1
|
Corridori E, Salviati S, Demontis MG, Vignolini P, Vita C, Fagiolini A, Cuomo A, Carmellini P, Gambarana C, Scheggi S. Therapeutic Potential of Saffron Extract in Mild Depression: A Study of Its Role on Anhedonia in Rats and Humans. Phytother Res 2025. [PMID: 39754520 DOI: 10.1002/ptr.8424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/27/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025]
Abstract
Drugs generally used in major depressive disorder are considered inappropriate for the more common milder forms. The efficacy of saffron extracts has been demonstrated in mild to moderate depression and in preclinical models of depression. However, evidence of saffron activity on reduced hedonic responsiveness and motivational anhedonia is limited. Since dopamine transmission dysfunctions are crucially involved in anhedonia and saffron seems to positively modulate dopamine release, we studied the potential antidepressant and anti-anhedonic effects of a standardized formulation of saffron extract in preclinical models of anhedonia-like behaviors, and patients diagnosed with unipolar or bipolar depression. We tested saffron activity in a rat model of stress-induced motivational anhedonia using sucrose self-administration protocols and investigated the molecular underpinnings of this effect focusing on DARPP-32 phosphorylation pattern in response to a reinforcer and BDNF-TrkB signaling, in the nucleus accumbens and medial prefrontal cortex. In parallel, with a pilot double-blind placebo-controlled study we investigated whether saffron add-on therapy reduced symptoms of depression and anhedonia, measured by the Montgomery-Åsberg Depression Rating Scale. Repeated saffron administration restored motivation and reactivity to reward-associated cues in anhedonic rats, likely modulating dopaminergic transmission and BDNF-TrkB signaling. In depressed patients, an 8-week saffron add-on therapy induced a global improvement in depressive symptoms and a significant reduction in anhedonia. The study supports a pro-motivational effect of saffron and suggests a potentially useful saffron-based augmentation strategy in anhedonic patients, albeit with limitations due to small sample size and short trial duration.
Collapse
Affiliation(s)
- Eleonora Corridori
- Department of Molecular and Developmental Medicine, School of Medicine, University of Siena, Polo Universitario San Miniato, Siena, Italy
| | - Sara Salviati
- Department of Molecular and Developmental Medicine, School of Medicine, University of Siena, Polo Universitario San Miniato, Siena, Italy
| | - Maria Graziella Demontis
- Department of Molecular and Developmental Medicine, School of Medicine, University of Siena, Polo Universitario San Miniato, Siena, Italy
| | - Pamela Vignolini
- Laboratorio Phytolab-DiSIA, University of Florence, Florence, Italy
| | - Chiara Vita
- PIN-QuMAP, Polo Universitario di Prato, Prato, Italy
| | - Andrea Fagiolini
- Division of Psychiatry, Department of Molecular and Developmental Medicine, School of Medicine, University of Siena, Siena, Italy
| | - Alessandro Cuomo
- Division of Psychiatry, Department of Molecular and Developmental Medicine, School of Medicine, University of Siena, Siena, Italy
| | - Pietro Carmellini
- Division of Psychiatry, Department of Molecular and Developmental Medicine, School of Medicine, University of Siena, Siena, Italy
| | - Carla Gambarana
- Department of Molecular and Developmental Medicine, School of Medicine, University of Siena, Polo Universitario San Miniato, Siena, Italy
| | - Simona Scheggi
- Department of Molecular and Developmental Medicine, School of Medicine, University of Siena, Polo Universitario San Miniato, Siena, Italy
| |
Collapse
|
2
|
Pfaus JG, García-Juárez M, Ordóñez RD, Tecamachaltzi-Silvarán MB, Lucio RA, González-Flores O. Cellular and molecular mechanisms of action of ovarian steroid hormones II: Regulation of sexual behavior in female rodents. Neurosci Biobehav Rev 2025; 168:105946. [PMID: 39571668 DOI: 10.1016/j.neubiorev.2024.105946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Female sexual behaviors in rodents (lordosis and appetitive or "proceptive" behaviors) are induced through a genomic mechanism by the sequential actions of estradiol (E2) and progesterone (P), or E2 and testosterone (T) at their respective receptors. However, non-steroidal agents, such as gonadotropin-releasing hormone (GnRH), Prostaglandin E2 (PGE2), noradrenaline, dopamine, oxytocin, α-melanocyte stimulating hormone, nitric oxide, leptin, apelin, and others, facilitate different aspects of female sexual behavior through their cellular and intracellular effects at the membrane and genomic levels in ovariectomized rats primed with E2. These neurotransmitters often act as intermediaries of E2 and P (or T). The classical model of steroid hormone action through intracellular receptor binding has been complemented by an alternative scenario wherein the steroid functions as a transcription factor after binding the receptor protein to DNA. Another possible mechanism occurs through the activation of second messenger systems (cyclic AMP, cyclic GMP, calcium), which subsequently initiate phosphorylation events via diverse kinase systems (protein kinases A, G, or C). These kinases target the progesterone receptor (PR) or associated effector proteins that connect the PR to the trans-activation machinery. This may also happen to the androgen receptor (AR). In addition, other cellular mechanisms could be involved since the chemical structure of these non-steroidal agents causes a change in their lipophobicity that prevents them from penetrating the cell and exerting direct transcriptional effects; however, they can exert effects on different components of the cell membrane activating a cross-talk between the cell membrane and the regulation of the transcriptional mechanisms.
Collapse
Affiliation(s)
- James G Pfaus
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany 25067, Czech Republic; Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Prague 18200, Czech Republic
| | - Marcos García-Juárez
- Centro de Investigación de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Raymundo Domínguez Ordóñez
- Centro de Investigación de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México; Licenciatura en Ingeniería Agronómica y Zootecnia, Complejo Regional Centro, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | - Rosa Angélica Lucio
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Oscar González-Flores
- Centro de Investigación de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México.
| |
Collapse
|
3
|
Azevedo EM, Fracaro L, Hochuli AHD, Ilkiw J, Bail EL, Lisboa MDO, Rodrigues LS, Barchiki F, Correa A, Capriglione LGA, Brofman PRS, Lima MMS. Comparative analysis of uninduced and neuronally-induced human dental pulp stromal cells in a 6-OHDA model of Parkinson's disease. Cytotherapy 2024; 26:1052-1061. [PMID: 38739074 DOI: 10.1016/j.jcyt.2024.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND In recent years, dental pulp stromal cells (DPSCs) have emerged as a promising therapeutic approach for Parkinson's disease (PD), owing to their inherent neurogenic potential and the lack of neuroprotective treatments for this condition. However, uncertainties persist regarding the efficacy of these cells in an undifferentiated state versus a neuronally-induced state. This study aims to delineate the distinct therapeutic potential of uninduced and neuronally-induced DPSCs in a rodent model of PD induced by 6-Hydroxydopamine (6-OHDA). METHODS DPSCs were isolated from human teeth, characterized as mesenchymal stromal cells, and induced to neuronal differentiation. Neuronal markers were assessed before and after induction. DPSCs were transplanted into the substantia nigra pars compacta (SNpc) of rats 7 days following the 6-OHDA lesion. In vivo tracking of the cells, evaluation of locomotor behavior, dopaminergic neuron survival, and the expression of essential proteins within the dopaminergic system were conducted 7 days postgrafting. RESULTS Isolated DPSCs exhibited typical characteristics of mesenchymal stromal cells and maintained a normal karyotype. DPSCs consistently expressed neuronal markers, exhibiting elevated expression of βIII-tubulin following neuronal induction. Results from the animal model showed that both DPSC types promoted substantial recovery in dopaminergic neurons, correlating with enhanced locomotion. Additionally, neuronally-induced DPSCs prevented GFAP elevation, while altering DARPP-32 phosphorylation states. Conversely, uninduced DPSCs reduced JUN levels. Both DPSC types mitigated the elevation of glycosylated DAT. CONCLUSIONS Our results suggested that uninduced DPSCs and neuronally-induced DPSCs exhibit potential in reducing dopaminergic neuron loss and improving locomotor behavior, but their underlying mechanisms differ.
Collapse
Affiliation(s)
- Evellyn M Azevedo
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Agner H D Hochuli
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Jéssica Ilkiw
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Ellen L Bail
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Mateus de O Lisboa
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Lais S Rodrigues
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Fabiane Barchiki
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Alejandro Correa
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba, Brazil
| | - Luiz G A Capriglione
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Paulo R S Brofman
- Core for Cell Technology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Marcelo M S Lima
- Physiology Department, Parkinson's Disease and Sleep Neurophysiology Lab, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
| |
Collapse
|
4
|
Scheggi S, Concas L, Corsi S, Carta M, Melis M, Frau R. Expanding the therapeutic potential of neuro(active)steroids: a promising strategy for hyperdopaminergic behavioral phenotypes. Neurosci Biobehav Rev 2024; 164:105842. [PMID: 39103066 DOI: 10.1016/j.neubiorev.2024.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Imbalances in dopamine activity significantly contribute to the pathophysiology of several neuropsychiatric disorders, including addiction, ADHD, schizophrenia, impulse control disorders, and Parkinson's Disease. Neuro(active)steroids, comprising endogenous steroids that finely modulate neuronal activity, are considered crucial regulators of brain function and behavior, with implications in various physiological processes and pathological conditions. Specifically, subclasses of Neuro(active)steroids belonging to the 5α reductase pathway are prominently involved in brain disorders characterized by dopaminergic signaling imbalances. This review highlights the neuromodulatory effects of Neuro(active)steroids on the dopamine system and related aberrant behavioral phenotypes. We critically appraise the role of pregnenolone, progesterone, and allopregnanolone on dopamine signaling. Additionally, we discuss the impact of pharmacological interventions targeting 5α reductase activity in neuropsychiatric conditions characterized by excessive activation of the dopaminergic system, ranging from psychotic (endo)phenotypes and motor complications to decision-making problems and addiction.
Collapse
Affiliation(s)
- Simona Scheggi
- Dept. of Molecular and Developmental Medicine, University of Siena, Italy
| | - Luca Concas
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Sara Corsi
- Dept. of Developmental and Regenerative Neurobiology, Lund University, Sweden
| | - Manolo Carta
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Miriam Melis
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Roberto Frau
- Dept. Of Biomedical Sciences, University of Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
5
|
Gui Y, Kim Y, Brenna S, Wilmes M, Zaghen G, Goulbourne CN, Kuchenbecker-Pöls L, Siebels B, Voß H, Gocke A, Schlüter H, Schweizer M, Altmeppen HC, Magnus T, Levy E, Puig B. Cystatin C loaded in brain-derived extracellular vesicles rescues synapses after ischemic insult in vitro and in vivo. Cell Mol Life Sci 2024; 81:224. [PMID: 38769196 PMCID: PMC11106054 DOI: 10.1007/s00018-024-05266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Synaptic loss is an early event in the penumbra area after an ischemic stroke. Promoting synaptic preservation in this area would likely improve functional neurological recovery. We aimed to detect proteins involved in endogenous protection mechanisms of synapses in the penumbra after stroke and to analyse potential beneficial effects of these candidates for a prospective stroke treatment. For this, we performed Liquid Chromatography coupled to Mass Spectrometry (LC-MS)-based proteomics of synaptosomes isolated from the ipsilateral hemispheres of mice subjected to experimental stroke at different time points (24 h, 4 and 7 days) and compared them to sham-operated mice. Proteomic analyses indicated that, among the differentially expressed proteins between the two groups, cystatin C (CysC) was significantly increased at 24 h and 4 days following stroke, before returning to steady-state levels at 7 days, thus indicating a potential transient and intrinsic rescue mechanism attempt of neurons. When CysC was applied to primary neuronal cultures subjected to an in vitro model of ischemic damage, this treatment significantly improved the preservation of synaptic structures. Notably, similar effects were observed when CysC was loaded into brain-derived extracellular vesicles (BDEVs). Finally, when CysC contained in BDEVs was administered intracerebroventricularly to stroked mice, it significantly increased the expression of synaptic markers such as SNAP25, Homer-1, and NCAM in the penumbra area compared to the group supplied with empty BDEVs. Thus, we show that CysC-loaded BDEVs promote synaptic protection after ischemic damage in vitro and in vivo, opening the possibility of a therapeutic use in stroke patients.
Collapse
Affiliation(s)
- Yuqi Gui
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, 20246, Hamburg, Germany
- Department of Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yohan Kim
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
- Departments of Psychiatry, Biochemistry and Molecular Pharmacology, and the Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Santra Brenna
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, 20246, Hamburg, Germany
| | - Maximilian Wilmes
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, 20246, Hamburg, Germany
| | - Giorgio Zaghen
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
- Departments of Psychiatry, Biochemistry and Molecular Pharmacology, and the Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
| | - Lennart Kuchenbecker-Pöls
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, 20246, Hamburg, Germany
| | - Bente Siebels
- Section for Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah Voß
- Section for Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Gocke
- Section for Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Section for Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Morphology and Electron Microscopy Core Facility, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, 20246, Hamburg, Germany
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
- Departments of Psychiatry, Biochemistry and Molecular Pharmacology, and the Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Berta Puig
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, 20246, Hamburg, Germany.
| |
Collapse
|
6
|
Tsuboi D, Nagai T, Yoshimoto J, Kaibuchi K. Neuromodulator regulation and emotions: insights from the crosstalk of cell signaling. Front Mol Neurosci 2024; 17:1376762. [PMID: 38516040 PMCID: PMC10954900 DOI: 10.3389/fnmol.2024.1376762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
The unraveling of the regulatory mechanisms that govern neuronal excitability is a major challenge for neuroscientists worldwide. Neurotransmitters play a critical role in maintaining the balance between excitatory and inhibitory activity in the brain. The balance controls cognitive functions and emotional responses. Glutamate and γ-aminobutyric acid (GABA) are the primary excitatory and inhibitory neurotransmitters of the brain, respectively. Disruptions in the balance between excitatory and inhibitory transmission are implicated in several psychiatric disorders, including anxiety disorders, depression, and schizophrenia. Neuromodulators such as dopamine and acetylcholine control cognition and emotion by regulating the excitatory/inhibitory balance initiated by glutamate and GABA. Dopamine is closely associated with reward-related behaviors, while acetylcholine plays a role in aversive and attentional behaviors. Although the physiological roles of neuromodulators have been extensively studied neuroanatomically and electrophysiologically, few researchers have explored the interplay between neuronal excitability and cell signaling and the resulting impact on emotion regulation. This review provides an in-depth understanding of "cell signaling crosstalk" in the context of neuronal excitability and emotion regulation. It also anticipates that the next generation of neurochemical analyses, facilitated by integrated phosphorylation studies, will shed more light on this topic.
Collapse
Affiliation(s)
- Daisuke Tsuboi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Junichiro Yoshimoto
- Department of Biomedical Data Science, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
7
|
Valvassori SS, Possamai-Della T, Aguiar-Geraldo JM, Sant’Ana RG, Dal-Pont GC, Pescador B, Zugno AI, Quevedo J, Dal-Pizzol F. Sepsis sensitizes behavioural amphetamine responses while inducing inflammatory and neurotrophic vulnerability in the cecal ligation and puncture model. Eur J Neurosci 2024; 59:1153-1168. [PMID: 37350331 PMCID: PMC10746835 DOI: 10.1111/ejn.16064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
The present study aimed to evaluate if sepsis sensitizes behavioural and biochemical responses induced by m-amphetamine. For this, Wistar rats were submitted to the cecal ligation and puncture. After 30 days of cecal ligation and puncture procedure, the animals were submitted to a single intraperitoneal injection of saline or m-amphetamine (.25, .50, or 1.0 mg/kg). Locomotor behaviour was assessed 2 h after the administration. Interleukin (IL)-1β, IL-6, IL-10, tumour necrosis factor-α, dopamine-cAMP-regulated phosphoprotein of 32,000 kDa (DARPP-32) and neuronal calcium sensor (NCS-1) levels were evaluated in the frontal cortex, hippocampus and striatum. Also, brain-derived neurotrophic factor (BDNF), neuronal growth factor and glial-derived neurotrophic factor levels were assessed in the hippocampus. M-amphetamine alone (.25 and 1.0 mg/kg) increased rats' locomotion and exploratory behaviour compared with the Sham + Sal. Animals from the cecal ligation and puncture + m-amphetamine (.5 and/or 1.0 mg/kg) group showed an increase in locomotion, exploratory and risk-like behaviour when compared with the Sham + Saline group and with its respective Sham groups. Cecal ligation and puncture increased interleukin levels compared with the Sham + Sal. However, cecal ligation and puncture animals that received m-amphetamine (1 mg/kg) increased even more, these inflammatory parameters compared with the Sham + Sal and the cecal ligation and puncture + saline group. M-amphetamine at lower doses increased neurotrophic factors, but higher doses decreased these parameters in the brain of cecal ligation and puncture rats. M-amphetamine dose-dependently increased DARPP-32 and NCS-1 levels in cecal ligation and puncture rats in some structures. In conclusion, these results demonstrate that sepsis sensitizes behavioural amphetamine responses while inducing inflammatory and neurotrophic vulnerability in the cecal ligation and puncture model.
Collapse
Affiliation(s)
- Samira S. Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Jorge M. Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Rômulo Goronci Sant’Ana
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gustavo C. Dal-Pont
- Translational Health Research Laboratory, Alto Vale do Rio do Peixe University, Caçador, Brazil
| | - Bruna Pescador
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Alexandra I. Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavior Sciences, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
8
|
Sardi NF, Pescador AC, Azevedo EM, Pochapski JA, Kukolj C, Spercoski KM, Andrade AJM, da Cunha C, Fischer L. Sleep and Pain: A Role for the Anterior Cingulate Cortex, Nucleus Accumbens, and Dopamine in the Increased Pain Sensitivity Following Sleep Restriction. THE JOURNAL OF PAIN 2024; 25:331-349. [PMID: 37673193 DOI: 10.1016/j.jpain.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Persistent pain conditions and sleep disorders are public health problems worldwide. It is widely accepted that sleep disruption increases pain sensitivity; however, the underlying mechanisms are poorly understood. In this study, we used a protocol of 6 hours a day of total sleep deprivation for 3 days in rats to advance the understanding of these mechanisms. We focused on gender differences and the dopaminergic mesocorticolimbic system. The findings demonstrated that sleep restriction (SR) increased pain sensitivity in a similar way in males and females, without inducing a significant stress response. This pronociceptive effect depends on a nucleus accumbens (NAc) neuronal ensemble recruited during SR and on the integrity of the anterior cingulate cortex (ACC). Data on indirect dopaminergic parameters, dopamine transporter glycosylation, and dopamine and cyclic adenosine monophosphate (AMP)-regulated phosphoprotein-32 phosphorylation, as well as dopamine, serotonin, and norepinephrine levels, suggest that dopaminergic function decreases in the NAc and ACC after SR. Complementarily, pharmacological activation of dopamine D2, but not D1 receptors either in the ACC or in the NAc prevents SR from increasing pain sensitivity. The ACC and NAc are the main targets of dopaminergic mesocorticolimbic projections with a key role in pain modulation. This study showed their integrative role in the pronociceptive effect of SR, pointing to dopamine D2 receptors as a potential target for pain management in patients with sleep disorders. These findings narrow the focus of future studies on the mechanisms by which sleep impairment increases pain sensitivity. PERSPECTIVE: This study demonstrates that the pronociceptive effect of SR affects similarly males and females and depends on a NAc neuronal ensemble recruited during SR and on the integrity of the ACC. Findings on dopaminergic function support dopamine D2 receptors as targets for pain management in sleep disorders patients.
Collapse
Affiliation(s)
- Natalia F Sardi
- Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - Ana C Pescador
- Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - Evellyn M Azevedo
- Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - José A Pochapski
- Department of Pharmacology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil; Department of Biochemistry, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - Caroline Kukolj
- Department of Biochemistry, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - Katherinne M Spercoski
- Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil; Division of Biosciences, Federal University of Parana, Palotina, Parana, Brazil
| | - Anderson J M Andrade
- Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - Claudio da Cunha
- Department of Pharmacology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| | - Luana Fischer
- Department of Physiology, Division of Biological Sciences, Federal University of Parana, Curitiba, Parana, Brazil
| |
Collapse
|
9
|
Stratilov V, Vetrovoy O, Potapova S, Tyulkova E. The Prenatal Hypoxic Pathology Associated with Maternal Stress Predisposes to Dysregulated Expression of the chrna7 Gene and the Subsequent Development of Nicotine Addiction in Adult Offspring. Neuroendocrinology 2024; 114:423-438. [PMID: 38198758 DOI: 10.1159/000536214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Previous studies have shown that fetal hypoxia predisposes individuals to develop addictive disorders in adulthood. However, the specific impact of maternal stress, mediated through glucocorticoids and often coexisting with fetal hypoxia, is not yet fully comprehended. METHODS To delineate the potential effects of these pathological factors, we designed models of prenatal severe hypoxia (PSH) in conjunction with maternal stress and prenatal intrauterine ischemia (PII). We assessed the suitability of these models for our research objectives by measuring HIF1α levels and evaluating the glucocorticoid neuroendocrine system. To ascertain nicotine dependence, we employed the conditioned place aversion test and the startle response test. To identify the key factor implicated in nicotine addiction associated with PSH, we employed techniques such as Western blot, immunohistochemistry, and correlational analysis between chrna7 and nr3c1 genes across different brain structures. RESULTS In adult rats exposed to PSH and PII, we observed increased levels of HIF1α in the hippocampus (HPC). However, the PSH group alone exhibited reduced glucocorticoid receptor levels and disturbed circadian glucocorticoid rhythms. Additionally, they displayed signs of nicotine addiction in the conditioned place aversion and startle response tests. We also observed elevated levels of phosphorylated DARPP-32 protein in the nucleus accumbens (NAc) indicated compromised glutamatergic efferent signaling. Furthermore, there was reduced expression of α7 nAChR, which modulates glutamate release, in the medial prefrontal cortex (PFC) and HPC. Correlation analysis revealed strong associations between chrna7 and nr3c1 expression in both brain structures. CONCLUSION Perturbations in the glucocorticoid neuroendocrine system and glucocorticoid-dependent gene expression of chrna7 associated with maternal stress response to hypoxia in prenatal period favor the development of nicotine addiction in adulthood.
Collapse
Affiliation(s)
- Viktor Stratilov
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology RAS, Saint Petersburg, Russian Federation
| | - Oleg Vetrovoy
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology RAS, Saint Petersburg, Russian Federation
- Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Sophia Potapova
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology RAS, Saint Petersburg, Russian Federation
- Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Ekaterina Tyulkova
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology RAS, Saint Petersburg, Russian Federation
| |
Collapse
|
10
|
Fradin D, Tost J, Busato F, Mille C, Lachaux F, Deleuze JF, Apter G, Benachi A. DNA methylation dynamics during pregnancy. Front Cell Dev Biol 2023; 11:1185311. [PMID: 37287456 PMCID: PMC10242503 DOI: 10.3389/fcell.2023.1185311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Pregnancy is a state of multiple physiological adaptations. Since methylation of DNA is an epigenetic mechanism that regulates gene expression and contributes to adaptive phenotypic variations, we investigated methylation changes in maternal blood of a longitudinal cohort of pregnant women from the first trimester of gestation to the third. Interestingly, during pregnancy, we found a gain of methylation in genes involved in morphogenesis, such as ezrin, while we identified a loss of methylation in genes promoting maternal-infant bonding (AVP and PPP1R1B). Together, our results provide insights into the biological mechanisms underlying physiological adaptations during pregnancy.
Collapse
Affiliation(s)
- Delphine Fradin
- INSERM U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, Paris, France
| | - Jorg Tost
- The Laboratory for Epigenetics and Environment, Centre National de Recherche en Genomique Humaine, CEA-Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, France
| | - Florence Busato
- The Laboratory for Epigenetics and Environment, Centre National de Recherche en Genomique Humaine, CEA-Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, France
| | - Clémence Mille
- INSERM U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, Paris, France
| | - Fanny Lachaux
- INSERM U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, Paris, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Gisèle Apter
- Child and Perinatal Psychiatric Department, Le Havre University Hospital, University Rouen Normandie, Le Havre, France
| | - Alexandra Benachi
- Department of Obstetrics and Gynecology, DMU Santé des Femmes et des Nouveau-nés, Assistance Publique Hôpitaux de Paris, Antoine Beclere Hospital, Université Paris-Saclay, Paris, France
| |
Collapse
|
11
|
Piersimoni L, Abd El Malek M, Bhatia T, Bender J, Brankatschk C, Calvo Sánchez J, Dayhoff GW, Di Ianni A, Figueroa Parra JO, Garcia-Martinez D, Hesselbarth J, Köppen J, Lauth LM, Lippik L, Machner L, Sachan S, Schmidt L, Selle R, Skalidis I, Sorokin O, Ubbiali D, Voigt B, Wedler A, Wei AAJ, Zorn P, Dunker AK, Köhn M, Sinz A, Uversky VN. Lighting up Nobel Prize-winning studies with protein intrinsic disorder. Cell Mol Life Sci 2022; 79:449. [PMID: 35882686 PMCID: PMC11072364 DOI: 10.1007/s00018-022-04468-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022]
Abstract
Intrinsically disordered proteins and regions (IDPs and IDRs) and their importance in biology are becoming increasingly recognized in biology, biochemistry, molecular biology and chemistry textbooks, as well as in current protein science and structural biology curricula. We argue that the sequence → dynamic conformational ensemble → function principle is of equal importance as the classical sequence → structure → function paradigm. To highlight this point, we describe the IDPs and/or IDRs behind the discoveries associated with 17 Nobel Prizes, 11 in Physiology or Medicine and 6 in Chemistry. The Nobel Laureates themselves did not always mention that the proteins underlying the phenomena investigated in their award-winning studies are in fact IDPs or contain IDRs. In several cases, IDP- or IDR-based molecular functions have been elucidated, while in other instances, it is recognized that the respective protein(s) contain IDRs, but the specific IDR-based molecular functions have yet to be determined. To highlight the importance of IDPs and IDRs as general principle in biology, we present here illustrative examples of IDPs/IDRs in Nobel Prize-winning mechanisms and processes.
Collapse
Affiliation(s)
- Lolita Piersimoni
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Marina Abd El Malek
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Twinkle Bhatia
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julian Bender
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Christin Brankatschk
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jaime Calvo Sánchez
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Guy W Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL, 33620, USA
| | - Alessio Di Ianni
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | | | - Dailen Garcia-Martinez
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julia Hesselbarth
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Janett Köppen
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Luca M Lauth
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Laurin Lippik
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Lisa Machner
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Shubhra Sachan
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Lisa Schmidt
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Robin Selle
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Ioannis Skalidis
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Oleksandr Sorokin
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Daniele Ubbiali
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Bruno Voigt
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alice Wedler
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alan An Jung Wei
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Peter Zorn
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alan Keith Dunker
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Marcel Köhn
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Andrea Sinz
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
12
|
Thomas R, Hernandez A, Benavides DR, Li W, Tan C, Umfress A, Plattner F, Chakraborti A, Pozzo-Miller L, Taylor SS, Bibb JA. Integrated regulation of PKA by fast and slow neurotransmission in the nucleus accumbens controls plasticity and stress responses. J Biol Chem 2022; 298:102245. [PMID: 35835216 PMCID: PMC9386499 DOI: 10.1016/j.jbc.2022.102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Cortical glutamate and midbrain dopamine neurotransmission converge to mediate striatum-dependent behaviors, while maladaptations in striatal circuitry contribute to mental disorders. However, the crosstalk between glutamate and dopamine signaling has not been entirely elucidated. Here we uncover a molecular mechanism by which glutamatergic and dopaminergic signaling integrate to regulate cAMP-dependent protein kinase (PKA) via phosphorylation of the PKA regulatory subunit, RIIβ. Using a combination of biochemical, pharmacological, neurophysiological, and behavioral approaches, we find that glutamate-dependent reduction in cyclin-dependent kinase 5 (Cdk5)-dependent RIIβ phosphorylation alters the PKA holoenzyme autoinhibitory state to increase PKA signaling in response to dopamine. Furthermore, we show that disruption of RIIβ phosphorylation by Cdk5 enhances cortico-ventral striatal synaptic plasticity. In addition, we demonstrate that acute and chronic stress in rats inversely modulate RIIβ phosphorylation and ventral striatal infusion of a small interfering peptide that selectively targets RIIβ regulation by Cdk5 improves behavioral response to stress. We propose this new signaling mechanism integrating ventral striatal glutamate and dopamine neurotransmission is important to brain function, may contribute to neuropsychiatric conditions, and serves as a possible target for the development of novel therapeutics for stress-related disorders.
Collapse
Affiliation(s)
- Rachel Thomas
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104 USA; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adan Hernandez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Santiago de Querétaro, Querétaro, México; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David R Benavides
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Li
- Department of Neurobiology, Civitan International Research Center, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA
| | - Chunfeng Tan
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alan Umfress
- Department of Surgery, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA
| | - Florian Plattner
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ayanabha Chakraborti
- Department of Surgery, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - James A Bibb
- Department of Neurobiology, Civitan International Research Center, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA; Department of Surgery, The University of Alabama Birmingham Medical Center, Birmingham, AL 35233, USA; Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
PPARα Signaling: A Candidate Target in Psychiatric Disorder Management. Biomolecules 2022; 12:biom12050723. [PMID: 35625650 PMCID: PMC9138493 DOI: 10.3390/biom12050723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Peroxisome proliferator-activator receptors (PPARs) regulate lipid and glucose metabolism, control inflammatory processes, and modulate several brain functions. Three PPAR isoforms have been identified, PPARα, PPARβ/δ, and PPARγ, which are expressed in different tissues and cell types. Hereinafter, we focus on PPARα involvement in the pathophysiology of neuropsychiatric and neurodegenerative disorders, which is underscored by PPARα localization in neuronal circuits involved in emotion modulation and stress response, and its role in neurodevelopment and neuroinflammation. A multiplicity of downstream pathways modulated by PPARα activation, including glutamatergic neurotransmission, upregulation of brain-derived neurotrophic factor, and neurosteroidogenic effects, encompass mechanisms underlying behavioral regulation. Modulation of dopamine neuronal firing in the ventral tegmental area likely contributes to PPARα effects in depression, anhedonia, and autism spectrum disorder (ASD). Based on robust preclinical evidence and the initial results of clinical studies, future clinical trials should assess the efficacy of PPARα agonists in the treatment of mood and neurodevelopmental disorders, such as depression, schizophrenia, and ASD.
Collapse
|
14
|
Bortolato M, Coffey BJ, Gabbay V, Scheggi S. Allopregnanolone: The missing link to explain the effects of stress on tic exacerbation? J Neuroendocrinol 2022; 34:e13022. [PMID: 34423500 PMCID: PMC8800948 DOI: 10.1111/jne.13022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
The neurosteroid allopregnanolone (3α-hydroxy-5α-pregnan-20-one; AP) elicits pleiotropic effects in the central nervous system, ranging from neuroprotective and anti-inflammatory functions to the regulation of mood and emotional responses. Several lines of research show that the brain rapidly produces AP in response to acute stress to reduce the allostatic load and enhance coping. These effects not only are likely mediated by GABAA receptor activation but also result from the contributions of other mechanisms, such as the stimulation of membrane progesterone receptors. In keeping with this evidence, AP has been shown to exert rapid, potent antidepressant properties and has been recently approved for the therapy of moderate-to-severe postpartum depression. In addition to depression, emerging evidence points to the potential of AP as a therapy for other neuropsychiatric disorders, including anxiety, seizures, post-traumatic stress disorder and cognitive problems. Although this evidence has spurred interest in further therapeutic applications of AP, some investigations suggest that this neurosteroid may also be associated with adverse events in specific disorders. For example, our group has recently documented that AP increases tic-like manifestations in several animal models of tic disorders; furthermore, our results indicate that inhibiting AP synthesis and signalling reduces the exacerbation of tic severity associated with acute stress. Although the specific mechanisms of these effects remain partially elusive, our findings point to the possibility that the GABAergic activation by AP may also lead to disinhibitory effects, which could interfere with the ability of patients to suppress their tics. Future studies will be necessary to verify whether these mechanisms may apply to other externalising manifestations, such as impulse-control problems and manic symptoms.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and ToxicologyCollege of PharmacyUniversity of UtahSalt Lake CityUTUSA
- Research Consortium on NeuroEndocrine Causes of Tics (ReConNECT)
| | - Barbara J. Coffey
- Research Consortium on NeuroEndocrine Causes of Tics (ReConNECT)
- Department of Psychiatry and Behavioral ScienceMiller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Vilma Gabbay
- Research Consortium on NeuroEndocrine Causes of Tics (ReConNECT)
- Department of Psychiatry and Behavioral SciencesAlbert Einstein College of MedicineBronxNYUSA
| | - Simona Scheggi
- Department of Molecular and Developmental MedicineSchool of MedicineUniversity of SienaSienaItaly
| |
Collapse
|
15
|
Saengmearnuparp T, Lojanapiwat B, Chattipakorn N, Chattipakorn S. The connection of 5-alpha reductase inhibitors to the development of depression. Biomed Pharmacother 2021; 143:112100. [PMID: 34479019 DOI: 10.1016/j.biopha.2021.112100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Recent literature connects 5-alpha reductase inhibitors (5-ARIs) with neuropsychiatric adverse effects. Several clinical studies have indicated that former 5-ARIs users had a higher incidence of depressive symptoms and neuropsychiatric side effects than non-users. However, the underlying mechanisms involved in the depression in former 5-ARIs patients, a condition known as "post finasteride syndrome (PFS)", are not thoroughly understood. This review aims to summarize and discuss the association between 5-ARIs and depression as well as possible mechanisms. We used PubMed search terms including "depression", "depressive symptoms", "MDD", "anxiety", or "suicidal idea", and "5-alpha reductase inhibitors", "finasteride", "dutasteride", "5-ARIs". All relevant articles from in vivo and clinical studies from 2002 to 2021 were carefully reviewed. Any contradictory findings were included and debated. The potential mechanisms that link 5-ARIs and depression include alteration in neuroactive steroids, dopaminergic dysfunction, reduced hippocampal neurogenesis, increased neuroinflammation, alteration of the HPA axis, and epigenetic modifications. From this review, we hope to provide information for future studies based on animal experiments, and potential therapeutic strategies for depressive patients with PFS.
Collapse
Affiliation(s)
| | - Bannakij Lojanapiwat
- Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
16
|
Jhang CL, Lee HY, Chen JC, Liao W. Dopaminergic loss of cyclin-dependent kinase-like 5 recapitulates methylphenidate-remediable hyperlocomotion in mouse model of CDKL5 deficiency disorder. Hum Mol Genet 2021; 29:2408-2419. [PMID: 32588892 DOI: 10.1093/hmg/ddaa122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 05/24/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5), a serine-threonine kinase encoded by an X-linked gene, is highly expressed in the mammalian forebrain. Mutations in this gene cause CDKL5 deficiency disorder, a neurodevelopmental encephalopathy characterized by early-onset seizures, motor dysfunction, and intellectual disability. We previously found that mice lacking CDKL5 exhibit hyperlocomotion and increased impulsivity, resembling the core symptoms in attention-deficit hyperactivity disorder (ADHD). Here, we report the potential neural mechanisms and treatment for hyperlocomotion induced by CDKL5 deficiency. Our results showed that loss of CDKL5 decreases the proportion of phosphorylated dopamine transporter (DAT) in the rostral striatum, leading to increased levels of extracellular dopamine and hyperlocomotion. Administration of methylphenidate (MPH), a DAT inhibitor clinically effective to improve symptoms in ADHD, significantly alleviated the hyperlocomotion phenotype in Cdkl5 null mice. In addition, the improved behavioral effects of MPH were accompanied by a region-specific restoration of phosphorylated dopamine- and cAMP-regulated phosphoprotein Mr 32 kDa, a key signaling protein for striatal motor output. Finally, mice carrying a Cdkl5 deletion selectively in DAT-expressing dopaminergic neurons, but not dopamine receptive neurons, recapitulated the hyperlocomotion phenotype found in Cdkl5 null mice. Our findings suggest that CDKL5 is essential to control locomotor behavior by regulating region-specific dopamine content and phosphorylation of dopamine signaling proteins in the striatum. The direct, as well as indirect, target proteins regulated by CDKL5 may play a key role in movement control and the therapeutic development for hyperactivity disorders.
Collapse
Affiliation(s)
- Cian-Ling Jhang
- Institute of Neuroscience, National Cheng-Chi University, Taipei 116, Taiwan
| | - Hom-Yi Lee
- Department of Psychology, Chung Shan Medical University, Taichung 402, Taiwan.,Department of Speech Language Pathology and Audiology, Chung Shan Medical University, Taichung 402, Taiwan
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan
| | - Wenlin Liao
- Institute of Neuroscience, National Cheng-Chi University, Taipei 116, Taiwan.,Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei 116, Taiwan
| |
Collapse
|
17
|
Shumilov AV, Gotovtsev PM. Modeling the activity of the dopamine signaling pathway by combination of analog electrical circuit and mathematical approaches. Heliyon 2021; 7:e05879. [PMID: 33553717 PMCID: PMC7855338 DOI: 10.1016/j.heliyon.2020.e05879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 12/22/2019] [Accepted: 12/24/2020] [Indexed: 11/24/2022] Open
Abstract
This paper demonstrates the application of the system biology principles on the example of the dopamine signaling pathway in neurons. Presented model is based on two approaches - cytomorphic electronic circuits and mathematical modeling. Transcription and phosphorylation of DARPP-32 was modeled by analog circuit, based on well-known approaches presented in [1]. It was shown that application of circuit helps to receive signal oscillations that close to described ones in real biological systems. This combination on the one hand gives possibility to simplify calculations, on another to show this signaling pathway dynamics. The expected effect of changes in the functioning of calcium channels is considered, and the mathematical model of the interaction of system components is proposed. The average frequency of calcium current oscillations due to the presence of dopamine was 30 Hz in presented model, that is consistent with the literature, where the frequency of such oscillations is up to several tens of Hz. All presented results shows good correlation with known data, which already published today.
Collapse
Affiliation(s)
- A V Shumilov
- National Research Centre "Kurchatov Institute", Biotechnology and Bioenergy Department, Russia.,Skolkovo Institute of Science and Technology, Informational Science and Technology, Russia
| | - P M Gotovtsev
- National Research Centre "Kurchatov Institute", Biotechnology and Bioenergy Department, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
18
|
Abstract
DARPP-32 (dopamine- and cAMP-regulated phosphoprotein with an apparent Mr of 32,000), now also known as phosphoprotein phosphatase 1 regulatory subunit 1B (PPP1R1B), is a potent inhibitor of protein phosphatase 1 (PP1, also known as PPP1) when phosphorylated at Thr34 by cAMP-dependent protein kinase (PKA). DARPP-32 exhibits a remarkable regional distribution in brain, roughly similar to that of dopamine innervation. Its discovery was a culmination of the long-standing effort of Paul Greengard to understand the mechanisms through which neurotransmitters such as dopamine exert their effects on target neurons. DARPP-32 is particularly enriched in striatal projection neurons where it is regulated by numerous signals through which it integrates and amplifies responses to many stimuli. Molecular studies of DARPP-32 have revealed that its regulation and function are more complex than anticipated. It is phosphorylated on multiple sites by several protein kinases that modulate DARPP-32 properties. Primarily, when phosphorylated at Thr34 DARPP-32 is a potent inhibitor of PP1, whereas when phosphorylated at Thr75 by Cdk5 it inhibits PKA. Phosphorylation at serine residues by CK1 and CK2 modulates its intracellular localization and its sensitivity to kinases or phosphatases. Modeling studies provide evidence that the signaling pathways including DARPP-32 are endowed of strong robustness and bistable properties favoring switch-like responses. Thus DARPP-32 combined with a set of other distinct signaling molecules enriched in striatal projection neurons plays a key role in the characteristic properties and physiological function of these neurons.
Collapse
|
19
|
Ke Y, Weng M, Chhetri G, Usman M, Li Y, Yu Q, Ding Y, Wang Z, Wang X, Sultana P, DiFiglia M, Li X. Trappc9 deficiency in mice impairs learning and memory by causing imbalance of dopamine D1 and D2 neurons. SCIENCE ADVANCES 2020; 6:6/47/eabb7781. [PMID: 33208359 PMCID: PMC7673810 DOI: 10.1126/sciadv.abb7781] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/01/2020] [Indexed: 05/06/2023]
Abstract
Genetic mutations in the gene encoding transport protein particle complex 9 (trappc9), a subunit of TRAPP that acts as a guanine nucleotide exchange factor for rab proteins, cause intellectual disability with brain structural malformations by elusive mechanisms. Here, we report that trappc9-deficient mice exhibit a broad range of behavioral deficits and postnatal delay in growth of the brain. Contrary to volume decline of various brain structures, the striatum of trappc9 null mice was enlarged. An imbalance existed between dopamine D1 and D2 receptor containing neurons in the brain of trappc9-deficient mice; pharmacological manipulation of dopamine receptors improved performances of trappc9 null mice to levels of wild-type mice on cognitive tasks. Loss of trappc9 compromised the activation of rab11 in the brain and resulted in retardation of endocytic receptor recycling in neurons. Our study elicits a pathogenic mechanism and a potential treatment for trappc9-linked disorders including intellectual disability.
Collapse
Affiliation(s)
- Yuting Ke
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Meiqian Weng
- Mucosal Immunology Laboratory, Combined Program in Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Gaurav Chhetri
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Muhammad Usman
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yan Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Qing Yu
- Department of Nephrology, Shanghai General Hospital, 650 Songjiang Road, Songjiang District, Shanghai 201620, China
| | - Yingzhuo Ding
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Zejian Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Xiaolong Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Pinky Sultana
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Xueyi Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
20
|
Scheggi S, Guzzi F, Braccagni G, De Montis MG, Parenti M, Gambarana C. Targeting PPARα in the rat valproic acid model of autism: focus on social motivational impairment and sex-related differences. Mol Autism 2020; 11:62. [PMID: 32718349 PMCID: PMC7385875 DOI: 10.1186/s13229-020-00358-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/16/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The social motivational theory of autism spectrum disorder (ASD) focuses on social anhedonia as key causal feature of the impaired peer relationships that characterize ASD patients. ASD prevalence is higher in boys, but increasing evidence suggests underdiagnosis and undertreatment in girls. We showed that stress-induced motivational anhedonia is relieved by repeated treatment with fenofibrate (FBR), a peroxisome proliferator-activated receptor α (PPARα) agonist. Here, we used the valproic acid (VPA) model of ASD in rats to examine male and female phenotypes and assess whether FBR administration from weaning to young adulthood relieved social impairments. METHODS Male and female rats exposed to saline or VPA at gestational day 12.5 received standard or FBR-enriched diet from postnatal day 21 to 48-53, when behavioral tests and ex vivo neurochemical analyses were performed. Phosphorylation levels of DARPP-32 in response to social and nonsocial cues, as index of dopamine D1 receptor activation, levels of expression of PPARα, vesicular glutamatergic and GABAergic transporters, and postsynaptic density protein PSD-95 were analyzed by immunoblotting in selected brain regions. RESULTS FBR administration relieved social impairment and perseverative behavior in VPA-exposed male and female rats, but it was only effective on female stereotypies. Dopamine D1 receptor signaling triggered by social interaction in the nucleus accumbens shell was blunted in VPA-exposed rats, and it was rescued by FBR treatment only in males. VPA-exposed rats of both sexes exhibited an increased ratio of striatal excitatory over inhibitory synaptic markers that was normalized by FBR treatment. LIMITATIONS This study did not directly address the extent of motivational deficit in VPA-exposed rats and whether FBR administration restored the likely decreased motivation to operate for social reward. Future studies using operant behavior protocols will address this relevant issue. CONCLUSIONS The results support the involvement of impaired motivational mechanisms in ASD-like social deficits and suggest the rationale for a possible pharmacological treatment. Moreover, the study highlights sex-related differences in the expression of ASD-like symptoms and their differential responses to FBR treatment.
Collapse
Affiliation(s)
- Simona Scheggi
- Department Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 2, Siena, Italy.
| | - Francesca Guzzi
- Department Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giulia Braccagni
- Department Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 2, Siena, Italy
| | - Maria Graziella De Montis
- Department Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 2, Siena, Italy
| | - Marco Parenti
- Department Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Carla Gambarana
- Department Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 2, Siena, Italy
| |
Collapse
|
21
|
Conley TE, Beaudin SA, Lasley SM, Fornal CA, Hartman J, Uribe W, Khan T, Strupp BJ, Smith DR. Early postnatal manganese exposure causes arousal dysregulation and lasting hypofunctioning of the prefrontal cortex catecholaminergic systems. J Neurochem 2020; 153:631-649. [PMID: 31811785 PMCID: PMC7261255 DOI: 10.1111/jnc.14934] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022]
Abstract
Studies have reported associations between environmental manganese (Mn) exposure and impaired cognition, attention, impulse control, and fine motor function in children. Our recent rodent studies established that elevated Mn exposure causes these impairments. Here, rats were exposed orally to 0, 25, or 50 mg Mn kg-1 day-1 during early postnatal life (PND 1-21) or lifelong to determine whether early life Mn exposure causes heightened behavioral reactivity in the open field, lasting changes in the catecholaminergic systems in the medial prefrontal cortex (mPFC), altered dendritic spine density, and whether lifelong exposure exacerbates these effects. We also assessed astrocyte reactivity (glial fibrillary acidic protein, GFAP), and astrocyte complement C3 and S100A10 protein levels as markers of A1 proinflammatory or A2 anti-inflammatory reactive astrocytes. Postnatal Mn exposure caused heightened behavioral reactivity during the first 5-10 min intervals of daily open field test sessions, consistent with impairments in arousal regulation. Mn exposure reduced the evoked release of norepinephrine (NE) and caused decreased protein levels of tyrosine hydroxylase (TH), dopamine (DA) and NE transporters, and DA D1 receptors, along with increased DA D2 receptors. Mn also caused a lasting increase in reactive astrocytes (GFAP) exhibiting increased A1 and A2 phenotypes, with a greater induction of the A1 proinflammatory phenotype. These results demonstrate that early life Mn exposure causes broad lasting hypofunctioning of the mPFC catecholaminergic systems, consistent with the impaired arousal regulation, attention, impulse control, and fine motor function reported in these animals, suggesting that mPFC catecholaminergic dysfunction may underlie similar impairments reported in Mn-exposed children.
Collapse
Affiliation(s)
- Travis E. Conley
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Stephane A. Beaudin
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Stephen M. Lasley
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, 61605, USA
| | - Casimir A. Fornal
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, 61605, USA
| | - Jasenia Hartman
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Walter Uribe
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Tooba Khan
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Barbara J. Strupp
- Division of Nutritional Sciences and Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| |
Collapse
|
22
|
Babenko VN, Galyamina AG, Rogozin IB, Smagin DA, Kudryavtseva NN. Dopamine response gene pathways in dorsal striatum MSNs from a gene expression viewpoint: cAMP-mediated gene networks. BMC Neurosci 2020; 21:12. [PMID: 32216748 PMCID: PMC7099774 DOI: 10.1186/s12868-020-00560-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/18/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Medium spiny neurons (MSNs) comprise the main body (95% in mouse) of the dorsal striatum neurons and represent dopaminoceptive GABAergic neurons. The cAMP (cyclic Adenosine MonoPhosphate)-mediated cascade of excitation and inhibition responses observed in MSN intracellular signal transduction is crucial for neuroscience research due to its involvement in the motor and behavioral functions. In particular, all types of addictions are related to MSNs. Shedding the light on the mechanics of the above-mentioned cascade is of primary importance for this research domain. RESULTS A mouse model of chronic social conflicts in daily agonistic interactions was used to analyze dorsal striatum neurons genes implicated in cAMP-mediated phosphorylation activation pathways specific for MSNs. Based on expression correlation analysis, we succeeded in dissecting Drd1- and Drd2-dopaminoceptive neurons (D1 and D2, correspondingly) gene pathways. We also found that D1 neurons genes clustering are split into two oppositely correlated states, passive and active ones, the latter apparently corresponding to D1 firing stage upon protein kinase A (PKA) activation. We observed that under defeat stress in chronic social conflicts the loser mice manifest overall depression of dopamine-mediated MSNs activity resulting in previously reported reduced motor activity, while the aggressive mice with positive fighting experience (aggressive mice) feature an increase in both D1-active phase and D2 MSNs genes expression leading to hyperactive behavior pattern corresponded by us before. Based on the alternative transcript isoforms expression analysis, it was assumed that many genes (Drd1, Adora1, Pde10, Ppp1r1b, Gnal), specifically those in D1 neurons, apparently remain transcriptionally repressed via the reversible mechanism of promoter CpG island silencing, resulting in alternative promoter usage following profound reduction in their expression rate. CONCLUSION Based on the animal stress model dorsal striatum pooled tissue RNA-Seq data restricted to cAMP related genes subset we elucidated MSNs steady states exhaustive projection for the first time. We correspond the existence of D1 active state not explicitly outlined before, and connected with dynamic dopamine neurotransmission cycles. Consequently, we were also able to indicate an oscillated postsynaptic dopamine vs glutamate action pattern in the course of the neurotransmission cycles.
Collapse
Affiliation(s)
- Vladimir N Babenko
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| | | | - Igor B Rogozin
- National Institutes of Health, Rockville Pike, Bethesda, MD, USA
| | - Dmitry A Smagin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | |
Collapse
|
23
|
Littlejohn BP, Price DM, Neuendorff DA, Carroll JA, Vann RC, Riggs PK, Riley DG, Long CR, Randel RD, Welsh TH. Influence of prenatal transportation stress-induced differential DNA methylation on the physiological control of behavior and stress response in suckling Brahman bull calves. J Anim Sci 2020; 98:skz368. [PMID: 31807776 PMCID: PMC6986441 DOI: 10.1093/jas/skz368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
The objective of this experiment was to examine potential differential methylation of DNA as a mechanism for altered behavioral and stress responses in prenatally stressed (PNS) compared with nonprenatally stressed (Control) young bull calves. Mature Brahman cows (n = 48) were transported for 2-h periods at 60 ± 5, 80 ± 5, 100 ± 5, 120 ± 5, and 140 ± 5 d of gestation (Transported group) or maintained as nontransported Controls (n = 48). From the offspring born to Transported and Control cows, a subset of 28-d-old intact bulls (n = 7 PNS; n = 7 Control) were evaluated for methylation of DNA of behavior and stress response-associated genes. Methylation of DNA from white blood cells was assessed via reduced representation bisulfite sequencing methods. Because increased methylation of DNA within gene promoter regions has been associated with decreased transcriptional activity of the corresponding gene, differentially methylated (P ≤ 0.05) CG sites (cytosine followed by a guanine nucleotide) located within promoter regions (n = 1,205) were used to predict (using Ingenuity Pathway Analysis software) alterations to canonical pathways in PNS compared with Control bull calves. Among differentially methylated genes (P ≤ 0.05) related to behavior and the stress response were OPRK1, OPRM1, PENK, POMC, NR3C2, TH, DRD1, DRD5, COMT, HTR6, HTR5A, GABRA4, GABRQ, and GAD2. Among altered (P < 0.05) signaling pathways related to behavior and the stress response were Opioid Signaling, Corticotropin-Releasing Hormone Signaling, Dopamine Receptor Signaling, Dopamine-DARPP32 Feedback in cAMP Signaling, Serotonin Receptor Signaling, and GABA Receptor Signaling. Alterations to behavior and stress response-related genes and canonical pathways supported previously observed elevations in temperament score and serum cortisol through weaning in the larger population of PNS calves from which bulls in this study were derived. Differential methylation of DNA and predicted alterations to behavior and stress response-related pathways in PNS compared with Control bull calves suggest epigenetic programming of behavior and the stress response in utero.
Collapse
Affiliation(s)
- Brittni P Littlejohn
- Texas A&M AgriLife Research & Extension Center, Overton, TX
- Department of Animal Science, Texas A&M University, and Texas A&M AgriLife Research, College Station, TX
| | - Deborah M Price
- Texas A&M AgriLife Research & Extension Center, Overton, TX
- Department of Animal Science, Texas A&M University, and Texas A&M AgriLife Research, College Station, TX
| | | | | | - Rhonda C Vann
- Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Raymond, MS
| | - Penny K Riggs
- Department of Animal Science, Texas A&M University, and Texas A&M AgriLife Research, College Station, TX
| | - David G Riley
- Department of Animal Science, Texas A&M University, and Texas A&M AgriLife Research, College Station, TX
| | - Charles R Long
- Texas A&M AgriLife Research & Extension Center, Overton, TX
- Department of Animal Science, Texas A&M University, and Texas A&M AgriLife Research, College Station, TX
| | | | - Thomas H Welsh
- Department of Animal Science, Texas A&M University, and Texas A&M AgriLife Research, College Station, TX
| |
Collapse
|
24
|
Schneider ML, Moore CF, Ahlers EO, Barnhart TE, Christian BT, DeJesus OT, Engle JW, Holden JE, Larson JA, Moirano JM, Murali D, Nickles RJ, Resch LM, Converse AK. PET Measures of D1, D2, and DAT Binding Are Associated With Heightened Tactile Responsivity in Rhesus Macaques: Implications for Sensory Processing Disorder. Front Integr Neurosci 2019; 13:29. [PMID: 31379528 PMCID: PMC6652150 DOI: 10.3389/fnint.2019.00029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/02/2019] [Indexed: 01/11/2023] Open
Abstract
Sensory processing disorder (SPD), a developmental regulatory condition characterized by marked under- or over-responsivity to non-noxious sensory stimulation, is a common but poorly understood disorder that can profoundly affect mood, cognition, social behavior and adaptive life skills. Little is known about the etiology and neural underpinnings. Clinical research indicates that children with SPD show greater prevalence of difficulties in complex cognitive behavior including working memory, behavioral flexibility, and regulation of sensory and affective functions, which are related to prefrontal cortex (PFC), striatal, and midbrain regions. Neuroimaging may provide insight into mechanisms underlying SPD, and animal experiments provide important evidence that is not available in human studies. Rhesus monkeys (N = 73) were followed over a 20-year period from birth into old age. We focused on a single sensory modality, the tactile system, measured at 5-7 years, because of its critical importance for nourishment, attachment, and social reward in development. Positron emission tomography imaging was conducted at ages 12-18 years to quantify the availability of the D1 and D2 subtypes of the DA receptor (D1R and D2R), and the DA transporter (DAT). Heightened tactile responsivity was related to (a) elevated D1R in PFC overall, including lateral, ventrolateral, medial, anterior cingulate (aCg), frontopolar, and orbitofrontal (OFC) subregions, as well as nucleus accumbens (Acb), (b) reduced D2R in aCg, OFC, and substantia nigra/ventral tegmental area, and (c) elevated DAT in putamen. These findings suggest a mechanism by which DA pathways may be altered in SPD. These pathways are associated with reward processing and pain regulation, providing top-down regulation of sensory and affective processes. The balance between top-down cognitive control in the PFC-Acb pathway and bottom-up motivational function of the VTA-Acb-PFC pathway is critical for successful adaptive function. An imbalance in these two systems might explain DA-related symptoms in children with SPD, including reduced top-down regulatory function and exaggerated responsivity to stimuli. These results provide more direct evidence that SPD may involve altered DA receptor and transporter function in PFC, striatal, and midbrain regions. More work is needed to extend these results to humans.
Collapse
Affiliation(s)
- Mary L Schneider
- Occupational Therapy Program, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States.,Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI, United States
| | - Colleen F Moore
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Psychology, Montana State University, Bozeman, MT, United States
| | - Elizabeth O Ahlers
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Bradley T Christian
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Onofre T DeJesus
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - James E Holden
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Julie A Larson
- Occupational Therapy Program, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States.,Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jeffrey M Moirano
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Dhanabalan Murali
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Robert J Nickles
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Leslie M Resch
- Occupational Therapy Program, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States.,Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI, United States
| | | |
Collapse
|
25
|
Bassareo V, Gambarana C. Editorial: Food and Its Effect on the Brain: From Physiological to Compulsive Consumption. Front Psychiatry 2019; 10:209. [PMID: 31019474 PMCID: PMC6459024 DOI: 10.3389/fpsyt.2019.00209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/22/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Department of Biomedical Sciences, National Institute of Neuroscience, Cagliari section, Cagliari, Italy
| | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
26
|
Scheggi S, Pelliccia T, Cuomo A, De Montis MG, Gambarana C. Antidepressant and pro-motivational effects of repeated lamotrigine treatment in a rat model of depressive symptoms. Heliyon 2018; 4:e00849. [PMID: 30338306 PMCID: PMC6190531 DOI: 10.1016/j.heliyon.2018.e00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/07/2018] [Accepted: 10/08/2018] [Indexed: 11/01/2022] Open
Abstract
Background Methods Results Limitations Conclusions
Collapse
|
27
|
Scheggi S, De Montis MG, Gambarana C. Making Sense of Rodent Models of Anhedonia. Int J Neuropsychopharmacol 2018; 21:1049-1065. [PMID: 30239762 PMCID: PMC6209858 DOI: 10.1093/ijnp/pyy083] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 09/18/2018] [Indexed: 01/04/2023] Open
Abstract
A markedly reduced interest or pleasure in activities previously considered pleasurable is a main symptom in mood disorder and psychosis and is often present in other psychiatric disorders and neurodegenerative diseases. This condition can be labeled as "anhedonia," although in its most rigorous connotation the term refers to the lost capacity to feel pleasure that is one aspect of the complex phenomenon of processing and responding to reward. The responses to rewarding stimuli are relatively easy to study in rodents, and the experimental conditions that consistently and persistently impair these responses are used to model anhedonia. To this end, long-term exposure to environmental aversive conditions is primarily used, and the resulting deficits in reward responses are often accompanied by other deficits that are mainly reminiscent of clinical depressive symptoms. The different components of impaired reward responses induced by environmental aversive events can be assessed by different tests or protocols that require different degrees of time allocation, technical resources, and equipment. Rodent models of anhedonia are valuable tools in the study of the neurobiological mechanisms underpinning impaired behavioral responses and in the screening and characterization of drugs that may reverse these behavioral deficits. In particular, the antianhedonic or promotivational effects are relevant features in the spectrum of activities of drugs used in mood disorders or psychosis. Thus, more than the model, it is the choice of tests that is crucial since it influences which facets of anhedonia will be detected and should be tuned to the purpose of the study.
Collapse
Affiliation(s)
- Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena
| | | | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena,Correspondence: Carla Gambarana, Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 2 – 53100 Siena, Italy ()
| |
Collapse
|