1
|
Lyukmanova EN, Bychkov ML, Chernikov AM, Kukushkin ID, Kulbatskii DS, Shabelnikov SV, Shulepko MA, Zhao R, Guo W, Kirpichnikov MP, Shenkarev ZO, Paramonov AS. In Search of the Role of Three-Finger Starfish Proteins. Mar Drugs 2024; 22:488. [PMID: 39590767 PMCID: PMC11595613 DOI: 10.3390/md22110488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Three-finger proteins (TFPs), or Ly6/uPAR proteins, are characterized by the beta-structural LU domain containing three protruding "fingers" and stabilized by four conserved disulfide bonds. TFPs were initially characterized as snake alpha-neurotoxins, but later many studies showed their regulatory roles in different organisms. Despite a known expression of TFPs in vertebrates, they are poorly studied in other taxa. The presence of TFPs in starfish was previously shown, but their targets and functional role still remain unknown. Here, we analyzed expression, target, and possible function of the Lystar5 protein from the Asterias rubens starfish using bioinformatics, qPCR, and immunoassay. First, the presence of Lystar5 homologues in all classes of echinoderms was demonstrated. qPCR revealed that mRNA of Lystar5 and LyAr2 are expressed mainly in coelomocytes and coelomic epithelium of Asterias, while mRNA of other TFPs, LyAr3, LyAr4, and LyAr5, were also found in a starfish body wall. Using anti-Lystar5 serum from mice immunized by a recombinant Lystar5, we confirmed that this protein is expressed on the surface of coelomocytes and coelomic epithelium cells. According to ELISA, a recombinant analogue of Lystar5 bound to the membrane fraction of coelomocytes and coelomic epithelium but not to the body wall or starfish arm tip. Analysis by LC-MALDI MS/MS suggested integrin α-8-like protein expressed in the coelomocytes and coelomic epithelium as a target of Lystar5. Thus, our insights propose the important role of TFPs in regulation of starfish physiology and show prospects for their further research.
Collapse
Affiliation(s)
- Ekaterina N. Lyukmanova
- Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Maxim L. Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
| | - Andrei M. Chernikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
| | - Ilya D. Kukushkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Dmitrii S. Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
| | - Sergey V. Shabelnikov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Prospect 4, 194064 St. Petersburg, Russia
| | - Mikhail A. Shulepko
- Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
| | - Ran Zhao
- Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
| | - Wenxiao Guo
- Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
| | - Mikhail P. Kirpichnikov
- Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Zakhar O. Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Alexander S. Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
| |
Collapse
|
2
|
Isaev AB, Bychkov ML, Kulbatskii DS, Andreev-Andrievskiy AA, Mashkin MA, Shulepko MA, Shlepova OV, Loktyushov EV, Latanov AV, Kirpichnikov MP, Lyukmanova EN. Upregulation of cholinergic modulators Lypd6 and Lypd6b associated with autism drives anxiety and cognitive decline. Cell Death Discov 2024; 10:444. [PMID: 39433742 PMCID: PMC11494011 DOI: 10.1038/s41420-024-02211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
Intellectual disability and autistic features are associated with chromosome region 2q23.q23.2 duplication carrying LYPD6 and LYPD6B genes. Here, we analyzed LYPD6 and LYPD6B expression in patients with different neuropsychiatric disorders. Increased LYPD6 and LYPD6B expression was revealed in autism and other disorders. To study possible consequences of Lypd6 and Lypd6b overexpression in the brain, we used a mouse model with intracerebroventricular delivery of recombinant analogs of these proteins. A two-week infusion evoked significant memory impairment and acute stress. Both modulators downregulated hippocampal and amygdala dendritic spine density. No changes in synaptic plasticity were observed. Intracerebroventricular administration by both proteins downregulated hippocampal expression of Lypd6, Lypd6b, and α7 nicotinic acetylcholine receptor (nAChR). Similar to Lypd6, Lypd6b targeted different nAChR subtypes in the brain with preferential inhibition of α7- and α4β2-nAChRs. Thus, increased Lypd6 and Lypd6b level in the brain are linked to cholinergic system depression, neuronal atrophy, memory decline, and anxiety.
Collapse
Affiliation(s)
- Aizek B Isaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
| | - Maxim L Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitrii S Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Andreev-Andrievskiy
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute for Biomedical Problems of Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A Mashkin
- Institute for Biomedical Problems of Russian Academy of Sciences, Moscow, Russia
| | | | - Olga V Shlepova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
| | - Eugene V Loktyushov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Russia
| | - Alexander V Latanov
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
- Moscow Center for Advanced Studies, Moscow, Russia.
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
- Shenzhen MSU-BIT University, Shenzhen, China.
| |
Collapse
|
3
|
Palumbo TB, Miwa JM. Lynx1 and the family of endogenous mammalian neurotoxin-like proteins and their roles in modulating nAChR function. Pharmacol Res 2023; 194:106845. [PMID: 37437646 DOI: 10.1016/j.phrs.2023.106845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
The promise of nicotinic receptors as a therapeutic target has yet to be fully realized, despite solid data supporting their involvement in neurological and neuropsychiatric diseases. The reasons for this are likely complex and manifold, having to do with the widespread action of the cholinergic system and the biophysical mechanism of action of nicotinic receptors leading to fast desensitization and down-regulation. Conventional drug development strategies tend to focus on receptor subtype-specific action of candidate therapeutics, although the broad agonist, nicotine, is being explored in the clinic. The potential negative effects of nicotine make the search for alternate strategies warranted. Prototoxins are a promising yet little-explored avenue of nicotinic receptor drug development. Nicotinic receptors in the brain belong to a complex of proteins, including those that bind to the extracellular face of the receptor, as well as chaperones that bind the intracellular domain, etc. Lynx prototoxins have allosteric modularity effects on receptor function and number and have been implicated in complex in vivo processes such as neuroplasticity, learning, and memory. Their mechanism of action and binding specificity on sets of nAChR subtypes present intriguing possibilities for more efficacious and nuanced therapeutic targeting than nicotinic receptor subtypes alone. An allosteric drug may restrict its actions to physiologically relevant time points, which tend to be correlated with salient events which would be encoded into long-term memory storage. Rather than blanketing the brain with a steady and prolonged elevation of agonist, an allosteric nAChR compound could avoid side effects and loss of efficacy over time. This review details the potential strengths and challenges of prototoxin proteins as therapeutic targets, and some of the utility of such therapeutics based on the emerging understanding of cholinergic signaling in a growing number of complex neural processes.
Collapse
Affiliation(s)
- Talulla B Palumbo
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Iacocca Hall, B-217, Bethlehem PA, USA.
| | - Julie M Miwa
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Iacocca Hall, B-217, Bethlehem PA, USA.
| |
Collapse
|
4
|
Rathbun LA, Magliocco AM, Bamezai AK. Human LY6 gene family: potential tumor-associated antigens and biomarkers of prognosis in uterine corpus endometrial carcinoma. Oncotarget 2023; 14:426-437. [PMID: 37141412 PMCID: PMC10159366 DOI: 10.18632/oncotarget.28409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The human Lymphocyte antigen-6 (LY6) gene family has recently gained interest for its possible role in tumor progression. We have carried out in silico analyses of all known LY6 gene expression and amplification in different cancers using TNMplot and cBioportal. We also have analyzed patient survival by Kaplan-Meier plotter after mining the TCGA database. We report that upregulated expression of many LY6 genes is associated with poor survival in uterine corpus endometrial carcinoma (UCEC) cancer patients. Importantly, the expression of several LY6 genes is elevated in UCEC when compared to the expression in normal uterine tissue. For example, LY6K expression is 8.25× higher in UCEC compared to normal uterine tissue, and this high expression is associated with poor survival with a hazard ratio of 2.42 (p-value = 0.0032). Therefore, some LY6 gene products may serve as tumor-associated antigens in UCEC, biomarkers for UCEC detection, and possibly targets for directing UCEC patient therapy. Further analysis of tumor-specific expression of LY6 gene family members and LY6-triggered signaling pathways is needed to uncover the function of LY6 proteins and their ability to endow tumor survival and poor prognosis in UCEC patients.
Collapse
Affiliation(s)
- Luke A Rathbun
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | | | - Anil K Bamezai
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| |
Collapse
|
5
|
Venkatesan S, Chen T, Liu Y, Turner EE, Tripathy SJ, Lambe EK. Chrna5 and lynx prototoxins identify acetylcholine super-responder subplate neurons. iScience 2023; 26:105992. [PMID: 36798433 PMCID: PMC9926215 DOI: 10.1016/j.isci.2023.105992] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Attention depends on cholinergic excitation of prefrontal neurons but is sensitive to perturbation of α5-containing nicotinic receptors encoded by Chrna5. However, Chrna5-expressing (Chrna5+) neurons remain enigmatic, despite their potential as a target to improve attention. Here, we generate complex transgenic mice to probe Chrna5+ neurons and their sensitivity to endogenous acetylcholine. Through opto-physiological experiments, we discover that Chrna5+ neurons contain a distinct population of acetylcholine super-responders. Leveraging single-cell transcriptomics, we discover molecular markers conferring subplate identity on this subset. We determine that Chrna5+ super-responders express a unique complement of GPI-anchored lynx prototoxin genes (Lypd1, Ly6g6e, and Lypd6b), predicting distinct nicotinic receptor regulation. To manipulate lynx regulation of endogenous nicotinic responses, we developed a pharmacological strategy guided by transcriptomic predictions. Overall, we reveal Chrna5-Cre mice as a transgenic tool to target the diversity of subplate neurons in adulthood, yielding new molecular strategies to manipulate their cholinergic activation relevant to attention disorders.
Collapse
Affiliation(s)
- Sridevi Venkatesan
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada
| | - Tianhui Chen
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada
| | - Yupeng Liu
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada
| | - Eric E. Turner
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Shreejoy J. Tripathy
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Evelyn K. Lambe
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Guo Y, Yuan J, Ni H, Ji J, Zhong S, Zheng Y, Jiang Q. Perfluorooctanoic acid-induced developmental cardiotoxicity in chicken embryo: Roles of miR-490-5p. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120022. [PMID: 36028080 DOI: 10.1016/j.envpol.2022.120022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) could induce developmental toxicities, affecting various organs, including the heart. Although peroxisome-proliferation activated receptor alpha (PPARα) had been identified as a major target of PFOA, PPARα-independent effects are frequently reported. To further elucidate the mechanism of toxicity in PFOA-induced developmental cardiotoxicity, RNA-seq analysis was performed in hatchling chicken hearts developmentally exposed to vehicle or 2 mg/kg (egg weight) PFOA. RT-PCR and western blotting were then performed to confirm the identified potential targets. Furthermore, lentivirus was designed to overexpress and silence identified target miRNA in developing chicken embryo, and the resulting phenotypes were investigated. 21 miRNAs and 1142 mRNAs were identified to be affected by developmental exposure to PFOA in chicken embryo hearts. Among the identified differentially expressed miRNAs, miR-490-5p was confirmed to be significantly affected by PFOA exposure, along with its downstream targets, Synaptosome associated protein 91 (SNAP91) and LY6/PLAUR domain containing 6 (LYPD6), as indicated by RT-PCR and western blotting results. Lentivirus overexpressing miR-490-5p mimicked the phenotype induced by PFOA exposure, while lentivirus silencing miR-490-5p alleviated PFOA-induced changes. Similar patterns were also observed in the expression of downstream target genes, SNAP91 and LYPD6. In summary, miR-490-5p and its downstream genes, SNAP91 and LYPD6 are associated with PFOA-induced developmental cardiotoxicity in chicken embryo, which might help to further elucidate the mechanism of PFOA-induced developmental cardiotoxicity.
Collapse
Affiliation(s)
- Yajie Guo
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Junhua Yuan
- Department of Special Medicine, School of Basic Medicine, Qingdao University, China
| | - Hao Ni
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Jing Ji
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Shuping Zhong
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, China.
| |
Collapse
|
7
|
Paramonov AS, Shulepko MA, Makhonin AM, Bychkov ML, Kulbatskii DS, Chernikov AM, Myshkin MY, Shabelnikov SV, Shenkarev ZO, Kirpichnikov MP, Lyukmanova EN. New Three-Finger Protein from Starfish Asteria rubens Shares Structure and Pharmacology with Human Brain Neuromodulator Lynx2. Mar Drugs 2022; 20:md20080503. [PMID: 36005506 PMCID: PMC9410279 DOI: 10.3390/md20080503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Three-finger proteins (TFPs) are small proteins with characteristic three-finger β-structural fold stabilized by the system of conserved disulfide bonds. These proteins have been found in organisms from different taxonomic groups and perform various important regulatory functions or act as components of snake venoms. Recently, four TFPs (Lystars 1–4) with unknown function were identified in the coelomic fluid proteome of starfish A. rubens. Here we analyzed the genomes of A. rubens and A. planci starfishes and predicted additional five and six proteins containing three-finger domains, respectively. One of them, named Lystar5, is expressed in A. rubens coelomocytes and has sequence homology to the human brain neuromodulator Lynx2. The three-finger structure of Lystar5 close to the structure of Lynx2 was confirmed by NMR. Similar to Lynx2, Lystar5 negatively modulated α4β2 nicotinic acetylcholine receptors (nAChRs) expressed in X. laevis oocytes. Incubation with Lystar5 decreased the expression of acetylcholine esterase and α4 and α7 nAChR subunits in the hippocampal neurons. In summary, for the first time we reported modulator of the cholinergic system in starfish.
Collapse
Affiliation(s)
- Alexander S. Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
| | - Mikhail A. Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
| | - Alexey M. Makhonin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
- AI Centre, National Research University Higher School of Economics, Myasnitskaya Str. 20, 101000 Moscow, Russia
| | - Maxim L. Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
| | - Dmitrii S. Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
| | - Andrey M. Chernikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
- Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Mikhail Yu. Myshkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
| | - Sergey V. Shabelnikov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Prospect 4, 194064 St. Petersburg, Russia;
| | - Zakhar O. Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
- Moscow Institute of Physics and Technology, State University, Institutskiy Per. 9, 141701 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
- Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Ekaterina N. Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia; (A.S.P.); (M.A.S.); (A.M.M.); (M.L.B.); (D.S.K.); (A.M.C.); (M.Y.M.); (Z.O.S.); (M.P.K.)
- Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology”, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
- Moscow Institute of Physics and Technology, State University, Institutskiy Per. 9, 141701 Moscow, Russia
- Correspondence:
| |
Collapse
|
8
|
Kulbatskii D, Shenkarev Z, Bychkov M, Loktyushov E, Shulepko M, Koshelev S, Povarov I, Popov A, Peigneur S, Chugunov A, Kozlov S, Sharonova I, Efremov R, Skrebitsky V, Tytgat J, Kirpichnikov M, Lyukmanova E. Human Three-Finger Protein Lypd6 Is a Negative Modulator of the Cholinergic System in the Brain. Front Cell Dev Biol 2021; 9:662227. [PMID: 34631692 PMCID: PMC8494132 DOI: 10.3389/fcell.2021.662227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
Lypd6 is a GPI-tethered protein from the Ly-6/uPAR family expressed in the brain. Lypd6 enhances the Wnt/β-catenin signaling, although its action on nicotinic acetylcholine receptors (nAChRs) have been also proposed. To investigate a cholinergic activity of Lypd6, we studied a recombinant water-soluble variant of the human protein (ws-Lypd6) containing isolated “three-finger” LU-domain. Experiments at different nAChR subtypes expressed in Xenopus oocytes revealed the negative allosteric modulatory activity of ws-Lypd6. Ws-Lypd6 inhibited ACh-evoked currents at α3β4- and α7-nAChRs with IC50 of ∼35 and 10 μM, respectively, and the maximal amplitude of inhibition of 30–50%. EC50 of ACh at α3β4-nAChRs (∼30 μM) was not changed in the presence of 35 μM ws-Lypd6, while the maximal amplitude of ACh-evoked current was reduced by ∼20%. Ws-Lypd6 did not elicit currents through nAChRs in the absence of ACh. Application of 1 μM ws-Lypd6 significantly inhibited (up to ∼28%) choline-evoked current at α7-nAChRs in rat hippocampal slices. Similar to snake neurotoxin α-bungarotoxin, ws-Lypd6 suppressed the long-term potentiation (LTP) in mouse hippocampal slices. Colocalization of endogenous GPI-tethered Lypd6 with α3β4- and α7-nAChRs was detected in primary cortical and hippocampal neurons. Ws-Lypd6 interaction with the extracellular domain of α7-nAChR was modeled using the ensemble protein-protein docking protocol. The interaction of all three Lypd6 loops (“fingers”) with the entrance to the orthosteric ligand-binding site and the loop C of the primary receptor subunit was predicted. The results obtained allow us to consider Lypd6 as the endogenous negative modulator involved in the regulation of the cholinergic system in the brain.
Collapse
Affiliation(s)
- Dmitrii Kulbatskii
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Zakhar Shenkarev
- Structural Biology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.,Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Maxim Bychkov
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Eugene Loktyushov
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Mikhail Shulepko
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Sergey Koshelev
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Igor Povarov
- Brain Research Department, Research Center of Neurology, Moscow, Russia
| | - Alexander Popov
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.,Institute of Neuroscience, Nizhny Novgorod University, Nizhny Novgorod, Russia
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Anton Chugunov
- Structural Biology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.,Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia.,International Laboratory for Supercomputer Atomistic Modelling and Multi-Scale Analysis, National Research University Higher School of Economics, Moscow, Russia
| | - Sergey Kozlov
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Irina Sharonova
- Brain Research Department, Research Center of Neurology, Moscow, Russia
| | - Roman Efremov
- Structural Biology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.,Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia.,International Laboratory for Supercomputer Atomistic Modelling and Multi-Scale Analysis, National Research University Higher School of Economics, Moscow, Russia
| | | | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Mikhail Kirpichnikov
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.,Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Lyukmanova
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.,Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia.,Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
9
|
Biochemical Basis of Skin Disease Mal de Meleda: SLURP-1 Mutants Differently Affect Keratinocyte Proliferation and Apoptosis. J Invest Dermatol 2021; 141:2229-2237. [PMID: 33741389 DOI: 10.1016/j.jid.2021.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 11/23/2022]
Abstract
Mal de Meleda is an autosomal recessive palmoplantar keratoderma associated with mutations in a gene encoding SLURP-1. SLURP-1 controls growth, differentiation, and apoptosis of keratinocytes by interaction with α7-type nicotinic acetylcholine receptors. SLURP-1 has a three-finger structure with a β-structural core (head) and three prolonged loops (fingers). To determine the role of SLURP-1 mutations, we produced 22 mutant variants of the protein, including those involved in Mal de Meleda pathogenesis. All mutants except R71H, R71P, T52A, R96P, and L98P were produced in the folded form. SLURP-1 reduces the growth of Het-1A keratinocytes; thus, we studied the influence of the mutations on its antiproliferative activity. Mutations in loops I and III led to the protein inactivation, whereas most mutations in loop II increased SLURP-1 antiproliferative activity. Alanine substitutions of R96 and L98 residues located in the protein head resulted in the appearance of additional pro-apoptotic activity. Our results agree with the diversity of Mal de Meleda phenotypes. Using obtained functional data, the SLURP-1/α7 type nicotinic acetylcholine receptor complex was modeled in silico. Our study provides functional and structural information about the role of the SLURP-1 mutations in Mal de Meleda pathogenesis and predicts SLURP-1 variants, which could drive the disease.
Collapse
|
10
|
Schote AB, Schiel F, Schmitt B, Winnikes U, Frank N, Gross K, Croyé MA, Tarragon E, Bekhit A, Bobbili DR, May P, Schick C, Meyer J. Genome-wide linkage analysis of families with primary hyperhidrosis. PLoS One 2020; 15:e0244565. [PMID: 33378362 PMCID: PMC7773265 DOI: 10.1371/journal.pone.0244565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
Primary focal hyperhidrosis (PFH, OMIM %144110) is a genetically influenced condition characterised by excessive sweating. Prevalence varies between 1.0-6.1% in the general population, dependent on ethnicity. The aetiology of PFH remains unclear but an autosomal dominant mode of inheritance, incomplete penetrance and variable phenotypes have been reported. In our study, nine pedigrees (50 affected, 53 non-affected individuals) were included. Clinical characterisation was performed at the German Hyperhidrosis Centre, Munich, by using physiological and psychological questionnaires. Genome-wide parametric linkage analysis with GeneHunter was performed based on the Illumina genome-wide SNP arrays. Haplotypes were constructed using easyLINKAGE and visualised via HaploPainter. Whole-exome sequencing (WES) with 100x coverage in 31 selected members (24 affected, 7 non-affected) from our pedigrees was achieved by next generation sequencing. We identified four genome-wide significant loci, 1q41-1q42.3, 2p14-2p13.3, 2q21.2-2q23.3 and 15q26.3-15q26.3 for PFH. Three pedigrees map to a shared locus at 2q21.2-2q23.3, with a genome-wide significant LOD score of 3.45. The chromosomal region identified here overlaps with a locus at chromosome 2q22.1-2q31.1 reported previously. Three families support 1q41-1q42.3 (LOD = 3.69), two families share a region identical by descent at 2p14-2p13.3 (LOD = 3.15) and another two families at 15q26.3 (LOD = 3.01). Thus, our results point to considerable genetic heterogeneity. WES did not reveal any causative variants, suggesting that variants or mutations located outside the coding regions might be involved in the molecular pathogenesis of PFH. We suggest a strategy based on whole-genome or targeted next generation sequencing to identify causative genes or variants for PFH.
Collapse
Affiliation(s)
- Andrea B. Schote
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Florian Schiel
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Benedikt Schmitt
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Ulrike Winnikes
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Nicole Frank
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Katharina Gross
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Marie-Anne Croyé
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Ernesto Tarragon
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| | - Adam Bekhit
- Institute for Medical Biometry, Epidemiology and Medical Informatics, Saarland University, Homburg, Germany
| | - Dheeraj Reddy Bobbili
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Megeno, Esch-sur-Alzette, Luxembourg
| | - Patrick May
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Jobst Meyer
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Trier, Germany
| |
Collapse
|
11
|
Paramonov AS, Kocharovskaya MV, Tsarev AV, Kulbatskii DS, Loktyushov EV, Shulepko MA, Kirpichnikov MP, Lyukmanova EN, Shenkarev ZO. Structural Diversity and Dynamics of Human Three-Finger Proteins Acting on Nicotinic Acetylcholine Receptors. Int J Mol Sci 2020; 21:E7280. [PMID: 33019770 PMCID: PMC7582953 DOI: 10.3390/ijms21197280] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Ly-6/uPAR or three-finger proteins (TFPs) contain a disulfide-stabilized β-structural core and three protruding loops (fingers). In mammals, TFPs have been found in epithelium and the nervous, endocrine, reproductive, and immune systems. Here, using heteronuclear NMR, we determined the three-dimensional (3D) structure and backbone dynamics of the epithelial secreted protein SLURP-1 and soluble domains of GPI-anchored TFPs from the brain (Lynx2, Lypd6, Lypd6b) acting on nicotinic acetylcholine receptors (nAChRs). Results were compared with the data about human TFPs Lynx1 and SLURP-2 and snake α-neurotoxins WTX and NTII. Two different topologies of the β-structure were revealed: one large antiparallel β-sheet in Lypd6 and Lypd6b, and two β-sheets in other proteins. α-Helical segments were found in the loops I/III of Lynx2, Lypd6, and Lypd6b. Differences in the surface distribution of charged and hydrophobic groups indicated significant differences in a mode of TFPs/nAChR interactions. TFPs showed significant conformational plasticity: the loops were highly mobile at picosecond-nanosecond timescale, while the β-structural regions demonstrated microsecond-millisecond motions. SLURP-1 had the largest plasticity and characterized by the unordered loops II/III and cis-trans isomerization of the Tyr39-Pro40 bond. In conclusion, plasticity could be an important feature of TFPs adapting their structures for optimal interaction with the different conformational states of nAChRs.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Sequence
- Antigens, Ly/chemistry
- Antigens, Ly/genetics
- Antigens, Ly/metabolism
- Binding Sites
- Cloning, Molecular
- Elapid Venoms/chemistry
- Elapid Venoms/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- GPI-Linked Proteins/chemistry
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Hydrophobic and Hydrophilic Interactions
- Models, Molecular
- Neuropeptides/chemistry
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Nuclear Magnetic Resonance, Biomolecular
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Urokinase-Type Plasminogen Activator/chemistry
- Urokinase-Type Plasminogen Activator/genetics
- Urokinase-Type Plasminogen Activator/metabolism
Collapse
Affiliation(s)
- Alexander S. Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
| | - Milita V. Kocharovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russia
| | - Andrey V. Tsarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russia
| | - Dmitrii S. Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
| | - Eugene V. Loktyushov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
| | - Mikhail A. Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ekaterina N. Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russia
| | - Zakhar O. Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.S.P.); (M.V.K.); (A.V.T.); (D.S.K.); (E.V.L.); (M.A.S.); (M.P.K.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
12
|
Anderson KR, Hoffman KM, Miwa JM. Modulation of cholinergic activity through lynx prototoxins: Implications for cognition and anxiety regulation. Neuropharmacology 2020; 174:108071. [PMID: 32298703 PMCID: PMC7785133 DOI: 10.1016/j.neuropharm.2020.108071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Julie M Miwa
- Department of Biological Sciences, Lehigh University, USA.
| |
Collapse
|
13
|
Sadahiro M, Demars MP, Burman P, Yevoo P, Zimmer A, Morishita H. Activation of Somatostatin Interneurons by Nicotinic Modulator Lypd6 Enhances Plasticity and Functional Recovery in the Adult Mouse Visual Cortex. J Neurosci 2020; 40:5214-5227. [PMID: 32467358 PMCID: PMC7329312 DOI: 10.1523/jneurosci.1373-19.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/27/2023] Open
Abstract
The limitation of plasticity in the adult brain impedes functional recovery later in life from brain injury or disease. This pressing clinical issue may be resolved by enhancing plasticity in the adult brain. One strategy for triggering robust plasticity in adulthood is to reproduce one of the hallmark physiological events of experience-dependent plasticity observed during the juvenile critical period: to rapidly reduce the activity of parvalbumin (PV)-expressing interneurons and disinhibit local excitatory neurons. This may be achieved through the enhancement of local inhibitory inputs, particularly those of somatostatin (SST)-expressing interneurons. However, to date the means for manipulating SST interneurons for enhancing cortical plasticity in the adult brain are not known. We show that SST interneuron-selective overexpression of Lypd6, an endogenous nicotinic signaling modulator, enhances ocular dominance plasticity in the adult primary visual cortex (V1). Lypd6 overexpression mediates a rapid experience-dependent increase in the visually evoked activity of SST interneurons as well as a simultaneous reduction in PV interneuron activity and disinhibition of excitatory neurons. Recapitulating this transient activation of SST interneurons using chemogenetics similarly enhanced V1 plasticity. Notably, we show that SST-selective Lypd6 overexpression restores visual acuity in amblyopic mice that underwent early long-term monocular deprivation. Our data in both male and female mice reveal selective modulation of SST interneurons and a putative downstream circuit mechanism as an effective method for enhancing experience-dependent cortical plasticity as well as functional recovery in adulthood.SIGNIFICANCE STATEMENT The decline of cortical plasticity after closure of juvenile critical period consolidates neural circuits and behavior, but this limits functional recovery from brain diseases and dysfunctions in later life. Here we show that activation of cortical somatostatin (SST) interneurons by Lypd6, an endogenous modulator of nicotinic acetylcholine receptors, enhances experience-dependent plasticity and recovery from amblyopia in adulthood. This manipulation triggers rapid reduction of PV interneuron activity and disinhibition of excitatory neurons, which are known hallmarks of cortical plasticity during juvenile critical periods. Our study demonstrates modulation of SST interneurons by Lypd6 to achieve robust levels of cortical plasticity in the adult brain and may provide promising targets for restoring brain function in the event of brain trauma or disease.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Dominance, Ocular/genetics
- Evoked Potentials, Visual/genetics
- Evoked Potentials, Visual/physiology
- Female
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/physiology
- Immunohistochemistry
- Interneurons/physiology
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Neuronal Plasticity/genetics
- Neuronal Plasticity/physiology
- Phosphatidylinositols/pharmacology
- Receptors, Nicotinic/genetics
- Recovery of Function/genetics
- Somatostatin/physiology
- Vision, Monocular/genetics
- Vision, Monocular/physiology
- Visual Acuity/genetics
- Visual Cortex/physiology
Collapse
Affiliation(s)
- Masato Sadahiro
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Michael P Demars
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Poromendro Burman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Priscilla Yevoo
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
14
|
Mallei A, Ieraci A, Corna S, Tardito D, Lee FS, Popoli M. Global epigenetic analysis of BDNF Val66Met mice hippocampus reveals changes in dendrite and spine remodeling genes. Hippocampus 2019; 28:783-795. [PMID: 30067287 DOI: 10.1002/hipo.22991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 12/28/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), a neurotrophin highly expressed in the hippocampus, plays crucial roles in cognition, neuroplasticity, synaptic function, and dendritic remodeling. The common human Val66Met polymorphism of BDNF has been implicated in the pathophysiology of neuropsychiatric and neurodegenerative disorders, and in the outcome of pro-adaptive and therapeutic treatments. Altered gene-expression profile has been previously shown in BDNF Val66Met knock-in mice, which recapitulate the phenotypic hallmarks of individuals carrying the BDNF Met allele. The aim of this study was to investigate the impact of the BDNF Val66Met polymorphism in the knock-in mouse model on two hippocampal epigenetic marks for transcriptional repression and activation, respectively: trimethylation of lysine 27 on histone H3 (H3K27me3) and acetylation of histone H3 (AcH3), using a genome-wide approach. Chromatin immunoprecipitation followed by deep sequencing of immunoprecipitated DNA (ChIP-Seq) was carried out with specific antibodies for H3K27me3 and AcH3. Our results revealed broad alteration of H3K27me3 and AcH3 marks association profiles in BDNFMet/Met , compared to BDNFVal/Val mice. Bioinformatics analysis showed changes in several biological functions and related pathways, affected by the presence of the polymorphism. In particular, a number of networks of functional interaction contained BDNF as central node. Quantitative PCR analysis confirmed epigenetically related significant changes in the expression of five genes: Dvl1, Nos3, Reln, Lypd6, and Sh3gl2. The first three are involved in dendrite and spine remodeling, morphological features altered in BDNFMet/Met mice. This work in homozygous knock-in mice shows that the human BDNF Val66Met polymorphism induces an array of histone H3 epigenetic modifications, in turn altering the expression of select genes crucial for structural and functional neuronal features.
Collapse
Affiliation(s)
- Alessandra Mallei
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Ieraci
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milan, Italy
| | - Stefano Corna
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milan, Italy
| | - Daniela Tardito
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milan, Italy
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, New York
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
15
|
Leth JM, Leth-Espensen KZ, Kristensen KK, Kumari A, Lund Winther AM, Young SG, Ploug M. Evolution and Medical Significance of LU Domain-Containing Proteins. Int J Mol Sci 2019; 20:ijms20112760. [PMID: 31195646 PMCID: PMC6600238 DOI: 10.3390/ijms20112760] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Proteins containing Ly6/uPAR (LU) domains exhibit very diverse biological functions and have broad taxonomic distributions in eukaryotes. In general, they adopt a characteristic three-fingered folding topology with three long loops projecting from a disulfide-rich globular core. The majority of the members of this protein domain family contain only a single LU domain, which can be secreted, glycolipid anchored, or constitute the extracellular ligand binding domain of type-I membrane proteins. Nonetheless, a few proteins contain multiple LU domains, for example, the urokinase receptor uPAR, C4.4A, and Haldisin. In the current review, we will discuss evolutionary aspects of this protein domain family with special emphasis on variations in their consensus disulfide bond patterns. Furthermore, we will present selected cases where missense mutations in LU domain-containing proteins leads to dysfunctional proteins that are causally linked to genesis of human disease.
Collapse
Affiliation(s)
- Julie Maja Leth
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Katrine Zinck Leth-Espensen
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Anni Kumari
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Anne-Marie Lund Winther
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Michael Ploug
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
16
|
Karalyan NY, Abroyan LO, Akopyan LA, Khostikyan NG, Nersisyan NG, Semerjyan ZB, Karalyan ZA. [Effect of human brain extracts on cultured neuroblastoma cells]. Arkh Patol 2019; 80:29-34. [PMID: 30585590 DOI: 10.17116/patol20188006129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To identify the effect of brain extracts from people of different age groups on possible changes in cell physiology and behavior in vitro. MATERIAL AND METHODS Human frontal cortical segments were obtained 12-24 hours after autopsy. Brain tissue extract was taken from young people who died at age of 22.5±2.7 years and old people at 80.9±3.0 years. SK-N-MC human neuroblastoma cells were cultured in a medium containing 50 mg/ml of brain tissue extracts; blood serum (50 mg/ml) from healthy people was used as a control. Procedures for cytophotometry of DNA and acidic proteins and polarized light microscopy were used. RESULTS A short-term decrease in acidic protein levels in the nucleus and nucleolus was found to be affected by brain extracts from old people. There were higher cytoplasmic acidic protein levels. At the same time, the same indicators generally remained noticeably unchanged under the influence of brain extracts from young people. There were also simultaneous pronounced changes in cell morphology and behavior in vitro; namely, neuronal cell processes became shorter and their proliferative activity increased, which was not least a result of the unblocking of cells in the G2 phase under the influence of brain extracts from old people. CONCLUSION The factors that accelerate cell proliferation in vitro accumulate in the human brain with age. Simultaneously with the acceleration of cell proliferation, there are changes in cell metabolic activity and morphology.
Collapse
Affiliation(s)
- N Yu Karalyan
- Department of Pathologic Anatomy and Clinical Morphology, Yerevan State Medical University, Yerevan, Republic of Armenia
| | - L O Abroyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology, National Academy of the Republic of Armenia, Yerevan, Republic of Armenia
| | - L A Akopyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology, National Academy of the Republic of Armenia, Yerevan, Republic of Armenia
| | - N G Khostikyan
- Department of Pathologic Anatomy and Clinical Morphology, Yerevan State Medical University, Yerevan, Republic of Armenia
| | - N G Nersisyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology, National Academy of the Republic of Armenia, Yerevan, Republic of Armenia
| | - Z B Semerjyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology, National Academy of the Republic of Armenia, Yerevan, Republic of Armenia
| | - Z A Karalyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology, National Academy of the Republic of Armenia, Yerevan, Republic of Armenia
| |
Collapse
|
17
|
Miwa JM, Anderson KR, Hoffman KM. Lynx Prototoxins: Roles of Endogenous Mammalian Neurotoxin-Like Proteins in Modulating Nicotinic Acetylcholine Receptor Function to Influence Complex Biological Processes. Front Pharmacol 2019; 10:343. [PMID: 31114495 PMCID: PMC6502960 DOI: 10.3389/fphar.2019.00343] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
The cholinergic system modulates many biological functions, due to the widespread distribution of cholinergic neuronal terminals, and the diffuse release of its neurotransmitter, acetylcholine. Several layers of regulation help to refine and control the scope of this excitatory neurotransmitter system. One such regulatory mechanism is imparted through endogenous toxin-like proteins, prototoxins, which largely control the function of nicotinic receptors of the cholinergic system. Prototoxins and neurotoxins share the distinct three finger toxin fold, highly effective as a receptor binding protein, and the former are expressed in the mammalian brain, immune system, epithelium, etc. Prototoxins and elapid snake neurotoxins appear to be related through gene duplication and divergence from a common ancestral gene. Protein modulators can provide a graded response of the cholinergic system, and within the brain, stabilize neural circuitry through direct interaction with nicotinic receptors. Understanding the roles of each prototoxin (e.g., lynx1, lynx2/lypd1, PSCA, SLURP1, SLURP2, Lypd6, lypd6b, lypdg6e, PATE-M, PATE-B, etc.), their binding specificity and unique expression profile, has the potential to uncover many fascinating cholinergic-dependent mechanisms in the brain. Each family member can provide a spatially restricted level of control over nAChR function based on its expression in the brain. Due to the difficulty in the pharmacological targeting of nicotinic receptors in the brain as a result of widespread expression patterns and similarities in receptor sequences, unique interfaces between prototoxin and nicotinic receptor could provide more specific targeting than nicotinic receptors alone. As such, this family is intriguing from a long-term therapeutic perspective.
Collapse
Affiliation(s)
- Julie M Miwa
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Kristin R Anderson
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Katie M Hoffman
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
18
|
Fowler CD, Turner JR, Imad Damaj M. Molecular Mechanisms Associated with Nicotine Pharmacology and Dependence. Handb Exp Pharmacol 2019; 258:373-393. [PMID: 31267166 DOI: 10.1007/164_2019_252] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tobacco dependence is a leading cause of preventable disease and death worldwide. Nicotine, the main psychoactive component in tobacco cigarettes, has also been garnering increased popularity in its vaporized form, as derived from e-cigarette devices. Thus, an understanding of the molecular mechanisms underlying nicotine pharmacology and dependence is required to ascertain novel approaches to treat drug dependence. In this chapter, we review the field's current understanding of nicotine's actions in the brain, the neurocircuitry underlying drug dependence, factors that modulate the function of nicotinic acetylcholine receptors, and the role of specific genes in mitigating the vulnerability to develop nicotine dependence. In addition to nicotine's direct actions in the brain, other constituents in nicotine and tobacco products have also been found to alter drug use, and thus, evidence is provided to highlight this issue. Finally, currently available pharmacotherapeutic strategies are discussed, along with an outlook for future therapeutic directions to achieve to the goal of long-term nicotine cessation.
Collapse
Affiliation(s)
- Christie D Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA. .,Translational Research Initiative for Pain and Neuropathy at VCU, Richmond, VA, USA.
| |
Collapse
|
19
|
Peng X, Emiliani F, Smallwood PM, Rattner A, Lei H, Sabbagh MF, Nathans J. Affinity capture of polyribosomes followed by RNAseq (ACAPseq), a discovery platform for protein-protein interactions. eLife 2018; 7:40982. [PMID: 30345971 PMCID: PMC6197854 DOI: 10.7554/elife.40982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/02/2018] [Indexed: 02/05/2023] Open
Abstract
Defining protein-protein interactions (PPIs) is central to the biological sciences. Here, we present a novel platform - Affinity Capture of Polyribosomes followed by RNA sequencing (ACAPseq) - for identifying PPIs. ACAPseq harnesses the power of massively parallel RNA sequencing (RNAseq) to quantify the enrichment of polyribosomes based on the affinity of their associated nascent polypeptides for an immobilized protein 'bait'. This method was developed and tested using neonatal mouse brain polyribosomes and a variety of extracellular domains as baits. Of 92 baits tested, 25 identified one or more binding partners that appear to be biologically relevant; additional candidate partners remain to be validated. ACAPseq can detect binding to targets that are present at less than 1 part in 100,000 in the starting polyribosome preparation. One of the observed PPIs was analyzed in detail, revealing the mode of homophilic binding for Protocadherin-9 (PCDH9), a non-clustered Protocadherin family member.
Collapse
Affiliation(s)
- Xi Peng
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Francesco Emiliani
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Philip M Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Hong Lei
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Mark F Sabbagh
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
20
|
Zhao Y, Ren J, Lu W, Harlos K, Jones EY. Structure of the Wnt signaling enhancer LYPD6 and its interactions with the Wnt coreceptor LRP6. FEBS Lett 2018; 592:3152-3162. [PMID: 30069874 DOI: 10.1002/1873-3468.13212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/12/2018] [Accepted: 07/27/2018] [Indexed: 01/10/2023]
Abstract
Ly6/urokinase-type plasminogen activator receptor (uPAR) (LU) domain containing 6 (LYPD6) is a Wnt signaling enhancer that promotes phosphorylation of the Wnt coreceptor low density lipoprotein receptor-related protein 6 (LRP6). It also binds the nicotinic acetylcholine receptor (nAChR). We report here the 1.25 Å resolution structure of the LYPD6 extracellular LU domain and map its interaction with LRP6 by mutagenesis and surface plasmon resonance. The LYPD6LU structure reveals a 'trifingered protein domain' fold with the middle fingertip bearing an 'NxI' motif, a tripeptide motif associated with LRP5/6 binding by Wnt inhibitors. Of the Ly6 protein family members, only LYPD6 has an NxI motif. Since mutations in the LYPD6 NxI motif abolish or severely reduce interaction with LRP6, our results indicate its key role in the interaction of LYPD6 with LRP6.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, UK
| | - Jingshan Ren
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, UK
| | - Weixian Lu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, UK
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, UK
| | - Edith Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, UK
| |
Collapse
|
21
|
Vasilyeva NA, Loktyushov EV, Bychkov ML, Shenkarev ZO, Lyukmanova EN. Three-Finger Proteins from the Ly6/uPAR Family: Functional Diversity within One Structural Motif. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523067 DOI: 10.1134/s0006297917130090] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The discovery in higher animals of proteins from the Ly6/uPAR family, which have structural homology with snake "three-finger" neurotoxins, has generated great interest in these molecules and their role in the functioning of the organism. These proteins have been found in the nervous, immune, endocrine, and reproductive systems of mammals. There are two types of the Ly6/uPAR proteins: those associated with the cell membrane by GPI-anchor and secreted ones. For some of them (Lynx1, SLURP-1, SLURP-2, Lypd6), as well as for snake α-neurotoxins, the target of action is nicotinic acetylcholine receptors, which are widely represented in the central and peripheral nervous systems, and in many other tissues, including epithelial cells and the immune system. However, the targets of most proteins from the Ly6/uPAR family and the mechanism of their action remain unknown. This review presents data on the structural and functional properties of the Ly6/uPAR proteins, which reveal a variety of functions within a single structural motif.
Collapse
Affiliation(s)
- N A Vasilyeva
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
22
|
Arvaniti M, Polli FS, Kohlmeier KA, Thomsen MS, Andreasen JT. Loss of Lypd6 leads to reduced anxiety-like behaviour and enhanced responses to nicotine. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:86-94. [PMID: 29195920 DOI: 10.1016/j.pnpbp.2017.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/19/2017] [Accepted: 11/27/2017] [Indexed: 11/28/2022]
Abstract
Nicotine consumption through smoking affects anxious states in humans. However, the precise role of nicotinic acetylcholine receptor (nAChR) circuitry in the regulation of anxiety remains elusive. The Lynx protein Lypd6 is highly enriched in synaptic loci and has been previously identified as an endogenous inhibitor of neuronal nAChR function in vitro. Here, we investigate the effect of Lypd6 in anxiety-related behaviour and examine the molecular underpinnings of its function in the brain. We employ the marble burying (MB) and elevated zero maze (EZM) tests in Lypd6 knock-out (KO) and wild-type (WT) mice and find that loss of Lypd6 leads to decreased digging behaviour in the MB test and increased time spent in the open area in the EZM test. Moreover, we demonstrate that acute nicotine administration reduces digging in the MB test in both KO and WT mice and further accentuates the inherent genotype difference. Using in vitro electrophysiology in dorsal raphe nuclei (DRN) neurons from Lypd6 KO mice, we show that nicotine-evoked whole-cell currents are enhanced in the absence of Lypd6. Collectively, these data are the first to indicate the involvement of Lypd6 in circuits associated with anxiety and suggest that a possible underlying neurobiological mechanism is the modulation of cholinergic responses in the DRN.
Collapse
Affiliation(s)
- Maria Arvaniti
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Filip S Polli
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Morten S Thomsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; H. Lundbeck A/S, Department of Synaptic Transmission In Vitro, Valby, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
23
|
Jagoda E, Lawson DJ, Wall JD, Lambert D, Muller C, Westaway M, Leavesley M, Capellini TD, Mirazón Lahr M, Gerbault P, Thomas MG, Migliano AB, Willerslev E, Metspalu M, Pagani L. Disentangling Immediate Adaptive Introgression from Selection on Standing Introgressed Variation in Humans. Mol Biol Evol 2018; 35:623-630. [PMID: 29220488 PMCID: PMC5850494 DOI: 10.1093/molbev/msx314] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent studies have reported evidence suggesting that portions of contemporary human genomes introgressed from archaic hominin populations went to high frequencies due to positive selection. However, no study to date has specifically addressed the postintrogression population dynamics of these putative cases of adaptive introgression. Here, for the first time, we specifically define cases of immediate adaptive introgression (iAI) in which archaic haplotypes rose to high frequencies in humans as a result of a selective sweep that occurred shortly after the introgression event. We define these cases as distinct from instances of selection on standing introgressed variation (SI), in which an introgressed haplotype initially segregated neutrally and subsequently underwent positive selection. Using a geographically diverse data set, we report novel cases of selection on introgressed variation in living humans and shortlist among these cases those whose selective sweeps are more consistent with having been the product of iAI rather than SI. Many of these novel inferred iAI haplotypes have potential biological relevance, including three that contain immune-related genes in West Siberians, South Asians, and West Eurasians. Overall, our results suggest that iAI may not represent the full picture of positive selection on archaically introgressed haplotypes in humans and that more work needs to be done to analyze the role of SI in the archaic introgression landscape of living humans.
Collapse
Affiliation(s)
- Evelyn Jagoda
- Human Evolutionary Biology, Harvard University, Cambridge, MA
| | - Daniel J Lawson
- Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Jeffrey D Wall
- Institute for Human Genetics, University of California, San Francisco, CA
| | - David Lambert
- Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
| | - Craig Muller
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Michael Westaway
- Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
| | - Matthew Leavesley
- Department of Anthropology and Sociology, University of Papua New Guinea, Port Moresby, Papua New Guinea
- Tropical Archaeology Research Laboratory, College for Education, Arts and Social Sciences, James Cook University, Cairns, Queensland, Australia
| | | | - Marta Mirazón Lahr
- Department of Archaeology, Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, Cambridge, United Kingdom
| | - Pascale Gerbault
- Research Department of Genetics Evolution and Environment, University College London, London, United Kingdom
- UCL Genetics Institute, University College London, London, United Kingdom
| | - Mark G Thomas
- Research Department of Genetics Evolution and Environment, University College London, London, United Kingdom
- Department of Anthropology, University College London, London, United Kingdom
| | | | - Eske Willerslev
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Luca Pagani
- Estonian Biocentre, Tartu, Estonia
- APE Lab, Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
24
|
van der Plaat DA, de Jong K, de Vries M, van Diemen CC, Nedeljković I, Amin N, Kromhout H, Vermeulen R, Postma DS, van Duijn CM, Boezen HM, Vonk JM. Occupational exposure to pesticides is associated with differential DNA methylation. Occup Environ Med 2018; 75:427-435. [PMID: 29459480 PMCID: PMC5969365 DOI: 10.1136/oemed-2017-104787] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/01/2017] [Accepted: 12/31/2017] [Indexed: 01/07/2023]
Abstract
Objectives Occupational pesticide exposure is associated with a wide range of diseases, including lung diseases, but it is largely unknown how pesticides influence airway disease pathogenesis. A potential mechanism might be through epigenetic mechanisms, like DNA methylation. Therefore, we assessed associations between occupational exposure to pesticides and genome-wide DNA methylation sites. Methods 1561 subjects of LifeLines were included with either no (n=1392), low (n=108) or high (n=61) exposure to any type of pesticides (estimated based on current or last held job). Blood DNA methylation levels were measured using Illumina 450K arrays. Associations between pesticide exposure and 420 938 methylation sites (CpGs) were assessed using robust linear regression adjusted for appropriate confounders. In addition, we performed genome-wide stratified and interaction analyses by gender, smoking and airway obstruction status, and assessed associations between gene expression and methylation for genome-wide significant CpGs (n=2802). Results In total for all analyses, high pesticide exposure was genome-wide significantly (false discovery rate P<0.05) associated with differential DNA methylation of 31 CpGs annotated to 29 genes. Twenty of these CpGs were found in subjects with airway obstruction. Several of the identified genes, for example, RYR1, ALLC, PTPRN2, LRRC3B, PAX2 and VTRNA2-1, are genes previously linked to either pesticide exposure or lung-related diseases. Seven out of 31 CpGs were associated with gene expression levels. Conclusions We show for the first time that occupational exposure to pesticides is genome-wide associated with differential DNA methylation. Further research should reveal whether this differential methylation plays a role in the airway disease pathogenesis induced by pesticides.
Collapse
Affiliation(s)
- Diana A van der Plaat
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kim de Jong
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maaike de Vries
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cleo C van Diemen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ivana Nedeljković
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hans Kromhout
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Groningen, The Netherlands
| | | | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Groningen, The Netherlands
| | - Dirkje S Postma
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cornelia M van Duijn
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H Marike Boezen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
25
|
Paramonov AS, Kulbatskii DS, Loktyushov EV, Tsarev AV, Dolgikh DA, Shenkarev ZO, Kirpichnikov MP, Lyukmanova EN. Recombinant production and structural studies of the human Lypd6 and Lypd6b proteins. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162017060127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Maher MP, Matta JA, Gu S, Seierstad M, Bredt DS. Getting a Handle on Neuropharmacology by Targeting Receptor-Associated Proteins. Neuron 2017; 96:989-1001. [PMID: 29216460 DOI: 10.1016/j.neuron.2017.10.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022]
Abstract
Targeted therapy for neuropsychiatric disorders requires selective modulation of dysfunctional neuronal pathways. Receptors relevant to CNS disorders typically have associated proteins discretely expressed in specific neuronal pathways; these accessory proteins provide a new dimension for drug discovery. Recent studies show that targeting a TARP auxiliary subunit of AMPA receptors selectively modulates neuronal excitability in specific forebrain pathways relevant to epilepsy. Other medicinally important ion channels, gated by glutamate, γ-aminobutyric acid (GABA), and acetylcholine, also have associated proteins, which may be druggable. This emerging pharmacology of receptor-associated proteins provides a new approach for improving drug efficacy while mitigating side effects.
Collapse
Affiliation(s)
- Michael P Maher
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Jose A Matta
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Shenyan Gu
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Mark Seierstad
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - David S Bredt
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA.
| |
Collapse
|
27
|
Traub RD, Whittington MA, Hall SP. Does Epileptiform Activity Represent a Failure of Neuromodulation to Control Central Pattern Generator-Like Neocortical Behavior? Front Neural Circuits 2017; 11:78. [PMID: 29093667 PMCID: PMC5651241 DOI: 10.3389/fncir.2017.00078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/04/2017] [Indexed: 12/22/2022] Open
Abstract
Rhythmic motor patterns in invertebrates are often driven by specialized “central pattern generators” (CPGs), containing small numbers of neurons, which are likely to be “identifiable” in one individual compared with another. The dynamics of any particular CPG lies under the control of modulatory substances, amines, or peptides, entering the CPG from outside it, or released by internal constituent neurons; consequently, a particular CPG can generate a given rhythm at different frequencies and amplitudes, and perhaps even generate a repertoire of distinctive patterns. The mechanisms exploited by neuromodulators in this respect are manifold: Intrinsic conductances (e.g., calcium, potassium channels), conductance state of postsynaptic receptors, degree of plasticity, and magnitude and kinetics of transmitter release can all be affected. The CPG concept has been generalized to vertebrate motor pattern generating circuits (e.g., for locomotion), which may contain large numbers of neurons – a construct that is sensible, if there is enough redundancy: that is, the large number of neurons consists of only a small number of classes, and the cells within any one class act stereotypically. Here we suggest that CPG and modulator ideas may also help to understand cortical oscillations, normal ones, and particularly transition to epileptiform pathology. Furthermore, in the case illustrated, the mechanism of the transition appears to be an exaggerated form of a normal modulatory action used to influence sensory processing.
Collapse
Affiliation(s)
- Roger D Traub
- Department of Physical Sciences, IBM Thomas J. Watson Research Center, New York City, NY, United States
| | - Miles A Whittington
- Department of Biology, Hull York Medical School, University of York, York, United Kingdom
| | - Stephen P Hall
- Department of Biology, Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
28
|
Crespi A, Colombo SF, Gotti C. Proteins and chemical chaperones involved in neuronal nicotinic receptor expression and function: an update. Br J Pharmacol 2017; 175:1869-1879. [PMID: 28294298 DOI: 10.1111/bph.13777] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/26/2017] [Accepted: 03/04/2017] [Indexed: 01/03/2023] Open
Abstract
Neuronal nicotinic ACh receptors (nAChRs) are a family of ACh-gated cation channels, and their homeostasis or proteostasis is essential for the correct physiology of the central and peripheral nervous systems. The proteostasis network regulates the folding, assembly, degradation and trafficking of nAChRs in order to ensure their efficient and functional expression at the cell surface. However, as nAChRs are multi-subunit, multi-span, integral membrane proteins, the folding and assembly is a very inefficient process, and only a small proportion of subunits can form functional pentamers. Moreover, the efficiency of assembly and trafficking varies widely depending on the nAChR subtypes and the cell type in which they are expressed. A detailed understanding of the mechanisms that regulate the functional expression of nAChRs in neurons and non-neuronal cells is therefore important. The purpose of this short review is to describe more recent findings concerning the chaperone proteins and target-specific and target-nonspecific pharmacological chaperones that modulate the expression of nAChR subtypes, and the possible mechanisms that underlie the dynamic changes of cell surface nAChRs. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
|
29
|
Wichern F, Jensen MM, Christensen DZ, Mikkelsen JD, Gondré-Lewis MC, Thomsen MS. Perinatal nicotine treatment induces transient increases in NACHO protein levels in the rat frontal cortex. Neuroscience 2017; 346:278-283. [PMID: 28131622 DOI: 10.1016/j.neuroscience.2017.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 12/16/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) regulator chaperone (NACHO) was recently identified as an important regulator of nAChR maturation and surface expression. Here we show that NACHO levels decrease during early postnatal development in rats. This decrease occurs earlier and to a greater degree in the frontal cortex (FC) compared with the hippocampus (HIP). We further show that rats exposed to nicotine during pre- and postnatal development exhibit significantly higher NACHO levels in the FC at postnatal day (PND) 21, but not at PND60. Repeated exposure to nicotine selectively during early (PND8-14) or late (PND54-60) postnatal stages did not affect NACHO protein levels in the FC or HIP, neither did exposure to high doses of the selective α7 nAChR agonists SSR180711, A-582941, or PNU-282987. However, we found significantly increased NACHO protein levels in the FC of PND36 rats after a single exposure to a combination of nicotine and the type II α7 nAChR positive allosteric modulator (PAM) PNU-120596, but not the type I PAM AVL-3288. These findings suggest that exposure to nAChR agonism affects NACHO protein levels, and that this effect is more pronounced during pre- or early postnatal development. The effect of PNU-120596 further suggests that the increase in NACHO expression is caused by activation rather than desensitization of nAChRs.
Collapse
Affiliation(s)
- Franziska Wichern
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Majbrit M Jensen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Ditte Z Christensen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jens D Mikkelsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Marjorie C Gondré-Lewis
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington D.C., USA; Neuropsychopharmacology Laboratory, Dept. of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington D.C., USA
| | - Morten S Thomsen
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|