1
|
Sharma R, Berendzen KM, Everitt A, Wang B, Williams G, Wang S, Quine K, Larios RD, Long KLP, Hoglen N, Sulaman BA, Heath MC, Sherman M, Klinkel R, Cai A, Galo D, Caamal LC, Goodwin NL, Beery A, Bales KL, Pollard KS, Willsey AJ, Manoli DS. Oxytocin receptor controls distinct components of pair bonding and development in prairie voles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.613753. [PMID: 39399774 PMCID: PMC11468833 DOI: 10.1101/2024.09.25.613753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Oxytocin receptor (Oxtr) signaling influences complex social behaviors in diverse species, including social monogamy in prairie voles. How Oxtr regulates specific components of social attachment behaviors and the neural mechanisms mediating them remains unknown. Here, we examine prairie voles lacking Oxtr and demonstrate that pair bonding comprises distinct behavioral modules: the preference for a bonded partner, and the rejection of novel potential mates. Our longitudinal study of social attachment shows that Oxtr sex-specifically influences early interactions between novel partners facilitating the formation of partner preference. Additionally, Oxtr suppresses promiscuity towards novel potential mates following pair bonding, contributing to rejection. Oxtr function regulates coordinated patterns of gene expression in regions implicated in attachment behaviors and regulates the expression of oxytocin in the paraventricular nucleus of the hypothalamus, a principal source of oxytocin. Thus, Oxtr controls genetically separable components of pair bonding behaviors and coordinates development of the neural substrates of attachment.
Collapse
|
2
|
Nakajima D, Yamachi M, Misaka S, Shimomura K, Maejima Y. Sex differences in the effects of aromatherapy on anxiety and salivary oxytocin levels. Front Endocrinol (Lausanne) 2024; 15:1380779. [PMID: 38919481 PMCID: PMC11196605 DOI: 10.3389/fendo.2024.1380779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Objective Aromatherapy is a holistic healing method to promote health and well-being by using natural plant extracts. However, its precise mechanism of action and influence on the endocrine system remains unclear. Since recent studies reported that a neuropeptide, oxytocin, can attenuate anxiety, we hypothesized that if oxytocin secretion is promoted through aromatherapy, it may improve mood and anxiety. The present study is aimed to investigate the relationship between oxytocin and the effects of aromatherapy with lavender oil on anxiety level, by measuring salivary oxytocin levels in healthy men and women. Methods We conducted a randomized open crossover trial in 15 men and 10 women. Each participant received a placebo intervention (control group) and aromatherapy with lavender oil (aromatherapy group). For the aromatherapy group, each participant spent a 30-min session in a room with diffused lavender essential oil, followed by a 10-min hand massage using a carrier oil containing lavender oil. Anxiety was assessed using the State-Trait Anxiety Inventory (STAI) before the intervention, 30-min after the start of intervention, and after hand massage, in both groups. Saliva samples were collected at the same time points of the STAI. Results In women, either aromatherapy or hand massage was associated with a reduction in anxiety levels, independently. Moreover, salivary oxytocin levels were increased after aromatherapy. On the other hand, in men, anxiety levels were decreased after aromatherapy, as well as after hand massage, regardless of the use of lavender oil. However, there were no significant differences in changes of salivary oxytocin levels between the control and aromatherapy groups during the intervention period. Interestingly, there was a positive correlation between anxiety levels and salivary oxytocin levels before the intervention, but a negative correlation was observed after hand massage with lavender oil. Conclusion The results of the present study indicate that in women, aromatherapy with lavender oil attenuated anxiety with increase in oxytocin level in women, whereas in men, there was no clear relationship of aromatherapy with anxiety or oxytocin levels but, there was a change in correlation between anxiety and oxytocin. The results of the present study suggest that the effect of aromatherapy can vary depending on sex.
Collapse
Affiliation(s)
- Daisuke Nakajima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
- Medical Division, Nitto Boseki Co., Ltd., Koriyama Fukushima, Japan
| | - Megumi Yamachi
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Shingen Misaka
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
- Departments of Obesity and Inflammation Research, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
- Departments of Obesity and Inflammation Research, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| |
Collapse
|
3
|
Berendzen KM. Understanding social attachment as a window into the neural basis of prosocial behavior. Front Neurol 2023; 14:1247480. [PMID: 37869145 PMCID: PMC10585278 DOI: 10.3389/fneur.2023.1247480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
The representation and demonstration of human values are intimately tied to our status as a social species. Humans are relatively unique in our ability to form enduring social attachments, characterized by the development of a selective bond that persists over time. Such relationships include the bonds between parents and offspring, pair bonds between partners and other affiliative contacts, in addition to group relationships to which we may form direct and symbolic affiliations. Many of the cognitive and behavioral processes thought to be linked to our capacity for social attachment-including consolation, empathy, and social motivation, and the implicated neural circuits mediating these constructs, are shared with those thought to be important for the representation of prosocial values. This perspective piece will examine the hypothesis that our ability to form such long-term bonds may play an essential role in the construction of human values and ethical systems, and that components of prosocial behaviors are shared across species. Humans are one of a few species that form such long-term and exclusive attachments and our understanding of the neurobiology underlying attachment behavior has been advanced by studying behavior in non-human animals. The overlap in behavioral and affective constructs underlying attachment behavior and value representation is discussed, followed by evidence from other species that demonstrate attachment behavior that supports the overlapping neurobiological basis for social bonds and prosocial behavior. The understanding of attachment biology has broad implications for human health as well as for understanding the basis for and variations in prosocial behavior.
Collapse
Affiliation(s)
- Kristen M. Berendzen
- Department of Psychiatry and Biological Sciences, University of California, San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
4
|
Valtcheva S, Issa HA, Bair-Marshall CJ, Martin KA, Jung K, Zhang Y, Kwon HB, Froemke RC. Neural circuitry for maternal oxytocin release induced by infant cries. Nature 2023; 621:788-795. [PMID: 37730989 PMCID: PMC10639004 DOI: 10.1038/s41586-023-06540-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 08/15/2023] [Indexed: 09/22/2023]
Abstract
Oxytocin is a neuropeptide that is important for maternal physiology and childcare, including parturition and milk ejection during nursing1-6. Suckling triggers the release of oxytocin, but other sensory cues-specifically, infant cries-can increase the levels of oxytocin in new human mothers7, which indicates that cries can activate hypothalamic oxytocin neurons. Here we describe a neural circuit that routes auditory information about infant vocalizations to mouse oxytocin neurons. We performed in vivo electrophysiological recordings and photometry from identified oxytocin neurons in awake maternal mice that were presented with pup calls. We found that oxytocin neurons responded to pup vocalizations, but not to pure tones, through input from the posterior intralaminar thalamus, and that repetitive thalamic stimulation induced lasting disinhibition of oxytocin neurons. This circuit gates central oxytocin release and maternal behaviour in response to calls, providing a mechanism for the integration of sensory cues from the offspring in maternal endocrine networks to ensure modulation of brain state for efficient parenting.
Collapse
Affiliation(s)
- Silvana Valtcheva
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| | - Habon A Issa
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Chloe J Bair-Marshall
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Kathleen A Martin
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Kanghoon Jung
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiyao Zhang
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
- Department of Otolaryngology, New York University School of Medicine, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
5
|
Oubraim S, Shen RY, Haj-Dahmane S. Oxytocin excites dorsal raphe serotonin neurons and bidirectionally gates their glutamate synapses. iScience 2023; 26:106707. [PMID: 37250336 PMCID: PMC10214716 DOI: 10.1016/j.isci.2023.106707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Oxytocin (OXT) modulates wide spectrum of social and emotional behaviors via modulation of numerous neurotransmitter systems, including serotonin (5-HT). However, how OXT controls the function of dorsal raphe nucleus (DRN) 5-HT neurons remains unknown. Here, we reveal that OXT excites and alters the firing pattern of 5-HT neurons via activation of postsynaptic OXT receptors (OXTRs). In addition, OXT induces cell-type-specific depression and potentiation of DRN glutamate synapses by two retrograde lipid messengers, 2-arachidonoylglycerol (2-AG) and arachidonic acid (AA), respectively. Neuronal mapping demonstrates that OXT preferentially potentiates glutamate synapses of 5-HT neurons projecting to medial prefrontal cortex (mPFC) and depresses glutamatergic inputs to 5-HT neurons projecting to lateral habenula (LHb) and central amygdala (CeA). Thus, by engaging distinct retrograde lipid messengers, OXT exerts a target-specific gating of glutamate synapses on the DRN. As such, our data uncovers the neuronal mechanisms by which OXT modulates the function of DRN 5-HT neurons.
Collapse
Affiliation(s)
- Saida Oubraim
- Department of Pharmacology and Toxicology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1021 Main Street, Buffalo, NY 14203, USA
| | - Roh-Yu Shen
- Department of Pharmacology and Toxicology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1021 Main Street, Buffalo, NY 14203, USA
- University at Buffalo Neuroscience Program, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1021 Main Street, Buffalo, NY 14203, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1021 Main Street, Buffalo, NY 14203, USA
- University at Buffalo Neuroscience Program, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, State University of New York, 1021 Main Street, Buffalo, NY 14203, USA
| |
Collapse
|
6
|
Abstract
Obsessive-compulsive disorder (OCD) has a bidirectional relationship with metabolic disorders. The purposes of this review are to decipher the links between OCD and metabolic disorders and to explore the etiological mechanism of OCD in metabolism, which may aid in early identification of and tailored interventions for OCD and metabolic disorders.
Collapse
|
7
|
Berendzen KM, Manoli DS. Rethinking the Architecture of Attachment: New Insights into the Role for Oxytocin Signaling. AFFECTIVE SCIENCE 2022; 3:734-748. [PMID: 36519145 PMCID: PMC9743890 DOI: 10.1007/s42761-022-00142-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
Social attachments, the enduring bonds between individuals and groups, are essential to health and well-being. The appropriate formation and maintenance of social relationships depend upon a number of affective processes, including stress regulation, motivation, reward, as well as reciprocal interactions necessary for evaluating the affective state of others. A genetic, molecular, and neural circuit level understanding of social attachments therefore provides a powerful substrate for probing the affective processes associated with social behaviors. Socially monogamous species form long-term pair bonds, allowing us to investigate the mechanisms underlying attachment. Now, molecular genetic tools permit manipulations in monogamous species. Studies using these tools reveal new insights into the genetic and neuroendocrine factors that design and control the neural architecture underlying attachment behavior. We focus this discussion on the prairie vole and oxytocinergic signaling in this and related species as a model of attachment behavior that has been studied in the context of genetic and pharmacological manipulations. We consider developmental processes that impact the demonstration of bonding behavior across genetic backgrounds, the modularity of mechanisms underlying bonding behaviors, and the distributed circuitry supporting these behaviors. Incorporating such theoretical considerations when interpreting reverse genetic studies in the context of the rich ethological and pharmacological data collected in monogamous species provides an important framework for studies of attachment behavior in both animal models and studies of human relationships.
Collapse
Affiliation(s)
- Kristen M. Berendzen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
| | - Devanand S. Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 95158 USA
| |
Collapse
|
8
|
Guo L, Qi YJ, Tan H, Dai D, Balesar R, Sluiter A, van Heerikhuize J, Hu SH, Swaab DF, Bao AM. Different oxytocin and corticotropin-releasing hormone system changes in bipolar disorder and major depressive disorder patients. EBioMedicine 2022; 84:104266. [PMID: 36126617 PMCID: PMC9489957 DOI: 10.1016/j.ebiom.2022.104266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/11/2022] Open
Abstract
Background Oxytocin (OXT) and corticotropin-releasing hormone (CRH) are both produced in hypothalamic paraventricular nucleus (PVN). Central CRH may cause depression-like symptoms, while peripheral higher OXT plasma levels were proposed to be a trait marker for bipolar disorder (BD). We aimed to investigate differential OXT and CRH expression in the PVN and their receptors in prefrontal cortex of major depressive disorder (MDD) and BD patients. In addition, we investigated mood-related changes by stimulating PVN-OXT in mice. Methods Quantitative immunocytochemistry and in situ hybridization were performed in the PVN for OXT and CRH on 6 BD and 6 BD-controls, 9 MDD and 9 MDD-controls. mRNA expressions of their receptors (OXTR, CRHR1 and CRHR2) were determined in anterior cingulate cortex and dorsolateral prefrontal cortex (DLPFC) of 30 BD and 34 BD-controls, and 24 MDD and 12 MDD-controls. PVN of 41 OXT-cre mice was short- or long-term activated by chemogenetics, and mood-related behavior was compared with 26 controls. Findings Significantly increased OXT-immunoreactivity (ir), OXT-mRNA in PVN and increased OXTR-mRNA in DLPFC, together with increased ratios of OXT-ir/CRH-ir and OXTR-mRNA/CRHR-mRNA were observed in BD, at least in male BD patients, but not in MDD patients. PVN-OXT stimulation induced depression-like behaviors in male mice, and mixed depression/mania-like behaviors in female mice in a time-dependent way. Interpretation Increased PVN-OXT and DLPFC-OXTR expression are characteristic for BD, at least for male BD patients. Stimulation of PVN-OXT neurons induced mood changes in mice, in a pattern different from BD. Funding 10.13039/501100001809National Natural Science Foundation of China (81971268, 82101592).
Collapse
|
9
|
Schmied A, Varma S, Dubinsky JM. Acceptability of Neuroscientific Interventions in Education. SCIENCE AND ENGINEERING ETHICS 2021; 27:52. [PMID: 34351520 DOI: 10.1007/s11948-021-00328-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Researchers are increasingly applying neuroscience technologies that probe or manipulate the brain to improve educational outcomes. However, their use remains fraught with ethical controversies. Here, we investigate the acceptability of neuroscience applications to educational practice in two groups of young adults: those studying bioscience who will be driving future basic neuroscience research and technology transfer, and those studying education who will be choosing among neuroscience-derived applications for their students. Respondents rated the acceptability of six scenarios describing neuroscience applications to education spanning multiple methodologies, from neuroimaging to neuroactive drugs to brain stimulation. They did so from two perspectives (student, teacher) and for three recipient populations (low-achieving, high-achieving students, students with learning disabilities). Overall, the biosciences students were more favorable to all neuroscience applications than the education students. Scenarios that measured brain activity (i.e., EEG or fMRI) to assess or predict intellectual abilities were deemed more acceptable than manipulations of mental activity by drug use or stimulation techniques, which may violate body integrity. Enhancement up to the norm for low-achieving students and especially students with learning disabilities was more favorably viewed than enhancement beyond the norm for high-achieving students. Finally, respondents rated neuroscientific applications to be less acceptable when adopting the perspective of a teacher than that of a student. Future studies should go beyond the acceptability ratings collected here to delineate the role that concepts of access, equity, authenticity, agency and personal choice play in guiding respondents' reasoning.
Collapse
Affiliation(s)
- A Schmied
- Department of Educational Psychology, University of Minnesota, Minneapolis, MN, USA
| | - S Varma
- School of Interactive Computing, College of Computing & School of Psychology, College of Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - J M Dubinsky
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
10
|
Ceschim VC, Sumarán P, Borges AA, Girardi CEN, Suchecki D. Maternal deprivation during early infancy in rats increases oxytocin immunoreactivity in females and corticosterone reactivity to a social test in both sexes without changing emotional behaviour. Horm Behav 2021; 129:104928. [PMID: 33453261 DOI: 10.1016/j.yhbeh.2021.104928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/18/2022]
Abstract
Impairment of social behaviour is a hallmark of emotional disorders, with increased avoidance of social contact. In rats, the 24 h maternal deprivation (DEP) paradigm is used to understand the impact of extreme neglect on neurodevelopment. Due to the distinct immediate effects of DEP on postnatal days (PND) 3 (DEP3) or 11 (DEP11), in the present study we investigated the long-term effects of DEP at these ages on anxiety-like behaviour, by recording the visits and time spent in the centre part of the open-field, social investigation of a confined, same-sex, unfamiliar animal, basal and post-social test corticosterone plasma levels and the immunoreactivity to oxytocin in the paraventricular (PVN) and supraoptic nuclei of the hypothalamus (SON). Whole litters were distributed into control (CTL), DEP3 or DEP11 groups and behavioural tests and biological samples were collected between PNDs 40 and 45 in males and females. There were no differences in the exploration of the central part of the open field or on the time investigating the unfamiliar rat. However, the percent increase in post-test corticosterone secretion from baseline was greater for both DEP3 male and female subgroups than their CTL and DEP11 counterparts. DEP3 females showed more oxytocin staining than DEP11 counterparts in magnocellular neurons of the SON and PVN. These results suggest that DEP at the ages chosen does not alter social investigation, although it results in distinct neurobiological outcomes, depending on the developmental phase when it is imposed.
Collapse
Affiliation(s)
- Viviane C Ceschim
- Department of Psychobiology, Universidade Federal de São Paulo -, São Paulo, Brazil
| | - Paula Sumarán
- Department of Psychobiology, Universidade Federal de São Paulo -, São Paulo, Brazil
| | - Andrea A Borges
- Department of Psychobiology, Universidade Federal de São Paulo -, São Paulo, Brazil
| | | | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo -, São Paulo, Brazil.
| |
Collapse
|
11
|
Loth MK, Donaldson ZR. Oxytocin, Dopamine, and Opioid Interactions Underlying Pair Bonding: Highlighting a Potential Role for Microglia. Endocrinology 2021; 162:6046188. [PMID: 33367612 PMCID: PMC7787427 DOI: 10.1210/endocr/bqaa223] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Indexed: 02/06/2023]
Abstract
Pair bonds represent some of the strongest attachments we form as humans. These relationships positively modulate health and well-being. Conversely, the loss of a spouse is an emotionally painful event that leads to numerous deleterious physiological effects, including increased risk for cardiac dysfunction and mental illness. Much of our understanding of the neuroendocrine basis of pair bonding has come from studies of monogamous prairie voles (Microtus ochrogaster), laboratory-amenable rodents that, unlike laboratory mice and rats, form lifelong pair bonds. Specifically, research using prairie voles has delineated a role for multiple neuromodulatory and neuroendocrine systems in the formation and maintenance of pair bonds, including the oxytocinergic, dopaminergic, and opioidergic systems. However, while these studies have contributed to our understanding of selective attachment, few studies have examined how interactions among these 3 systems may be essential for expression of complex social behaviors, such as pair bonding. Therefore, in this review, we focus on how the social neuropeptide, oxytocin, interacts with classical reward system modulators, including dopamine and endogenous opioids, during bond formation and maintenance. We argue that an understanding of these interactions has important clinical implications and is required to understand the evolution and encoding of complex social behaviors more generally. Finally, we provide a brief consideration of future directions, including a discussion of the possible roles that glia, specifically microglia, may have in modulating social behavior by acting as a functional regulator of these 3 neuromodulatory systems.
Collapse
Affiliation(s)
- Meredith K Loth
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Zoe R Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Correspondence: Zoe R. Donaldson, PhD, University of Colorado Boulder, 347 UCB, Boulder, CO 80309, USA.
| |
Collapse
|
12
|
Lewis EM, Stein-O'Brien GL, Patino AV, Nardou R, Grossman CD, Brown M, Bangamwabo B, Ndiaye N, Giovinazzo D, Dardani I, Jiang C, Goff LA, Dölen G. Parallel Social Information Processing Circuits Are Differentially Impacted in Autism. Neuron 2020; 108:659-675.e6. [PMID: 33113347 PMCID: PMC8033501 DOI: 10.1016/j.neuron.2020.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/21/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023]
Abstract
Parallel processing circuits are thought to dramatically expand the network capabilities of the nervous system. Magnocellular and parvocellular oxytocin neurons have been proposed to subserve two parallel streams of social information processing, which allow a single molecule to encode a diverse array of ethologically distinct behaviors. Here we provide the first comprehensive characterization of magnocellular and parvocellular oxytocin neurons in male mice, validated across anatomical, projection target, electrophysiological, and transcriptional criteria. We next use novel multiple feature selection tools in Fmr1-KO mice to provide direct evidence that normal functioning of the parvocellular but not magnocellular oxytocin pathway is required for autism-relevant social reward behavior. Finally, we demonstrate that autism risk genes are enriched in parvocellular compared with magnocellular oxytocin neurons. Taken together, these results provide the first evidence that oxytocin-pathway-specific pathogenic mechanisms account for social impairments across a broad range of autism etiologies.
Collapse
Affiliation(s)
- Eastman M Lewis
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Genevieve L Stein-O'Brien
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21205; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Alejandra V Patino
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Romain Nardou
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Cooper D Grossman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Matthew Brown
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Bidii Bangamwabo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Ndeye Ndiaye
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Daniel Giovinazzo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Ian Dardani
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connie Jiang
- Cell and Molecular Biology Group, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Loyal A Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | - Gül Dölen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
13
|
Mansouri M, Pouretemad H, Roghani M, Wegener G, Ardalan M. Autistic-like behaviours and associated brain structural plasticity are modulated by oxytocin in maternally separated rats. Behav Brain Res 2020; 393:112756. [PMID: 32535183 DOI: 10.1016/j.bbr.2020.112756] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Early psycho-social experiences influence the developing brain and possible onset of various neurodevelopmental disorders, such as Autism Spectrum Disorder (ASD). ASD is characterized by a variety of brain abnormalities, including alteration of oxytocin receptors in the brain. Recently, early life adverse experiences, such as maternal separation (MS), have been shown to constitute risk factors for ASD in preclinical studies. Therefore, the main aims of the current study were to i) explore the association between onset of autistic-like behaviours and molecular/structural changes in the brain following MS, and ii) evaluate the possible beneficial effects of oxytocin treatment on the same parameters. METHOD AND MATERIAL Male rats were exposed to the maternal separation from post-natal day (PND) 1 to PND14. After weaning, daily injections of oxytocin (1 mg/kg, ip) were administered (PND 22-30), followed by examination of autism-related behaviours at adolescence (PND 42-50). Brain structural plasticity was examined using stereological methods, and the plasma level of brain derived neurotrophic factor (BDNF) was analysed using ELISA. RESULTS We found that maternal separation induced autistic-like behaviours, which was associated with increase in the hippocampal CA1 stratum radiatum (CA1.SR) volume. In addition, we observed increase in the infralimbic brain region volume and in the number of the pyramidal neurons in the same brain region. Maternal separation significantly increased the plasma BDNF levels. Treatment with oxytocin improved autistic like behaviours, normalized the number of neurons and the volume of the infralimbic region as well as the plasma BDNF level (p < 0.05). CONCLUSION Maternal separation induced autistic-like behaviours, brain structural impairment together with plasma BDNF level abnormality, which could be improved by oxytocin treatment.
Collapse
Affiliation(s)
- Monireh Mansouri
- Department of Cognitive Psychology, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran; Center of Excellence in Cognitivr Neuropsychology, Institue for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Hamidreza Pouretemad
- Department of Cognitive Psychology, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran; Department of Psychology, Shahid Beheshti University, Tehran, Iran.
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa; AUGUST Centre, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Maryam Ardalan
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Centre for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Verhagen M, Verweij KJH, Lodder GMA, Goossens L, Verschueren K, Van Leeuwen K, Van den Noortgate W, Claes S, Bijttebier P, Van Assche E, Vink JM. A SNP, Gene, and Polygenic Risk Score Approach of Oxytocin-Vasopressin Genes in Adolescents' Loneliness. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2020; 30 Suppl 2:333-348. [PMID: 30697859 PMCID: PMC7277497 DOI: 10.1111/jora.12480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Not much is known regarding underlying biological pathways to adolescents' loneliness. Insight in underlying molecular mechanisms could inform intervention efforts aimed at reducing loneliness. Using latent growth curve modeling, baseline levels and development of loneliness were studied in two longitudinal adolescent samples. Genes (OXTR, OXT, AVPR1A, AVPR1B) were examined using SNP-based, gene-based, and polygenic risk score (PRS) approaches. In both samples, SNP- and gene-based tests showed involvement of the OXTR gene in development of loneliness, though, significance levels did not survive correction for multiple testing. The PRS approach provided no evidence for relations with loneliness. We recommend alternative phenotyping methods, including environmental factors, to consider epigenetic studies, and to examine possible endophenotypes in relation to adolescents' loneliness.
Collapse
|
15
|
Serum oxytocin levels are elevated in body dysmorphic disorder and related to severity of psychopathology. Psychoneuroendocrinology 2019; 113:104541. [PMID: 31862613 PMCID: PMC6939310 DOI: 10.1016/j.psyneuen.2019.104541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 11/27/2022]
Abstract
The neurobiological mechanisms underlying the pathophysiology of body dysmorphic disorder (BDD) are not well-understood. Oxytocin is a central nervous system peptide which regulates socioemotional functioning and may mediate physiologic processes in a range of psychiatric disorders, particularly those characterized by interpersonal dysfunction. Examining the role of oxytocin in the development and maintenance of BDD may elucidate new targets for intervention. The present study examined endogenous serum oxytocin levels in BDD. Given the prominent deficits in social functioning in BDD, we expected that BDD would be characterized by low basal serum oxytocin concentrations, relative to healthy controls, and that low oxytocin levels would be associated with BDD symptom severity as well as poor performance on measures of social cognition. Twenty individuals with BDD and 28 healthy controls completed a fasting blood draw consisting of frequent sampling every five minutes for one hour to measure pooled levels of oxytocin. Contrary to our hypotheses, people with BDD displayed higher concentrations of oxytocin, compared to their healthy control counterparts, and their oxytocin levels were positively correlated with BDD symptom severity. There were no associations between oxytocin levels and measures of social cognition. These findings suggest increased production of endogenous oxytocin in BDD. Prospective research is needed to determine whether this contributes to or is a consequence of BDD symptomatology.
Collapse
|
16
|
Leng H, Zhang X, Wang Q, Luan X, Sun X, Guo F, Gao S, Liu X, Xu L. Regulation of stress-induced gastric ulcers via central oxytocin and a potential mechanism through the VTA-NAc dopamine pathway. Neurogastroenterol Motil 2019; 31:e13655. [PMID: 31172654 DOI: 10.1111/nmo.13655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/29/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Oxytocin (OT) plays an important role in regulating gastric function. How OT regulates stress-induced gastric ulcers is not understood. We investigated OT's protective role in stress-induced gastric ulcers, with a focus on OT's interaction with the ventral tegmental area (VTA) to nucleus accumbens (NAc) dopamine pathway. METHODS Drugs administration into the rats brain nuclei by brain stereotaxic apparatus, to examine related changes in gastric ulcer index, pH of gastric content, and mucus secretion, and to determine complex interactions between OT and DA systems in the regulation of stress and gastric functions. KEY RESULTS Neurons in the VTA were co-immunoreactive for the OT receptor (OTR) and DA. In a rat model of stress-induced ulcer, water-immersion restricted stress, direct administration of OT into the VTA significantly reduced gastric ulcer index and increased the pH of gastric content and mucus secretion. OT's effects were eliminated by pretreatment with the OTR antagonist atosiban in the VTA and weakened with pretreatment of the DA D2 receptor (DA D2R) antagonist raclopride in the NAc. In OTR gene knockout (Oxtr-/- ) mice, OT's protective effect was lost. OT administered to the VTA of dorsal motor nucleus of the vagus (DMV)-lesioned rats had minimal protective effects on gastric mucosa. CONCLUSIONS AND INFERENCES This study provides important data necessary for a deeper understanding of the complex interactions between OT and DA systems in the regulation of stress and gastric functions. It provides relevant mechanistic clues into OT's role as a protective factor against stress-induced changes to gastric function.
Collapse
Affiliation(s)
- Hui Leng
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Xiaoqian Zhang
- Doctoral School of Biomedical Sciences, Leuven, Belgium.,Family Medicine Department, Qingdao United Family Hospital, Qingdao, China
| | - Qian Wang
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Xiao Luan
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Feifei Guo
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Shengli Gao
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Xuehuan Liu
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| | - Luo Xu
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
17
|
Nardou R, Lewis EM, Rothhaas R, Xu R, Yang A, Boyden E, Dölen G. Oxytocin-dependent reopening of a social reward learning critical period with MDMA. Nature 2019; 569:116-120. [PMID: 30944474 DOI: 10.1038/s41586-019-1075-9] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/04/2019] [Indexed: 01/29/2023]
Abstract
A critical period is a developmental epoch during which the nervous system is expressly sensitive to specific environmental stimuli that are required for proper circuit organization and learning. Mechanistic characterization of critical periods has revealed an important role for exuberant brain plasticity during early development, and for constraints that are imposed on these mechanisms as the brain matures1. In disease states, closure of critical periods limits the ability of the brain to adapt even when optimal conditions are restored. Thus, identification of manipulations that reopen critical periods has been a priority for translational neuroscience2. Here we provide evidence that developmental regulation of oxytocin-mediated synaptic plasticity (long-term depression) in the nucleus accumbens establishes a critical period for social reward learning. Furthermore, we show that a single dose of (+/-)-3,4-methylendioxymethamphetamine (MDMA) reopens the critical period for social reward learning and leads to a metaplastic upregulation of oxytocin-dependent long-term depression. MDMA-induced reopening of this critical period requires activation of oxytocin receptors in the nucleus accumbens, and is recapitulated by stimulation of oxytocin terminals in the nucleus accumbens. These findings have important implications for understanding the pathogenesis of neurodevelopmental diseases that are characterized by social impairments and of disorders that respond to social influence or are the result of social injury3.
Collapse
Affiliation(s)
- Romain Nardou
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Solomon H. Snyder Department of Neuroscience, Wendy Klag Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eastman M Lewis
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Solomon H. Snyder Department of Neuroscience, Wendy Klag Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebecca Rothhaas
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Solomon H. Snyder Department of Neuroscience, Wendy Klag Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ran Xu
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.,McGovern Institute, MIT, Cambridge, MA, USA
| | - Aimei Yang
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.,McGovern Institute, MIT, Cambridge, MA, USA.,Department of Biological Engineering, Media Laboratory, Koch Institute, MIT, Cambridge, MA, USA
| | - Edward Boyden
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.,McGovern Institute, MIT, Cambridge, MA, USA.,Department of Biological Engineering, Media Laboratory, Koch Institute, MIT, Cambridge, MA, USA
| | - Gül Dölen
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,The Solomon H. Snyder Department of Neuroscience, Wendy Klag Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,The Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Onaka T, Takayanagi Y. Role of oxytocin in the control of stress and food intake. J Neuroendocrinol 2019; 31:e12700. [PMID: 30786104 PMCID: PMC7217012 DOI: 10.1111/jne.12700] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
Abstract
Oxytocin neurones in the hypothalamus are activated by stressful stimuli and food intake. The oxytocin receptor is located in various brain regions, including the sensory information-processing cerebral cortex; the cognitive information-processing prefrontal cortex; reward-related regions such as the ventral tegmental areas, nucleus accumbens and raphe nucleus; stress-related areas such as the amygdala, hippocampus, ventrolateral part of the ventromedial hypothalamus and ventrolateral periaqueductal gray; homeostasis-controlling hypothalamus; and the dorsal motor complex controlling intestinal functions. Oxytocin affects behavioural and neuroendocrine stress responses and terminates food intake by acting on the metabolic or nutritional homeostasis system, modulating emotional processing, reducing reward values of food intake, and facilitating sensory and cognitive processing via multiple brain regions. Oxytocin also plays a role in interactive actions between stress and food intake and contributes to adaptive active coping behaviours.
Collapse
Affiliation(s)
- Tatsushi Onaka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsuke‐shiJapan
| | - Yuki Takayanagi
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityShimotsuke‐shiJapan
| |
Collapse
|
19
|
Ariana M, Pornour M, Mehr SS, Vaseghi H, Ganji SM, Alivand MR, Salari M, Akbari ME. Preventive effects of oxytocin and oxytocin receptor in breast cancer pathogenesis. Per Med 2018; 16:25-34. [PMID: 30451597 DOI: 10.2217/pme-2018-0009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIM Modifications of oxytocin (OT) concentration and OT receptor (OXTR) expression level have different effects on breast cancer-derived cells. This study was conducted to evaluate OT variation in breast cancer patients and to evaluate OXTR expression changes in breast cancer tissues. METHODS The plasma concentrations of OT in both breast cancer patients and healthy individuals' samples were assessed. OXTR variations were then assessed in both cancerous and noncancerous breast tissues. RESULTS OT had an increase in breast cancer patients and expression of OXTR in contralateral breast was more than cancerous tissues. CONCLUSION Despite the high levels of OT concentration in breast cancer patients, it seems that a lower expression of OXTR in cancerous tissues can be effective in the breast cancer progression.
Collapse
Affiliation(s)
- Mehdi Ariana
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Pornour
- Department of Photo Healing & Regeneration, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture & Research (ACECR), Tehran, Iran
| | - Saeedeh Sarafraz Mehr
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hajar Vaseghi
- Department of Photo Healing & Regeneration, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture & Research (ACECR), Tehran, Iran
| | | | - Mohammad R Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Salari
- Department of Biostatistics, Faculty of Medical Sciences, Terabit Modares University, Tehran, Iran
| | - Mohammad E Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
|
21
|
Engelbert B. Knowledge in Neuroscience Can Help Us Avoid Underperforming Leaders. LEADERSHIP 2018. [DOI: 10.5772/intechopen.78564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Maynard KR, Hobbs JW, Phan BN, Gupta A, Rajpurohit S, Williams C, Rajpurohit A, Shin JH, Jaffe AE, Martinowich K. BDNF-TrkB signaling in oxytocin neurons contributes to maternal behavior. eLife 2018; 7:33676. [PMID: 30192229 PMCID: PMC6135608 DOI: 10.7554/elife.33676] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 09/02/2018] [Indexed: 12/18/2022] Open
Abstract
Brain-derived neurotrophic factor (Bdnf) transcription is controlled by several promoters, which drive expression of multiple transcripts encoding an identical protein. We previously reported that BDNF derived from promoters I and II is highly expressed in hypothalamus and is critical for regulating aggression in male mice. Here we report that BDNF loss from these promoters causes reduced sexual receptivity and impaired maternal care in female mice, which is concomitant with decreased oxytocin (Oxt) expression during development. We identify a novel link between BDNF signaling, oxytocin, and maternal behavior by demonstrating that ablation of TrkB selectively in OXT neurons partially recapitulates maternal care impairments observed in BDNF-deficient females. Using translating ribosome affinity purification and RNA-sequencing we define a molecular profile for OXT neurons and delineate how BDNF signaling impacts gene pathways critical for structural and functional plasticity. Our findings highlight BDNF as a modulator of sexually-dimorphic hypothalamic circuits that govern female-typical behaviors.
Collapse
Affiliation(s)
- Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - John W Hobbs
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - BaDoi N Phan
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - Amolika Gupta
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - Sumita Rajpurohit
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - Courtney Williams
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - Anandita Rajpurohit
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States.,Department of Mental Health, Johns Hopkins University, Baltimore, United States.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
23
|
Mitre M, Kranz TM, Marlin BJ, Schiavo JK, Erdjument-Bromage H, Zhang X, Minder J, Neubert TA, Hackett TA, Chao MV, Froemke RC. Sex-Specific Differences in Oxytocin Receptor Expression and Function for Parental Behavior. GENDER AND THE GENOME 2017; 1:142-166. [PMID: 32959027 PMCID: PMC7500123 DOI: 10.1089/gg.2017.0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 01/17/2023] Open
Abstract
Parental care is among the most profound behavior expressed by humans and other animals. Despite intense interest in understanding the biological basis of parental behaviors, it remains unknown how much of parenting is encoded by the genome and which abilities instead are learned or can be refined by experience. One critical factor at the intersection between innate behaviors and experience-dependent learning is oxytocin, a neurohormone important for maternal physiology and neuroplasticity. Oxytocin acts throughout the body and brain to promote prosocial and maternal behaviors and modulates synaptic transmission to affect neural circuit dynamics. Recently we developed specific antibodies to mouse oxytocin receptors, found that oxytocin receptors are left lateralized in female auditory cortex, and examined how oxytocin enables maternal behavior by sensitizing the cortex to infant distress sounds. In this study we compare oxytocin receptor expression and function in male and female mice. Receptor expression is higher in adult female left auditory cortex than in right auditory cortex or males. Developmental profiles and mRNA expression were comparable between males and females. Behaviorally, male and female mice began expressing parental behavior similarly after cohousing with experienced females; however, oxytocin enhanced parental behavior onset in females but not males. This suggests that left lateralization of oxytocin receptor expression in females provides a mechanism for accelerating maternal behavior onset, although male mice can also effectively co-parent after experience with infants. The sex-specific pattern of oxytocin receptor expression might genetically predispose female cortex to respond to infant cues, which both males and females can also rapidly learn.
Collapse
Affiliation(s)
- Mariela Mitre
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
- Department of Cell Biology, Psychiatry, New York University School of Medicine, New York, New York
| | - Thorsten M. Kranz
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
- Department of Cell Biology, Psychiatry, New York University School of Medicine, New York, New York
| | - Bianca J. Marlin
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
| | - Jennifer K. Schiavo
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
| | - Hediye Erdjument-Bromage
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | | | - Jess Minder
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
| | - Thomas A. Neubert
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Troy A. Hackett
- Department of Hearing and Speech Sciences, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Moses V. Chao
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
- Department of Cell Biology, Psychiatry, New York University School of Medicine, New York, New York
| | - Robert C. Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
| |
Collapse
|
24
|
|
25
|
|
26
|
Munro C, Randell L, Lawrie SM. An Integrative Bio-Psycho-Social Theory of Anorexia Nervosa. Clin Psychol Psychother 2016; 24:1-21. [PMID: 27739190 DOI: 10.1002/cpp.2047] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 06/24/2016] [Accepted: 09/14/2016] [Indexed: 12/16/2022]
Abstract
The need for novel approaches to understanding and treating anorexia nervosa (AN) is well recognized. The aim of this paper is to describe an integrative bio-psycho-social theory of maintaining factors in AN. We took a triangulation approach to develop a clinically relevant theory with face validity and internal consistency. We developed theoretical ideas from our clinical practice and reviewed theoretical ideas within the eating disorders and wider bio-psycho-social literature. The synthesis of these ideas and concepts into a clinically meaningful framework is described here. We suggest eight key factors central to understanding the maintenance and treatment resistance of anorexia nervosa: genetic or experiential predisposing factors; dysfunctional feelings processing and regulation systems; excessive vulnerable feelings; 'feared self' beliefs; starvation as a maladaptive physiological feelings regulation mechanism; maladaptive psychological coping modes; maladaptive social behaviour; and unmet physical and psychological core needs. Each of these factors serves to maintain the disorder. The concept of universal physical and psychological core needs can provide an underpinning integrative framework for working with this distinctly physical and psychological disorder. This framework could be used within any treatment model. We suggest that treatments which help address the profound lack of trust, emotional security and self-acceptance in this patient group will in turn address unmet needs and improve well-being. Copyright © 2016 John Wiley & Sons, Ltd. KEY PRACTITIONER MESSAGE The concept of unmet physical and psychological needs can be used as an underlying integrative framework for understanding and working with this patient group, alongside any treatment model. A functional understanding of the neuro-biological, physiological and psychological mechanisms involved in anorexia nervosa can help patients reduce self-criticism and shame. Fears about being or becoming fat, greedy, needy, selfish and unacceptable ('Feared Self') drive over-compensatory self-depriving behaviour ('Anorexic Self'). Psychological treatment for anorexia nervosa should emphasize a focus on feelings and fostering experiences of acceptance and trust. Treatment for patients with anorexia nervosa needs to be longer than current clinical practice.
Collapse
Affiliation(s)
- Calum Munro
- Anorexia Nervosa Intensive Treatment Team Eating Disorders Department, Royal Edinburgh Hospital, Edinburgh, UK.,Department of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Louise Randell
- Anorexia Nervosa Intensive Treatment Team Eating Disorders Department, Royal Edinburgh Hospital, Edinburgh, UK
| | - Stephen M Lawrie
- Department of Psychiatry, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| |
Collapse
|
27
|
Colloca L, Pine DS, Ernst M, Miller FG, Grillon C. Vasopressin Boosts Placebo Analgesic Effects in Women: A Randomized Trial. Biol Psychiatry 2016; 79:794-802. [PMID: 26321018 PMCID: PMC4740270 DOI: 10.1016/j.biopsych.2015.07.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/20/2015] [Accepted: 07/30/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Social cues and interpersonal interactions strongly contribute to evoke placebo effects that are pervasive in medicine and depend upon the activation of endogenous modulatory systems. Here, we explore the possibility to boost placebo effects by targeting pharmacologically the vasopressin system, characterized by a sexually dimorphic response and involved in the regulation of human and nonhuman social behaviors. METHODS We enrolled 109 healthy participants and studied the effects of intranasal administration of an arginine vasopressin 1A and 1B receptor agonist against 1) no treatment, 2) oxytocin, and 3) saline in a randomized, placebo-controlled, double-blind, parallel design trial using a well-established model of placebo analgesia while controlling for sex differences. RESULTS Vasopressin agonists boosted placebo effects in women but had no effect in men. The effects of vasopressin on expectancy-induced analgesia were significantly larger than those observed in the no-treatment (p < .004), oxytocin (p < .001), and saline (p < .015) groups. Moreover, women with lower dispositional anxiety and cortisol levels showed the largest vasopressin-induced modulation of placebo effects, suggesting a moderating interplay between pre-existing psychological factors and treatment cortisol changes. CONCLUSIONS This is the first study that demonstrates that arginine vasopressin boosts placebo effects and that the effect of vasopressin depends upon a significant sex by treatment interaction. These findings are novel and might open up new avenues for clinically relevant research due to the therapeutic potentials of vasopressin as well as the possibility to systematically control for influences of placebo responses in clinical trials.
Collapse
|
28
|
Górski K, Marciniak E, Zielińska-Górska M, Misztal T. Salsolinol Up-Regulates Oxytocin Expression and Release During Lactation in Sheep. J Neuroendocrinol 2016; 28:12362. [PMID: 26749292 DOI: 10.1111/jne.12362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 01/07/2023]
Abstract
Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) is a dopamine-derived compound present in the central nervous system and pituitary gland. Several previous studies on lactating sheep and rats have reported that salsolinol plays a crucial role in the regulation of prolactin secretion. The present study investigated the effects of salsolinol, which was infused into the third ventricle of the brain, on oxytocin expression and release in lactating sheep, 48 h after weaning of 8-week-old lambs. Serial 30-min infusions of salsolinol and vehicle were performed at 30-min intervals from 10.00 to 15.00 h. Blood samples were collected every 10 min. The supraoptic nucleus (SON), paraventricular nucleus (PVN) and posterior pituitary were collected immediately after the experiment. Expression levels of mRNAs for oxytocin and peptidylglycine α-amidating monooxygenase (PAM), the terminal enzyme in the oxytocin synthesis pathway, were measured using a real-time polymerase chain reaction. Oxytocin peptide content in the posterior pituitary was measured by an enzyme-linked immunosorbent assay, and plasma oxytocin concentration was measured by radioimmunoassay. Salsolinol treatment significantly up-regulated oxytocin and PAM gene expression in the SON (P < 0.01 and P < 0.05, respectively), PVN (P < 0.01 and P < 0.05, respectively) and posterior pituitary (P < 0.05 and P < 0.05, respectively). Oxytocin peptide content in the posterior pituitary and the area under the response curve of plasma oxytocin were significantly (P < 0.05 and P < 0.01, respectively) higher in salsolinol-treated sheep than in control animals. The present study shows for the first time that salsolinol stimulates oxytocin secretion during lactation in sheep.
Collapse
Affiliation(s)
- K Górski
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - E Marciniak
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - M Zielińska-Górska
- Department of Neuroendocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - T Misztal
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| |
Collapse
|
29
|
Abstract
Over 70 years since the first description of the disease, disrupted social behavior remains a core clinical feature of autistic spectrum disorder. The complex etiology of the disorder portends the need for a better understanding of the brain mechanisms that enable social behaviors, particularly those that are relevant to autism which is characterized by a failure to develop peer relationships, difficulty with emotional reciprocity and imitative play, and disrupted language and communication skills. Toward this end, the current review will examine recent progress that has been made toward understanding the neural mechanisms underlying consociate social attachments.
Collapse
Affiliation(s)
- Gül Dölen
- a Department of Neuroscience, Brain Science Institute, Wendy Klag Center for Autism and Developmental Disabilities , Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|