1
|
Liu YJ, Kimura M, Li X, Sulc J, Wang Q, Rodríguez-López S, Scantlebery AML, Strotjohann K, Gallart-Ayala H, Vijayakumar A, Myers RP, Ivanisevic J, Houtkooper RH, Subramanian GM, Takebe T, Auwerx J. ACMSD inhibition corrects fibrosis, inflammation, and DNA damage in MASLD/MASH. J Hepatol 2025; 82:174-188. [PMID: 39181211 PMCID: PMC11741923 DOI: 10.1016/j.jhep.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND & AIMS Recent findings reveal the importance of tryptophan-initiated de novo nicotinamide adenine dinucleotide (NAD+) synthesis in the liver, a process previously considered secondary to biosynthesis from nicotinamide. The enzyme α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), primarily expressed in the liver and kidney, acts as a modulator of de novo NAD+ synthesis. Boosting NAD+ levels has previously demonstrated remarkable metabolic benefits in mouse models. In this study, we aimed to investigate the therapeutic implications of ACMSD inhibition in the treatment of metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH). METHODS In vitro experiments were conducted in primary rodent hepatocytes, Huh7 human liver carcinoma cells and induced pluripotent stem cell-derived human liver organoids (HLOs). C57BL/6J male mice were fed a western-style diet and housed at thermoneutrality to recapitulate key aspects of MASLD/MASH. Pharmacological ACMSD inhibition was given therapeutically, following disease onset. HLO models of steatohepatitis were used to assess the DNA damage responses to ACMSD inhibition in human contexts. RESULTS Inhibiting ACMSD with a novel specific pharmacological inhibitor promotes de novo NAD+ synthesis and reduces DNA damage ex vivo, in vivo, and in HLO models. In mouse models of MASLD/MASH, de novo NAD+ biosynthesis is suppressed, and transcriptomic DNA damage signatures correlate with disease severity; in humans, Mendelian randomization-based genetic analysis suggests a notable impact of genomic stress on liver disease susceptibility. Therapeutic inhibition of ACMSD in mice increases liver NAD+ and reverses MASLD/MASH, mitigating fibrosis, inflammation, and DNA damage, as observed in HLO models of steatohepatitis. CONCLUSIONS Our findings highlight the benefits of ACMSD inhibition in enhancing hepatic NAD+ levels and enabling genomic protection, underscoring its therapeutic potential in MASLD/MASH. IMPACT AND IMPLICATIONS Enhancing NAD+ levels has been shown to induce remarkable health benefits in mouse models of metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH), yet liver-specific NAD+ boosting strategies remain underexplored. Here, we present a novel pharmacological approach to enhance de novo synthesis of NAD+ in the liver by inhibiting α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), an enzyme highly expressed in the liver. Inhibiting ACMSD increases NAD+ levels, enhances mitochondrial respiration, and maintains genomic stability in hepatocytes ex vivo and in vivo. These molecular benefits prevent disease progression in both mouse and human liver organoid models of steatohepatitis. Our preclinical study identifies ACMSD as a promising target for MASLD/MASH management and lays the groundwork for developing ACMSD inhibitors as a clinical treatment.
Collapse
Affiliation(s)
- Yasmine J Liu
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Masaki Kimura
- Division of Gastroenterology, Hepatology and Nutrition & Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jonathan Sulc
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Qi Wang
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sandra Rodríguez-López
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Keno Strotjohann
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | | | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism institute, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences institute, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Takanori Takebe
- Division of Gastroenterology, Hepatology and Nutrition & Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), and Division of Stem Cell and Organoid Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
2
|
Li H, Hu Q, Zhu D, Wu D. The Role of NAD + Metabolism in Cardiovascular Diseases: Mechanisms and Prospects. Am J Cardiovasc Drugs 2024:10.1007/s40256-024-00711-y. [PMID: 39707143 DOI: 10.1007/s40256-024-00711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a promising anti-aging molecule that plays a role in cellular energy metabolism and maintains redox homeostasis. Additionally, NAD+ is involved in regulating deacetylases, DNA repair enzymes, inflammation, and epigenetics, making it indispensable in maintaining the basic functions of cells. Research on NAD+ has become a hotspot, particularly regarding its potential in cardiovascular disease (CVD). Many studies have demonstrated that NAD+ plays a crucial role in the occurrence and development of CVD. This review summarizes the biosynthesis and consumption of NAD+, along with its precursors and their effects on raising NAD+ levels. We also discuss new mechanisms of NAD+ regulation in cardiovascular risk factors and its effects of NAD+ on atherosclerosis, aortic aneurysm, heart failure, hypertension, myocardial ischemia-reperfusion injury, diabetic cardiomyopathy, and dilated cardiomyopathy, elucidating different mechanisms and potential treatments. NAD+-centered therapy holds promising advantages and prospects in the field of CVD.
Collapse
Affiliation(s)
- Huimin Li
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Qingxun Hu
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Deqiu Zhu
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Dan Wu
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
3
|
Wu P, Wang W, Huang C, Sun L, Wu X, Xu L, Xiao P. A rapid and reliable targeted LC-MS/MS method for quantitative analysis of the Tryptophan-NAD metabolic network disturbances in tissues and blood of sleep deprivation mice. Anal Chim Acta 2024; 1328:343125. [PMID: 39266191 DOI: 10.1016/j.aca.2024.343125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND TRY-NAD metabolic network includes TRY (tryptophan), 5-HT (5-hydroxytryptamine), KYN (kynurenine), and NAD (nicotinamide adenine dinucleotide) pathway, which plays a significant role in neurological diseases and ageing. It is important to monitor these metabolites for studying the pathological anatomy of disease and treatment of responses evaluation. Although previous studies have reported quantitative methods for several metabolites in the network, the bottlenecks of simultaneously quantifying the whole metabolic network are their similar structures, diverse physico-chemical properties, and instability. Standardized protocols for the whole metabolic network are still missing, which hinders the in-depth study of TRY-NAD metabolic network in laboratory research and clinical screening. RESULTS We developed a LC-MS/MS method for quantifying 28 metabolites in the TRY-NAD network simultaneously. Optimization was done for the mass spectral parameters, chromatographic conditions and sample pretreatment process. The developed method was fully validated in terms of standard curves, sensitivity, carryover, recovery, matrix effect, accuracy, precision, and stability. The pretreatment of 30 samples only takes 90 min, and the LC-MS/MS running time of one sample is only 13 min. With this method, we bring to light the chaos of global TRY-NAD metabolic network in sleep deprivation mice for the first time, including serum, clotted blood cells, hippocampus, cerebral cortex, and liver. NAD pathway levels in brain and blood decreased, whereas the opposite happened in the liver. The 5-HT pathway decreased and the concentration of KYN increased significantly in the brain. The concentration of many metabolites in KYN pathway (NAD+ de novo synthesis pathway) increased in the liver. SIGNIFICANCE This method is the first time to determine the metabolites of KYN, 5-HT and NAD pathway at the same time, and it is found that TRY-NAD metabolic network will be disordered after sleep deprivation. This work clarifies the importance of the pH of the extraction solution, the time and temperature control in pretreatment in standardized protocols building, and overcoming the problems of inconsistent sample pretreatment, separation, matrix effect interference and potential metabolite degradation. This method exhibits great prospects in providing more information on metabolic disturbances caused by sleep deprivation as well as neurological diseases and ageing.
Collapse
Affiliation(s)
- Peiling Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Wenjie Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Chuan Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Le Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Xiaoli Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Resources Conservation and Development of Southern Medicine of Hainan Province & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
4
|
Xiong X, Hou J, Zheng Y, Jiang T, Zhao X, Cai J, Huang J, He H, Xu J, Qian S, Lu Y, Wang X, Wang W, Ye Q, Zhou S, Lian M, Xiao J, Song W, Xie C. NAD +-boosting agent nicotinamide mononucleotide potently improves mitochondria stress response in Alzheimer's disease via ATF4-dependent mitochondrial UPR. Cell Death Dis 2024; 15:744. [PMID: 39394148 PMCID: PMC11470026 DOI: 10.1038/s41419-024-07062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 10/13/2024]
Abstract
Extensive studies indicate that mitochondria dysfunction is pivotal for Alzheimer's disease (AD) pathogenesis; while cumulative evidence suggests that increased mitochondrial stress response (MSR) may mitigate neurodegeneration in AD, explorations to develop a MSR-targeted therapeutic strategy against AD are scarce. We combined cell biology, molecular biology, and pharmacological approaches to unravel a novel molecular pathway by which NAD+-boosting agent nicotinamide mononucleotide (NMN) regulates MSR in AD models. Here, we report dyshomeostasis plasma UPRmt-mitophagy-mediated MSR profiles in AD patient samples. NMN restores NAD+ metabolic profiles and improves MSR through the ATF4-dependent UPRmt pathway in AD-related cross-species models. At the organismal level, NAD+ repletion with NMN supplementation ameliorates mitochondrial proteotoxicity, decreases hippocampal synaptic disruption, decreases neuronal loss, and brain atrophy in mice model of AD. Remarkably, omics features of the hippocampus with NMN show that NMN leads to transcriptional changes of genes and proteins involved in MSR characteristics, principally within the astrocyte unit rather than microglia and oligodendrocytes. In brief, our work provides evidence that MSR has an active role in the pathogenesis of AD, as reducing mitochondrial homeostasis via atf4 depletion in AD mice aggravates the hallmarks of the disease; conversely, bolstering mitochondrial proteostasis by NMN decreases protein aggregation, restores memory performance, and delays disease progression, ultimately translating to increased healthspan.
Collapse
Affiliation(s)
- Xi Xiong
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialong Hou
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Zheng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Jiang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuemiao Zhao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinlai Cai
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiani Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haijun He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiaxue Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuangjie Qian
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Lu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurology, Yuhuan City People's Hospital, Taizhou, China
| | - XinShi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenwen Wang
- The Center of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qianqian Ye
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuoting Zhou
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengjia Lian
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurology, The First People's Hospital of Wenling, Taizhou, China
| | - Jian Xiao
- Oujiang Laboratory, Wenzhou, Zhejiang, China.
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.
| | - Weihong Song
- Oujiang Laboratory, Wenzhou, Zhejiang, China.
- Key Laboratory Of Alzheimer's Disease Of Zhejiang Province, Institute Of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chenglong Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Oujiang Laboratory, Wenzhou, Zhejiang, China.
- Key Laboratory Of Alzheimer's Disease Of Zhejiang Province, Institute Of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Department of Geriatrics, Geriatric Medical Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
5
|
Kloc R, Urbanska EM. Memantine and the Kynurenine Pathway in the Brain: Selective Targeting of Kynurenic Acid in the Rat Cerebral Cortex. Cells 2024; 13:1424. [PMID: 39272996 PMCID: PMC11394628 DOI: 10.3390/cells13171424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Cytoprotective and neurotoxic kynurenines formed along the kynurenine pathway (KP) were identified as possible therapeutic targets in various neuropsychiatric conditions. Memantine, an adamantane derivative modulating dopamine-, noradrenaline-, serotonin-, and glutamate-mediated neurotransmission is currently considered for therapy in dementia, psychiatric disorders, migraines, or ischemia. Previous studies have revealed that memantine potently stimulates the synthesis of neuroprotective kynurenic acid (KYNA) in vitro via a protein kinase A-dependent mechanism. Here, the effects of acute and prolonged administration of memantine on brain kynurenines and the functional changes in the cerebral KP were assessed in rats using chromatographic and enzymatic methods. Five-day but not single treatment with memantine selectively activated the cortical KP towards neuroprotective KYNA. KYNA increases were accompanied by a moderate decrease in cortical tryptophan (TRP) and L-kynurenine (L-KYN) concentrations without changes in 3-hydroxykynurenine (3-HK) levels. Enzymatic studies revealed that the activity of cortical KYNA biosynthetic enzymes ex vivo was stimulated after prolonged administration of memantine. As memantine does not directly stimulate the activity of KATs' proteins, the higher activity of KATs most probably results from the increased expression of the respective genes. Noteworthy, the concentrations of KYNA, 3-HK, TRP, and L-KYN in the striatum, hippocampus, and cerebellum were not affected. Selective cortical increase in KYNA seems to represent one of the mechanisms underlying the clinical efficacy of memantine. It is tempting to hypothesize that a combination of memantine and drugs could strongly boost cortical KYNA and provide a more effective option for treating cortical pathologies at early stages. Further studies should evaluate this issue in experimental animal models and under clinical scenarios.
Collapse
Affiliation(s)
- Renata Kloc
- Chair and Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Ewa M Urbanska
- Chair and Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
6
|
Knapskog AB, Edwin TH, Ueland PM, Ulvik A, Fang EF, Eldholm RS, Halaas NB, Giil LM, Saltvedt I, Watne LO, Aksnes M. Sex-specific associations of kynurenic acid with neopterin in Alzheimer's disease. Alzheimers Res Ther 2024; 16:167. [PMID: 39068471 PMCID: PMC11282793 DOI: 10.1186/s13195-024-01531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Sex differences in neuroinflammation could contribute to women's increased risk of Alzheimer's disease (AD), providing rationale for exploring sex-specific AD biomarkers. In AD, dysregulation of the kynurenine pathway (KP) contributes to neuroinflammation and there is some evidence of sex differences in KP metabolism. However, the sex-specific associations between KP metabolism and biomarkers of AD and neuroinflammation need to be explored further. METHODS Here we investigate sex differences in cerebrospinal fluid concentrations of seven KP metabolites and sex-specific associations with established AD biomarkers and neopterin, an indicator of neuroinflammation. This study included 311 patients with symptomatic AD and 105 age-matched cognitively unimpaired (CU) controls, followed for up to 5 years. RESULTS We found sex differences in KP metabolites in the AD group, with higher levels of most metabolites in men, while there were no sex differences in the CU group. In line with this, more KP metabolites were significantly altered in AD men compared to CU men, and there was a trend in the same direction in AD women. Furthermore, we found sex-specific associations between kynurenic acid and the kynurenic acid/quinolinic acid ratio with neopterin, but no sex differences in the associations between KP metabolites and clinical progression. DISCUSSION In our cohort, sex differences in KP metabolites were restricted to AD patients. Our results suggest that dysregulation of the KP due to increased inflammation could contribute to higher AD risk in women.
Collapse
Affiliation(s)
- Anne-Brita Knapskog
- Department of Geriatric Medicine, Oslo University Hospital, 0450, Oslo, Norway
| | - Trine Holt Edwin
- Department of Geriatric Medicine, Oslo University Hospital, 0450, Oslo, Norway
| | | | | | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
- The Norwegian Centre On Healthy Ageing (NO-Age), Oslo, Norway
| | - Rannveig Sakshaug Eldholm
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Geriatric Medicine, St. Olavs Hospital, Trondheim University Hospital, 7006, Trondheim, Norway
| | - Nathalie Bodd Halaas
- Oslo Delirium Research Group, Oslo University Hospital, 0450, Oslo, Norway
- Department of Geriatric Medicine, University of Oslo, 0315, Oslo, Norway
| | - Lasse M Giil
- Neuro-SysMed, Department of Internal Medicine, Haraldsplass Deaconess Hospital, 5892, Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Geriatric Medicine, St. Olavs Hospital, Trondheim University Hospital, 7006, Trondheim, Norway
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Oslo University Hospital, 0450, Oslo, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, 1478, Lørenskog, Norway
- Department of Geriatric Medicine, Akershus University Hospital, 1478, Lørenskog, Norway
| | - Mari Aksnes
- Department of Geriatric Medicine, University of Oslo, 0315, Oslo, Norway.
| |
Collapse
|
7
|
Saleh TA, Whitson JA, Keiser P, Prasad P, Jenkins BC, Sodeinde T, Mann C, Rabinovitch PS, McReynolds MR, Sweetwyne MT. Metabolite accumulation from oral NMN supplementation drives aging-specific kidney inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588624. [PMID: 38645109 PMCID: PMC11030441 DOI: 10.1101/2024.04.09.588624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The mitochondrial-rich renal tubule cells are key regulators of blood homeostasis via excretion and reabsorption of metabolic waste. With age, tubules are subject to increasing mitochondrial dysfunction and declining nicotinamide adenine dinucleotide (NAD+) levels, both hampering ATP production efficiency. We tested two mitochondrial interventions in young (6-mo) and aged (26-mo) adult male mice: elamipretide (ELAM), a tetrapeptide in clinical trials that improves mitochondrial structure and function, and nicotinamide mononucleotide (NMN), an NAD+ intermediate and commercially available oral supplement. Kidneys were analyzed from young and aged mice after eight weeks of treatment with ELAM (3 mg/kg/day), NMN (300 mg/kg/day), or from aged mice treated with the two interventions combined (ELAM+NMN). We hypothesized that combining pharmacologic treatments to ameliorate mitochondrial dysfunction and boost NAD+ levels, would more effectively reduce kidney aging than either intervention alone. Unexpectedly, in aged kidneys, NMN increased expression of genetic markers of inflammation (IL-1-beta; and Ccl2) and tubule injury (Kim-1). Metabolomics of endpoint sera showed that NMN-treated aged mice had higher circulating levels of uremic toxins than either aged controls or young NMN-treated mice. ELAM+NMN-treated aged mice accumulated uremic toxins like NMN-only aged mice, but reduced IL-1-beta; and Ccl2 kidney mRNA. This suggests that pre-existing mitochondrial dysfunction in aged kidney underlies susceptibility to inflammatory signaling with NMN supplementation in aged, but not young, mice. These findings demonstrate age and tissue dependent effects on downstream metabolic accumulation from NMN and highlight the need for targeted analysis of aged kidneys to assess the safety of anti-aging supplements in older populations.
Collapse
|
8
|
Ma Y, Deng L, Du Z. Development and validation of an LC-MS/MS method for quantifying NAD + and related metabolites in mice sciatic nerves and its application to a nerve injury animal model. J Chromatogr A 2024; 1721:464821. [PMID: 38547681 DOI: 10.1016/j.chroma.2024.464821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
Recent studies highlight the pivotal roles of Nicotinamide adenine dinucleotide (NAD+) and its metabolites in aging and neurodegeneration. Accurate quantification of NAD+ and its metabolite levels in cells or tissues is crucial for advancing biochemical research and interventions targeting aging and neurodegenerative diseases. This study presents an accurate, precise, and rapid LC-MS/MS method using a surrogate matrix to quantify endogenous substances NAD+, nicotinamide mononucleotide (NMN), nicotinamide (NAM), adenosine diphosphate ribose (ADPR), and cyclic adenosine diphosphate ribose (cADPR) concentrations in mice sciatic nerves. Considering the properties of the phosphate groups in the analytes, the column and mobile phase were systematically optimized. These five polar analytes exhibited excellent analytical performance and baseline separation within 5 min on an Atlantis Premier BEH C18 AX column, with methylene phosphonic acid as a mobile phase additive. Enhanced sensitivity addressed the challenges posed by the small sample size of mice sciatic nerve and low NMN and cADPR detection. The method was fully validated, with linear correlation coefficients exceeding 0.992, precision (%relative standard deviation, RSD) values within 8.8%, and accuracy values between 92.2% and 107.3%, suggesting good reproducibility. Analytical recoveries in spiked and diluted matrix ranged from 87.8% to 104.7%, indicating the suitability of water as a surrogate matrix. Application of the method to quantify NAD+ and its metabolite levels in normal and injured mice sciatic nerve identified cADPR as a sensitive biomarker in the nerve injury model. This method is anticipated to deepen our understanding of the connections between NAD+ and its metabolites in health and disease, potentially improving diagnoses of various neurological disorders and aiding drug development for aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yongfen Ma
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China; DMPK Department, Sironax (Beijing) Co., Ltd, Beijing 102206, China
| | - Li Deng
- DMPK Department, Sironax (Beijing) Co., Ltd, Beijing 102206, China
| | - Zhenxia Du
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
9
|
Li F, Wu C, Wang G. Targeting NAD Metabolism for the Therapy of Age-Related Neurodegenerative Diseases. Neurosci Bull 2024; 40:218-240. [PMID: 37253984 PMCID: PMC10838897 DOI: 10.1007/s12264-023-01072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023] Open
Abstract
As the aging population continues to grow rapidly, age-related diseases are becoming an increasing burden on the healthcare system and a major concern for the well-being of elderly individuals. While aging is an inevitable process for all humans, it can be slowed down and age-related diseases can be treated or alleviated. Nicotinamide adenine dinucleotide (NAD) is a critical coenzyme or cofactor that plays a central role in metabolism and is involved in various cellular processes including the maintenance of metabolic homeostasis, post-translational protein modifications, DNA repair, and immune responses. As individuals age, their NAD levels decline, and this decrease has been suggested to be a contributing factor to the development of numerous age-related diseases, such as cancer, diabetes, cardiovascular diseases, and neurodegenerative diseases. In pursuit of healthy aging, researchers have investigated approaches to boost or maintain NAD levels. Here, we provide an overview of NAD metabolism and the role of NAD in age-related diseases and summarize recent progress in the development of strategies that target NAD metabolism for the treatment of age-related diseases, particularly neurodegenerative diseases.
Collapse
Affiliation(s)
- Feifei Li
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Chou Wu
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gelin Wang
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Hou Y, Caldwell JZK, Lathia JD, Leverenz JB, Pieper AA, Cummings J, Cheng F. Microglial immunometabolism endophenotypes contribute to sex difference in Alzheimer's disease. Alzheimers Dement 2024; 20:1334-1349. [PMID: 37985399 PMCID: PMC10916937 DOI: 10.1002/alz.13546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION The molecular mechanisms that contribute to sex differences, in particular female predominance, in Alzheimer's disease (AD) prevalence, symptomology, and pathology, are incompletely understood. METHODS To address this problem, we investigated cellular metabolism and immune responses ("immunometabolism endophenotype") across AD individuals as a function of sex with diverse clinical diagnosis of cognitive status at death (cogdx), Braak staging, and Consortium to Establish a Registry for AD (CERAD) scores using human cortex metabolomics and transcriptomics data from the Religious Orders Study / Memory and Aging Project (ROSMAP) cohort. RESULTS We identified sex-specific metabolites, immune and metabolic genes, and pathways associated with the AD diagnosis and progression. We identified female-specific elevation in glycerophosphorylcholine and N-acetylglutamate, which are AD inflammatory metabolites involved in interleukin (IL)-17 signaling, C-type lectin receptor, interferon signaling, and Toll-like receptor pathways. We pinpointed distinct microglia-specific immunometabolism endophenotypes (i.e., lipid- and amino acid-specific IL-10 and IL-17 signaling pathways) between female and male AD subjects. In addition, female AD subjects showed evidence of diminished excitatory neuron and microglia communications via glutamate-mediated immunometabolism. DISCUSSION Our results point to new understanding of the molecular basis for female predominance in AD, and warrant future independent validations with ethnically diverse patient cohorts to establish a likely causal relationship of microglial immunometabolism in the sex differences in AD. HIGHLIGHTS Sex-specific immune metabolites, gene networks and pathways, are associated with Alzheimer's disease pathogenesis and disease progression. Female AD subjects exhibit microglial immunometabolism endophenotypes characterized by decreased glutamate metabolism and elevated interleukin-10 pathway activity. Female AD subjects showed a shift in glutamate-mediated cell-cell communications between excitatory neurons to microglia and astrocyte.
Collapse
Affiliation(s)
- Yuan Hou
- Genomic Medicine InstituteCleveland ClinicLerner Research InstituteClevelandOhioUSA
| | - Jessica Z. K. Caldwell
- Department of Molecular MedicineCleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Lou Ruvo Center for Brain HealthCleveland ClinicNeurological InstituteLas VegasNevadaUSA
| | - Justin D. Lathia
- Department of Molecular MedicineCleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Department of Cardiovascular & Metabolic ScienceCleveland ClinicLerner Research InstituteClevelandOhioUSA
| | - James B. Leverenz
- Lou Ruvo Center for Brain HealthCleveland ClinicNeurological InstituteClevelandOhioUSA
| | - Andrew A. Pieper
- Brain Health Medicines CenterHarrington Discovery InstituteUniversity Hospitals Cleveland Medical CenterClevelandOhioUSA
- Department of PsychiatryCase Western Reserve UniversityClevelandOhioUSA
- Geriatric PsychiatryGRECCLouis Stokes Cleveland VA Medical CenterClevelandOhioUSA
- Institute for Transformative Molecular MedicineSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Department of NeurosciencesSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Department of PathologySchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Jeffrey Cummings
- Chambers‐Grundy Center for Transformative NeuroscienceDepartment of Brain HealthSchool of Integrated Health SciencesUniversity of Nevada Las VegasLas VegasNevadaUSA
| | - Feixiong Cheng
- Genomic Medicine InstituteCleveland ClinicLerner Research InstituteClevelandOhioUSA
- Department of Molecular MedicineCleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
11
|
Clark AJ, Saade MC, Vemireddy V, Vu KQ, Flores BM, Etzrodt V, Ciampa EJ, Huang H, Takakura A, Zandi-Nejad K, Zsengellér ZK, Parikh SM. Hepatocyte nuclear factor 4α mediated quinolinate phosphoribosylltransferase (QPRT) expression in the kidney facilitates resilience against acute kidney injury. Kidney Int 2023; 104:1150-1163. [PMID: 37783445 PMCID: PMC10843022 DOI: 10.1016/j.kint.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) levels decline in experimental models of acute kidney injury (AKI). Attenuated enzymatic conversion of tryptophan to NAD+ in tubular epithelium may contribute to adverse cellular and physiological outcomes. Mechanisms underlying defense of tryptophan-dependent NAD+ production are incompletely understood. Here we show that regulation of a bottleneck enzyme in this pathway, quinolinate phosphoribosyltransferase (QPRT) may contribute to kidney resilience. Expression of QPRT declined in two unrelated models of AKI. Haploinsufficient mice developed worse outcomes compared to littermate controls whereas novel, conditional gain-of-function mice were protected from injury. Applying these findings, we then identified hepatocyte nuclear factor 4 alpha (HNF4α) as a candidate transcription factor regulating QPRT expression downstream of the mitochondrial biogenesis regulator and NAD+ biosynthesis inducer PPARgamma coactivator-1-alpha (PGC1α). This was verified by chromatin immunoprecipitation. A PGC1α - HNF4α -QPRT axis controlled NAD+ levels across cellular compartments and modulated cellular ATP. These results propose that tryptophan-dependent NAD+ biosynthesis via QPRT and induced by HNF4α may be a critical determinant of kidney resilience to noxious stressors.
Collapse
Affiliation(s)
- Amanda J Clark
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, Texas, USA; Division of Nephrology, Department of Pediatrics, University of Texas Southwestern, Dallas, Texas, USA
| | - Marie Christelle Saade
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, Texas, USA
| | - Vamsidhara Vemireddy
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, Texas, USA
| | - Kyle Q Vu
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, Texas, USA
| | - Brenda Mendoza Flores
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, Texas, USA
| | - Valerie Etzrodt
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, Texas, USA
| | - Erin J Ciampa
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Huihui Huang
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Ayumi Takakura
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kambiz Zandi-Nejad
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Zsuzsanna K Zsengellér
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Samir M Parikh
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, Texas, USA; Department of Pharmacology, University of Texas Southwestern, Dallas, Texas, USA.
| |
Collapse
|
12
|
Zhao N, Zhu X, Xie L, Guan X, Tang L, Jiang G, Pang T. The Combination of Citicoline and Nicotinamide Mononucleotide Induces Neurite Outgrowth and Mitigates Vascular Cognitive Impairment via SIRT1/CREB Pathway. Cell Mol Neurobiol 2023; 43:4261-4277. [PMID: 37812361 DOI: 10.1007/s10571-023-01416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/17/2023] [Indexed: 10/10/2023]
Abstract
Vascular dementia (VD) is characterized with vascular cognitive impairment (VCI), which currently has few effective therapies in clinic. Neuronal damage and white matter injury are involved in the pathogenesis of VCI. Citicoline has been demonstrated to exhibit neuroprotection and neurorepair to improve cognition in cerebrovascular diseases. Nicotinamide adenine dinucleotide (NAD+)-dependent sirtuin (SIRT) signaling pathway constitutes a strong intrinsic defense system against various stresses including neuroinflammation in VCI. Our hypothesis is that the combined use of citicoline and the precursor of NAD+, nicotinamide mononucleotide (NMN), could enhance action on cognitive function in VCI. We investigated the synergistic effect of these two drugs in the rat model of VCI by bilateral common carotid artery occlusion (BCCAO). Citicoline significantly enhanced neurite outgrowth in Neuro-2a cells, and the combination of citicoline and NMN remarkably induced neurite outgrowth in Neuro-2a cells and primary cortical neuronal cells with an optimal proportion of 4:1. In the rat model of BCCAO, when two drugs in combination of 160 mg/kg citicoline and 40 mg/kg NMN, this combination administrated at 7 days post-BCCAO significantly improved the cognitive impairment in BCCAO rats compared with vehicle group by the analysis of the Morris water maze and the novel object recognition test. This combination also decreased microglial activation and neuroinflammation, and protected white matter integrity indicated by the increased myelin basic protein (MBP) expression through activation of SIRT1/TORC1/CREB signaling pathway. Our results suggest that the combination of citicoline and NMN has a synergistic effect for the treatment of VD associated with VCI.
Collapse
Affiliation(s)
- Ning Zhao
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Xiaofeng Zhu
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Luyang Xie
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Xin Guan
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Leilei Tang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, 728 Yucai North Road, Hangzhou, 311200, People's Republic of China
| | - Guojun Jiang
- Department of Pharmacy, Affiliated Xiaoshan Hospital, Hangzhou Normal University, 728 Yucai North Road, Hangzhou, 311200, People's Republic of China.
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
13
|
Fröbel D, Stanke D, Langner M, Žygienė G, Bechmann N, Peitzsch M. Liquid chromatography-tandem mass spectrometry based simultaneous quantification of tryptophan, serotonin and kynurenine pathway metabolites in tissues and cell culture systems. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123870. [PMID: 37683448 DOI: 10.1016/j.jchromb.2023.123870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Kynurenine and respective metabolites exhibit bioactivity as well as tryptophan, an essential amino acid, and the neurotransmitter serotonin. Dysregulations in the kynurenine pathway are involved in neurodegenerative/neuropsychiatric disorders and diabetes mellitus type 2 but also in cancer. Therefore, measurements of kynurenine-related metabolites will improve the general understanding for kynurenine pathway relevance in disease pathogenesis. METHODS Tryptophan, serotonin, picolinic acid, quinolinic acid, 3-OH-kynurenine, kynurenine, 3-OH-anthranilic acid, kynurenic acid, anthranilic acid as well as nicotinic acid and the redox cofactor NAD+ were analyzed in heterogeneous matrices by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). After validation, the described method was applied for measurements of native metabolite concentrations in murine tissues and cellular systems including pathway-shift monitoring after treatment with the tryptophan-2,3-dioxygenase-inhibitor 680C91. In addition, the method was evaluated for its ability for integration into multi-omics approaches using a single sample metabolite extraction procedure. RESULTS A simple and sensitive UPLC-MS/MS method for simultaneous quantification of up to 10 kynurenine-related metabolites in four biological matrices was developed. Within a run time of 6.5 min, chromatographic separation of kynurenine-related metabolites, including the isomers nicotinic acid and picolinic acid, was achieved without derivatization. Validation parameters, including interday precision (<14.8%), mean accuracy (102.4% ± 12.9%) and linear detection ranges of more than three orders of magnitude, indicate method reliability. Depending the investigated sample matrix, the majority of metabolites were successfully detected and quantified in native murine and cell culture derived sample materials. Furthermore, the method allowed to monitor the impact of a tryptophan-2,3-dioxygenase-inhibitor on kynurenine pathway in a cellular system and is suitable for multi-assay analyses using aliquots from the same cell extract. CONCLUSION The described UPLC-MS/MS method provides a simple tool for the simultaneous quantification of kynurenine pathway metabolites. Due to its suitability for many physiological matrices, the method provides wide application for disease-related experimental settings.
Collapse
Affiliation(s)
- Dennis Fröbel
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Daniela Stanke
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Mathias Langner
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Gintare Žygienė
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| |
Collapse
|
14
|
Yang S, Park JH, Lu HC. Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Mol Neurodegener 2023; 18:49. [PMID: 37475056 PMCID: PMC10357692 DOI: 10.1186/s13024-023-00634-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Human studies consistently identify bioenergetic maladaptations in brains upon aging and neurodegenerative disorders of aging (NDAs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Glucose is the major brain fuel and glucose hypometabolism has been observed in brain regions vulnerable to aging and NDAs. Many neurodegenerative susceptible regions are in the topological central hub of the brain connectome, linked by densely interconnected long-range axons. Axons, key components of the connectome, have high metabolic needs to support neurotransmission and other essential activities. Long-range axons are particularly vulnerable to injury, neurotoxin exposure, protein stress, lysosomal dysfunction, etc. Axonopathy is often an early sign of neurodegeneration. Recent studies ascribe axonal maintenance failures to local bioenergetic dysregulation. With this review, we aim to stimulate research in exploring metabolically oriented neuroprotection strategies to enhance or normalize bioenergetics in NDA models. Here we start by summarizing evidence from human patients and animal models to reveal the correlation between glucose hypometabolism and connectomic disintegration upon aging/NDAs. To encourage mechanistic investigations on how axonal bioenergetic dysregulation occurs during aging/NDAs, we first review the current literature on axonal bioenergetics in distinct axonal subdomains: axon initial segments, myelinated axonal segments, and axonal arbors harboring pre-synaptic boutons. In each subdomain, we focus on the organization, activity-dependent regulation of the bioenergetic system, and external glial support. Second, we review the mechanisms regulating axonal nicotinamide adenine dinucleotide (NAD+) homeostasis, an essential molecule for energy metabolism processes, including NAD+ biosynthetic, recycling, and consuming pathways. Third, we highlight the innate metabolic vulnerability of the brain connectome and discuss its perturbation during aging and NDAs. As axonal bioenergetic deficits are developing into NDAs, especially in asymptomatic phase, they are likely exaggerated further by impaired NAD+ homeostasis, the high energetic cost of neural network hyperactivity, and glial pathology. Future research in interrogating the causal relationship between metabolic vulnerability, axonopathy, amyloid/tau pathology, and cognitive decline will provide fundamental knowledge for developing therapeutic interventions.
Collapse
Affiliation(s)
- Sen Yang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jung Hyun Park
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
15
|
Strefeler A, Jan M, Quadroni M, Teav T, Rosenberg N, Chatton JY, Guex N, Gallart-Ayala H, Ivanisevic J. Molecular insights into sex-specific metabolic alterations in Alzheimer's mouse brain using multi-omics approach. Alzheimers Res Ther 2023; 15:8. [PMID: 36624525 PMCID: PMC9827669 DOI: 10.1186/s13195-023-01162-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by altered cellular metabolism in the brain. Several of these alterations have been found to be exacerbated in females, known to be disproportionately affected by AD. We aimed to unravel metabolic alterations in AD at the metabolic pathway level and evaluate whether they are sex-specific through integrative metabolomic, lipidomic, and proteomic analysis of mouse brain tissue. METHODS We analyzed male and female triple-transgenic mouse whole brain tissue by untargeted mass spectrometry-based methods to obtain a molecular signature consisting of polar metabolite, complex lipid, and protein data. These data were analyzed using multi-omics factor analysis. Pathway-level alterations were identified through joint pathway enrichment analysis or by separately evaluating lipid ontology and known proteins related to lipid metabolism. RESULTS Our analysis revealed significant AD-associated and in part sex-specific alterations across the molecular signature. Sex-dependent alterations were identified in GABA synthesis, arginine biosynthesis, and in alanine, aspartate, and glutamate metabolism. AD-associated alterations involving lipids were also found in the fatty acid elongation pathway and lysophospholipid metabolism, with a significant sex-specific effect for the latter. CONCLUSIONS Through multi-omics analysis, we report AD-associated and sex-specific metabolic alterations in the AD brain involving lysophospholipid and amino acid metabolism. These findings contribute to the characterization of the AD phenotype at the molecular level while considering the effect of sex, an overlooked yet determinant metabolic variable.
Collapse
Affiliation(s)
- Abigail Strefeler
- grid.9851.50000 0001 2165 4204Metabolomics Unit, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| | - Maxime Jan
- grid.9851.50000 0001 2165 4204Bioinformatics Competence Center, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| | - Manfredo Quadroni
- grid.9851.50000 0001 2165 4204Protein Analysis Facility, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| | - Tony Teav
- grid.9851.50000 0001 2165 4204Metabolomics Unit, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| | - Nadia Rosenberg
- grid.9851.50000 0001 2165 4204Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jean-Yves Chatton
- grid.9851.50000 0001 2165 4204Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- grid.9851.50000 0001 2165 4204Bioinformatics Competence Center, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- grid.9851.50000 0001 2165 4204Metabolomics Unit, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- grid.9851.50000 0001 2165 4204Metabolomics Unit, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Zou Y, Ma X, Tang Y, Lin L, Yu J, Zhong J, Wang D, Cheng X, Gao J, Yu S, Qiu L. A robust LC-MS/MS method to measure 8-oxoGuo, 8-oxodG, and NMN in human serum and urine. Anal Biochem 2023; 660:114970. [PMID: 36341768 DOI: 10.1016/j.ab.2022.114970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To establish and validate a robust LC-MS/MS method for simultaneously measuring 8-oxoGuo, 8-oxodG, and NMN in serum and urine to evaluate the oxidative stress status. METHODS A Waters TQ-XS triple quadrupole mass spectrometer system coupled with an Acquity UPLC Primer HSS T3 column was chosen. The clinical performance was verified according to the CLSI C62-A and EP-15 guidelines. Furthermore, matched serum and urine samples from 22 apparently healthy check-ups, 20 patients with atherosclerosis, and 18 individuals with dementia were evaluated. RESULTS The recovery for serum 8-oxoGuo, urine 8-oxoGuo, serum 8-oxodG, urine 8-oxodG, serum NMN, and urine NMN was 88.8-112.4%, 102.4-114.1%, 88.5-107.7%, 94.9-102.6%, 98.4-108.9%, and 88.5-108.6%, respectively. Based on the inter-assay results, total coefficient of variation, matrix effect, and carryover, the LC-MS/MS method was deemed robust. The limit of quantification was 0.017, 0.018, and 0.150 nmol/L for 8-oxoGuo, 8-oxodG, and NMN, respectively, which are suitable for accurate measurements in human serum and urine samples. Higher 8-oxoGuo and 8-oxodG levels and lower NMN levels, indicative of significantly higher oxidative stress status, were found in patients with dementia compared to healthy subjects. CONCLUSION We established and validated a robust LC-MS/MS method to simultaneously measure 8-oxoGuo, 8-oxodG, and NMN in serum and urine.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China; Medical Science Research Center (MRC), Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yueming Tang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Liling Lin
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jialei Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jian Zhong
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Danchen Wang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xinqi Cheng
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jing Gao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
17
|
Nizami HL, Minor KE, Chiao YA, Light CM, Lee CF. Sexually dimorphic effects of SARM1 deletion on cardiac NAD + metabolism and function. Am J Physiol Heart Circ Physiol 2022; 323:H774-H781. [PMID: 36053750 PMCID: PMC9529255 DOI: 10.1152/ajpheart.00370.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) decline is repeatedly observed in heart disease and its risk factors. Although strategies promoting NAD+ synthesis to elevate NAD+ levels improve cardiac function, whether inhibition of NAD+ consumption can be therapeutic is less investigated. In this study, we examined the role of sterile-α and TIR motif containing 1 (SARM1) NAD+ hydrolase in mouse hearts, using global SARM1-knockout mice (KO). Cardiac function was assessed by echocardiography in male and female KO mice and wild-type (WT) controls. Hearts were collected for biochemical, histological, and molecular analyses. We found that the cardiac NAD+ pool was elevated in female KO mice, but only trended to increase in male KO mice. SARM1 deletion induced changes to a greater number of NAD+ metabolism transcripts in male mice than in female mice. Body weights, cardiac systolic and diastolic function, and geometry showed no changes in both male and female KO mice compared with WT counterparts. Male KO mice showed a small, but significant, elevation in cardiac collagen levels compared with WT counterparts, but no difference in collagen levels was detected in female mice. The increased collagen levels were associated with greater number of altered profibrotic and senescence-associated inflammatory genes in male KO mice, but not in female KO mice.NEW & NOTEWORTHY We examined the effects of SARM1 deletion on NAD+ pool, transcripts of NAD+ metabolism, and fibrotic pathway for the first time in mouse hearts. We observed the sexually dimorphic effects of SARM1 deletion. How these sex-dependent effects influence the outcomes of SARM1 deficiency in male and female mice in responses to cardiac stresses warrant further investigation. The elevation of cardiac NAD+ pool by SARM1 deletion provides evidence that targeting SARM1 may reverse disease-related NAD+ decline.
Collapse
Affiliation(s)
- Hina Lateef Nizami
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Keaton E Minor
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Christine M Light
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Chi Fung Lee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
18
|
Campbell JM. Supplementation with NAD + and Its Precursors to Prevent Cognitive Decline across Disease Contexts. Nutrients 2022; 14:nu14153231. [PMID: 35956406 PMCID: PMC9370773 DOI: 10.3390/nu14153231] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
The preservation of cognitive ability by increasing nicotinamide adenine dinucleotide (NAD+) levels through supplementation with NAD+ precursors has been identified as a promising treatment strategy for a number of conditions; principally, age-related cognitive decline (including Alzheimer’s disease and vascular dementia), but also diabetes, stroke, and traumatic brain injury. Candidate factors have included NAD+ itself, its reduced form NADH, nicotinamide (NAM), nicotinamide mononucleotide (NMN), nicotinamide riboside (NR), and niacin (or nicotinic acid). This review summarises the research findings for each source of cognitive impairment for which NAD+ precursor supplementation has been investigated as a therapy. The findings are mostly positive but have been made primarily in animal models, with some reports of null or adverse effects. Given the increasing popularity and availability of these factors as nutritional supplements, further properly controlled clinical research is needed to provide definitive answers regarding this strategy’s likely impact on human cognitive health when used to address different sources of impairment.
Collapse
Affiliation(s)
- Jared M Campbell
- Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney 2052, Australia
| |
Collapse
|
19
|
Moutinho M, Puntambekar SS, Tsai AP, Coronel I, Lin PB, Casali BT, Martinez P, Oblak AL, Lasagna-Reeves CA, Lamb BT, Landreth GE. The niacin receptor HCAR2 modulates microglial response and limits disease progression in a mouse model of Alzheimer's disease. Sci Transl Med 2022; 14:eabl7634. [PMID: 35320002 PMCID: PMC10161396 DOI: 10.1126/scitranslmed.abl7634] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Increased dietary intake of niacin has been correlated with reduced risk of Alzheimer's disease (AD). Niacin serves as a high-affinity ligand for the receptor HCAR2 (GPR109A). In the brain, HCAR2 is expressed selectively by microglia and is robustly induced by amyloid pathology in AD. The genetic inactivation of Hcar2 in 5xFAD mice, a model of AD, results in impairment of the microglial response to amyloid deposition, including deficits in gene expression, proliferation, envelopment of amyloid plaques, and uptake of amyloid-β (Aβ), ultimately leading to exacerbation of amyloid burden, neuronal loss, and cognitive deficits. In contrast, activation of HCAR2 with an FDA-approved formulation of niacin (Niaspan) in 5xFAD mice leads to reduced plaque burden and neuronal dystrophy, attenuation of neuronal loss, and rescue of working memory deficits. These data provide direct evidence that HCAR2 is required for an efficient and neuroprotective response of microglia to amyloid pathology. Administration of Niaspan potentiates the HCAR2-mediated microglial protective response and consequently attenuates amyloid-induced pathology, suggesting that its use may be a promising therapeutic approach to AD that specifically targets the neuroimmune response.
Collapse
Affiliation(s)
- Miguel Moutinho
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shweta S Puntambekar
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andy P Tsai
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Israel Coronel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Peter B Lin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brad T Casali
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Pablo Martinez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Adrian L Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cristian A Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gary E Landreth
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
20
|
Huynh VN, Benavides GA, Johnson MS, Ouyang X, Chacko BK, Osuma E, Mueller T, Chatham J, Darley-Usmar VM, Zhang J. Acute inhibition of OGA sex-dependently alters the networks associated with bioenergetics, autophagy, and neurodegeneration. Mol Brain 2022; 15:22. [PMID: 35248135 PMCID: PMC8898497 DOI: 10.1186/s13041-022-00906-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/11/2022] [Indexed: 11/10/2022] Open
Abstract
The accumulation of neurotoxic proteins characteristic of age-related neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases is associated with the perturbation of metabolism, bioenergetics, and mitochondrial quality control. One approach to exploit these interactions therapeutically is to target the pathways that regulate metabolism. In this respect, the nutrient-sensing hexosamine biosynthesis pathway is of particular interest since it introduces a protein post-translational modification known as O-GlcNAcylation, which modifies different proteins in control versus neurodegenerative disease postmortem brains. A potent inhibitor of the O-GlcNAcase enzyme that removes the modification from proteins, Thiamet G (TG), has been proposed to have potential benefits in Alzheimer's disease. We tested whether key factors in the O-GlcNAcylation are correlated with mitochondrial electron transport and proteins related to the autophagy/lysosomal pathways in the cortex of male and female mice with and without exposure to TG (10 mg/kg i.p.). Mitochondrial complex activities were measured in the protein homogenates, and a panel of metabolic, autophagy/lysosomal proteins and O-GlcNAcylation enzymes were assessed by either enzyme activity assay or by western blot analysis. We found that the networks associated with O-GlcNAcylation enzymes and activities with mitochondrial parameters, autophagy-related proteins as well as neurodegenerative disease-related proteins exhibited sex and TG dependent differences. Taken together, these studies provide a framework of interconnectivity for multiple O-GlcNAc-dependent pathways in mouse brain of relevance to aging and sex/age-dependent neurodegenerative pathogenesis and response to potential therapies.
Collapse
Affiliation(s)
- Van N Huynh
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Gloria A Benavides
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Michelle S Johnson
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Xiaosen Ouyang
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Balu K Chacko
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Edie Osuma
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Toni Mueller
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - John Chatham
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Victor M Darley-Usmar
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA
| | - Jianhua Zhang
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, BMRII-534, 901 19th Street S., Birmingham, AL, 35294-0017, USA.
- Birmingham VA Medical Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
21
|
Chu X, Raju RP. Regulation of NAD + metabolism in aging and disease. Metabolism 2022; 126:154923. [PMID: 34743990 PMCID: PMC8649045 DOI: 10.1016/j.metabol.2021.154923] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 01/03/2023]
Abstract
More than a century after discovering NAD+, information is still evolving on the role of this molecule in health and diseases. The biological functions of NAD+ and NAD+ precursors encompass pathways in cellular energetics, inflammation, metabolism, and cell survival. Several metabolic and neurological diseases exhibit reduced tissue NAD+ levels. Significantly reduced levels of NAD+ are also associated with aging, and enhancing NAD+ levels improved healthspan and lifespan in animal models. Recent studies suggest a causal link between senescence, age-associated reduction in tissue NAD+ and enzymatic degradation of NAD+. Furthermore, the discovery of transporters and receptors involved in NAD+ precursor (nicotinic acid, or niacin, nicotinamide, and nicotinamide riboside) metabolism allowed for a better understanding of their role in cellular homeostasis including signaling functions that are independent of their functions in redox reactions. We also review studies that demonstrate that the functional effect of niacin is partially due to the activation of its cell surface receptor, GPR109a. Based on the recent progress in understanding the mechanism and function of NAD+ and NAD+ precursors in cell metabolism, new strategies are evolving to exploit these molecules' pharmacological potential in the maintenance of metabolic balance.
Collapse
Affiliation(s)
- Xiaogang Chu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
22
|
Llobet Rosell A, Paglione M, Gilley J, Kocia M, Perillo G, Gasparrini M, Cialabrini L, Raffaelli N, Angeletti C, Orsomando G, Wu PH, Coleman MP, Loreto A, Neukomm LJ. The NAD + precursor NMN activates dSarm to trigger axon degeneration in Drosophila. eLife 2022; 11:80245. [PMID: 36476387 PMCID: PMC9788811 DOI: 10.7554/elife.80245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Axon degeneration contributes to the disruption of neuronal circuit function in diseased and injured nervous systems. Severed axons degenerate following the activation of an evolutionarily conserved signaling pathway, which culminates in the activation of SARM1 in mammals to execute the pathological depletion of the metabolite NAD+. SARM1 NADase activity is activated by the NAD+ precursor nicotinamide mononucleotide (NMN). In mammals, keeping NMN levels low potently preserves axons after injury. However, it remains unclear whether NMN is also a key mediator of axon degeneration and dSarm activation in flies. Here, we demonstrate that lowering NMN levels in Drosophila through the expression of a newly generated prokaryotic NMN-Deamidase (NMN-D) preserves severed axons for months and keeps them circuit-integrated for weeks. NMN-D alters the NAD+ metabolic flux by lowering NMN, while NAD+ remains unchanged in vivo. Increased NMN synthesis by the expression of mouse nicotinamide phosphoribosyltransferase (mNAMPT) leads to faster axon degeneration after injury. We also show that NMN-induced activation of dSarm mediates axon degeneration in vivo. Finally, NMN-D delays neurodegeneration caused by loss of the sole NMN-consuming and NAD+-synthesizing enzyme dNmnat. Our results reveal a critical role for NMN in neurodegeneration in the fly, which extends beyond axonal injury. The potent neuroprotection by reducing NMN levels is similar to the interference with other essential mediators of axon degeneration in Drosophila.
Collapse
Affiliation(s)
- Arnau Llobet Rosell
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | - Maria Paglione
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | - Jonathan Gilley
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Magdalena Kocia
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | - Giulia Perillo
- Department of Genetic Medicine and Development, University of GenevaGenevaSwitzerland
| | - Massimiliano Gasparrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of MarcheAnconaItaly
| | - Lucia Cialabrini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of MarcheAnconaItaly
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of MarcheAnconaItaly
| | - Carlo Angeletti
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of MarcheAnconaItaly
| | - Giuseppe Orsomando
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of MarcheAnconaItaly
| | - Pei-Hsuan Wu
- Department of Genetic Medicine and Development, University of GenevaGenevaSwitzerland
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Lukas Jakob Neukomm
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| |
Collapse
|
23
|
Huang Y, Zhao M, Chen X, Zhang R, Le A, Hong M, Zhang Y, Jia L, Zang W, Jiang C, Wang J, Fan X, Wang J. Tryptophan Metabolism in Central Nervous System Diseases: Pathophysiology and Potential Therapeutic Strategies. Aging Dis 2022; 14:858-878. [PMID: 37191427 DOI: 10.14336/ad.2022.0916] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
The metabolism of L-tryptophan (TRP) regulates homeostasis, immunity, and neuronal function. Altered TRP metabolism has been implicated in the pathophysiology of various diseases of the central nervous system. TRP is metabolized through two main pathways, the kynurenine pathway and the methoxyindole pathway. First, TRP is metabolized to kynurenine, then kynurenic acid, quinolinic acid, anthranilic acid, 3-hydroxykynurenine, and finally 3-hydroxyanthranilic acid along the kynurenine pathway. Second, TRP is metabolized to serotonin and melatonin along the methoxyindole pathway. In this review, we summarize the biological properties of key metabolites and their pathogenic functions in 12 disorders of the central nervous system: schizophrenia, bipolar disorder, major depressive disorder, spinal cord injury, traumatic brain injury, ischemic stroke, intracerebral hemorrhage, multiple sclerosis, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Furthermore, we summarize preclinical and clinical studies, mainly since 2015, that investigated the metabolic pathway of TRP, focusing on changes in biomarkers of these neurologic disorders, their pathogenic implications, and potential therapeutic strategies targeting this metabolic pathway. This critical, comprehensive, and up-to-date review helps identify promising directions for future preclinical, clinical, and translational research on neuropsychiatric disorders.
Collapse
|
24
|
Hanrieder J. Preface: Mass spectrometry in Alzheimer disease: This is the Preface for the special issue "Mass Spectrometry in Alzheimer Disease". J Neurochem 2021; 159:207-210. [PMID: 34665876 DOI: 10.1111/jnc.15512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
This preface introduces the content of the special issue on 'Mass Spectrometry in Alzheimer Disease'. Here, an overview is provided on how mass spectrometry is contributing to a broader understanding of AD pathobiology. Mass spectrometry has become a major technology in biomedical analysis and research. This includes biochemical and clinical studies that aim to detail our understanding of Alzheimer disease pathogenesis and pathobiology (AD). In this special issue, key experts in the field present exciting developments and applications of MS in the context of studying AD pathology. These studies span from basic biochemical and neuropathological studies, over advanced metabolomics- and proteomics, towards comprehensive biomarker studies, as well as more recently, in situ mass spectrometry-based imaging (MSI). Together, these studies highlight the key relevance of current and emerging MS technologies to detect, delineate and understand principle pathogenic mechanisms underlying AD.
Collapse
Affiliation(s)
- Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|