1
|
Kim D, Gil J, Bae ON. PM2.5 potentiates oxygen glucose deprivation-induced neurovascular unit damage via inhibition of the Akt/β-catenin pathway and autophagy dysregulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124728. [PMID: 39147226 DOI: 10.1016/j.envpol.2024.124728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Air pollution has recently emerged as a significant risk factor for ischemic stroke. Although there is a robust association between higher concentrations of ambient particulate matter (PM2.5) and increased incidence and mortality rates of ischemic stroke, the precise mechanisms underlying PM2.5-induced ischemic stroke remain to be fully elucidated. The purpose of this study was to examine the synergistic effect of PM2.5 and hypoxic stress using in vivo and in vitro ischemic stroke models. Intravenously administered PM2.5 exacerbated the ischemic brain damage induced by middle cerebral artery occlusion (MCAo) in Sprague Dawley rats. Alterations in autophagy flux and decreased levels of tight junction proteins were observed in the brain of PM2.5-administered rats after MCAo. The underlying mechanism of PM2.5-induced potentiation of ischemic brain damage was investigated in neurons, perivascular macrophages, and brain endothelial cells, which are the major components of the integrated neurovascular unit. Co-treatment with PM2.5 and oxygen-glucose deprivation (OGD) amplified the effects of OGD on the reduction of viability in primary neurons, immortalized murine hippocampal neuron (HT-22), and brain endothelial cells (bEND.3). After co-treatment with PM2.5 and OGD, the Akt/β-catenin and autophagy flux were significantly inhibited in HT-22 cells. Notably, the protein levels of metalloproteinase-9 and cystatin C were elevated in the conditioned media of murine macrophages (RAW264.7) exposed to PM2.5, and tight junction protein expression was significantly decreased after OGD exposure in bEND.3 cells pretreated with the conditioned media. Our findings suggest that perivascular macrophages may mediate PM2.5-induced brain endothelial dysfunction following ischemia and that PM2.5 can exacerbate ischemia-induced neurovascular damage.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Junkyung Gil
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea.
| |
Collapse
|
2
|
Wang SN, Shi YC, Lin S, He HF. Particulate matter 2.5 accelerates aging: Exploring cellular senescence and age-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116920. [PMID: 39208581 DOI: 10.1016/j.ecoenv.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
3
|
You DJ, Gorman BM, Goshi N, Hum NR, Sebastian A, Kim YH, Enright HA, Buchholz BA. Eucalyptus Wood Smoke Extract Elicits a Dose-Dependent Effect in Brain Endothelial Cells. Int J Mol Sci 2024; 25:10288. [PMID: 39408618 PMCID: PMC11476751 DOI: 10.3390/ijms251910288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
The frequency, duration, and size of wildfires have been increasing, and the inhalation of wildfire smoke particles poses a significant risk to human health. Epidemiological studies have shown that wildfire smoke exposure is positively associated with cognitive and neurological dysfunctions. However, there is a significant gap in knowledge on how wildfire smoke exposure can affect the blood-brain barrier and cause molecular and cellular changes in the brain. Our study aims to determine the acute effect of smoldering eucalyptus wood smoke extract (WSE) on brain endothelial cells for potential neurotoxicity in vitro. Primary human brain microvascular endothelial cells (HBMEC) and immortalized human brain endothelial cell line (hCMEC/D3) were treated with different doses of WSE for 24 h. WSE treatment resulted in a dose-dependent increase in IL-8 in both HBMEC and hCMEC/D3. RNA-seq analyses showed a dose-dependent upregulation of genes involved in aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (NRF2) pathways and a decrease in tight junction markers in both HBMEC and hCMEC/D3. When comparing untreated controls, RNA-seq analyses showed that HBMEC have a higher expression of tight junction markers compared to hCMEC/D3. In summary, our study found that 24 h WSE treatment increases IL-8 production dose-dependently and decreases tight junction markers in both HBMEC and hCMEC/D3 that may be mediated through the AhR and NRF2 pathways, and HBMEC could be a better in vitro model for studying the effect of wood smoke extract or particles on brain endothelial cells.
Collapse
Affiliation(s)
- Dorothy J. You
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Bria M. Gorman
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Noah Goshi
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Nicholas R. Hum
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Aimy Sebastian
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Heather A. Enright
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Bruce A. Buchholz
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|
4
|
Li S, Zhang Y, Yang K, Zhou W. Exploring potential causal links between air pollutants and congenital malformations: A two-sample Mendelian Randomization study. Reprod Toxicol 2024; 128:108655. [PMID: 38972362 DOI: 10.1016/j.reprotox.2024.108655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Observational studies have suggested an association between air pollutants and congenital malformations; however, conclusions are inconsistent and the causal associations have not been elucidated. In this study, based on publicly available genetic data, a two-sample Mendelian randomization (MR) was applied to explore the associations between particulate matter 2.5 (PM2.5), NOX, NO2 levels and 11 congenital malformations. Inverse variance weighted (IVW), MR-Egger and weighted median were used as analytical methods, with IVW being the main method. A series of sensitivity analyses were used to verify the robustness of the results. For significant associations, multivariable MR (MVMR) was utilized to explore possible mediating effects. The IVW results showed that PM2.5 was associated with congenital malformations of digestive system (OR = 7.72, 95 %CI = 2.33-25.54, P = 8.11E-4) and multiple systems (OR = 8.63, 95 %CI = 1.02-73.43, P = 0.048) risks; NOX was associated with circulatory system (OR = 4.65, 95 %CI = 1.15-18.86, P = 0.031) and cardiac septal defects (OR = 14.09, 95 %CI = 1.62-122.59, P = 0.017) risks; NO2 was correlated with digestive system (OR = 27.12, 95 %CI = 1.81-407.07, P = 0.017) and cardiac septal defects (OR = 22.57, 95 %CI = 2.50-203.45, P = 0.005) risks. Further MVMR analyses suggest that there may be interactions in the effects of these air pollutants on congenital malformations. In conclusion, this study demonstrated a causal association between air pollution and congenital malformations from a genetic perspective.
Collapse
Affiliation(s)
- Shufen Li
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Yanping Zhang
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Kaiyan Yang
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
| | - Wenbo Zhou
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China; International Genome Center, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
5
|
Lee BU. Measurement of Aerosol Particles from Vibrated Lab Coats. TOXICS 2024; 12:565. [PMID: 39195667 PMCID: PMC11359219 DOI: 10.3390/toxics12080565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024]
Abstract
A study was conducted to measure aerosol particles emitted from laboratory coats (lab coats) under vibration, comparing them with a suit and a shirt. This study focused on particles ranging from 0.3 μm to >10 μm. Experimental results showed that lab coat vibration increased particles >5 μm while reducing submicron particles. The lab coat (old and used) exhibited greater particle concentration variations under vibration compared to those using the new lab coat or the shirt. Contrastingly, the suit under vibration did not significantly affect particle concentrations. These findings highlight the impact of lab coat vibration on aerosol particle concentrations in the surrounding air, which is important for work environments.
Collapse
Affiliation(s)
- Byung Uk Lee
- Bioaerosol Laboratory, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
6
|
Yang J, Han C, Ye J, Hu X, Wang R, Shen J, Li L, Hu G, Shi X, Jia Z, Qu X, Liu H, Zhang X, Wu Y. PM 2.5 exposure inhibits osteoblast differentiation by increasing the ubiquitination and degradation of Smad4. Toxicol Lett 2024; 398:127-139. [PMID: 38914176 DOI: 10.1016/j.toxlet.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Increasing epidemiological evidence has shown that PM2.5 exposure is significantly associated with the occurrence of osteoporosis. It has been well demonstrated that PM2.5 exposure enhanced the differentiation and function of osteoclasts by indirectly causing chronic inflammation, while the mechanism in osteoblasts remains unclear. In our study, toxic effects were evaluated by direct exposure of 20-80 μg/ml PM2.5 to MC3T3-E1 cells and BMSCs. The results showed that PM2.5 exposure did not affect cell viability via proliferation and apoptosis, but significantly inhibited osteoblast differentiation in a dose-dependent manner. Osteogenic transcription factors Runx2 and Sp7 and other biomarkers Alp and Ocn decreased after PM2.5 exposure. RNA-seq revealed TGF-β signaling was involved in PM2.5 exposure inhibited osteoblast differentiation, which led to P-Smad1/5 and P-Smad2 reduction in the nucleus by increasing the ubiquitination and degradation of Smad4. At last, the inflammation response increased in MC3T3-E1 cells with PM2.5 exposure. Moreover, the mRNA levels of Mmp9 increased in bone marrow-derived macrophage cells treated with the conditional medium collected from MC3T3-E1 cells exposed to PM2.5. Overall, these results indicated that PM2.5 exposure inhibits osteoblast differentiation and concurrently increases the maturation of osteoclasts. Our study provides in-depth mechanistic insights into the direct impact of PM2.5 exposure on osteoblast, which would indicate the unrecognized role of PM2.5 on osteoporosis.
Collapse
Affiliation(s)
- Jiatao Yang
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Chunqing Han
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Junxing Ye
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Xiping Hu
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Ruijian Wang
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Jin Shen
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Longfei Li
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Guoqin Hu
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Xian Shi
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Zhongtang Jia
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Xiuxia Qu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Huanliang Liu
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China.
| | - Yu Wu
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Olloquequi J, Díaz-Peña R, Verdaguer E, Ettcheto M, Auladell C, Camins A. From Inhalation to Neurodegeneration: Air Pollution as a Modifiable Risk Factor for Alzheimer's Disease. Int J Mol Sci 2024; 25:6928. [PMID: 39000036 PMCID: PMC11241587 DOI: 10.3390/ijms25136928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Air pollution, a growing concern for public health, has been linked to various respiratory and cardiovascular diseases. Emerging evidence also suggests a link between exposure to air pollutants and neurodegenerative diseases, particularly Alzheimer's disease (AD). This review explores the composition and sources of air pollutants, including particulate matter, gases, persistent organic pollutants, and heavy metals. The pathophysiology of AD is briefly discussed, highlighting the role of beta-amyloid plaques, neurofibrillary tangles, and genetic factors. This article also examines how air pollutants reach the brain and exert their detrimental effects, delving into the neurotoxicity of air pollutants. The molecular mechanisms linking air pollution to neurodegeneration are explored in detail, focusing on oxidative stress, neuroinflammation, and protein aggregation. Preclinical studies, including in vitro experiments and animal models, provide evidence for the direct effects of pollutants on neuronal cells, glial cells, and the blood-brain barrier. Epidemiological studies have reported associations between exposure to air pollution and an increased risk of AD and cognitive decline. The growing body of evidence supporting air pollution as a modifiable risk factor for AD underscores the importance of considering environmental factors in the etiology and progression of neurodegenerative diseases, in the face of worsening global air quality.
Collapse
Affiliation(s)
- Jordi Olloquequi
- Department of Biochemistry and Physiology, Physiology Section, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Roberto Díaz-Peña
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Ester Verdaguer
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Miren Ettcheto
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Carme Auladell
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Antoni Camins
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
8
|
Ji S, Guo Y, Yan W, Wei F, Ding J, Hong W, Wu X, Ku T, Yue H, Sang N. PM 2.5 exposure contributes to anxiety and depression-like behaviors via phenyl-containing compounds interfering with dopamine receptor. Proc Natl Acad Sci U S A 2024; 121:e2319595121. [PMID: 38739786 PMCID: PMC11127009 DOI: 10.1073/pnas.2319595121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
As a global problem, fine particulate matter (PM2.5) really needs local fixes. Considering the increasing epidemiological relevance to anxiety and depression but inconsistent toxicological results, the most important question is to clarify whether and how PM2.5 causally contributes to these mental disorders and which components are the most dangerous for crucial mitigation in a particular place. In the present study, we chronically subjected male mice to a real-world PM2.5 exposure system throughout the winter heating period in a coal combustion area and revealed that PM2.5 caused anxiety and depression-like behaviors in adults such as restricted activity, diminished exploratory interest, enhanced repetitive stereotypy, and elevated acquired immobility, through behavioral tests including open field, elevated plus maze, marble-burying, and forced swimming tests. Importantly, we found that dopamine signaling was perturbed using mRNA transcriptional profile and bioinformatics analysis, with Drd1 as a potential target. Subsequently, we developed the Drd1 expression-directed multifraction isolating and nontarget identifying framework and identified a total of 209 compounds in PM2.5 organic extracts capable of reducing Drd1 expression. Furthermore, by applying hierarchical characteristic fragment analysis and molecular docking and dynamics simulation, we clarified that phenyl-containing compounds competitively bound to DRD1 and interfered with dopamine signaling, thereby contributing to mental disorders. Taken together, this work provides experimental evidence for researchers and clinicians to identify hazardous factors in PM2.5 and prevent adverse health outcomes and for local governments and municipalities to control source emissions for diminishing specific disease burdens.
Collapse
Affiliation(s)
- Shaoyang Ji
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Yuqiong Guo
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Wei Yan
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu221004, People’s Republic of China
| | - Fang Wei
- Department of Environment Engineering, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang310018, People’s Republic of China
| | - Jinjian Ding
- Department of Environment Engineering, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang310018, People’s Republic of China
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang310018, People’s Republic of China
| | - Wenjun Hong
- Department of Environment Engineering, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang310018, People’s Republic of China
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang310018, People’s Republic of China
| | - Xiaoyun Wu
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Tingting Ku
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Huifeng Yue
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Nan Sang
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| |
Collapse
|
9
|
Li K, Liang X, Liu X, Geng Y, Yan J, Tian L, Liu H, Lai W, Shi Y, Xi Z, Lin B. Early-life exposure to PM2.5 leads to ASD-like phenotype in male offspring rats through activation of PI3K-AKT signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116222. [PMID: 38503106 DOI: 10.1016/j.ecoenv.2024.116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/03/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
Previous studies have shown that early-life exposure to fine particulate matter (PM2.5) is associated with an increasing risk of autism spectrum disorder (ASD), however, the specific sensitive period of ASD is unknown. Here, a model of dynamic whole-body concentrated PM2.5 exposure in pre- and early-postnatal male offspring rats (MORs) was established. And we found that early postnatal PM2.5 exposed rats showed more typical ASD behavioral characteristics than maternal pregnancy exposure rats, including poor social interaction, novelty avoidance and anxiety disorder. And more severe oxidative stress and inflammatory responses were observed in early postnatal PM2.5 exposed rats. Moreover, the expression level of phosphatase and tensin homolog deleted on chromosome ten (PTEN) was down-regulated and the ratios of p-PI3K/PI3K and p-AKT/AKT were up-regulated in early postnatal PM2.5 exposed rats. This study suggests that early postnatal exposure to PM2.5 is more susceptible to ASD-like phenotype in offspring than maternal pregnancy exposure and the activation of PI3K-AKT signaling pathway may represent underlying mechanisms.
Collapse
Affiliation(s)
- Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiaotian Liang
- Yantai Center for Disease Control and Prevention, Yantai 264003, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yanpei Geng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Binzhou Medical College, Yantai 264000, China
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Wenqin Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Yantai Center for Disease Control and Prevention, Yantai 264003, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
10
|
Sánchez-Cano F, Hernández-Kelly LC, Ortega A. Silica Nanoparticles Decrease Glutamate Uptake in Blood-Brain Barrier Components. Neurotox Res 2024; 42:20. [PMID: 38436780 PMCID: PMC10912144 DOI: 10.1007/s12640-024-00696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Glutamate is the major excitatory amino acid in the vertebrate brain, playing an important role in most brain functions. It exerts its activity through plasma membrane receptors and transporters, expressed both in neurons and glia cells. Overstimulation of neuronal glutamate receptors is linked to cell death in a process known as excitotoxicity, that is prevented by the efficient removal of the neurotransmitter through glutamate transporters enriched in the glia plasma membrane and in the components of the blood-brain barrier (BBB). Silica nanoparticles (SiO2-NPs) have been widely used in biomedical applications and directed to enter the circulatory system; however, little is known about the potential adverse effects of SiO2-NPs exposure on the BBB transport systems that support the critical isolation function between the central nervous system (CNS) and the peripheral circulation. In this contribution, we investigated the plausible SiO2-NPs-mediated disruption of the glutamate transport system expressed by BBB cell components. First, we evaluated the cytotoxic effect of SiO2-NPs on human brain endothelial (HBEC) and Uppsala 87 Malignant glioma (U-87MG) cell lines. Transport kinetics were evaluated, and the exposure effect of SiO2-NPs on glutamate transport activity was determined in both cell lines. Exposure of the cells to different SiO2-NP concentrations (0.4, 4.8, 10, and 20 µg/ml) and time periods (3 and 6 h) did not affect cell viability. We found that the radio-labeled D-aspartate ([3H]-D-Asp) uptake is mostly sodium-dependent, and downregulated by its own substrate (glutamate). Furthermore, SiO2-NPs exposure on endothelial and astrocytes decreases [3H]-D-Asp uptake in a dose-dependent manner. Interestingly, a decrease in the transporter catalytic efficiency, probably linked to a diminution in the affinity of the transporter, was detected upon SiO2-NPs. These results favor the notion that exposure to SiO2-NPs could disrupt BBB function and by these means shed some light into our understanding of the deleterious effects of air pollution on the CNS.
Collapse
Affiliation(s)
- Fredy Sánchez-Cano
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Luisa C Hernández-Kelly
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México.
| |
Collapse
|
11
|
Li MR, Men SH, Wang ZY, Liu C, Zhou GR, Yan ZG. The application of human-derived cell lines in neurotoxicity studies of environmental pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168839. [PMID: 38036138 DOI: 10.1016/j.scitotenv.2023.168839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
As industrial and societal advancements progress, an increasing number of environmental pollutants linked to human existence have been substantiated to elicit neurotoxicity and developmental neural toxicity. For research in this field, human-derived neural cell lines have become excellent in vitro models. This study examines the utilization of immortalized cell lines, specifically the SH-SY5Y human neuroblastoma cell line, and neural cells derived from human pluripotent stem cells, in the investigation of neurotoxicity and developmental neural toxicity caused by environmental pollutants. The study also explores the culturing techniques employed for these cell lines and provides an overview of the standardized assays used to assess various biological endpoints. The environmental pollutants involved include a variety of organic compounds, heavy metals, and microplastics. The utilization of cell lines derived from human sources holds significant significance in elucidating the neurotoxic effects of environmental pollutants and the underlying mechanisms. Finally, we propose the possibility of improving the in vitro model of the human nervous system and the toxicity detection methods.
Collapse
Affiliation(s)
- Ming-Rui Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shu-Hui Men
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zi-Ye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chen Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guo-Rui Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhen-Guang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
12
|
Abdul-Rahman T, Roy P, Bliss ZSB, Mohammad A, Corriero AC, Patel NT, Wireko AA, Shaikh R, Faith OE, Arevalo-Rios ECE, Dupuis L, Ulusan S, Erbay MI, Cedeño MV, Sood A, Gupta R. The impact of air quality on cardiovascular health: A state of the art review. Curr Probl Cardiol 2024; 49:102174. [PMID: 37913932 DOI: 10.1016/j.cpcardiol.2023.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Air pollution is a global health challenge, increasing the risk of cardiovascular diseases such as heart disease, stroke, and arrhythmias. Particulate matter (PM), particularly PM2.5 and ultrafine particles (UFP), is a key contributor to the adverse effects of air pollution on cardiovascular health. PM exposure can lead to oxidative stress, inflammation, atherosclerosis, vascular dysfunction, cardiac arrhythmias, and myocardial injury. Reactive oxygen species (ROS) play a key role in mediating these effects. PM exposure can also lead to hypertension, a significant risk factor for cardiovascular disease. The COVID-19 pandemic resulted in a significant reduction of air pollutants, leading to a decline in the incidence of heart attacks and premature deaths caused by cardiovascular diseases. This review highlights the relationship between environmental air quality and cardiovascular health, elucidating the pathways through which air pollutants affect the cardiovascular system. It also emphasizes the need for increased awareness, collective efforts to mitigate the adverse effects of air pollution, and strategic policies for long-term air quality improvement to prevent the devastating effects of air pollution on global cardiovascular health.
Collapse
Affiliation(s)
- Toufik Abdul-Rahman
- Medical Institute, Sumy State University, Sumy, Ukraine; Department of Research, Toufik's World Medical Association, Sumy, Ukraine
| | - Poulami Roy
- Department of Research, Toufik's World Medical Association, Sumy, Ukraine; Department of Medicine, North Bengal Medical College and Hospital, Siliguri, India
| | | | | | | | - Neal T Patel
- Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, FL, USA
| | - Andrew Awuah Wireko
- Medical Institute, Sumy State University, Sumy, Ukraine; Department of Research, Toufik's World Medical Association, Sumy, Ukraine
| | - Raheel Shaikh
- Broward Health Medical Center, Fort Lauderdale, FL, USA
| | | | | | - Léonie Dupuis
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sebahat Ulusan
- Medical School, Suleyman Demirel University, Isparta, Turkey
| | | | | | - Aayushi Sood
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Rahul Gupta
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA, USA.
| |
Collapse
|
13
|
Gavito-Covarrubias D, Ramírez-Díaz I, Guzmán-Linares J, Limón ID, Manuel-Sánchez DM, Molina-Herrera A, Coral-García MÁ, Anastasio E, Anaya-Hernández A, López-Salazar P, Juárez-Díaz G, Martínez-Juárez J, Torres-Jácome J, Albarado-Ibáñez A, Martínez-Laguna Y, Morán C, Rubio K. Epigenetic mechanisms of particulate matter exposure: air pollution and hazards on human health. Front Genet 2024; 14:1306600. [PMID: 38299096 PMCID: PMC10829887 DOI: 10.3389/fgene.2023.1306600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/20/2023] [Indexed: 02/02/2024] Open
Abstract
Environmental pollution nowadays has not only a direct correlation with human health changes but a direct social impact. Epidemiological studies have evidenced the increased damage to human health on a daily basis because of damage to the ecological niche. Rapid urban growth and industrialized societies importantly compromise air quality, which can be assessed by a notable accumulation of air pollutants in both the gas and the particle phases. Of them, particulate matter (PM) represents a highly complex mixture of organic and inorganic compounds of the most variable size, composition, and origin. PM being one of the most complex environmental pollutants, its accumulation also varies in a temporal and spatial manner, which challenges current analytical techniques used to investigate PM interactions. Nevertheless, the characterization of the chemical composition of PM is a reliable indicator of the composition of the atmosphere, the quality of breathed air in urbanized societies, industrial zones and consequently gives support for pertinent measures to avoid serious health damage. Epigenomic damage is one of the most promising biological mechanisms of air pollution-derived carcinogenesis. Therefore, this review aims to highlight the implication of PM exposure in diverse molecular mechanisms driving human diseases by altered epigenetic regulation. The presented findings in the context of pan-organic cancer, fibrosis, neurodegeneration and metabolic diseases may provide valuable insights into the toxicity effects of PM components at the epigenomic level and may serve as biomarkers of early detection for novel targeted therapies.
Collapse
Affiliation(s)
- Dulcemaría Gavito-Covarrubias
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
- Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Josué Guzmán-Linares
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Ilhuicamina Daniel Limón
- Laboratory of Neuropharmacology, Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Dulce María Manuel-Sánchez
- Laboratory of Neuropharmacology, Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Estela Anastasio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Arely Anaya-Hernández
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Primavera López-Salazar
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Gabriel Juárez-Díaz
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Javier Martínez-Juárez
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Julián Torres-Jácome
- Laboratorio de Fisiopatología Cardiovascular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alondra Albarado-Ibáñez
- Laboratorio de Fisiopatología Cardiovascular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Carolina Morán
- Centro de Investigación en Fisicoquímica de Materiales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| |
Collapse
|
14
|
Lee J, Weerasinghe-Mudiyanselage PDE, Kim B, Kang S, Kim JS, Moon C. Particulate matter exposure and neurodegenerative diseases: A comprehensive update on toxicity and mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115565. [PMID: 37832485 DOI: 10.1016/j.ecoenv.2023.115565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a range of health impacts, including neurological abnormalities that affect neurodevelopment, neuroplasticity, and behavior. Recently, there has been growing interest in investigating the possible relationship between PM exposure and the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. However, the precise mechanism by which PM affects neurodegeneration is still unclear, even though several epidemiological and animal model studies have provided mechanistic insights. This article presents a review of the current research on the neurotoxicity of PM and its impact on neurodegenerative diseases. This review summarizes findings from epidemiological and animal model studies collected through searches in Google Scholar, PubMed, Web of Science, and Scopus. This review paper also discusses the reported effects of PM exposure on the central nervous system and highlights research gaps and future directions. The information presented in this review may inform public health policies aimed at reducing PM exposure and may contribute to the development of new treatments for neurodegenerative diseases. Further mechanistic and therapeutic research will be needed to fully understand the relationship between PM exposure and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Poornima D E Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Bohye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
15
|
Xu P, Ren T, Yang Y. PM2.5 mediates mouse testis Sertoli TM4 cell damage by reducing cellular NAD . Toxicol Mech Methods 2023; 33:636-645. [PMID: 37202861 DOI: 10.1080/15376516.2023.2215862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/19/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE This study aims to explore the mechanism of PM2.5 damage to the reproductive system of male mice. METHODS Mouse testis Sertoli TM4 cells were divided into four groups: a control group (no additional ingredients except for medium), PM2.5 group (medium containing 100 μg/mL PM2.5), PM2.5 + NAM group (medium containing 100 μg/mL PM2.5 and 5 mM NAM), and NAM group (medium containing 5 mM nicotinamide) and cultured in vitro for 24 or 48 h. The apoptosis rate of TM4 cells was measured using flow cytometry, the intracellular levels of NAD+ and NADH were detected using an NAD+/NADH assay kit, and the protein expression levels of SIRT1 and PARP1 were determined by western blotting. RESULTS Mouse testis Sertoli TM4 cells exposed to PM2.5 demonstrated an increase in the apoptosis rate and PARP1 protein expression, albeit a decrease in NAD+, NADH, and SIRT1 protein levels (p = 0.05). These changes were reversed in the group treated with a combination of PM2.5 and nicotinamide (p = 0.05). CONCLUSION PM2.5 can cause Sertoli TM4 cell damage in mouse testes by decreasing intracellular NAD+ levels.
Collapse
Affiliation(s)
- Peng Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Tiantian Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yang Yang
- Department of Nosocomial Infection Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
16
|
Abdolalizadeh P, Falavarjani KG. The Correlation of Global Burden of Vision Impairment and Ambient Atmospheric Fine Particulate Matter. J Curr Ophthalmol 2023; 35:387-394. [PMID: 39281396 PMCID: PMC11392291 DOI: 10.4103/joco.joco_125_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/16/2023] [Accepted: 11/10/2023] [Indexed: 09/18/2024] Open
Abstract
Purpose To assess the correlation between the worldwide burden of vision impairment (VI) and fine particulate matter (PM) 2.5. Methods In this retrospective cross-sectional study, global and national prevalence and disability-adjusted lost year (DALY) numbers and rates of total VI, glaucoma, cataract, and age-related macular degeneration (AMD) were obtained from the Global Burden of Disease database. The global and national levels of PM2.5 levels were also extracted. The main outcome measures were the correlation of PM2.5 levels with total VI and three ocular diseases in different age, sex, and socioeconomic subgroups. Results In 2019, the worldwide prevalence of total VI and exposure level of PM2.5 was 9.6% (95% uncertainty interval: 8.0-11.3) and 42.5 μg/m3, respectively. The national age-standardized prevalence rates of total VI (r p = 0.52, P < 0.001), glaucoma (r p = 0.65, P < 0.001), AMD (r p = 0.67, P < 0.001), and cataract (r p = 0.44, P < 0.001) have a positive correlation with PM2.5 levels. In addition, the national age-standardized DALY rates of total VI (r p = 0.62, P < 0.001), glaucoma (r p = 0.62, P < 0.001), AMD (r p = 0.54, P < 0.001), and cataract (r p = 0.45, P < 0.001) significantly correlated with PM2.5 levels. The correlations remained significant in different age, sex, and sociodemographic subgroups. Conclusion National prevalence rates of VI and three major ocular diseases correlate significantly with PM2.5 exposure levels, worldwide.
Collapse
Affiliation(s)
- Parya Abdolalizadeh
- Department of Ophthalmology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Khalil Ghasemi Falavarjani
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Kim JH, Kim JM, Lee HL, Go MJ, Kim TY, Joo SG, Lee HS, Heo HJ. Korean Red Ginseng Prevents the Deterioration of Lung and Brain Function in Chronic PM 2.5-Exposed Mice by Regulating Systemic Inflammation. Int J Mol Sci 2023; 24:13266. [PMID: 37686071 PMCID: PMC10488300 DOI: 10.3390/ijms241713266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
This study was conducted to confirm the effects of Korean red ginseng on lung and brain dysfunction in a BALB/c mice model exposed to particulate matter (PM)2.5 for 12 weeks. Learning and cognitive abilities were assessed with Y-maze, passive avoidance, and Morris water maze tests. To evaluate the ameliorating effect of red ginseng extract (RGE), the antioxidant system and mitochondrial function were investigated. The administration of RGE protected lung and brain impairment by regulating the antioxidant system and mitochondrial functions damaged by PM2.5-induced toxicity. Moreover, RGE prevented pulmonary fibrosis by regulating the transforming growth factor beta 1 (TGF-β1) pathway. RGE attenuated PM2.5-induced pulmonary and cognitive dysfunction by regulating systemic inflammation and apoptosis via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/c-Jun N-terminal kinases (JNK) pathway. In conclusion, RGE might be a potential material that can regulate chronic PM2.5-induced lung and brain cognitive dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.H.K.); (J.M.K.); (H.L.L.); (M.J.G.); (T.Y.K.); (S.G.J.); (H.S.L.)
| |
Collapse
|
18
|
Santos JX, Sampaio P, Rasga C, Martiniano H, Faria C, Café C, Oliveira A, Duque F, Oliveira G, Sousa L, Nunes A, Vicente AM. Evidence for an association of prenatal exposure to particulate matter with clinical severity of Autism Spectrum Disorder. ENVIRONMENTAL RESEARCH 2023; 228:115795. [PMID: 37028534 DOI: 10.1016/j.envres.2023.115795] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 05/16/2023]
Abstract
Early-life exposure to air pollutants, including ozone (O3), particulate matter (PM2.5 or PM10, depending on diameter of particles), nitrogen dioxide (NO2) and sulfur dioxide (SO2) has been suggested to contribute to the etiology of Autism Spectrum Disorder (ASD). In this study, we used air quality monitoring data to examine whether mothers of children with ASD were exposed to high levels of air pollutants during critical periods of pregnancy, and if higher exposure levels may lead to a higher clinical severity in their offspring. We used public data from the Portuguese Environment Agency to estimate exposure to these pollutants during the first, second and third trimesters of pregnancy, full pregnancy and first year of life of the child, for 217 subjects with ASD born between 2003 and 2016. These subjects were stratified in two subgroups according to clinical severity, as defined by the Autism Diagnostic Observational Schedule (ADOS). For all time periods, the average levels of PM2.5, PM10 and NO2 to which the subjects were exposed were within the admissible levels defined by the European Union. However, a fraction of these subjects showed exposure to levels of PM2.5 and PM10 above the admissible threshold. A higher clinical severity was associated with higher exposure to PM2.5 (p = 0.001), NO2 (p = 0.011) and PM10 (p = 0.041) during the first trimester of pregnancy, when compared with milder clinical severity. After logistic regression, associations with higher clinical severity were identified for PM2.5 exposure during the first trimester (p = 0.002; OR = 1.14, 95%CI: 1.05-1.23) and full pregnancy (p = 0.04; OR = 1.07, 95%CI: 1.00-1.15) and for PM10 (p = 0.02; OR = 1.07, 95%CI: 1.01-1.14) exposure during the third trimester. Exposure to PM is known to elicit neuropathological mechanisms associated with ASD, including neuroinflammation, mitochondrial disruptions, oxidative stress and epigenetic changes. These results offer new insights on the impact of early-life exposure to PM in ASD clinical severity.
Collapse
Affiliation(s)
- João Xavier Santos
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| | - Pedro Sampaio
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| | - Célia Rasga
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| | - Hugo Martiniano
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| | - Clarissa Faria
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.
| | - Cátia Café
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Alexandra Oliveira
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| | - Frederico Duque
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| | - Guiomar Oliveira
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| | - Lisete Sousa
- Departamento de Estatística e Investigação Operacional e Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - Ana Nunes
- BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Astrid Moura Vicente
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| |
Collapse
|
19
|
Chi MC, Lin ZC, Lee CW, Huang CCY, Peng KT, Lin CM, Lee HC, Fang ML, Chiang YC. Tanshinone IIA suppresses burning incense-induced oxidative stress and inflammatory pathways in astrocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114987. [PMID: 37172407 DOI: 10.1016/j.ecoenv.2023.114987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
The burning incense (BI) behavior could be widely observed in Asia families. Incense sticks are often believed to be made from natural herbs and powders, and to have minimal impact on human health; however, there is limited research to support this claim. The current study aimed to identify the components of BI within the particulate matter 2.5 µm (PM2.5) range and explore if BI has bio-toxicity effects on rat astrocytes (CTX-TNA2). The study also examined the protective effects and underlying molecular mechanisms of tanshinone IIA, a primary lipid-soluble compound found in the herb danshen (Salvia miltiorrhiza Bunge), which has been shown to benefit the central nervous system. Results showed that despite the differences in BI components compared to the atmospheric particulate matter (PM) standards, BI still had a bio-toxicity on astrocytes. BI exposure caused early and late apoptosis, reactive oxygen species (ROS) production, MAPKs (JNK, p38, and ERK), and Akt signaling activation, and inflammation-related proteins (cPLA2, COX-2, HO-1, and MMP-9) increases. Our results further exhibit that the tanshinone IIA pre-treatment could significantly avoid the BI-induced apoptosis and inflammatory signals on rat astrocytes. These findings suggest that BI exposure may cause oxidative stress in rat astrocytes and increase inflammation-related proteins and support the potential of tanshinone IIA as a candidate for preventing BI-related adverse health effects.
Collapse
Affiliation(s)
- Miao-Ching Chi
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan; Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan; Division of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
| | - Chiang-Wen Lee
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan; Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan; Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan
| | | | - Kuo-Ti Peng
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chieh-Mo Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan; Division of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hui-Chun Lee
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan; Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
| | - Mei-Ling Fang
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan; Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Yao-Chang Chiang
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan; Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan.
| |
Collapse
|
20
|
Cheng Y, Yin J, Yang L, Xu M, Lu X, Huang W, Dai G, Sun G. Ambient air pollutants in the first trimester of pregnancy and birth defects: an observational study. BMJ Open 2023; 13:e063712. [PMID: 36948563 PMCID: PMC10040071 DOI: 10.1136/bmjopen-2022-063712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
OBJECTIVES As current studies on the relationships between air pollutants exposure during the first trimester and birth defects were not fully elucidated, this study aimed to assess the association between selected air pollutants and birth defects. DESIGN An observational study. PARTICIPANTS We obtained 70 854 singletons with gestational age <20 weeks who were delivered at a large maternal and child healthcare centre in Wuhan, China. OUTCOME MEASURES Birth defects data and daily average concentration of ambient particulate matter ≤10 µm diameter (PM10), PM ≤2.5 µm diameter (PM2.5), sulfur dioxide (SO2) and nitrogen dioxide (NO2) were obtained. Logistic regression analysis was applied to assess the association between maternal air pollutants exposure during first trimester and total birth defects, congenital heart defects (CHDs), limb defects and orofacial clefts with adjustments of potential covariates. RESULTS There were a total of 1352 birth defect cases included in this study, with a prevalence of 19.08‰. Maternal exposed to high concentrations of PM10, PM2.5, NO2 and SO2 in the first trimester were significantly associated with elevated ORs of birth defects (ORs ranged from 1.13 to 1.23). Additionally, for male fetuses, maternal exposed to high PM2.5 concentration was associated with an elevated odd of CHDs (OR 1.27, 95% CI 1.06 to 1.52). In the cold season, the ORs of birth defects were significantly increased among women exposed to PM2.5 (OR 1.64, 95% CI 1.41 to 1.91), NO2 (OR 1.22, 95% CI 1.08 to 1.38) and SO2 (OR 1.26, 95% CI 1.07 to 1.47). CONCLUSIONS This study showed unfavourable effects of air pollutants exposure during the first trimester on birth defects. Especially, the association between maternal PM2.5 exposure and CHDs was only observed among male fetuses, and stronger effects of PM2.5, NO2 and SO2 exposure on birth defects were observed in the cold season.
Collapse
Affiliation(s)
- Yao Cheng
- Obstetrics Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Jieyun Yin
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, China
| | - Lijun Yang
- Obstetrics Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Man Xu
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinfeng Lu
- Medical Record Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Wenting Huang
- Science and Education Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Guohong Dai
- Health Care Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Guoqiang Sun
- Obstetrics Department, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| |
Collapse
|
21
|
He J, Liu Y, Zhang A, Liu Q, Yang X, Sun N, Yao B, Liang F, Yan X, Liu Y, Mao H, Chen X, Tang NJ, Yan H. Joint effects of meteorological factors and PM 2.5 on age-related macular degeneration: a national cross-sectional study in China. Environ Health Prev Med 2023; 28:3. [PMID: 36631073 PMCID: PMC9845061 DOI: 10.1265/ehpm.22-00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Weather conditions are a possible contributing factor to age-related macular degeneration (AMD), a leading cause of irreversible loss of vision. The present study evaluated the joint effects of meteorological factors and fine particulate matter (PM2.5) on AMD. METHODS Data was extracted from a national cross-sectional survey conducted across 10 provinces in rural China. A total of 36,081 participants aged 40 and older were recruited. AMD was diagnosed clinically by slit-lamp ophthalmoscopy, fundus photography, and spectral domain optical coherence tomography (OCT). Meteorological data were calculated by European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis and were matched to participants' home addresses by latitude and longitude. Participants' individual PM2.5 exposure concentrations were calculated by a satellite-based model at a 1-km resolution level. Multivariable-adjusted logistic regression models paired with interaction analysis were performed to investigate the joint effects of meteorological factors and PM2.5 on AMD. RESULTS The prevalence of AMD in the study population was 2.6% (95% CI 2.42-2.76%). The average annual PM2.5 level during the study period was 63.1 ± 15.3 µg/m3. A significant positive association was detected between AMD and PM2.5 level, temperature (T), and relative humidity (RH), in both the independent and the combined effect models. For PM2.5, compared with the lowest quartile, the odds ratios (ORs) with 95% confidence intervals (CIs) across increasing quartiles were 0.828 (0.674,1.018), 1.105 (0.799,1.528), and 2.602 (1.516,4.468). Positive associations were observed between AMD and temperature, with ORs (95% CI) of 1.625 (1.059,2.494), 1.619 (1.026,2.553), and 3.276 (1.841,5.830), across increasing quartiles. In the interaction analysis, the estimated relative excess risk due to interaction (RERI) and the attributable proportion (AP) for combined atmospheric pressure and PM2.5 was 0.864 (0.586,1.141) and 1.180 (0.768,1.592), respectively, indicating a synergistic effect between PM2.5 and atmospheric pressure. CONCLUSIONS This study is among the first to characterize the coordinated effects of meteorological factors and PM2.5 on AMD. The findings warrant further investigation to elucidate the relationship between ambient environment and AMD.
Collapse
Affiliation(s)
- Jiayu He
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yuanyuan Liu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ai Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Qianfeng Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Naixiu Sun
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Baoqun Yao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaochang Yan
- National School of Development, Peking University, Beijing, 100871, China
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Nai-jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China,Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, 300052, China,Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, 300070, China,Tianjin Key Laboratory of Ocular Trauma, Tianjin, 300070, China
| |
Collapse
|
22
|
Andrade-Oliva MDLA, Debray-García Y, Morales-Figueroa GE, Escamilla-Sánchez J, Amador-Muñoz O, Díaz-Godoy RV, Kleinman M, Florán B, Arias-Montaño JA, De Vizcaya-Ruiz A. Effect of subchronic exposure to ambient fine and ultrafine particles on rat motor activity and ex vivo striatal dopaminergic transmission. Inhal Toxicol 2023; 35:1-13. [PMID: 36325922 DOI: 10.1080/08958378.2022.2140228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Alterations in dopaminergic transmission are associated with neurological disorders, such as depression, autism, and Parkinson's disease. Exposure of rats to ambient fine (FP) or ultrafine (UFP) particles induces oxidative and inflammatory responses in the striatum, a neuronal nucleus with dense dopaminergic innervation and critically involved in the control of motor activity.Objectives: We used an ex vivo system to evaluate the effect of in vivo inhalation exposure to FP and UFP on motor activity and dopaminergic transmission.Materials and Methods: Male adult Wistar rats were exposed to FP, UFP, or filtered air for 8 weeks (subchronic exposure; 5 h/day, 5 days/week) in a particle concentrator. Motor activity was evaluated using the open-field test. Uptake and release of [3H]-dopamine were assessed in striatal synaptosomes, and dopamine D2 receptor (D2R) affinity for dopamine was evaluated by the displacement of [3H]-spiperone binding to striatal membranes.Results: Exposure to FP or UFP significantly reduced spontaneous motor activity (ambulatory distance: FP -25%, UFP -32%; ambulatory time: FP -24%, UFP -22%; ambulatory episodes: FP -22%, UFP -30%), decreased [3H]-dopamine uptake (FP -18%, UFP -24%), and increased, although not significantly, [3H]-dopamine release (113.3 ± 16.3 and 138.6 ± 17.3%). Neither FP nor UFP exposure affected D2R density or affinity for dopamine.Conclusions: These results indicate that exposure to ambient particulate matter reduces locomotion in rats, which could be related to altered striatal dopaminergic transmission: UFP was more potent than FP. Our results contribute to the evidence linking environmental factors to changes in brain function that could turn into neurological and psychiatric disorders.HIGHLIGHTSYoung adult rats were exposed to fine (FP) or ultrafine (UFP) particles for 40 days.Exposure to FP or UFP reduced motor activity.Exposure to FP or UFP reduced dopamine uptake by striatal synaptosomes.Neither D2R density or affinity for dopamine was affected by FP or UFP.UFP was more potent than FP to exert the effects reported.
Collapse
Affiliation(s)
- María-de-Los-Angeles Andrade-Oliva
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Yazmín Debray-García
- Departamento de Investigación de Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Guadalupe-Elide Morales-Figueroa
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Juan Escamilla-Sánchez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Omar Amador-Muñoz
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Raúl V Díaz-Godoy
- Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México, México
| | - Michael Kleinman
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, USA
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| |
Collapse
|
23
|
Feng S, Huang F, Zhang Y, Feng Y, Zhang Y, Cao Y, Wang X. The pathophysiological and molecular mechanisms of atmospheric PM 2.5 affecting cardiovascular health: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114444. [PMID: 38321663 DOI: 10.1016/j.ecoenv.2022.114444] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5, with aerodynamic diameter less than 2.5 µm) is a leading environmental risk factor for global cardiovascular health concern. OBJECTIVE To provide a roadmap for those new to this field, we reviewed the new insights into the pathophysiological and cellular/molecular mechanisms of PM2.5 responsible for cardiovascular health. MAIN FINDINGS PM2.5 is able to disrupt multiple physiological barriers integrity and translocate into the systemic circulation and get access to a range of secondary target organs. An ever-growing body of epidemiological and controlled exposure studies has evidenced a causal relationship between PM2.5 exposure and cardiovascular morbidity and mortality. A variety of cellular and molecular biology mechanisms responsible for the detrimental cardiovascular outcomes attributable to PM2.5 exposure have been described, including metabolic activation, oxidative stress, genotoxicity, inflammation, dysregulation of Ca2+ signaling, disturbance of autophagy, and induction of apoptosis, by which PM2.5 exposure impacts the functions and fates of multiple target cells in cardiovascular system or related organs and further alters a series of pathophysiological processes, such as cardiac autonomic nervous system imbalance, increasing blood pressure, metabolic disorder, accelerated atherosclerosis and plaque vulnerability, platelet aggregation and thrombosis, and disruption in cardiac structure and function, ultimately leading to cardiovascular events and death. Therein, oxidative stress and inflammation were suggested to play pivotal roles in those pathophysiological processes. CONCLUSION Those biology mechanisms have deepen insights into the etiology, course, prevention and treatment of this public health concern, although the underlying mechanisms have not yet been entirely clarified.
Collapse
Affiliation(s)
- Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Fangfang Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yuqi Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yashi Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ying Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yunchang Cao
- The Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Xinming Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
24
|
Shang M, Tang M, Xue Y. Neurodevelopmental toxicity induced by airborne particulate matter. J Appl Toxicol 2023; 43:167-185. [PMID: 35995895 DOI: 10.1002/jat.4382] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/08/2022]
Abstract
Airborne particulate matter (PM), the primary component associated with health risks in air pollution, can negatively impact human health. Studies have shown that PM can enter the brain by inhalation, but data on the exact quantity of particles that reach the brain are unknown. Particulate matter exposure can result in neurotoxicity. Exposure to PM poses a greater health risk to infants and children because their nervous systems are not fully developed. This review paper highlights the association between PM and neurodevelopmental toxicity (NDT). Exposure to PM can induce oxidative stress and inflammation, potentially resulting in blood-brain barrier damage and increased susceptibility to development of neurodevelopmental disorders (NDD), such as autism spectrum disorders and attention deficit disorders. In addition, human and animal exposure to PM can induce microglia activation and epigenetic alterations and alter the neurotransmitter levels, which may increase risks for development of NDD. However, the systematic comparisons of the effects of PM on NDD at different ages of exposure are deficient. The elucidation of PM exposure risks and NDT in children during the early developmental stages are of great importance. The synthesis of current research may help to identify markers and mechanisms of PM-induced neurodevelopmental toxicity, allowing for the development of strategies to prevent permanent damage of developing brain.
Collapse
Affiliation(s)
- Mengting Shang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
25
|
Ke L, Zhang Y, Fu Y, Shen X, Zhang Y, Ma X, Di Q. Short-term PM 2.5 exposure and cognitive function: Association and neurophysiological mechanisms. ENVIRONMENT INTERNATIONAL 2022; 170:107593. [PMID: 36279737 DOI: 10.1016/j.envint.2022.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Although converging evidence has demonstrated that exposure to fine particulate matter (PM2.5) caused adverse effects on brain structure and cognitive function, the association between the short-term exposure to PM2.5 and cognition dysfunction remained underexplored, especially possible neurophysiological mechanisms. METHODS We conducted a longitudinal observational study with four repeated measurement sessions among 90 young adults from September 2020 to June 2021. During each measurement session, we measured participants' personal-level air pollution exposure for one week with portable monitors, followed by executive function assessment and electrophysiological signal recording at an assessment center. Standard Stroop color-word test was used accompanied with electroencephalogram (EEG) recording to assess performance on executive function. We used linear mixed-effect model with lagged values of PM2.5 levels to analyze the association between PM2.5 exposure and changes in executive function, and mediation analysis to investigate mediation effect by EEG signal. RESULTS Adjusted mixed-effect models demonstrated that elevated PM2.5 exposure three days prior to cognitive assessment (lag-3) was associated with (1) declined performance in both congruent and incongruent tasks in Stroop test, (2) reduced lower and upper alpha event-related desynchronization (ERD) during 500-1000 ms after stimuli, both indicating impaired executive control. Lower and upper alpha ERD also mediated observed associations between short-term PM2.5 exposure and executive function. No significant associations were found between short-term PM2.5 exposure or aperiodic exponents in tonic and phasic states, or periodic alpha oscillations in tonic state. CONCLUSION Our results provided evidence that short-term PM2.5 exposure was associated with executive dysfunction. Reduced alpha ERD was likely to be the underlying pathway through which PM2.5 induced adverse effects on neuron activities during cognitive tasks.
Collapse
Affiliation(s)
- Limei Ke
- School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Yao Zhang
- Soochow College, Soochow University, Suzhou 215006, China; Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| | - Yingyao Fu
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China; Department of senior high school, Beijing Jianhua Experimental Etown School, Beijing 100176, China.
| | - Xinke Shen
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yu Zhang
- Institute of Education, Tsinghua University, Beijing 100084, China.
| | - Xindong Ma
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute for Healthy China, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Chen Z, Liu P, Xia X, Wang L, Li X. The underlying mechanism of PM2.5-induced ischemic stroke. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119827. [PMID: 35917837 DOI: 10.1016/j.envpol.2022.119827] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Under the background of global industrialization, PM2.5 has become the fourth-leading risk factor for ischemic stroke worldwide, according to the 2019 GBD estimates. This highlights the hazards of PM2.5 for ischemic stroke, but unfortunately, PM2.5 has not received the attention that matches its harmfulness. This article is the first to systematically describe the molecular biological mechanism of PM2.5-induced ischemic stroke, and also propose potential therapeutic and intervention strategies. We highlight the effect of PM2.5 on traditional cerebrovascular risk factors (hypertension, hyperglycemia, dyslipidemia, atrial fibrillation), which were easily overlooked in previous studies. Additionally, the effects of PM2.5 on platelet parameters, megakaryocytes activation, platelet methylation, and PM2.5-induced oxidative stress, local RAS activation, and miRNA alterations in endothelial cells have also been described. Finally, PM2.5-induced ischemic brain pathological injury and microglia-dominated neuroinflammation are discussed. Our ultimate goal is to raise the public awareness of the harm of PM2.5 to ischemic stroke, and to provide a certain level of health guidance for stroke-susceptible populations, as well as point out some interesting ideas and directions for future clinical and basic research.
Collapse
Affiliation(s)
- Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Peilin Liu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China
| | - Lin Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China.
| |
Collapse
|
27
|
Gu Y, Hao S, Liu K, Gao M, Lu B, Sheng F, Zhang L, Xu Y, Wu D, Han Y, Chen S, Zhao W, Lou X, Wang X, Li P, Chen Z, Yao K, Fu Q. Airborne fine particulate matter (PM 2.5) damages the inner blood-retinal barrier by inducing inflammation and ferroptosis in retinal vascular endothelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156563. [PMID: 35690207 DOI: 10.1016/j.scitotenv.2022.156563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
This study was the first to explore the effect of airborne fine particulate matter (PM2.5) exposure on the inner blood-retinal barrier (iBRB). In this study, retinal vascular permeability and diameter were enhanced in the PM2.5-exposed animal model (1 mg/mL PM2.5, 10 μL per eye, 4 times per day, 3 days), together with observable retinal edema and increased inflammation level in retina. PM2.5-induced cell damage in human retinal microvascular endothelial cells (HRMECs) occurred in a time- and dose-dependent manner. Decreased cell viability, proliferation, migration, and angiogenesis, as well as increased apoptosis and inflammation, were observed. Iron overload and excessive lipid oxidation were also discovered after PM2.5 exposure (25, 50, and 100 μg/mL PM2.5 for 24 h), along with significantly altered expression of ferroptosis-related genes, such as prostaglandin-endoperoxide synthase 2, glutathione peroxidase 4, and ferritin heavy chain 1. Moreover, Ferrostatin-1, an inhibitor of ferroptosis, evidently alleviated the PM2.5-induced cytotoxicity of HRMECs. The present study investigated the in vivo effects of PM2.5 on retinas, revealing that PM2.5 exposure induced retinal inflammation, vascular dilatation, and caused damage to the iBRB. The crucial role of ferroptosis was discovered during PM2.5-induced HRMEC cytotoxicity and dysfunction, indicating a potential precautionary target in air pollution-associated retinal vascular diseases.
Collapse
Affiliation(s)
- Yuzhou Gu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Shengjie Hao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Kaiyuan Liu
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Mengqin Gao
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Bing Lu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Feiyin Sheng
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Li Zhang
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Yili Xu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Di Wu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Yu Han
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Shuying Chen
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Wei Zhao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Xiaoming Lou
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Xiaofeng Wang
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Peng Li
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Zhijian Chen
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.
| | - Ke Yao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China.
| | - Qiuli Fu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
28
|
Mohamed A, Ohtonen S, Giudice L, Schroderus AM, Závodná T, Krejčik Z, Rössner P, Kanninen K, Kinnunen T, Topinka J, Muala A, Sandström T, Korhonen P, Malm T. P07-16 Biometrics for the impact of acute air pollution on human peripheral immunity. Toxicol Lett 2022. [DOI: 10.1016/j.toxlet.2022.07.359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
29
|
Xiong Q, Tian X, Xu C, Ma B, Liu W, Sun B, Ru Q, Shu X. PM 2 .5 exposure-induced ferroptosis in neuronal cells via inhibiting ERK/CREB pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2201-2213. [PMID: 35608139 DOI: 10.1002/tox.23586] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 03/25/2022] [Accepted: 05/06/2022] [Indexed: 05/16/2023]
Abstract
PM2.5 exposure has been demonstrated to correlate with neurological disorders recently. Ferroptosis is recognized as a newly found programmed form of cell death associated with neurodegenerative diseases, while glutathione peroxidase 4 (GPX4) is a key regulator of ferroptosis. However, the relationship between PM2.5 -induced neurotoxicity and ferroptosis is still unclear. The current study aims to investigate if ferroptosis is involved in neurotoxicity post PM2.5 exposure and its underlying mechanism. The PM2.5 -treated neuronal Neuro-2a (N2A) and SH-SY5Y cells were applied to the current study. The results showed that PM2.5 significantly increased the neuronal cell death, yet the ferroptosis antagonist Ferrostain-1 (Fer-1) markedly decreased the cell death induced by PM2.5 . Western blot further confirmed that ferroptosis was triggered post PM2.5 treatment in N2A cells by decreasing expressions of GPX4 and ferritin heavy chain (FTH), as well as enhancing expressions of ferritin light chain (FTL) and transferrin receptor protein (TFRC). Meanwhile, PM2.5 treatment augmented neuronal oxidative damage and mitochondrial dysfunction. The bioinformatic analysis indicated that CREB could be the regulator of GPX4, and our results showed that ERK/CREB pathway was down-regulated in N2A cells post PM2.5 treatment. The addition of ERK1/2 agonist post PM2.5 treatment significantly inhibit ferroptosis via increasing the expression of GPX4. Taken together, the present study demonstrated that PM2.5 -induced ferroptosis via inhibiting ERK/CREB pathway, and these findings will advance our knowledge of PM2.5 -induced cytotoxicity in the nervous system.
Collapse
Affiliation(s)
- Qi Xiong
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, People's Republic of China
| | - Xiang Tian
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, People's Republic of China
| | - Congyue Xu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, People's Republic of China
| | - Baomiao Ma
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, People's Republic of China
| | - Wei Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, People's Republic of China
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, People's Republic of China
| | - Qin Ru
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, People's Republic of China
- Wuhan Economic and Technological Development Zone, Jianghan University, Wuhan City, China
| | - Xiji Shu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, People's Republic of China
| |
Collapse
|
30
|
Eckhardt CM, Baccarelli AA, Wu H. Environmental Exposures and Extracellular Vesicles: Indicators of Systemic Effects and Human Disease. Curr Environ Health Rep 2022; 9:465-476. [PMID: 35449498 PMCID: PMC9395256 DOI: 10.1007/s40572-022-00357-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Environmental pollutants contribute to the pathogenesis of numerous diseases including chronic cardiovascular, respiratory, and neurodegenerative diseases, among others. Emerging evidence suggests that extracellular vesicles (EVs) may mediate the association of environmental exposures with chronic diseases. The purpose of this review is to describe the impact of common environmental exposures on EVs and their role in linking environmental pollutants to the pathogenesis of chronic systemic diseases. RECENT FINDINGS Common environmental pollutants including particulate matter, tobacco smoke, and chemical pollutants trigger the release of EVs from multiple systems in the body. Existing research has focused primarily on air pollutants, which alter EV production and release in the lungs and systemic circulation. Air pollutants also impact the selective loading of EV cargo including microRNA and proteins, which modify the cellular function in recipient cells. As a result, pollutant-induced EVs often contribute to a pro-inflammatory and pro-thrombotic milieu, which increases the risk of pollutant-related diseases including obstructive lung diseases, cardiovascular disease, neurodegenerative diseases, and lung cancer. Common environmental exposures are associated with multifaceted changes in EVs that lead to functional alterations in recipient cells and contribute to the pathogenesis of chronic systemic diseases. EVs may represent emerging targets for the prevention and treatment of diseases that stem from environmental exposures. However, novel research is required to expand our knowledge of the biological action of EV cargo, elucidate determinants of EV release, and fully understand the impact of environmental pollutants on human health.
Collapse
Affiliation(s)
- Christina M Eckhardt
- Division of Pulmonary, Allergy and Critical, Care Medicine, Department of Medicine, Columbia University Irving Medical Center, 630 West 168th Street, Floor 8, Suite 101, New York, NY, 10032, USA
| | - Andrea A Baccarelli
- Environmental Health Sciences Department, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY, 10032, USA
| | - Haotian Wu
- Environmental Health Sciences Department, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY, 10032, USA.
| |
Collapse
|
31
|
Pryor JT, Cowley LO, Simonds SE. The Physiological Effects of Air Pollution: Particulate Matter, Physiology and Disease. Front Public Health 2022; 10:882569. [PMID: 35910891 PMCID: PMC9329703 DOI: 10.3389/fpubh.2022.882569] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
Nine out of 10 people breathe air that does not meet World Health Organization pollution limits. Air pollutants include gasses and particulate matter and collectively are responsible for ~8 million annual deaths. Particulate matter is the most dangerous form of air pollution, causing inflammatory and oxidative tissue damage. A deeper understanding of the physiological effects of particulate matter is needed for effective disease prevention and treatment. This review will summarize the impact of particulate matter on physiological systems, and where possible will refer to apposite epidemiological and toxicological studies. By discussing a broad cross-section of available data, we hope this review appeals to a wide readership and provides some insight on the impacts of particulate matter on human health.
Collapse
Affiliation(s)
- Jack T. Pryor
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Woodrudge LTD, London, United Kingdom
| | - Lachlan O. Cowley
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stephanie E. Simonds
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- *Correspondence: Stephanie E. Simonds
| |
Collapse
|
32
|
Liu C, She Y, Huang J, Liu Y, Li W, Zhang C, Zhang T, Yu L. HMGB1-NLRP3-P2X7R pathway participates in PM 2.5-induced hippocampal neuron impairment by regulating microglia activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113664. [PMID: 35605331 DOI: 10.1016/j.ecoenv.2022.113664] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Neuroinflammation is a key mechanism underlying the cognitive impairment induced by PM2.5, and activated microglia plays an important role in this process. However, the mechanisms by which activated microglia induced by PM2.5 impair hippocampal neurons have not been fully elucidated. In this study, we focused on the role of HMGB1-NLRP3-P2X7R pathway which mediated the microglia activation in hippocampal neurons impairment induced by PM2.5 using a co-culture model of microglia and hippocampal neurons. We found that PM2.5 resulted in activated microglia and HMGB1-NLRP3 inflammatory pathway, and elevated proinflammatory cytokines of IL-18 and IL-1β in a dose-dependent manner. Notably, we next utilized previously reported pharmacological inhibitors or siRNA for HMGB1 and found that they significantly inhibited the activation of downstream NLRP3 and MAPK pathways derived from PM2.5 exposure, and down-regulated IL-18 and IL-1β in microglia. Furthermore, we employed co-cultured hippocampal neurons and microglia and found that reducing HMGB1 significantly decreased neuron impairment, apoptosis related protein of cl-caspase3, synaptic damage, and neurotransmitter receptor of 5-HT2A, along with notably elevated presynaptic and postsynaptic proteins of SYP and PSD-95, as well as learning and memory related proteins of p-CREB and BDNF. The neuronal impairment induced by PM2.5 could not be prevented in the case of simultaneous employment of HMGB1 siRNA and NLRP3 agonist. After silencing NLRP3 alone in microglia, hippocampal neurons demonstrated decreased excessive autophagy and up-regulated synaptic protein of GAP43 as well as learning and memory related protein of NCAM1. Therefore, we further studied how hippocampal neurons affected microglia under PM2.5 exposure, Further investigation indicated that silencing HMGB1 could affect the activation of P2X7R and reduce the release of ATP from hippocampal neurons, thus protecting the interaction between microglia and hippocampal neurons. The present work suggests that regulation of HMGB1-NLRP3-P2X7R pathway can inhibit the microglia activation induced by PM2.5 to alleviate hippocampal neuron impairment and stabilize the microenvironment between microglia and neurons. This contributes to maintaining the normal function of hippocampal neurons and alleviating the cognitive impairment derived from PM2.5 exposure.
Collapse
Affiliation(s)
- Chong Liu
- School of Basic Medical Sciences, Experimental Center for Medical Research, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Yingjie She
- School of Basic Medical Sciences, Experimental Center for Medical Research, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Jia Huang
- School of Basic Medical Sciences, Experimental Center for Medical Research, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Yongping Liu
- School of Basic Medical Sciences, Experimental Center for Medical Research, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Wanwei Li
- School of Basic Medical Sciences, Experimental Center for Medical Research, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Tianliang Zhang
- School of Basic Medical Sciences, Experimental Center for Medical Research, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China.
| | - Li Yu
- School of Basic Medical Sciences, Experimental Center for Medical Research, Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China.
| |
Collapse
|
33
|
Gao L, Qin JX, Shi JQ, Jiang T, Wang F, Xie C, Gao Q, Zhi N, Dong Q, Guan YT. Fine particulate matter exposure aggravates ischemic injury via NLRP3 inflammasome activation and pyroptosis. CNS Neurosci Ther 2022; 28:1045-1058. [PMID: 35403328 PMCID: PMC9160454 DOI: 10.1111/cns.13837] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Aims Accumulating evidence has suggested that airborne fine particulate matter (PM2.5) exposure is associated with an increased risk of ischemic stroke. However, the underlying mechanisms have not been fully elucidated. In this study, we aim to investigate the role and mechanisms of NLRP3 inflammasome and pyroptosis in ischemic stroke after PM2.5 exposure. Methods The BV‐2 and HMC‐3 microglial cell lines were established and subjected to oxygen–glucose deprivation and reoxygenation (OGD/R) with or without PM2.5 exposure. We used the CCK‐8 assay to explore the effects of PM2.5 on cell viability of BV‐2 and HMC‐3 cells. Then, the effects of PM2.5 exposure on NLRP3 inflammasome and pyroptosis following OGD/R were detected by western blotting, ELISA, and the confocal immunofluorescence staining. Afterwards, NLRP3 was knocked down to further validate the effects of PM2.5 on cell viability, NLRP3 inflammasome activation, and pyroptosis after OGD/R in HMC‐3 cells. Finally, the intracellular reactive oxygen species (ROS) was measured and the ROS inhibitor N‐acetyl‐L‐cysteine (NAC) was used to investigate whether ROS was required for PM2.5‐induced NLRP3 inflammasome activation and pyroptosis under ischemic conditions. Results We found that PM2.5 exposure decreased the viability of BV‐2 and HMC‐3 cells in a dose‐ and time‐dependent manner under ischemic conditions. Furthermore, PM2.5 exposure aggravated NLRP3 inflammasome activation and pyroptosis after OGD/R, as indicated by an increased expression of NLRP3, ASC, pro‐caspase‐1, Caspase‐1, GSDMD, and GSDMD‐N; increased production of IL‐1β and IL‐18; and enhanced Caspase‐1 activity and SYTOX green uptake. However, shRNA NLRP3 treatment attenuated the effects of PM2.5 on cell viability, NLRP3 inflammasome activation, and pyroptosis. Moreover, we observed that PM2.5 exposure increased the production of intracellular ROS following OGD/R, while inhibiting ROS production with NAC partially attenuated PM2.5‐induced NLRP3 inflammasome activation and pyroptosis under ischemic conditions. Conclusion These results suggested that PM2.5 exposure triggered the activation of NLRP3 inflammasome and pyroptosis under ischemic conditions, which may be mediated by increased ROS production after ischemic stroke. These findings may provide a more enhanced understanding of the interplay between PM2.5 and neuroinflammation and cell death, and reveal a novel mechanism of PM2.5‐mediated toxic effects after ischemic stroke.
Collapse
Affiliation(s)
- Li Gao
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Xing Qin
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Quan Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Fei Wang
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chong Xie
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Nan Zhi
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Dong
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang-Tai Guan
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Kim MJ, Kang JY, Kim JM, Moon JH, Lee HL, Jeong HR, Go MJ, Lee U, Heo HJ. Effect of Ethyl Acetate Fraction from Eucommia ulmoides Leaves on PM 2.5-Induced Inflammation and Cognitive Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7157444. [PMID: 35607702 PMCID: PMC9124148 DOI: 10.1155/2022/7157444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to evaluate the protective effect of the ethyl acetate from Eucommia ulmoides leaves (EFEL) on PM2.5-induced cognitive impairment in BALB/c mice. EFEL improved PM2.5-induced cognitive decline by improving spontaneous alternative behavioral and long-term memory ability. EFEL increased ferric reducing activity power (FRAP) in serum. In addition, EFEL increased superoxide dismutase (SOD) and reduced glutathione (GSH) contents and inhibited the production of malondialdehyde (MDA) in lung and brain tissues. EFEL also restored the mitochondrial function by regulating reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) level, and ATP level in lung and brain tissues. EFEL ameliorated the cholinergic system by regulating the acetylcholine (ACh) content and acetylcholinesterase (AChE) activity in the brain tissue and the expression of AChE and choline acetyltransferase (ChAT) in the whole brain and hippocampal tissues. EFEL reduced PM2.5-induced excessive expression of inflammatory protein related to the lung, whole brain, olfactory bulb, and hippocampus. Physiological compounds of EFEL were identified as 5-O-caffeolyquinic acid, rutin, quercetin, and quercetin glycosides. As a result, EFEL has anti-inflammation and anti-amnesic effect on PM2.5-induced cognitive impairment by regulating the inflammation and inhibiting the lung and brain tissue dysfunction, and its effect is considered to be due to the physiological compounds of EFEL.
Collapse
Affiliation(s)
- Min Ji Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin Yong Kang
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- World Institute of Kimchi an Annex of Korea Food Research Institute, Gwangju, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Hyun Moon
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hye Rin Jeong
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Uk Lee
- Division of Special Forest Products, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
35
|
Nabi M, Tabassum N. Role of Environmental Toxicants on Neurodegenerative Disorders. FRONTIERS IN TOXICOLOGY 2022; 4:837579. [PMID: 35647576 PMCID: PMC9131020 DOI: 10.3389/ftox.2022.837579] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/22/2022] [Indexed: 12/22/2022] Open
Abstract
Neurodegeneration leads to the loss of structural and functioning components of neurons over time. Various studies have related neurodegeneration to a number of degenerative disorders. Neurological repercussions of neurodegeneration can have severe impacts on the physical and mental health of patients. In the recent past, various neurodegenerative ailments such as Alzheimer’s and Parkinson’s illnesses have received global consideration owing to their global occurrence. Environmental attributes have been regarded as the main contributors to neural dysfunction-related disorders. The majority of neurological diseases are mainly related to prenatal and postnatal exposure to industrially produced environmental toxins. Some neurotoxic metals, like lead (Pb), aluminium (Al), Mercury (Hg), manganese (Mn), cadmium (Cd), and arsenic (As), and also pesticides and metal-based nanoparticles, have been implicated in Parkinson’s and Alzheimer’s disease. The contaminants are known for their ability to produce senile or amyloid plaques and neurofibrillary tangles (NFTs), which are the key features of these neurological dysfunctions. Besides, solvent exposure is also a significant contributor to neurological diseases. This study recapitulates the role of environmental neurotoxins on neurodegeneration with special emphasis on major neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease.
Collapse
Affiliation(s)
- Masarat Nabi
- Department of Environmental Science, University of Kashmir, Srinagar, India
- *Correspondence: Masarat Nabi, , orcid.org/0000-0003-1677-6498; Nahida Tabassum,
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
- *Correspondence: Masarat Nabi, , orcid.org/0000-0003-1677-6498; Nahida Tabassum,
| |
Collapse
|
36
|
Lima TSM, Souza W, Geaquinto LRO, Sanches PL, Stepień EL, Meneses J, Fernández-de Gortari E, Meisner-Kober N, Himly M, Granjeiro JM, Ribeiro AR. Nanomaterial Exposure, Extracellular Vesicle Biogenesis and Adverse Cellular Outcomes: A Scoping Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1231. [PMID: 35407349 PMCID: PMC9000848 DOI: 10.3390/nano12071231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023]
Abstract
The progressively increasing use of nanomaterials (NMs) has awakened issues related to nanosafety and its potential toxic effects on human health. Emerging studies suggest that NMs alter cell communication by reshaping and altering the secretion of extracellular vesicles (EVs), leading to dysfunction in recipient cells. However, there is limited understanding of how the physicochemical characteristics of NMs alter the EV content and their consequent physiological functions. Therefore, this review explored the relevance of EVs in the nanotoxicology field. The current state of the art on how EVs are modulated by NM exposure and the possible regulation and modulation of signaling pathways and physiological responses were assessed in detail. This review followed the manual for reviewers produced by The Joanna Brigs Institute for Scoping Reviews and the PRISMA extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. The research question, "Do NMs modulate cellular responses mediated by EVs?" was analyzed following the PECO model (P (Population) = EVs, E (Exposure) = NMs, C (Comparator) = EVs without exposure to NMs, O (Outcome) = Cellular responses/change in EVs) to help methodologically assess the association between exposure and outcome. For each theme in the PECO acronym, keywords were defined, organized, and researched in PubMed, Science Direct, Scopus, Web of Science, EMBASE, and Cochrane databases, up to 30 September 2021. In vitro, in vivo, ex vivo, and clinical studies that analyzed the effect of NMs on EV biogenesis, cargo, and cellular responses were included in the analysis. The methodological quality assessment was conducted using the ToxRTool, ARRIVE guideline, Newcastle Ottawa and the EV-TRACK platform. The search in the referred databases identified 2944 articles. After applying the eligibility criteria and two-step screening, 18 articles were included in the final review. We observed that depending on the concentration and physicochemical characteristics, specific NMs promote a significant increase in EV secretion as well as changes in their cargo, especially regarding the expression of proteins and miRNAs, which, in turn, were involved in biological processes that included cell communication, angiogenesis, and activation of the immune response, etc. Although further studies are necessary, this work suggests that molecular investigations on EVs induced by NM exposure may become a potential tool for toxicological studies since they are widely accessible biomarkers that may form a bridge between NM exposure and the cellular response and pathological outcome.
Collapse
Affiliation(s)
- Thais S. M. Lima
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
| | - Wanderson Souza
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
| | - Luths R. O. Geaquinto
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
| | - Priscila L. Sanches
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias 25071-202, Brazil
| | - Ewa. L. Stepień
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland;
| | - João Meneses
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (J.M.); (E.F.-d.G.)
| | - Eli Fernández-de Gortari
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (J.M.); (E.F.-d.G.)
| | - Nicole Meisner-Kober
- Department of Biosciences & Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (N.M.-K.); (M.H.)
| | - Martin Himly
- Department of Biosciences & Medical Biology, University of Salzburg, 5020 Salzburg, Austria; (N.M.-K.); (M.H.)
| | - José M. Granjeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil; (T.S.M.L.); (W.S.); (L.R.O.G.); (P.L.S.)
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
- Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias 25071-202, Brazil
- Dental School, Fluminense Federal University, Niterói 24020-140, Brazil
| | - Ana R. Ribeiro
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro 25250-020, Brazil
- NanoSafety Group, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (J.M.); (E.F.-d.G.)
| |
Collapse
|
37
|
Ji X, Li C, Zhu X, Yu W, Cai Y, Zhu X, Lu L, Qian Q, Hu Y, Zhu X, Wang H. Methylcobalamin Alleviates Neuronal Apoptosis and Cognitive Decline Induced by PM2.5 Exposure in Mice. J Alzheimers Dis 2022; 86:1783-1796. [DOI: 10.3233/jad-215384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Fine particulate matter (particulate matter 2.5, PM2.5) is considered one of the harmful factors to neuronal functions. Apoptosis is one of the mechanisms of neuronal injury induced by PM2.5. Methylcobalamine (MeCbl) has been shown to have anti-apoptotic and neuroprotective effects. Objective: The current work tried to explore the neuroprotective effects and mechanisms that MeCbl protects mice against cognitive impairment and neuronal apoptosis induced by chronic real-time PM2.5 exposure. Methods: Twenty-four 6-week-old male C57BL/6 mice were exposed to ambient PM2.5 and fed with MeCbl for 6 months. Morris water maze was used to evaluate the changes of spatial learning and memory ability in mice. PC12 cells and primary hippocampal neurons were applied as the in vitro model. Cell viability, cellular reactive oxygen species (ROS) and the expressions of apoptosis-related proteins were examined. And cells were stained with JC-1 and mitochondrial membrane potential was evaluated. Results: In C57BL/6 mice, MeCbl supplementation alleviated cognitive impairment and apoptosis-related protein expression induced by PM2.5 exposure. In in vitro cell model, MeCbl supplementation could effectively rescued the downregulation of cell viability induced by PM2.5, and inhibited the increased levels of ROS, cellular apoptosis, and the expressions of apoptosis related proteins related to PM2.5 treatment, which may be associated with modulation of mitochondrial function. Conclusion: MeCbl treatment alleviated cognitive impairment and neuronal apoptosis induced by PM2.5 both in vivo and in vitro. The mechanism for the neuroprotective effects of MeCbl may at least partially dependent on the regulation of mitochondrial apoptosis.
Collapse
Affiliation(s)
- Xintong Ji
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Chenxia Li
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Xiaozheng Zhu
- School of Basic Medical Sciences, Hangzhou Normal University, China
| | - Wenlei Yu
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Yanyu Cai
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Xinyi Zhu
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Linjie Lu
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Qiwei Qian
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Yu Hu
- School of Basic Medical Sciences, Hangzhou Normal University, China
| | - Xuan Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, China
| | - Huanhuan Wang
- School of Basic Medical Sciences, Hangzhou Normal University, China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| |
Collapse
|
38
|
The pathogenic effects of particulate matter on neurodegeneration: a review. J Biomed Sci 2022; 29:15. [PMID: 35189880 PMCID: PMC8862284 DOI: 10.1186/s12929-022-00799-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/16/2022] [Indexed: 12/15/2022] Open
Abstract
The increasing amount of particulate matter (PM) in the ambient air is a pressing public health issue globally. Epidemiological studies involving data from millions of patients or volunteers have associated PM with increased risk of dementia and Alzheimer’s disease in the elderly and cognitive dysfunction and neurodegenerative pathology across all age groups, suggesting that PM may be a risk factor for neurodegenerative diseases. Neurodegenerative diseases affect an increasing population in this aging society, putting a heavy burden on economics and family. Therefore, understanding the mechanism by which PM contributes to neurodegeneration is essential to develop effective interventions. Evidence in human and animal studies suggested that PM induced neurodenegerative-like pathology including neurotoxicity, neuroinflammation, oxidative stress, and damage in blood–brain barrier and neurovascular units, which may contribute to the increased risk of neurodegeneration. Interestingly, antagonizing oxidative stress alleviated the neurotoxicity of PM, which may underlie the essential role of oxidative stress in PM’s potential effect in neurodegeneration. This review summarized up-to-date epidemiological and experimental studies on the pathogenic role of PM in neurodegenerative diseases and discussed the possible underlying mechanisms.
Collapse
|
39
|
Chen S, Chen L, Ye L, Jiang Y, Li Q, Zhang H, Zhang R, Li H, Yu D, Zhang R, Niu Y, Zhao Q, Liu J, Ouyang G, Aschner M, Zheng Y, Zhang L, Chen W, Li D. PP2A-mTOR-p70S6K/4E-BP1 axis regulates M1 polarization of pulmonary macrophages and promotes ambient particulate matter induced mouse lung injury. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127624. [PMID: 34740159 DOI: 10.1016/j.jhazmat.2021.127624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
To identify key signaling pathways involved in ambient particulate matter (PM)-induced pulmonary injury, we generated a mouse model with myeloid-specific deletion of Ppp2r1a gene (encoding protein phosphatase 2 A (PP2A) A subunit), and conducted experiments in a real-ambient PM exposure system. PP2A Aα-/- homozygote (Aα HO) mice and matched wild-type (WT) littermates were exposed to PM over 3-week and 6-week. The effects of PM exposure on pulmonary inflammation, oxidative stress, and apoptosis were significantly enhanced in Aα HO compared to WT mice. The number of pulmonary macrophages increased by 74.8~88.0% and enhanced M1 polarization appeared in Aα HO mice upon PM exposure. Secretion of M1 macrophage-related inflammatory cytokines was significantly increased in Aα HO vs. WT mice following PM exposure. Moreover, we demonstrated that PP2A-B56α holoenzyme regulated M1 polarization and that the mTOR signaling pathway mediated the persistent M1 polarization upon PM2.5 exposure. Importantly, PP2A-B56α holoenzyme was shown to complex with mTOR/p70S6K/4E-BP1, and suppression of B56α led to enhanced phosphorylation of mTOR, p70S6K, and 4E-BP1. These observations demonstrate that the PP2A-mTOR-p70S6K/4E-BP1 signaling is a critical pathway in mediating macrophage M1 polarization, which contributes to PM-induced pulmonary injury.
Collapse
Affiliation(s)
- Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lizhu Ye
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Jiang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Haiyan Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huiyao Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Yujie Niu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Qun Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian 116023, China
| | - Jianhui Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian 116023, China
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, National Chromatographic Research and Analysis Center, Dalian 116023, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
40
|
Catalytic role of formaldehyde in particulate matter formation. Proc Natl Acad Sci U S A 2022; 119:2113265119. [PMID: 35101978 PMCID: PMC8833171 DOI: 10.1073/pnas.2113265119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2021] [Indexed: 11/18/2022] Open
Abstract
Formaldehyde (HCHO), the simplest and most abundant carbonyl in the atmosphere, contributes to particulate matter (PM) formation via two in-cloud processing pathways. First, in a catalytic pathway, HCHO reacts with hydrogen peroxide (H2O2) to form hydroxymethyl hydroperoxide (HMHP), which rapidly oxidizes dissolved sulfur dioxide (SO2,aq) to sulfate, regenerating HCHO. Second, HCHO reacts with dissolved SO2,aq to form hydroxymethanesulfonate (HMS), which upon oxidation with the hydroxyl radical (OH) forms sulfate and also reforms HCHO. Chemical transport model simulations using rate coefficients from laboratory studies of the reaction rate of HMHP with SO2,aq show that the HMHP pathways reduce the SO2 lifetime by up to a factor of 2 and contribute up to ∼18% of global sulfate. This contribution rises to >50% in isoprene-dominated regions such as the Amazon. Combined with recent results on HMS, this work demonstrates that the one-carbon molecules HMHP and HCHO contribute significantly to global PM, with HCHO playing a crucial catalytic role.
Collapse
|
41
|
Wang J, Zhang Y, Zhang Z, Yu W, Li A, Gao X, Lv D, Zheng H, Kou X, Xue Z. Toxicology of respiratory system: Profiling chemicals in PM 10 for molecular targets and adverse outcomes. ENVIRONMENT INTERNATIONAL 2022; 159:107040. [PMID: 34922181 DOI: 10.1016/j.envint.2021.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/13/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Numerous studies have shown that the increasing trend of respiratory diseases have been closely associated with the endogenous toxic chemicals (polycyclic aromatic hydrocarbons, heavy metal ions, etc.) in PM10. In the present study, we aim to determine the strong correlations between the chemicals in PM10 and the adverse consequences. We used the ChemView DB, the ToxRef DB and a comprehensive literature analysis to collect, identify, and evaluate the chemicals in PM10 and their adverse effects on respiratory system, and then used the ToxCast DB to analyze their bioactivity and key targets through 1192 molecular targets and cell characteristic endpoints. Meanwhile, the bioinformatics analysis were carried out on the molecular targets to screen out prevention and treatment targets. A total of 310 chemicals related to the respiratory system were identified. An unsupervised two-directional heatmap was constructed based on hierarchical clustering of 227 chemicals by their effect scores. A subset of 253 chemicals with respiratory system toxicity had in vitro bioactivity on 318 molecular targets that could be described, clustered and annotated in the heatmap and bipartite network, which were analyzed based on the protein information in UniProt KB database and the software of GO, STRING, and KEGG. These results showed that the chemicals in PM10 have strong correlation with different types of respiratory system injury. The main pathways of respiratory system injury caused by PM10 are the Calcium signaling pathway, MAPK signaling pathway, and PI3K-AKT signaling pathway, and the core proteins in which are likely to be the molecular targets for the prevention and treatment of damage caused by PM10.
Collapse
Affiliation(s)
- Junyu Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Yixia Zhang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Zhijun Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin 300384, China
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Ang Li
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Xin Gao
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Danyu Lv
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Huaize Zheng
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| |
Collapse
|
42
|
Burnor E, Cserbik D, Cotter DL, Palmer CE, Ahmadi H, Eckel SP, Berhane K, McConnell R, Chen JC, Schwartz J, Jackson R, Herting MM. Association of Outdoor Ambient Fine Particulate Matter With Intracellular White Matter Microstructural Properties Among Children. JAMA Netw Open 2021; 4:e2138300. [PMID: 34882178 PMCID: PMC8662373 DOI: 10.1001/jamanetworkopen.2021.38300] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Importance Outdoor particulate matter 2.5 μm or less in diameter (PM2.5) is a ubiquitous environmental neurotoxicant that may affect the developing brain. Little is known about associations between PM2.5 and white matter connectivity. Objectives To assess associations between annual residential PM2.5 exposure and white matter microstructure health in a US sample of children 9 to 10 years of age and to examine whether associations are specific to certain white matter pathways or vary across neuroimaging diffusion markers reflective of intracellular and extracellular microstructural processes. Design, Setting, and Participants This cross-sectional study, the Adolescent Brain and Cognitive Development (ABCD) Study, was composed of 21 study sites across the US and used baseline data collected from children 9 to 10 years of age from September 1, 2016, to October 15, 2018. Data analysis was performed from September 15, 2020, to June 30, 2021. Exposures Annual mean PM2.5 exposure estimated by ensemble-based models and assigned to the primary residential addresses at baseline. Main Outcomes and Measures Diffusion-weighted imaging (DWI) and tractography were used to delineate white matter tracts. The biophysical modeling technique of restriction spectrum imaging (RSI) was implemented to examine total hindered diffusion and restricted isotropic and anisotropic intracellular diffusion in each tract. Hierarchical mixed-effects models with natural splines were used to analyze the associations between PM2.5 exposure and DWI. Results In a study population of 7602 children (mean [SD] age, 119.1 [7.42] months; 3955 [52.0%] female; 160 [ 21.%] Asian, 1025 [13.5%] Black, 1616 [21.3%] Hispanic, 4025 [52.9%] White, and 774 [10.2%] other [identified by parents as American Indian/Native American or Alaska Native; Native Hawaiian, Guamanian, Samoan, other Pacific Islander; Asian Indian, Chinese, Filipino, Japanese, Korean, Vietnamese, or other Asian; or other race]), associations were seen between annual ambient PM2.5 and hemispheric differences in white matter microstructure. Hemisphere-stratified models revealed significant associations between PM2.5 exposure and restricted isotropic intracellular diffusion in the left cingulum, in the left superior longitudinal fasciculus, and bilaterally in the fornix and uncinate fasciculus. In tracts with strong positive associations, a PM2.5 increase from 8 to 12 μg/m3 was associated with increases of 2.16% (95% CI, 0.49%-3.84%) in the left cingulum, 1.95% (95% CI, 0.43%-3.47%) in the left uncinate, and 1.68% (95% CI, 0.01%-3.34%) in the right uncinate. Widespread negative associations were observed between PM2.5 and mean diffusivity. Conclusions and Relevance The findings of this cross-sectional study suggest that annual mean PM2.5 exposure during childhood is associated with increased restricted isotropic diffusion and decreased mean diffusivity of specific white matter tracts, potentially reflecting differences in the composition of white matter microarchitecture.
Collapse
Affiliation(s)
- Elisabeth Burnor
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles
| | - Dora Cserbik
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles
| | - Devyn L. Cotter
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles
| | - Clare E. Palmer
- Center for Human Development, University of California, San Diego, La Jolla
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles
| | - Sandrah P. Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles
| | - Kiros Berhane
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Raymond Jackson
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles
- Children’s Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
43
|
Sarmadi M, Rahimi S, Rezaiemanesh MR, Yektay S. Association between water and sanitation, air and emission pollution and climate change and neurological disease distribution: A study based on GBD data. CHEMOSPHERE 2021; 285:131522. [PMID: 34273694 DOI: 10.1016/j.chemosphere.2021.131522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Along with the urbanization and industrialization of countries, the prevalence of chronic diseases has increased. There is ample evidence that ambient pollution can play a major role in these diseases. This study aimed to investigate the association between neurological disorders (NDs) and their subtypes with environmental factors. In this country-level study, we used the age-standardized prevalence and incidence rate (per 100,000 populations) of NDs and its subtypes that have been taken from the Global Burden of Disease (GBD) database in 2019. We used correlation and regression analysis to assess the association between variables. Also, multivariable regression analysis was performed to identify the most important variables in NDs distribution. Age-adjusted NDs incidence rate was significantly higher in developed countries compared to developing countries (11345.25 (95% CI: 11634.88-11055.62) and 9956.37 (95% CI: 10138.66-9774.08)). Association results indicated that the impact of water and sanitation could be more effective than air pollution on NDs. The increase in water and sanitation index levels was positively correlated with NDs incidence rate and prevalence (regression coefficient (b) = 38.011 (SE = 6.50) and b = 118.84 (SE = 20.64), p < 0.001, respectively) after adjusting socio-economic and demographic factors. Furthermore, the incidence of NDs was negatively correlated with the increase in air quality (b = -16.30 (SE = 7.25), p = 0.008). Water and sanitation and their related factors are plausible factors in the distribution of NDs, which may be linked to the potential role of air and water pollution, such as heavy metals and particle matters. These results can be used by politicians and municipal service planners for future planning.
Collapse
Affiliation(s)
- Mohammad Sarmadi
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| | - Sajjad Rahimi
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohammad Reza Rezaiemanesh
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Sama Yektay
- Student Research Committee, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
44
|
Zhang M, Wang Y, Wong RMS, Yung KKL, Li R. Fine particulate matter induces endoplasmic reticulum stress-mediated apoptosis in human SH-SY5Y cells. Neurotoxicology 2021; 88:187-195. [PMID: 34813867 DOI: 10.1016/j.neuro.2021.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 02/08/2023]
Abstract
Exposure to ambient fine particulate matter (PM2.5) may contribute to brain injury, however, the molecular mechanisms have not yet been fully described. In this study, the human SH-SY5Y cells were treated with PM2.5 with different concentrations (0, 25, 100, and 250 μg/mL) for 24 h to investigate the cell apoptosis mediated by endoplasmic reticulum (ER) stress. The ratio of apoptosis, Ca2+ level, biomarkers of ER stress and apoptosis were determined. The results revealed that PM2.5 triggered the increase of apoptosis ratio and cellular Ca2+ levels. Compared with control, the expression of GRP78 and phosphorylation of IER1α and p38 were enhanced significantly in the cells under the conditions of PM2.5 exposure for activating ER stress signals. Besides, the key genes (CHOP/DR5/Caspase8/Caspase12) in ER stress-induced apoptosis signals were up-regulated after the PM2.5 treatment compared to the control. The results suggested PM2.5 induced apoptosis in SH-SY5Y cells by the stimulation of ER stress, which may be the potential mechanism of neurological diseases incurred by PM2.5.
Collapse
Affiliation(s)
- Mei Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Ying Wang
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Ricky M S Wong
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China; Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Ken Kin Lam Yung
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China; Department of Biology, Hong Kong Baptist University, Hong Kong, China; Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong, China.
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China.
| |
Collapse
|
45
|
Lin CH, Nicol CJB, Wan C, Chen SJ, Huang RN, Chiang MC. Exposure to PM 2.5 induces neurotoxicity, mitochondrial dysfunction, oxidative stress and inflammation in human SH-SY5Y neuronal cells. Neurotoxicology 2021; 88:25-35. [PMID: 34718062 DOI: 10.1016/j.neuro.2021.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Ambient air pollution is a global public health issue. Recent evidence suggests that exposure to fine aerosolized particulate matter (PM) as small as ≤2.5 microns (PM2.5) is neurotoxic to brain structures. Many studies also suggest exposure to PM2.5 may cause neurotoxicity and affect brain function. However, the molecular mechanisms by which PM2.5 exerts these effects are not fully understood. Thus, we evaluated the hypothesis that PM2.5 exposure exerts its neurotoxic effects via increased oxidative and inflammatory cellular damage and mitochondrial dysfunction using human SH-SY5Y neuronal cells. Here, we show PM2.5 exposure significantly decreases viability, and increases caspase 3 and 9 protein expression and activity in SH-SY5Y cells. In addition, PM2.5 exposure decreases SH-SY5Y survival, disrupts cell and mitochondrial morphology, and significantly decreases ATP levels, D-loop levels, and mitochondrial mass and function (maximal respiratory function, COX activity, and mitochondrial membrane potential) in SH-SY5Y cells. Moreover, SH-SY5Y cells exposed to PM2.5 have significantly decreased mRNA and protein expression levels of survival genes (CREB and Bcl-2) and neuroprotective genes (PPARγ and AMPK). We further show SH-SY5Y cells exposure to PM2.5 induces significant increases in the levels of oxidative stress, and expression levels of the inflammatory mediator's TNF-α, IL-1β, and NF-κB. Taken together, these results provide the first evidence of the biochemical, molecular and morphological effects of PM2.5 on human neuronal SH-SY5Y cells, and support our hypothesis that increased mitochondrial disruption, oxidative stress and inflammation are critical mediators of its neurotoxic effects. These findings further improve our understanding of the neuronal cell impact of PM2.5 exposure, and may be useful in the design of strategies for the treatment and prevention of human neurodegenerative disorders.
Collapse
Affiliation(s)
- Chien-Hung Lin
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Pediatrics, Taipei City Hospital, Zhongxing Branch, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Science and Engineering, Fu Jen Catholic University, New Taipei, Taiwan
| | - Christopher J B Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, and Cancer Biology and Genetics Division, Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Chuan Wan
- Department of Pediatrics, Taipei City Hospital, Zhongxing Branch, Taipei, Taiwan
| | - Shiang-Jiuun Chen
- Department of Life Science and Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Rong-Nan Huang
- Department of Entomology and Research Center for Plant-Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City, 242, Taiwan.
| |
Collapse
|
46
|
Lecordier S, Manrique-Castano D, El Moghrabi Y, ElAli A. Neurovascular Alterations in Vascular Dementia: Emphasis on Risk Factors. Front Aging Neurosci 2021; 13:727590. [PMID: 34566627 PMCID: PMC8461067 DOI: 10.3389/fnagi.2021.727590] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
Vascular dementia (VaD) constitutes the second most prevalent cause of dementia in the world after Alzheimer’s disease (AD). VaD regroups heterogeneous neurological conditions in which the decline of cognitive functions, including executive functions, is associated with structural and functional alterations in the cerebral vasculature. Among these cerebrovascular disorders, major stroke, and cerebral small vessel disease (cSVD) constitute the major risk factors for VaD. These conditions alter neurovascular functions leading to blood-brain barrier (BBB) deregulation, neurovascular coupling dysfunction, and inflammation. Accumulation of neurovascular impairments over time underlies the cognitive function decline associated with VaD. Furthermore, several vascular risk factors, such as hypertension, obesity, and diabetes have been shown to exacerbate neurovascular impairments and thus increase VaD prevalence. Importantly, air pollution constitutes an underestimated risk factor that triggers vascular dysfunction via inflammation and oxidative stress. The review summarizes the current knowledge related to the pathological mechanisms linking neurovascular impairments associated with stroke, cSVD, and vascular risk factors with a particular emphasis on air pollution, to VaD etiology and progression. Furthermore, the review discusses the major challenges to fully elucidate the pathobiology of VaD, as well as research directions to outline new therapeutic interventions.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Daniel Manrique-Castano
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Yara El Moghrabi
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
47
|
Zhu X, Shou Y, Ji X, Hu Y, Wang H. S-adenosylmethionine decarboxylase 1 and its related spermidine synthesis mediate PM 2.5 exposure-induced neuronal apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112678. [PMID: 34419641 DOI: 10.1016/j.ecoenv.2021.112678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
PM2.5 exposure is considered harmful to central nerve system, while the specific biochemical mechanism underlying is still unrevealed. Neuronal apoptosis is believed the crucial event in pathogenesis of neurodegenerative diseases, but evidence supporting neuronal apoptosis as the mechanism for PM2.5 exposure induced neuronal injury is insufficient. S-adenosylmethionine decarboxylase 1 (AMD1) and its related spermidine synthesis have been shown to associate with cellular apoptosis, but its role in PM2.5 exposure induced neuronal apoptosis was rarely reported. The current study was aimed to better understand contribution of AMD1 activity and spermidine in PM2.5 exposure induced neuronal apoptosis. Sixteen C57BL/6 male mice were randomly divided and kept into ambient PM2.5 chamber or filtered air chamber for 6 months to establish the mouse model of whole-body ambient PM2.5 chronic exposure. In parallel, PC12 cells and primary hippocampal neurons were applied for various concentrations of PM2.5 treatment (0, 25, 50, 100, 200, and 400 μg/mL) to explore the possible cellular and molecular mechanism which may be critically involved in the process. Results showed that PM2.5 exposure triggered neuronal apoptosis with increased expression of Bax/Bcl-2 and cleaved caspase-3. PM2.5 exposure reduced AMD1 expression and spermidine synthesis. AMD1 inhibition could mimic PM2.5 exposure induced neuronal apoptosis. Spermidine supplementation rescued against neurotoxicity and inhibited PM2.5 induced apoptosis via impaired depolarization of mitochondrial membrane potential and reduced mitochondrial apoptosis related proteins. In summary, our work demonstrated that exposure to PM2.5 led to neuronal apoptosis, which may be the key event in the process of air pollution induced neurodegenerative diseases. AMD1 and spermidine associated with neuronal apoptosis induced by PM2.5 exposure, which was at least partially dependent on mitochondria mediated pathway.
Collapse
Affiliation(s)
- Xiaozheng Zhu
- School of Medicine, Hangzhou Normal University, China
| | - Yikai Shou
- School of Medicine, Hangzhou Normal University, China; The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China
| | - Xintong Ji
- School of Medicine, Hangzhou Normal University, China; Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Yu Hu
- School of Medicine, Hangzhou Normal University, China.
| | - Huanhuan Wang
- School of Medicine, Hangzhou Normal University, China; Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China.
| |
Collapse
|
48
|
Deng Y, Gao Q, Yang T, Wu B, Liu Y, Liu R. Indoor solid fuel use and incident arthritis among middle-aged and older adults in rural China: A nationwide population-based cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145395. [PMID: 33578144 DOI: 10.1016/j.scitotenv.2021.145395] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Many households in developing countries, including China, rely on the traditional use of solid fuels for cooking and heating. Arthritis is highly prevalent in middle-aged and older adults and is a major cause of disability. However, evidence linking indoor solid fuel use with arthritis is scarce in this age group (≥45 years) in developing countries. OBJECTIVES To investigate whether exposure to indoor solid fuel for cooking and heating is associated with arthritis in middle-aged and older adults in rural China. METHODS Data for the present study were extracted from the China Health and Retirement Longitudinal Study (CHARLS), a longitudinal national prospective study of adults aged 45 years and older enrolled in 2010 and followed up through 2015. We included 7807 rural participants without arthritis at baseline, of whom 1548 living in a central heating area in winter were included in the heating analysis (taking the Qinling-Huaihe line as the heating boundary). Cox proportional hazards models were used to examine the association between indoor solid fuel use and arthritis, controlling for age, sex, education, marital status, smoking status, drinking status, self-reported socioeconomic status, BMI, sleep time, napping time, independent cooking, hypertension, diabetes, dyslipidemia, heart problems and stroke. We also investigated the effect of switching primary fuels and using solid fuels for both cooking and heating on arthritis risk. RESULTS The mean (SD) age of the study participants was 59.2 (10.0) years old, and 48.0% of participants were women. A total of 64.8% and 63.0% of the participants reported primarily using solid fuel for cooking and heating, respectively. Arthritis incidence rates were lower among clean fuel users than solid fuel users. Compared to those using clean fuels, cooking and heating solid fuel users had a higher risk of arthritis, with hazard ratios (HRs) of 1.22 (95% confidence interval (CI): 1.01, 1.49) and 1.76 (95% CI: 1.07, 2.89), respectively. Switching from clean fuels to solid fuels for heating (HR: 3.28, 95% CI: 1.21, 7.91) and using solid fuels for both cooking and heating (HR, 1.71, 95% CI, 1.01-2.79) increased the risk of arthritis. CONCLUSIONS Long-term solid fuel use for indoor cooking and heating is associated with an increased risk of arthritis events among adults aged 45 years and older in rural China. The potential benefits of reducing indoor solid fuel use in groups at high risk for arthritis merit further exploration.
Collapse
Affiliation(s)
- Yan Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Qian Gao
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Bo Wu
- Department of Anal and Rectal Diseases, First Hospital, China Medical University, Shenyang 110001, China
| | - Yang Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Ruxi Liu
- Department of Immunology and Rheumatology, First Hospital, China Medical University, Shenyang 110001, China.
| |
Collapse
|
49
|
Lai CH, Ho SC, Pan CH, Chen WL, Wang CC, Liang CW, Chien CY, Riediker M, Chuang KJ, Chuang HC. Chronic exposure to metal fume PM 2.5 on inflammation and stress hormone cortisol in shipyard workers: A repeat measurement study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112144. [PMID: 33743405 DOI: 10.1016/j.ecoenv.2021.112144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Particulate matter with an aerodynamic diameter of ≤ 2.5 µm (PM2.5) has been linked to adverse health outcomes in welding workers. The objective of this study was to investigate associations of chronic exposure to metal fume PM2.5 in shipyard workers with health outcomes. A longitudinal study was conducted to determine the effects of metal fume PM2.5 on FeNO, urinary metals, urinary oxidative stress, inflammation, and stress hormones in workers. There were 20 office workers and 49 welding workers enrolled in this study who were followed-up for a second year. We observed that Fe, Zn, and Mn were abundant in PM2.5 to which welding workers were personally exposed, whereas PM2.5 to which office workers were personally exposed was dominated by Pb, Cu, and Zn. We observed in the first and/or second visits that urinary 8-iso-prostaglandin F2-α (PGF2α) and 8-hydroxy-2'-deoxy guanosine (8-OHdG) were significantly increased by exposure. An increase in urinary interleukin (IL)-6 and decreases in urinary serotonin and cortisol were observed in the first and/or second visits after exposure. PM2.5 was associated with decreases in urinary 8-OHdG and cortisol among workers. Next, we observed that urinary Ni, Co, and Fe had significantly increased among workers after a year of exposure. Urinary metals were associated with decreases in urinary 8-iso-PGF2α and cortisol among workers. Urinary Ni, Cu, and Fe levels were associated with an increase in urinary IL-6 and a decrease in urinary cortisol among workers. In conclusion, chronic exposure to metal fume PM2.5 was associated with inflammation and a cortisol deficiency in shipyard workers, which could associate with adrenal glands dysfunction.
Collapse
Affiliation(s)
- Ching-Huang Lai
- School of Public Health, National Defense Medical Center, Taipei, Taiwan.
| | - Shu-Chuan Ho
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Chih-Hong Pan
- School of Public Health, National Defense Medical Center, Taipei, Taiwan; Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City, Taiwan.
| | - Wei-Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, Taipei, Taiwan; Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, Taipei, Taiwan; School of Medicine, National Defense Medical Center, Taipei, Taiwan.
| | - Chung-Ching Wang
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, Taipei, Taiwan; Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, Taipei, Taiwan; School of Medicine, National Defense Medical Center, Taipei, Taiwan.
| | - Che-Wi Liang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan.
| | - Chi-Yu Chien
- School of Public Health, National Defense Medical Center, Taipei, Taiwan.
| | - Michael Riediker
- Swiss Centre for Occupational and Environmental Health, Winterthur, Switzerland.
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
50
|
Xu X, Xu H, Ren F, Huang L, Xu J, Li F. Protective effect of scorpion venom heat-resistant synthetic peptide against PM 2.5-induced microglial polarization via TLR4-mediated autophagy activating PI3K/AKT/NF-κB signaling pathway. J Neuroimmunol 2021; 355:577567. [PMID: 33887539 DOI: 10.1016/j.jneuroim.2021.577567] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022]
Abstract
There is growing evidence that fine particulate matter (PM2.5) is a considerable risk factor for neurodegenerative diseases. Scorpion venom heat-resistant synthetic peptide (SVHRSP) plays a neuroprotective effect by promoting neurogenesis and neuron axon growth. In this study, SVHRSP inhibited the level of TLR4, autophagy and PM2.5-induced microglia M1 polarization, thereby promoting Phosphorylation of PI3K and AKT, inhibiting the expression of NF-κB. Moreover, SVHRSP suppressed the cytotoxic factors and increased the cytoprotective factor. This research demonstrates that SVHRSP relieves PM2.5-induced microglial polarization via TLR4-mediated autophagy activating PI3K/AKT/NF-κB signaling pathway, which provides new insights for the treatment of PM2.5-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin Xu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Henggui Xu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Fei Ren
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Lanyi Huang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Jingbin Xu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Fasheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, Liaoning Province, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, Liaoning Province, China.
| |
Collapse
|