1
|
Puljko B, Grbavac J, Potočki V, Ilic K, Viljetić B, Kalanj-Bognar S, Heffer M, Debeljak Ž, Blažetić S, Mlinac-Jerkovic K. The good, the bad, and the unknown nature of decreased GD3 synthase expression. Front Mol Neurosci 2024; 17:1465013. [PMID: 39649107 PMCID: PMC11621222 DOI: 10.3389/fnmol.2024.1465013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/04/2024] [Indexed: 12/10/2024] Open
Abstract
This paper explores the physiological consequences of decreased expression of GD3 synthase (GD3S), a biosynthetic enzyme that catalyzes the synthesis of b-series gangliosides. GD3S is a key factor in tumorigenesis, with overexpression enhancing tumor growth, proliferation, and metastasis in various cancers. Hence, inhibiting GD3S activity has potential therapeutic effects due to its role in malignancy-associated pathways across different cancer types. GD3S has also been investigated as a promising therapeutic target in treatment of various neurodegenerative disorders. Drugs targeting GD3 and GD3S have been extensively explored and underwent clinical trials, however decreased GD3S expression in mouse models, human subjects, and in vitro studies has demonstrated serious adverse effects. We highlight these negative consequences and show original mass spectrometry imaging (MSI) data indicating that inactivated GD3S can generally negatively affect energy metabolism, regulatory pathways, and mitigation of oxidative stress. The disturbance in several physiological systems induced by GD3S inhibition underscores the vital role of this enzyme in maintaining cellular homeostasis and should be taken into account when GD3S is considered as a therapeutic target.
Collapse
Affiliation(s)
- Borna Puljko
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Josip Grbavac
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Vinka Potočki
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Katarina Ilic
- Department of Neuroimaging, BRAIN Centre, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Barbara Viljetić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Željko Debeljak
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Clinical Institute of Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kristina Mlinac-Jerkovic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Bonzano S, Dallorto E, Bovetti S, Studer M, De Marchis S. Mitochondrial regulation of adult hippocampal neurogenesis: Insights into neurological function and neurodevelopmental disorders. Neurobiol Dis 2024; 199:106604. [PMID: 39002810 DOI: 10.1016/j.nbd.2024.106604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Mitochondria are essential regulators of cellular energy metabolism and play a crucial role in the maintenance and function of neuronal cells. Studies in the last decade have highlighted the importance of mitochondrial dynamics and bioenergetics in adult neurogenesis, a process that significantly influences cognitive function and brain plasticity. In this review, we examine the mechanisms by which mitochondria regulate adult neurogenesis, focusing on the impact of mitochondrial function on the behavior of neural stem/progenitor cells and the maturation and plasticity of newborn neurons in the adult mouse hippocampus. In addition, we explore the link between mitochondrial dysfunction, adult hippocampal neurogenesis and genes associated with cognitive deficits in neurodevelopmental disorders. In particular, we provide insights into how alterations in the transcriptional regulator NR2F1 affect mitochondrial dynamics and may contribute to the pathophysiology of the emerging neurodevelopmental disorder Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS). Understanding how genes involved in embryonic and adult neurogenesis affect mitochondrial function in neurological diseases might open new directions for therapeutic interventions aimed at boosting mitochondrial function during postnatal life.
Collapse
Affiliation(s)
- Sara Bonzano
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Eleonora Dallorto
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy; Institute de Biologie Valrose (iBV), Université Cote d'Azur (UCA), CNRS 7277, Inserm 1091, Avenue Valrose 28, Nice 06108, France
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy
| | - Michèle Studer
- Institute de Biologie Valrose (iBV), Université Cote d'Azur (UCA), CNRS 7277, Inserm 1091, Avenue Valrose 28, Nice 06108, France
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano 10043, Italy.
| |
Collapse
|
3
|
Itokazu Y, Ariga T, Fuchigami T, Li D. Gangliosides in neural stem cell fate determination and nerve cell specification--preparation and administration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598109. [PMID: 38915682 PMCID: PMC11195043 DOI: 10.1101/2024.06.09.598109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Gangliosides are sialylated glycosphingolipids with essential but enigmatic functions in healthy and disease brains. GD3 is the predominant species in neural stem cells (NSCs) and GD3-synthase (sialyltransferase II; St8Sia1) knockout (GD3S-KO) revealed reduction of postnatal NSC pools with severe behavioral deficits including cognitive impairment, depression-like phenotypes, and olfactory dysfunction. Exogenous administration of GD3 significantly restored the NSC pools and enhanced the stemness of NSCs with multipotency and self-renewal, followed by restored neuronal functions. Our group discovered that GD3 is involved in the maintenance of NSC fate determination by interacting with epidermal growth factor receptors (EGFRs), by modulating expression of cyclin-dependent kinase (CDK) inhibitors p27 and p21, and by regulating mitochondrial dynamics via associating a mitochondrial fission protein, the dynamin-related protein-1 (Drp1). Furthermore, we discovered that nuclear GM1 promotes neuronal differentiation by an epigenetic regulatory mechanism. GM1 binds with acetylated histones on the promoter of N-acetylgalactosaminyltransferase (GalNAcT; GM2 synthase (GM2S); B4galnt1) as well as on the NeuroD1 in differentiated neurons. In addition, epigenetic activation of the GM2S gene was detected as accompanied by an apparent induction of neuronal differentiation in NSCs responding to an exogenous supplement of GM1. Interestingly, GM1 induced epigenetic activation of the tyrosine hydroxylase (TH) gene, with recruitment of Nurr1 and PITX3, dopaminergic neuron-associated transcription factors, to the TH promoter region. In this way, GM1 epigenetically regulates dopaminergic neuron specific gene expression, and it would modify Parkinson's disease. Multifunctional gangliosides significantly modulate lipid microdomains to regulate functions of important molecules on multiple sites: the plasma membrane, mitochondrial membrane, and nuclear membrane. Versatile gangliosides regulate functional neurons as well as sustain NSC functions via modulating protein and gene activities on ganglioside microdomains. Maintaining proper ganglioside microdomains benefits healthy neuronal development and millions of senior citizens with neurodegenerative diseases. Here, we introduce how to isolate GD3 and GM1 and how to administer them into the mouse brain to investigate their functions on NSC fate determination and nerve cell specification.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta 30912, Georgia, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta 30912, Georgia, USA
- Y.I. and T.A. contributed equally to this work
| | - Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta 30912, Georgia, USA
- Y.I. and T.A. contributed equally to this work
| | - Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta 30912, Georgia, USA
- Departmet of Molecular Diagnosis, Graduate School of Medicine Chiba University, Chiba, 260-8670, Japan
| | - Dongpei Li
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta 30912, Georgia, USA
| |
Collapse
|
4
|
Xu L, Saeed S, Ma X, Cen X, Sun Y, Tian Y, Zhang X, Zhang D, Tang A, Zhou H, Lai J, Xia H, Hu S. Hippocampal mitophagy contributes to spatial memory via maintaining neurogenesis during the development of mice. CNS Neurosci Ther 2024; 30:e14800. [PMID: 38887162 PMCID: PMC11183181 DOI: 10.1111/cns.14800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Impaired mitochondrial dynamics have been identified as a significant contributing factor to reduced neurogenesis under pathological conditions. However, the relationship among mitochondrial dynamics, neurogenesis, and spatial memory during normal development remains unclear. This study aims to elucidate the role of mitophagy in spatial memory mediated by neurogenesis during development. METHODS Adolescent and adult male mice were used to assess spatial memory performance. Immunofluorescence staining was employed to evaluate levels of neurogenesis, and mitochondrial dynamics were assessed through western blotting and transmission electron microscopy. Pharmacological interventions further validated the causal relationship among mitophagy, neurogenesis, and behavioral performance during development. RESULTS The study revealed differences in spatial memory between adolescent and adult mice. Diminished neurogenesis, accompanied by reduced mitophagy, was observed in the hippocampus of adult mice compared to adolescent subjects. Pharmacological induction of mitophagy in adult mice with UMI-77 resulted in enhanced neurogenesis and prolonged spatial memory retention. Conversely, inhibition of mitophagy with Mdivi-1 in adolescent mice led to reduced hippocampal neurogenesis and impaired spatial memory. CONCLUSION The observed decline in spatial memory in adult mice is associated with decreased mitophagy, which affects neurogenesis in the dentate gyrus. This underscores the therapeutic potential of enhancing mitophagy to counteract age- or disease-related cognitive decline.
Collapse
Affiliation(s)
- Le Xu
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Nanhu Brain‐computer Interface InstituteHangzhouChina
- Research Center of Clinical Pharmacy of The First Affiliated Hospital & Liangzhu LaboratoryZhejiang University School of MedicineHangzhouChina
| | - Saboor Saeed
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Nanhu Brain‐computer Interface InstituteHangzhouChina
| | - Xinxu Ma
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xufeng Cen
- Research Center of Clinical Pharmacy of The First Affiliated Hospital & Liangzhu LaboratoryZhejiang University School of MedicineHangzhouChina
| | - Yifei Sun
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Research Center of Clinical Pharmacy of The First Affiliated Hospital & Liangzhu LaboratoryZhejiang University School of MedicineHangzhouChina
| | - Yanan Tian
- Research Center of Clinical Pharmacy of The First Affiliated Hospital & Liangzhu LaboratoryZhejiang University School of MedicineHangzhouChina
- Department of BiochemistryZhejiang University School of MedicineHangzhouChina
| | - Xuhong Zhang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Nanhu Brain‐computer Interface InstituteHangzhouChina
| | - Danhua Zhang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Anying Tang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hetong Zhou
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The Zhejiang Key Laboratory of Precision psychiatryHangzhouChina
- Brain Research Institute of Zhejiang UniversityHangzhouChina
| | - Jianbo Lai
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The Zhejiang Key Laboratory of Precision psychiatryHangzhouChina
- Brain Research Institute of Zhejiang UniversityHangzhouChina
- Zhejiang Engineering Center for Mathematical Mental HealthHangzhouChina
| | - Hongguang Xia
- Research Center of Clinical Pharmacy of The First Affiliated Hospital & Liangzhu LaboratoryZhejiang University School of MedicineHangzhouChina
- Department of BiochemistryZhejiang University School of MedicineHangzhouChina
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Nanhu Brain‐computer Interface InstituteHangzhouChina
- The Zhejiang Key Laboratory of Precision psychiatryHangzhouChina
- Brain Research Institute of Zhejiang UniversityHangzhouChina
- Zhejiang Engineering Center for Mathematical Mental HealthHangzhouChina
- MOE Frontier Science Center for Brain Science and Brain‐Machine IntegrationZhejiang UniversityHangzhouChina
- Department of Psychology and Behavioral SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
5
|
Itokazu Y, Terry AV. Potential roles of gangliosides in chemical-induced neurodegenerative diseases and mental health disorders. Front Neurosci 2024; 18:1391413. [PMID: 38711942 PMCID: PMC11070511 DOI: 10.3389/fnins.2024.1391413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024] Open
Affiliation(s)
- Yutaka Itokazu
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Alvin V. Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
6
|
Itokazu Y. Multifunctional glycolipids as multi-targeting therapeutics for neural regeneration. Neural Regen Res 2024; 19:707-708. [PMID: 37843195 PMCID: PMC10664132 DOI: 10.4103/1673-5374.382244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 10/17/2023] Open
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
7
|
Fuchigami T, Itokazu Y, Yu RK. Ganglioside GD3 regulates neural stem cell quiescence and controls postnatal neurogenesis. Glia 2024; 72:167-183. [PMID: 37667994 PMCID: PMC10840680 DOI: 10.1002/glia.24468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
The postnatal neural stem cell (NSC) pool hosts quiescent and activated radial glia-like NSCs contributing to neurogenesis throughout adulthood. However, the underlying regulatory mechanism during the transition from quiescent NSCs to activated NSCs in the postnatal NSC niche is not fully understood. Lipid metabolism and lipid composition play important roles in regulating NSC fate determination. Biological lipid membranes define the individual cellular shape and help maintain cellular organization and are highly heterogeneous in structure and there exist diverse microdomains (also known as lipid rafts), which are enriched with sugar molecules, such as glycosphingolipids. An often overlooked but key aspect is that the functional activities of proteins and genes are highly dependent on their molecular environments. We previously reported that ganglioside GD3 is the predominant species in NSCs and that the reduced postnatal NSC pools are observed in global GD3-synthase knockout (GD3S-KO) mouse brains. The specific roles of GD3 in determining the stage and cell-lineage determination of NSCs remain unclear, since global GD3S-KO mice cannot distinguish if GD3 regulates postnatal neurogenesis or developmental impacts. Here, we show that inducible GD3 deletion in postnatal radial glia-like NSCs promotes NSC activation, resulting in the loss of the long-term maintenance of the adult NSC pools. The reduced neurogenesis in the subventricular zone (SVZ) and the dentate gyrus (DG) of GD3S-conditional-knockout mice led to the impaired olfactory and memory functions. Thus, our results provide convincing evidence that postnatal GD3 maintains the quiescent state of radial glia-like NSCs in the adult NSC niche.
Collapse
Affiliation(s)
- Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K. Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
8
|
Rodrigues EG, Dobroff AS, Arruda DC, Tada DB, Paschoalin T, Polonelli L. A limitless Brazilian scientist: Professor Travassos and his contribution to cancer biology. Braz J Microbiol 2023; 54:2551-2560. [PMID: 37589929 PMCID: PMC10689629 DOI: 10.1007/s42770-023-01085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023] Open
Abstract
Luiz Rodolpho Travassos, a Brazilian scientist recognized in several areas of research, began his studies in the field of oncology in the late 1970s when he took a sabbatical at the Memorial Sloan Kettering Cancer Center, NY, USA. At that time, the discovery and characterization of human melanoma glycoprotein antigens yielded important publications. This experience allowed 16 years later, and Dr. Travassos founded UNONEX, significantly contributing with discoveries in the area of oncology and training of researchers. This review will address all the contributions of team of researchers who, together with Dr. Travassos, collaborated with investigations into molecules and processes that lead to the development of melanoma.
Collapse
Affiliation(s)
- Elaine G Rodrigues
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - Andrey S Dobroff
- University of New Mexico Comprehensive Cancer Center (UNMCCC), Albuquerque, USA
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico (UNM) School of Medicine, Albuquerque, USA
| | - Denise C Arruda
- Integrated Group of Biotechnology, University of Mogi das Cruzes, UMC, Mogi das Cruzes, SP, Brazil
| | - Dayane B Tada
- Laboratory of Nanomaterials and Nanotoxicology, Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Thaysa Paschoalin
- Department of Biophysics, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil.
| | - Luciano Polonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
9
|
Yao D, Ranadheera CS, Shen C, Wei W, Cheong LZ. Milk fat globule membrane: composition, production and its potential as encapsulant for bioactives and probiotics. Crit Rev Food Sci Nutr 2023; 64:12336-12351. [PMID: 37632418 DOI: 10.1080/10408398.2023.2249992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
Milk fat globule membrane (MFGM) is a complex trilayer structure present in mammalian milk and is mainly composed of phospholipids and proteins (>90%). Many studies revealed MFGM has positive effects on the immune system, brain development, and cognitive function of infants. Probiotics are live microorganisms that have been found to improve mental health and insulin sensitivity, regulate immunity, and prevent allergies. Probiotics are unstable and prone to degradation by environmental, processing, and storage conditions. In this review, the processes used for encapsulation of probiotics particularly the potential of MFGM and its constituents as encapsulating materials for probiotics are described. This study analyzes the importance of MFGM in encapsulating bioactive substances and emphasizes the interaction with probiotics and the gut as well as its resistance to adverse environmental factors in the digestive system when used as a probiotic embedding material. MFGM can enhance the gastric acid resistance and bile resistance of probiotics, mainly manifested in the survival rate of probiotics. Due to the role of digestion, MFGM-coated probiotics can be released in the intestine, and due to the biocompatibility of the membrane, it can promote the binding of probiotics to intestinal epithelial cells, and promote the colonization of some probiotics in the intestine.
Collapse
Affiliation(s)
- Dan Yao
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo, China
| | - Chaminda Senaka Ranadheera
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Cai Shen
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
- China Beacons Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Wei Wei
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling-Zhi Cheong
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Fuchigami T, Itokazu Y, Yu RK. Ganglioside GD3 regulates neural stem cell quiescence and controls postnatal neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532547. [PMID: 36993675 PMCID: PMC10055067 DOI: 10.1101/2023.03.14.532547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The postnatal neural stem cell (NSC) pool hosts quiescent and activated radial glia-like NSCs contributing to neurogenesis throughout adulthood. However, the underlying regulatory mechanism during the transition from quiescent NSCs to activated NSCs in the postnatal NSC niche is not fully understood. Lipid metabolism and lipid composition play important roles in regulating NSC fate determination. Biological lipid membranes define the individual cellular shape and help maintain cellular organization and are highly heterogenous in structure and there exist diverse microdomains (also known as lipid rafts), which are enriched with sugar molecules, such as glycosphingolipids. An often overlooked but key aspect is that the functional activities of proteins and genes are highly dependent upon their molecular environments. We previously reported that ganglioside GD3 is the predominant species in NSCs and that the reduced postnatal NSC pools are observed in global GD3-synthase knockout (GD3S-KO) mouse brains. The specific roles of GD3 in determining the stage and cell-lineage determination of NSCs remain unclear, since global GD3S-KO mice cannot distinguish if GD3 regulates postnatal neurogenesis or developmental impacts. Here we show that inducible GD3 deletion in postnatal radial glia-like NSCs promotes the NSC activation, resulting in the loss of the long-term maintenance of the adult NSC pools. The reduced neurogenesis in the subventricular zone (SVZ) and the dentate gyrus (DG) of GD3S-conditional-knockout mice led to impaired olfactory and memory functions. Thus, our results provide convincing evidence that postnatal GD3 maintains the quiescent state of radial glia-like NSCs in the adult NSC niche.
Collapse
Affiliation(s)
- Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K. Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
11
|
Fuchigami T, Itokazu Y, Morgan JC, Yu RK. Restoration of Adult Neurogenesis by Intranasal Administration of Gangliosides GD3 and GM1 in The Olfactory Bulb of A53T Alpha-Synuclein-Expressing Parkinson's-Disease Model Mice. Mol Neurobiol 2023; 60:3329-3344. [PMID: 36849668 PMCID: PMC10140382 DOI: 10.1007/s12035-023-03282-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting the body and mind of millions of people in the world. As PD progresses, bradykinesia, rigidity, and tremor worsen. These motor symptoms are associated with the neurodegeneration of dopaminergic neurons in the substantia nigra. PD is also associated with non-motor symptoms, including loss of smell (hyposmia), sleep disturbances, depression, anxiety, and cognitive impairment. This broad spectrum of non-motor symptoms is in part due to olfactory and hippocampal dysfunctions. These non-motor functions are suggested to be linked with adult neurogenesis. We have reported that ganglioside GD3 is required to maintain the neural stem cell (NSC) pool in the subventricular zone (SVZ) of the lateral ventricles and the subgranular layer of the dentate gyrus (DG) in the hippocampus. In this study, we used nasal infusion of GD3 to restore impaired neurogenesis in A53T alpha-synuclein-expressing mice (A53T mice). Intriguingly, intranasal GD3 administration rescued the number of bromodeoxyuridine + (BrdU +)/Sox2 + NSCs in the SVZ. Furthermore, the administration of gangliosides GD3 and GM1 increases doublecortin (DCX)-expressing immature neurons in the olfactory bulb, and nasal ganglioside administration recovered the neuronal populations in the periglomerular layer of A53T mice. Given the relevance of decreased ganglioside on olfactory impairment, we discovered that GD3 has an essential role in olfactory functions. Our results demonstrated that intranasal GD3 infusion restored the self-renewal ability of the NSCs, and intranasal GM1 infusion promoted neurogenesis in the adult brain. Using a combination of GD3 and GM1 has the potential to slow down disease progression and rescue dysfunctional neurons in neurodegenerative brains.
Collapse
Affiliation(s)
- Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - John C Morgan
- Movement Disorders Program, Parkinson's Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
12
|
Itokazu Y, Fuchigami T, Yu RK. Functional Impairment of the Nervous System with Glycolipid Deficiencies. ADVANCES IN NEUROBIOLOGY 2023; 29:419-448. [PMID: 36255683 PMCID: PMC9793801 DOI: 10.1007/978-3-031-12390-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Patients with nervous system disorders suffer from impaired cognitive, sensory and motor functions that greatly inconvenience their daily life and usually burdens their family and society. It is difficult to achieve functional recovery for the damaged central nervous system (CNS) because of its limited ability to regenerate. Glycosphingolipids (GSLs) are abundant in the CNS and are known to play essential roles in cell-cell recognition, adhesion, signal transduction, and cellular migration, that are crucial in all phases of neurogenesis. Despite intense investigation of CNS regeneration, the roles of GSLs in neural regeneration remain unclear. Here we focus on the respective potentials of glycolipids to promote regeneration and repair of the CNS. Mice lacking glucosylceramide, lactosylceramide or gangliosides show lethal phenotypes. More importantly, patients with ganglioside deficiencies exhibit severe clinical phenotypes. Further, neurodegenerative diseases and mental health disorders are associated with altered GSL expression. Accumulating studies demonstrate that GSLs not only delimit physical regions but also play central roles in the maintenance of the biological functions of neurons and glia. We anticipate that the ability of GSLs to modulate behavior of a variety of molecules will enable them to ameliorate biochemical and neurobiological defects in patients. The use of GSLs to treat such defects in the human CNS will be a paradigm-shift in approach since GSL-replacement therapy has not yet been achieved in this manner clinically.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
13
|
Zhao X, Zhang S, Sanders AR, Duan J. Brain Lipids and Lipid Droplet Dysregulation in Alzheimer's Disease and Neuropsychiatric Disorders. Complex Psychiatry 2023; 9:154-171. [PMID: 38058955 PMCID: PMC10697751 DOI: 10.1159/000535131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023] Open
Abstract
Background Lipids are essential components of the structure and for the function of brain cells. The intricate balance of lipids, including phospholipids, glycolipids, cholesterol, cholesterol ester, and triglycerides, is crucial for maintaining normal brain function. The roles of lipids and lipid droplets and their relevance to neurodegenerative and neuropsychiatric disorders (NPDs) remain largely unknown. Summary Here, we reviewed the basic role of lipid components as well as a specific lipid organelle, lipid droplets, in brain function, highlighting the potential impact of altered lipid metabolism in the pathogenesis of Alzheimer's disease (AD) and NDPs. Key Messages Brain lipid dysregulation plays a pivotal role in the pathogenesis and progression of neurodegenerative and NPDs including AD and schizophrenia. Understanding the cell type-specific mechanisms of lipid dysregulation in these diseases is crucial for identifying better diagnostic biomarkers and for developing therapeutic strategies aiming at restoring lipid homeostasis.
Collapse
Affiliation(s)
- Xiaojie Zhao
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Alan R. Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Itokazu Y, Yu RK. Ganglioside Microdomains on Cellular and Intracellular Membranes Regulate Neuronal Cell Fate Determination. ADVANCES IN NEUROBIOLOGY 2023; 29:281-304. [PMID: 36255679 PMCID: PMC9772537 DOI: 10.1007/978-3-031-12390-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gangliosides are sialylated glycosphingolipids (GSLs) with essential but enigmatic functions in brain activities and neural stem cell (NSC) maintenance. Our group has pioneered research on the importance of gangliosides for growth factor receptor signaling and epigenetic regulation of NSC activity and differentiation. The primary localization of gangliosides is on cell-surface microdomains and the drastic dose and composition changes during neural differentiation strongly suggest that they are not only important as biomarkers, but also are involved in modulating NSC fate determination. Ganglioside GD3 is the predominant species in NSCs and GD3-synthase knockout (GD3S-KO) revealed reduction of postnatal NSC pools with severe behavioral deficits. Exogenous administration of GD3 significantly restored the NSC pools and enhanced the stemness of NSCs with multipotency and self-renewal. Since morphological changes during neurogenesis require a huge amount of energy, mitochondrial functions are vital for neurogenesis. We discovered that a mitochondrial fission protein, the dynamin-related protein-1 (Drp1), as a novel GD3-binding protein, and GD3 regulates mitochondrial dynamics. Furthermore, we discovered that GM1 ganglioside promotes neuronal differentiation by an epigenetic regulatory mechanism. Nuclear GM1 binds with acetylated histones on the promoters of N-acetylgalactosaminyltransferase (GalNAcT; GM2 synthase) as well as on the NeuroD1 genes in differentiated neurons. In addition, epigenetic activation of the GalNAcT gene was detected as accompanied by an apparent induction of neuronal differentiation in NSCs responding to an exogenous supplement of GM1. GM1 is indeed localized in the nucleus where it can interact with transcriptionally active histones. Interestingly, GM1 could induce epigenetic activation of the tyrosine hydroxylase (TH) gene, with recruitment of nuclear receptor related 1 (Nurr1, also known as NR4A2), a dopaminergic neuron-associated transcription factor, to the TH promoter region. In this way, GM1 epigenetically regulates dopaminergic neuron specific gene expression. GM1 interacts with active chromatin via acetylated histones to recruit transcription factors at the nuclear periphery, resulting in changes in gene expression for neuronal differentiation. The significance is that multifunctional gangliosides modulate lipid microdomains to regulate functions of important molecules on multiple sites: the plasma membrane, mitochondrial membrane, and nuclear membrane. Versatile gangliosides could regulate functional neurons as well as sustain NSC functions via modulating protein and gene activities on ganglioside microdomains.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
15
|
Santilli F, Fabrizi J, Pulcini F, Santacroce C, Sorice M, Delle Monache S, Mattei V. Gangliosides and Their Role in Multilineage Differentiation of Mesenchymal Stem Cells. Biomedicines 2022; 10:biomedicines10123112. [PMID: 36551867 PMCID: PMC9775755 DOI: 10.3390/biomedicines10123112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Gangliosides (GGs) are a glycolipid class present on Mesenchymal Stem Cells (MSCs) surfaces with a critical appearance role in stem cell differentiation, even though their mechanistic role in signaling and differentiation remains largely unknown. This review aims to carry out a critical analysis of the predictive role of gangliosides as specific markers of the cellular state of undifferentiated and differentiated MSCs, towards the osteogenic, chondrogenic, neurogenic, and adipogenic lineage. For this reason, we analyzed the role of GGs during multilineage differentiation processes of several types of MSCs such as Umbilical Cord-derived MSCs (UC-MSCs), Bone Marrow-derived MSCs (BM-MSCs), Dental Pulp derived MSCs (DPSCs), and Adipose derived MSCs (ADSCs). Moreover, we examined the possible role of GGs as specific cell surface markers to identify or isolate specific stem cell isotypes and their potential use as additional markers for quality control of cell-based therapies.
Collapse
Affiliation(s)
- Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
| | - Jessica Fabrizi
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
- Department of Experimental Medicine, Sapienza University, Regina Elena 324, 00161 Rome, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Vetoio, 67100 L’Aquila, Italy
| | - Costantino Santacroce
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Regina Elena 324, 00161 Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Vetoio, 67100 L’Aquila, Italy
- Correspondence: (S.D.M.); (V.M.)
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
- Correspondence: (S.D.M.); (V.M.)
| |
Collapse
|
16
|
Bharathi SS, Zhang BB, Paul E, Zhang Y, Schmidt AV, Fowler B, Wu Y, Tiemeyer M, Inamori KI, Inokuchi JI, Goetzman ES. GM3 synthase deficiency increases brain glucose metabolism in mice. Mol Genet Metab 2022; 137:342-348. [PMID: 36335793 PMCID: PMC11061803 DOI: 10.1016/j.ymgme.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
GM3 synthase (GM3S) deficiency is a rare neurodevelopmental disorder caused by an inability to synthesize gangliosides, for which there is currently no treatment. Gangliosides are brain-enriched, plasma membrane glycosphingolipids with poorly understood biological functions related to cell adhesion, growth, and receptor-mediated signal transduction. Here, we investigated the effects of GM3S deficiency on metabolism and mitochondrial function in a mouse model. By indirect calorimetry, GM3S knockout mice exhibited increased whole-body respiration and an increased reliance upon carbohydrate as an energy source. 18F-FDG PET confirmed higher brain glucose uptake in knockout mice, and GM3S deficient N41 neuronal cells showed higher glucose utilization in vitro. Brain mitochondria from knockout mice respired at a higher rate on Complex I substrates including pyruvate. This appeared to be due to higher expression of pyruvate dehydrogenase (PDH) and lower phosphorylation of PDH, which would favor pyruvate entry into the mitochondrial TCA cycle. Finally, it was observed that blocking glucose metabolism with the glycolysis inhibitor 2-deoxyglucose reduced seizure intensity in GM3S knockout mice following administration of kainate. In conclusion, GM3S deficiency may be associated with a hypermetabolic phenotype that could promote seizure activity.
Collapse
Affiliation(s)
- Sivakama S Bharathi
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Bob B Zhang
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Eli Paul
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Yuxun Zhang
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Alexandra V Schmidt
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Benjamin Fowler
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States of America
| | - Kei-Ichiro Inamori
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Eric S Goetzman
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America..
| |
Collapse
|
17
|
Sphingolipid control of cognitive functions in health and disease. Prog Lipid Res 2022; 86:101162. [DOI: 10.1016/j.plipres.2022.101162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
|
18
|
Cho JH, Ju WS, Seo SY, Kim BH, Kim JS, Kim JG, Park SJ, Choo YK. The Potential Role of Human NME1 in Neuronal Differentiation of Porcine Mesenchymal Stem Cells: Application of NB-hNME1 as a Human NME1 Suppressor. Int J Mol Sci 2021; 22:ijms222212194. [PMID: 34830075 PMCID: PMC8619003 DOI: 10.3390/ijms222212194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate the effects of the human macrophage (MP) secretome in cellular xenograft rejection. The role of human nucleoside diphosphate kinase A (hNME1), from the secretome of MPs involved in the neuronal differentiation of miniature pig adipose tissue-derived mesenchymal stem cells (mp AD-MSCs), was evaluated by proteomic analysis. Herein, we first demonstrate that hNME1 strongly binds to porcine ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 (pST8SIA1), which is a ganglioside GD3 synthase. When hNME1 binds with pST8SIA1, it induces degradation of pST8SIA1 in mp AD-MSCs, thereby inhibiting the expression of ganglioside GD3 followed by decreased neuronal differentiation of mp AD-MSCs. Therefore, we produced nanobodies (NBs) named NB-hNME1 that bind to hNME1 specifically, and the inhibitory effect of NB-hNME1 was evaluated for blocking the binding between hNME1 and pST8SIA1. Consequently, NB-hNME1 effectively blocked the binding of hNME1 to pST8SIA1, thereby recovering the expression of ganglioside GD3 and neuronal differentiation of mp AD-MSCs. Our findings suggest that mp AD-MSCs could be a potential candidate for use as an additive, such as an immunosuppressant, in stem cell transplantation.
Collapse
Affiliation(s)
- Jin Hyoung Cho
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- GreenBio Corp. Central Research, 201-19, Bubaljungand-ro, Bubal-eup, Icheon-si 17321, Korea
| | - Won Seok Ju
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- Institute for Glycoscience, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea
| | - Sang Young Seo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Bo Hyun Kim
- CHA Fertility Center Bundang, 59, Yatap-ro, Bundang-gu, Seongnam-si 13496, Korea;
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology, 181, Ipsin-gil, Jeongeup-si 56216, Korea;
| | - Jong-Geol Kim
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Soon Ju Park
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- Institute for Glycoscience, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea
- Correspondence: ; Tel.: +82-63-850-6087; Fax: +82-63-857-8837
| |
Collapse
|
19
|
Itokazu Y, Fuchigami T, Morgan JC, Yu RK. Intranasal infusion of GD3 and GM1 gangliosides downregulates alpha-synuclein and controls tyrosine hydroxylase gene in a PD model mouse. Mol Ther 2021; 29:3059-3071. [PMID: 34111562 DOI: 10.1016/j.ymthe.2021.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is characterized by Lewy bodies (composed predominantly of alpha-synuclein [aSyn]) and loss of pigmented midbrain dopaminergic neurons comprising the nigrostriatal pathway. Most PD patients show significant deficiency of gangliosides, including GM1, in the brain, and GM1 ganglioside appears to keep dopaminergic neurons functioning properly. Thus, supplementation of GM1 could potentially provide some rescuing effects. In this study, we demonstrate that intranasal infusion of GD3 and GM1 gangliosides reduces intracellular aSyn levels. GM1 also significantly enhances expression of tyrosine hydroxylase (TH) in the substantia nigra pars compacta of the A53T aSyn overexpressing mouse, following restored nuclear expression of nuclear receptor related 1 (Nurr1, also known as NR4A2), an essential transcription factor for differentiation, maturation, and maintenance of midbrain dopaminergic neurons. GM1 induces epigenetic activation of the TH gene, including augmentation of acetylated histones and recruitment of Nurr1 to the TH promoter region. Our data indicate that intranasal administration of gangliosides could reduce neurotoxic proteins and restore functional neurons via modulating chromatin status by nuclear gangliosides.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - John C Morgan
- Movement Disorders Program, Parkinson's Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
20
|
Wang J, Zhang Q, Lu Y, Dong Y, Dhandapani KM, Brann DW, Yu RK. Ganglioside GD3 is up-regulated in microglia and regulates phagocytosis following global cerebral ischemia. J Neurochem 2021; 158:737-752. [PMID: 34133773 DOI: 10.1111/jnc.15455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 01/03/2023]
Abstract
Gangliosides, the major sialic-acid containing glycosphingolipids in the mammalian brain, play important roles in brain development and neural functions. Here, we show that the b-series ganglioside GD3 and its biosynthetic enzyme, GD3-synthase (GD3S), were up-regulated predominantly in the microglia of mouse hippocampus from 2 to 7 days following global cerebral ischemia (GCI). Interestingly, GD3S knockout (GD3S-KO) mice exhibited decreased hippocampal neuronal loss following GCI, as compared to wild-type (WT) mice. While comparable levels of astrogliosis and microglial proliferation were observed between WT and GD3S-KO mice, the phagocytic capacity of the GD3S-KO microglia was significantly compromised after GCI. At 2 and 4 days following GCI, the GD3S-KO microglia demonstrated decreased amoebic morphology, reduced neuronal material engulfment, and lower expression of the phagolysosome marker CD68, as compared to the WT microglia. Finally, by using a microglia-primary neuron co-culture model, we demonstrated that the GD3S-KO microglia isolated from mouse brains at 2 days after GCI are less neurotoxic to co-cultured hippocampal neurons than the WT-GCI microglia. Moreover, the percentage of microglia with engulfed neuronal elements in the co-cultured wells was also significantly decreased in the GD3S-KO mice after GCI. Interestingly, the impaired phagocytic capacity of GD3S-KO microglia could be partially restored by pre-treatment with exogenous ganglioside GD3. Altogether, this study provides functional evidence that ganglioside GD3 regulates phagocytosis by microglia in an ischemic stroke model. Our data also suggest that the GD3-linked microglial phagocytosis may contribute to the mechanism of delayed neuronal death following ischemic brain injury.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
21
|
Abreu CA, Teixeira-Pinheiro LC, Lani-Louzada R, da Silva-Junior AJ, Vasques JF, Gubert F, Nascimento-Dos-Santos G, Mohana-Borges R, Matos EDS, Pimentel-Coelho PM, Santiago MF, Mendez-Otero R. GD3 synthase deletion alters retinal structure and impairs visual function in mice. J Neurochem 2021; 158:694-709. [PMID: 34081777 DOI: 10.1111/jnc.15443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022]
Abstract
Gangliosides are glycosphingolipids abundantly expressed in the vertebrate nervous system, and are classified into a-, b-, or c-series according to the number of sialic acid residues. The enzyme GD3 synthase converts GM3 (an a-series ganglioside) into GD3, a b-series ganglioside highly expressed in the developing and adult retina. The present study evaluated the visual system of GD3 synthase knockout mice (GD3s-/- ), morphologically and functionally. The absence of b- series gangliosides in the retinas of knockout animals was confirmed by mass spectrometry imaging, which also indicated an accumulation of a-series gangliosides, such as GM3. Retinal ganglion cell (RGC) density was significantly reduced in GD3s-/- mice, with a similar reduction in the number of axons in the optic nerve. Knockout animals also showed a 15% reduction in the number of photoreceptor nuclei, but no difference in the bipolar cells. The area occupied by GFAP-positive glial cells was smaller in GD3s-/- retinas, but the number of microglial cells/macrophages did not change. In addition to the morphological alterations, a 30% reduction in light responsiveness was detected through quantification of pS6-expressing RGC, an indicator of neural activity. Furthermore, electroretinography (ERG) indicated a significant reduction in RGC and photoreceptor electrical activity in GD3s-/- mice, as indicated by scotopic ERG and pattern ERG (PERG) amplitudes. Finally, evaluation of the optomotor response demonstrated that GD3s-/- mice have reduced visual acuity and contrast sensitivity. These results suggest that b-series gangliosides play a critical role in regulating the structure and function of the mouse visual system.
Collapse
Affiliation(s)
- Carla Andreia Abreu
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Leandro Coelho Teixeira-Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Rafael Lani-Louzada
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Almir Jordão da Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Juliana F Vasques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Fernanda Gubert
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Ronaldo Mohana-Borges
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo de Souza Matos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Pedro Moreno Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Marcelo Felippe Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
22
|
Song Z, Li F, He C, Yu J, Li P, Li Z, Yang M, Cheng S. In-depth transcriptomic analyses of LncRNA and mRNA expression in the hippocampus of APP/PS1 mice by Danggui-Shaoyao-San. Aging (Albany NY) 2020; 12:23945-23959. [PMID: 33221745 PMCID: PMC7762474 DOI: 10.18632/aging.104068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disease with a high incidence worldwide, and with no medications currently able to prevent the progression of AD. Danggui-Shaoyao-San (DSS) is widely used in traditional Chinese medicine (TCM) and has been proven to be effective for memory and cognitive dysfunction, yet its precise mechanism remains to be delineated. The present study was designed to investigate the genome-wide expression profile of long non-coding RNAs (LncRNAs) and messenger RNAs (mRNAs) in the hippocampus of APP/PS1 mice after DSS treatment by RNA sequencing. A total of 285 differentially expressed LncRNAs and 137 differentially expressed mRNAs were identified (fold-change ≥2.0 and P < 0.05). Partial differentially expressed LncRNAs and mRNAs were selected to verify the RNA sequencing results by quantitative polymerase chain reaction (qPCR). A co-expression network was established to analyze co-expressed LncRNAs and genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to evaluate the biological functions related to the differentially co-expressed LncRNAs, and the results showed that the co-expressed LncRNAs were mainly involved in AD development from distinct origins, such as APP processing, neuron migration, and synaptic transmission. Our research describes the lncRNA and mRNA expression profiles and functional networks involved in the therapeutic effect of DSS in APP/PS1 mice model. The results suggest that the therapeutic effect of DSS on AD involves the expression of LncRNAs. Our findings provide a new perspective for research on the treatment of complex diseases using traditional Chinese medicine prescriptions.
Collapse
Affiliation(s)
- Zhenyan Song
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Fuzhou Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Chunxiang He
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Jingping Yu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Ping Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Ze Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Miao Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Shaowu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| |
Collapse
|