5xFAD mouse model were strongly associated with proteolysis of the protein phosphatase calcineurin (CN) and the elevated expression of the CN-dependent transcription factor nuclear factor of activated T cells 4 (NFAT4). Intrahippocampal injections of adeno-associated virus vectors containing the astrocyte-specific promoter Gfa2 and the NFAT inhibitory peptide VIVIT reduced signs of glutamate-mediated hyperexcitability in 5xFAD mice, measured in vivo with microelectrode arrays and ex vivo brain slices, using whole-cell voltage clamp. VIVIT treatment in 5xFAD mice led to increased expression of the astrocytic glutamate transporter GLT-1 and to attenuated changes in dendrite morphology, synaptic strength, and NMDAR-dependent responses. The results reveal astrocytic CN/NFAT4 as a key pathologic mechanism for driving glutamate dysregulation and neuronal hyperactivity during AD.SIGNIFICANCE STATEMENT Neuronal hyperexcitability and excitotoxicity are increasingly recognized as important mechanisms for neurodegeneration and dementia associated with Alzheimer's disease (AD). Astrocytes are profoundly activated during AD and may lose their capacity to regulate excitotoxic glutamate levels. Here, we show that a highly active calcineurin (CN) phosphatase fragment and its substrate transcription factor, nuclear factor of activated T cells (NFAT4), appear in astrocytes in direct proportion to the extent of astrocyte activation. The blockade of astrocytic CN/NFAT signaling in a common mouse model of AD, using adeno-associated virus vectors normalized glutamate signaling dynamics, increased astrocytic glutamate transporter levels and alleviated multiple signs of neuronal hyperexcitability. The results suggest that astrocyte activation drives hyperexcitability during AD through a mechanism involving aberrant CN/NFAT signaling and impaired glutamate transport.
Collapse
|
43
|
Miyamoto T, Stein L, Thomas R, Djukic B, Taneja P, Knox J, Vossel K, Mucke L. Phosphorylation of tau at Y18, but not tau-fyn binding, is required for tau to modulate NMDA receptor-dependent excitotoxicity in primary neuronal culture. Mol Neurodegener 2017; 12:41. [PMID: 28526038 PMCID: PMC5438564 DOI: 10.1186/s13024-017-0176-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hyperexcitability of neuronal networks can lead to excessive release of the excitatory neurotransmitter glutamate, which in turn can cause neuronal damage by overactivating NMDA-type glutamate receptors and related signaling pathways. This process (excitotoxicity) has been implicated in the pathogenesis of many neurological conditions, ranging from childhood epilepsies to stroke and neurodegenerative disorders such as Alzheimer's disease (AD). Reducing neuronal levels of the microtubule-associated protein tau counteracts network hyperexcitability of diverse causes, but whether this strategy can also diminish downstream excitotoxicity is less clear. METHODS We established a cell-based assay to quantify excitotoxicity in primary cultures of mouse hippocampal neurons and investigated the role of tau in exicitotoxicity by modulating neuronal tau expression through genetic ablation or transduction with lentiviral vectors expressing anti-tau shRNA or constructs encoding wildtype versus mutant mouse tau. RESULTS We demonstrate that shRNA-mediated knockdown of tau reduces glutamate-induced, NMDA receptor-dependent Ca2+ influx and neurotoxicity in neurons from wildtype mice. Conversely, expression of wildtype mouse tau enhances Ca2+ influx and excitotoxicity in tau-deficient (Mapt -/-) neurons. Reconstituting tau expression in Mapt -/- neurons with mutant forms of tau reveals that the tau-related enhancement of Ca2+ influx and excitotoxicity depend on the phosphorylation of tau at tyrosine 18 (pY18), which is mediated by the tyrosine kinase Fyn. These effects are most evident at pathologically elevated concentrations of glutamate, do not involve GluN2B-containing NMDA receptors, and do not require binding of Fyn to tau's major interacting PxxP motif or of tau to microtubules. CONCLUSIONS Although tau has been implicated in diverse neurological diseases, its most pathogenic forms remain to be defined. Our study suggests that reducing the formation or level of pY18-tau can counteract excitotoxicity by diminishing NMDA receptor-dependent Ca2+ influx.
Collapse
Affiliation(s)
- Takashi Miyamoto
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Liana Stein
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Reuben Thomas
- Gladstone Institutes, Convergence Zone, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Biljana Djukic
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Praveen Taneja
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Joseph Knox
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Keith Vossel
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA, 94158, USA. .,Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
44
|
Hunsberger HC, Setti SE, Heslin RT, Quintero JE, Gerhardt GA, Reed MN. Using Enzyme-based Biosensors to Measure Tonic and Phasic Glutamate in Alzheimer's Mouse Models. J Vis Exp 2017. [PMID: 28518111 DOI: 10.3791/55418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Neurotransmitter disruption is often a key component of diseases of the central nervous system (CNS), playing a role in the pathology underlying Alzheimer's disease, Parkinson's disease, depression, and anxiety. Traditionally, microdialysis has been the most common (lauded) technique to examine neurotransmitter changes that occur in these disorders. But because microdialysis has the ability to measure slow 1-20 minute changes across large areas of tissue, it has the disadvantage of invasiveness, potentially destroying intrinsic connections within the brain and a slow sampling capability. A relatively newer technique, the microelectrode array (MEA), has numerous advantages for measuring specific neurotransmitter changes within discrete brain regions as they occur, making for a spatially and temporally precise approach. In addition, using MEAs is minimally invasive, allowing for measurement of neurotransmitter alterations in vivo. In our laboratory, we have been specifically interested in changes in the neurotransmitter, glutamate, related to Alzheimer's disease pathology. As such, the method described here has been used to assess potential hippocampal disruptions in glutamate in a transgenic mouse model of Alzheimer's disease. Briefly, the method used involves coating a multi-site microelectrode with an enzyme very selective for the neurotransmitter of interest and using self-referencing sites to subtract out background noise and interferents. After plating and calibration, the MEA can be constructed with a micropipette and lowered into the brain region of interest using a stereotaxic device. Here, the method described involves anesthetizing rTg(TauP301L)4510 mice and using a stereotaxic device to precisely target sub-regions (DG, CA1, and CA3) of the hippocampus.
Collapse
Affiliation(s)
| | - Sharay E Setti
- Department of Drug Discovery & Development, Auburn University
| | - Ryan T Heslin
- Department of Drug Discovery & Development, Auburn University
| | - Jorge E Quintero
- Department of Neuroscience, University of Kentucky Medical Center
| | - Greg A Gerhardt
- Department of Neuroscience, University of Kentucky Medical Center
| | - Miranda N Reed
- Department of Drug Discovery & Development, Auburn University;
| |
Collapse
|
45
|
Crescenzi R, DeBrosse C, Nanga RP, Byrne MD, Krishnamoorthy G, D’Aquilla K, Nath H, Morales KH, Iba M, Hariharan H, Lee VM, Detre JA, Reddy R. Longitudinal imaging reveals subhippocampal dynamics in glutamate levels associated with histopathologic events in a mouse model of tauopathy and healthy mice. Hippocampus 2017; 27:285-302. [PMID: 27997993 PMCID: PMC5396955 DOI: 10.1002/hipo.22693] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 11/08/2022]
Abstract
Tauopathies are neurodegenerative disorders characterized by abnormal intracellular aggregates of tau protein, and include Alzheimer's disease, corticobasal degeneration, frontotemporal dementia, and traumatic brain injury. Glutamate metabolism is altered in neurodegenerative disorders manifesting in higher or lower concentrations of glutamate, its transporters or receptors. Previously, glutamate chemical exchange saturation transfer (GluCEST) magnetic resonance imaging (MRI) demonstrated that glutamate levels are reduced in regions of synapse loss in the hippocampus of a mouse model of late-stage tauopathy. We performed a longitudinal GluCEST imaging experiment paired with a cross-sectional study of histologic markers of tauopathy to determine whether (1) early GluCEST changes are associated with synapse loss before volume loss occurs in the hippocampus, and whether (2) subhippocampal dynamics in GluCEST are associated with histopathologic events related to glutamate alterations in tauopathy. Live imaging of the hippocampus in three serial slices was performed without exogenous contrast agents, and subregions were segmented based on a k-means cluster model. Subregions of the hippocampus were analyzed (cornu ammonis CA1, CA3, dentate gyrus DG, and ventricle) in order to associate local MRI-observable changes in glutamate with histological measures of glial cell proliferation (GFAP), synapse density (synaptophysin, VGlut1) and glutamate receptor (NMDA-NR1) levels. Early differences in GluCEST between healthy and tauopathy mice were measured in the CA1 and DG subregions (30% reduction, P ≤ 0.001). Synapse density was also significantly reduced in every subregion of the hippocampus in tauopathy mice by 6 months. Volume was not significantly reduced in any subregion until 13 months. Further, a gradient in glutamate levels was observed in vivo along hippocampal axes that became polarized as tauopathy progressed. Dynamics in hippocampal glutamate levels throughout lifetime were most closely correlated with combined changes in synaptophysin and GFAP, indicating that GluCEST imaging may be a surrogate marker of glutamate concentration in glial cells and at the synaptic level. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rachelle Crescenzi
- Department of Biochemistry & Molecular Biophysics (BMB), University of Pennsylvania, Philadelphia, PA, USA
- Center for Magnetic Resonance and Optical Imaging (CMROI), University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine DeBrosse
- Department of Biochemistry & Molecular Biophysics (BMB), University of Pennsylvania, Philadelphia, PA, USA
- Center for Magnetic Resonance and Optical Imaging (CMROI), University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi P.R. Nanga
- Center for Magnetic Resonance and Optical Imaging (CMROI), University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew D. Byrne
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania, Philadelphia, PA, USA
| | - Guruprasad Krishnamoorthy
- Center for Magnetic Resonance and Optical Imaging (CMROI), University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin D’Aquilla
- Center for Magnetic Resonance and Optical Imaging (CMROI), University of Pennsylvania, Philadelphia, PA, USA
| | - Hari Nath
- Center for Magnetic Resonance and Optical Imaging (CMROI), University of Pennsylvania, Philadelphia, PA, USA
| | - Knashawn H. Morales
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michiyo Iba
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania, Philadelphia, PA, USA
| | - Hari Hariharan
- Center for Magnetic Resonance and Optical Imaging (CMROI), University of Pennsylvania, Philadelphia, PA, USA
| | - Virginia M.Y Lee
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania, Philadelphia, PA, USA
| | - John A. Detre
- Center for Functional Neuroimaging (CfN), University of Pennsylvania, Philadelphia, PA, USA
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging (CMROI), University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
46
|
Kilian JG, Hsu HW, Mata K, Wolf FW, Kitazawa M. Astrocyte transport of glutamate and neuronal activity reciprocally modulate tau pathology in Drosophila. Neuroscience 2017; 348:191-200. [PMID: 28215745 DOI: 10.1016/j.neuroscience.2017.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 01/21/2023]
Abstract
Abnormal buildup of the microtubule associated protein tau is a major pathological hallmark of Alzheimer's disease (AD) and various tauopathies. The mechanisms by which pathological tau accumulates and spreads throughout the brain remain largely unknown. Previously, we demonstrated that a restoration of the major astrocytic glutamate transporter, GLT1, ameliorated a buildup of tau pathology and rescued cognition in a mouse model of AD. We hypothesized that aberrant extracellular glutamate and abnormal neuronal excitatory activities promoted tau pathology. In the present study, we investigated genetic interactions between tau and the GLT1 homolog dEaat1 in Drosophila melanogaster. Neuronal-specific overexpression of human wildtype tau markedly shortened lifespan and impaired motor behavior. RNAi depletion of dEaat1 in astrocytes worsened these phenotypes, whereas overexpression of dEaat1 improved them. However, the synaptic neuropil appeared unaffected, and we failed to detect any major neuronal loss with tau overexpression in combination with dEaat1 depletion. To mimic glutamate-induced aberrant excitatory input in neurons, repeated depolarization of neurons via transgenic TrpA1 was applied to the adult Drosophila optic nerves, and we examined the change of tau deposits. Repeated depolarization significantly increased the accumulation of tau in these neurons. We propose that increased neuronal excitatory activity exacerbates tau-mediated neuronal toxicity and behavioral deficits.
Collapse
Affiliation(s)
- Jason G Kilian
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA 92697, United States; Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, United States
| | - Heng-Wei Hsu
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA 92697, United States; Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, United States
| | - Kenneth Mata
- Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, United States
| | - Fred W Wolf
- Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, United States
| | - Masashi Kitazawa
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA 92697, United States; Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, United States.
| |
Collapse
|
47
|
Bodea L, Eckert A, Ittner LM, Piguet O, Götz J. Tau physiology and pathomechanisms in frontotemporal lobar degeneration. J Neurochem 2016; 138 Suppl 1:71-94. [PMID: 27306859 PMCID: PMC5094566 DOI: 10.1111/jnc.13600] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/31/2016] [Accepted: 02/24/2016] [Indexed: 12/27/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) has been associated with toxic intracellular aggregates of hyperphosphorylated tau (FTLD-tau). Moreover, genetic studies identified mutations in the MAPT gene encoding tau in familial cases of the disease. In this review, we cover a range of aspects of tau function, both in the healthy and diseased brain, discussing several in vitro and in vivo models. Tau structure and function in the healthy brain is presented, accentuating its distinct compartmentalization in neurons and its role in microtubule stabilization and axonal transport. Furthermore, tau-driven pathology is discussed, introducing current concepts and the underlying experimental evidence. Different aspects of pathological tau phosphorylation, the protein's genomic and domain organization as well as its spreading in disease, together with MAPT-associated mutations and their respective models are presented. Dysfunction related to other post-transcriptional modifications and their effect on normal neuronal functions such as cell cycle, epigenetics and synapse dynamics are also discussed, providing a mechanistic explanation for the observations made in FTLD-tau cases, with the possibility for therapeutic intervention. In this review, we cover aspects of tau function, both in the healthy and diseased brain, referring to different in vitro and in vivo models. In healthy neurons, tau is compartmentalized, with higher concentrations found in the distal part of the axon. Cargo molecules are sensitive to this gradient. A disturbed tau distribution, as found in frontotemporal lobar degeneration (FTLD-tau), has severe consequences for cellular physiology: tau accumulates in the neuronal soma and dendrites, leading among others to microtubule depolymerization and impaired axonal transport. Tau forms insoluble aggregates that sequester additional molecules stalling cellular physiology. Neuronal communication is gradually lost as toxic tau accumulates in dendritic spines with subsequent degeneration of synapses and synaptic loss. Thus, by providing a mechanistic explanation for the observations made in FTLD-tau cases, arises a possibility for therapeutic interventions. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Liviu‐Gabriel Bodea
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Anne Eckert
- Neurobiology LaboratoryPsychiatric University Clinics BaselUniversity of BaselBaselSwitzerland
| | - Lars Matthias Ittner
- Dementia Research UnitSchool of Medical SciencesFaculty of MedicineUniversity of New South WalesSydneyNSWAustralia
| | | | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
48
|
Hunsberger HC, Wang D, Petrisko TJ, Alhowail A, Setti SE, Suppiramaniam V, Konat GW, Reed MN. Peripherally restricted viral challenge elevates extracellular glutamate and enhances synaptic transmission in the hippocampus. J Neurochem 2016; 138:307-16. [PMID: 27168075 PMCID: PMC4936939 DOI: 10.1111/jnc.13665] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 01/23/2023]
Abstract
Peripheral infections increase the propensity and severity of seizures in susceptible populations. We have previously shown that intraperitoneal injection of a viral mimic, polyinosinic-polycytidylic acid (PIC), elicits hypersusceptibility of mice to kainic acid (KA)-induced seizures. This study was undertaken to determine whether this seizure hypersusceptibility entails alterations in glutamate signaling. Female C57BL/6 mice were intraperitoneally injected with PIC, and after 24 h, glutamate homeostasis in the hippocampus was monitored using the enzyme-based microelectrode arrays. PIC challenge robustly increased the level of resting extracellular glutamate. While pre-synaptic potassium-evoked glutamate release was not affected, glutamate uptake was profoundly impaired and non-vesicular glutamate release was augmented, indicating functional alterations of astrocytes. Electrophysiological examination of hippocampal slices from PIC-challenged mice revealed a several fold increase in the basal synaptic transmission as compared to control slices. PIC challenge also increased the probability of pre-synaptic glutamate release as seen from a reduction of paired-pulse facilitation and synaptic plasticity as seen from an enhancement of long-term potentiation. Altogether, our results implicate a dysregulation of astrocytic glutamate metabolism and an alteration of excitatory synaptic transmission as the underlying mechanism for the development of hippocampal hyperexcitability, and consequently seizure hypersusceptibility following peripheral PIC challenge. Peripheral infections/inflammations enhance seizure susceptibility. Here, we explored the effect of peritoneal inflammation induced by a viral mimic on glutamate homeostasis and glutamatergic neurotransmission in the mouse hippocampus. We found that peritoneal inflammation elevated extracellular glutamate concentration and enhanced the probability of pre-synaptic glutamate release resulting in hyperexcitability of neuronal networks. These mechanisms are likely to underlie the enhanced seizure propensity.
Collapse
Affiliation(s)
- Holly C. Hunsberger
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, 26506 WV, USA
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, 36849 AL, USA
| | - Desheng Wang
- Blanchette Rockefeller Neurosciences Institute, Morgantown, 26506 WV, USA
| | - Tiffany J. Petrisko
- Department of Neurobiology and Anatomy, School of Medicine, West Virginia University, Morgantown, 26506 WV, USA
| | - Ahmad Alhowail
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, 36849 AL, USA
| | - Sharay E. Setti
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, 36849 AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, 36849 AL, USA
| | - Gregory W. Konat
- Department of Neurobiology and Anatomy, School of Medicine, West Virginia University, Morgantown, 26506 WV, USA
| | - Miranda N. Reed
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, 36849 AL, USA
| |
Collapse
|
49
|
Hunsberger HC, Hickman JE, Reed MN. Riluzole rescues alterations in rapid glutamate transients in the hippocampus of rTg4510 mice. Metab Brain Dis 2016; 31:711-5. [PMID: 26744018 PMCID: PMC4864118 DOI: 10.1007/s11011-015-9783-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/22/2015] [Indexed: 01/18/2023]
Abstract
Those at risk for Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability in the years preceding diagnosis. Our previous work with the rTg(TauP301L)4510 tau mouse model of AD suggests that this increase in hyperexcitability is likely mediated by an increase in depolarization-evoked glutamate release and a decrease in glutamate uptake, alterations of which correlate with learning and memory deficits. Treatment with riluzole restored glutamate regulation and rescued memory deficits in the TauP301L model. Here, we used enzyme-based ceramic microelectrode array technology to measure real-time phasic glutamate release and uptake events in the hippocampal subregions of TauP301L mice. For the first time, we demonstrate that perturbations in glutamate transients (rapid, spontaneous bursts of glutamate) exist in a tau mouse model of AD mouse model and that riluzole mitigates these alterations. These results help to inform our understanding of how glutamate signaling is altered in the disease process and also suggest that riluzole may serve as a clinically applicable therapeutic approach in AD.
Collapse
Affiliation(s)
- Holly C Hunsberger
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, 26506, WV, USA
- Drug Discovery & Development Department, School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA
| | - James E Hickman
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, 26506, WV, USA
| | - Miranda N Reed
- Drug Discovery & Development Department, School of Pharmacy, Auburn University, 4306 Walker Building, Auburn, AL, 36849, USA.
| |
Collapse
|
50
|
Abstract
Fear memory is the best-studied form of memory. It was thoroughly investigated in the past 60 years mostly using two classical conditioning procedures (contextual fear conditioning and fear conditioning to a tone) and one instrumental procedure (one-trial inhibitory avoidance). Fear memory is formed in the hippocampus (contextual conditioning and inhibitory avoidance), in the basolateral amygdala (inhibitory avoidance), and in the lateral amygdala (conditioning to a tone). The circuitry involves, in addition, the pre- and infralimbic ventromedial prefrontal cortex, the central amygdala subnuclei, and the dentate gyrus. Fear learning models, notably inhibitory avoidance, have also been very useful for the analysis of the biochemical mechanisms of memory consolidation as a whole. These studies have capitalized on in vitro observations on long-term potentiation and other kinds of plasticity. The effect of a very large number of drugs on fear learning has been intensively studied, often as a prelude to the investigation of effects on anxiety. The extinction of fear learning involves to an extent a reversal of the flow of information in the mentioned structures and is used in the therapy of posttraumatic stress disorder and fear memories in general.
Collapse
Affiliation(s)
- Ivan Izquierdo
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane R. G. Furini
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jociane C. Myskiw
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|