1
|
Wang M, Qian Y, Yu X, Xing Y. Effectiveness of Horticultural Therapy in Older Patients With Dementia: A Meta-Analysis Systemic Review. J Clin Nurs 2024. [PMID: 39275900 DOI: 10.1111/jocn.17444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024]
Abstract
AIM Our study aims to assess the effectiveness of horticultural therapy in improving outcomes in older patients with dementia. DESIGN A systematic review and meta-analysis. METHODS The included studies comprised randomised controlled trials (RCTs) that aimed to assess the effectiveness of horticultural therapy on cognitive function in older patients with dementia. The study design and data extraction were independently conducted by two investigators, who also evaluated the risk of bias using RoB 2.0. The meta-analysis was carried out using Stata 15.1 software. DATA SOURCES On November 2023, we searched relevant English and Chinese publications in PubMed, Web of Science, Cochrane Library, Embase, CNKI and Wanfang databases. RESULTS The meta-analysis included a total of 9 RCTs, involving 655 older patients diagnosed with dementia. The findings from these studies demonstrated that horticultural therapy had a significant positive impact on various aspects of the patients' well-being when compared to conventional care. Specifically, it was found to improve cognitive function scores, alleviate symptoms of depression, enhance daily activities and enhance overall quality of life. When conducting a subgroup analysis, it was observed that horticultural therapy had a statistically significant effect on cognitive function in older patients with dementia when the intervention frequency was at least two times per week. Furthermore, interventions with a duration of less than 6 months were found to be more effective than those lasting 6 months or longer. Additionally, outdoor horticultural therapy was found to be superior to indoor interventions. Moreover, structured interventions were observed to yield better outcomes compared to non-structured interventions. CONCLUSION More high-quality studies are needed to further corroborate these findings due to the low quality of the included studies. Horticultural therapy has been found to have a significantly positive impact on the cognitive function, depression status, ADL, and quality of life of older patients with dementia. IMPLICATIONS FOR THE PROFESSION AND/OR PATIENT CARE We provide references for non-pharmacologic treatment of older patients with dementia. WHAT PROBLEM DID THE STUDY ADDRESS?: This study aimed to measure the efficacy of horticultural therapy in older patients with dementia across four dimensions: cognitive function, depression levels, daily living activities and overall quality of life. WHAT WERE THE MAIN FINDINGS?: In older patients with dementia, horticultural therapy has been proven to have a significant positive impact on cognitive function, depressive status, activities of daily living and quality of life. WHERE AND ON WHOM WILL THE RESEARCH HAVE AN IMPACT?: This study will inform non-pharmacological interventions for older patients with dementia worldwide. PATIENT OR PUBLIC CONTRIBUTION No Patient or Public Contribution.
Collapse
Affiliation(s)
- Min Wang
- School of Nursings, Hangzhou Normal University, Hangzhou, China
| | - Ying Qian
- School of Nursings, Hangzhou Normal University, Hangzhou, China
| | - Xiaoyun Yu
- School of Nursings, Hangzhou Normal University, Hangzhou, China
| | - Yubo Xing
- School of Nursings, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
2
|
Hickman LB, Stern JM, Silverman DHS, Salamon N, Vossel K. Clinical, imaging, and biomarker evidence of amyloid- and tau-related neurodegeneration in late-onset epilepsy of unknown etiology. Front Neurol 2023; 14:1241638. [PMID: 37830092 PMCID: PMC10565489 DOI: 10.3389/fneur.2023.1241638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023] Open
Abstract
Accumulating evidence suggests amyloid and tau-related neurodegeneration may play a role in development of late-onset epilepsy of unknown etiology (LOEU). In this article, we review recent evidence that epilepsy may be an initial manifestation of an amyloidopathy or tauopathy that precedes development of Alzheimer's disease (AD). Patients with LOEU demonstrate an increased risk of cognitive decline, and patients with AD have increased prevalence of preceding epilepsy. Moreover, investigations of LOEU that use CSF biomarkers and imaging techniques have identified preclinical neurodegeneration with evidence of amyloid and tau deposition. Overall, findings to date suggest a relationship between acquired, non-lesional late-onset epilepsy and amyloid and tau-related neurodegeneration, which supports that preclinical or prodromal AD is a distinct etiology of late-onset epilepsy. We propose criteria for assessing elevated risk of developing dementia in patients with late-onset epilepsy utilizing clinical features, available imaging techniques, and biomarker measurements. Further research is needed to validate these criteria and assess optimal treatment strategies for patients with probable epileptic preclinical AD and epileptic prodromal AD.
Collapse
Affiliation(s)
- L. Brian Hickman
- Mary S. Easton Center for Alzheimer’s Research and Care, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, UCLA Seizure Disorder Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - John M. Stern
- Department of Neurology, UCLA Seizure Disorder Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel H. S. Silverman
- Mary S. Easton Center for Alzheimer’s Research and Care, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Keith Vossel
- Mary S. Easton Center for Alzheimer’s Research and Care, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Dulewicz M, Kulczyńska-Przybik A, Mroczko P, Kornhuber J, Lewczuk P, Mroczko B. Biomarkers for the Diagnosis of Alzheimer’s Disease in Clinical Practice: The Role of CSF Biomarkers during the Evolution of Diagnostic Criteria. Int J Mol Sci 2022; 23:ijms23158598. [PMID: 35955728 PMCID: PMC9369334 DOI: 10.3390/ijms23158598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive condition and the most common cause of dementia worldwide. The neuropathological changes characteristic of the disorder can be successfully detected before the development of full-blown AD. Early diagnosis of the disease constitutes a formidable challenge for clinicians. CSF biomarkers are the in vivo evidence of neuropathological changes developing in the brain of dementia patients. Therefore, measurement of their concentrations allows for improved accuracy of clinical diagnosis. Moreover, AD biomarkers may provide an indication of disease stage. Importantly, the CSF biomarkers of AD play a pivotal role in the new diagnostic criteria for the disease, and in the recent biological definition of AD by the National Institute on Aging, NIH and Alzheimer’s Association. Due to the necessity of collecting CSF by lumbar puncture, the procedure seems to be an important issue not only from a medical, but also a legal, viewpoint. Furthermore, recent technological advances may contribute to the automation of AD biomarkers measurement and may result in the establishment of unified cut-off values and reference limits. Moreover, a group of international experts in the field of AD biomarkers have developed a consensus and guidelines on the interpretation of CSF biomarkers in the context of AD diagnosis. Thus, technological advancement and expert recommendations may contribute to a more widespread use of these diagnostic tests in clinical practice to support a diagnosis of mild cognitive impairment (MCI) or dementia due to AD. This review article presents up-to-date data regarding the usefulness of CSF biomarkers in routine clinical practice and in biomarkers research.
Collapse
Affiliation(s)
- Maciej Dulewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (P.L.); (B.M.)
- Correspondence:
| | - Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (P.L.); (B.M.)
| | - Piotr Mroczko
- Department of Criminal Law and Criminology, Faculty of Law, University of Bialystok, 15-213 Bialystok, Poland;
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Piotr Lewczuk
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (P.L.); (B.M.)
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (P.L.); (B.M.)
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
4
|
Han HJ, Powers SJ, Gabrielson KL. The Common Marmoset-Biomedical Research Animal Model Applications and Common Spontaneous Diseases. Toxicol Pathol 2022; 50:628-637. [PMID: 35535728 PMCID: PMC9310150 DOI: 10.1177/01926233221095449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Marmosets are becoming more utilized in biomedical research due to multiple advantages including (1) a nonhuman primate of a smaller size with less cost for housing, (2) physiologic similarities to humans, (3) translatable hepatic metabolism, (4) higher numbers of litters per year, (5) genome is sequenced, molecular reagents are available, (6) immunologically similar to humans, (7) transgenic marmosets with germline transmission have been produced, and (8) are naturally occurring hematopoietic chimeras. With more use of marmosets, disease surveillance over a wide range of ages of marmosets has been performed. This has led to a better understanding of the disease management of spontaneous diseases that can occur in colonies. Knowledge of clinical signs and histologic lesions can assist in maximizing the colony's health, allowing for improved outcomes in translational studies within biomedical research. Here, we describe some basic husbandry, biology, common spontaneous diseases, and animal model applications for the common marmoset in biomedical research.
Collapse
Affiliation(s)
- Hyo-Jeong Han
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- University of Ulsan, College of Medicine, Seoul, Korea
| | - Sarah J Powers
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Eggins P, Wong S, Wei G, Hodges JR, Husain M, Piguet O, Irish M, Kumfor F. A shared cognitive and neural basis underpinning cognitive apathy and planning in behavioural-variant frontotemporal dementia and Alzheimer's disease. Cortex 2022; 154:241-253. [DOI: 10.1016/j.cortex.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/05/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
|
6
|
Zúñiga Santamaría T, Yescas Gómez P, Fricke Galindo I, González González M, Ortega Vázquez A, López López M. Pharmacogenetic studies in Alzheimer disease. Neurologia 2022; 37:287-303. [PMID: 29898857 DOI: 10.1016/j.nrl.2018.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Alzheimer disease (AD) is the most common cause of dementia and is considered one of the main causes of disability and dependence affecting quality of life in elderly people and their families. Current pharmacological treatment includes acetylcholinesterase inhibitors (donepezil, galantamine, rivastigmine) and memantine; however, only one-third of patients respond to treatment. Genetic factors have been shown to play a role in this inter-individual variability in drug response. DEVELOPMENT We review pharmacogenetic reports of AD-modifying drugs, the pharmacogenetic biomarkers included, and the phenotypes evaluated. We also discuss relevant methodological considerations for the design of pharmacogenetic studies into AD. A total of 33 pharmacogenetic reports were found; the majority of these focused on the variability in response to and metabolism of donepezil. Most of the patients included were from Caucasian populations, although some studies also include Korean, Indian, and Brazilian patients. CYP2D6 and APOE are the most frequently studied biomarkers. The associations proposed are controversial. CONCLUSIONS Potential pharmacogenetic biomarkers for AD have been identified; however, it is still necessary to conduct further research into other populations and to identify new biomarkers. This information could assist in predicting patient response to these drugs and contribute to better treatment decision-making in a context as complex as aging.
Collapse
Affiliation(s)
- T Zúñiga Santamaría
- Maestría en Ciencias Farmacéuticas, Universidad Autónoma Metropolitana, Unidad Xochimilco, Coyoacán (México D. F.), México; Departamento de Neurogenética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Tlalpan (México D. F.), México
| | - P Yescas Gómez
- Departamento de Neurogenética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Tlalpan (México D. F.), México
| | - I Fricke Galindo
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Coyoacán (México D. F.), México
| | - M González González
- Unidad de Cognición y Conducta, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Tlalpan (México D. F.), México
| | - A Ortega Vázquez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Coyoacán (México D. F.), México
| | - M López López
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Coyoacán (México D. F.), México.
| |
Collapse
|
7
|
Nikolai T, Děchtěrenko F, Yaffe B, Georgi H, Kopecek M, Červenková M, Vyhnálek M, Bezdicek O. Reducing misclassification of mild cognitive impairment based on base rate information from the Uniform data set. AGING, NEUROPSYCHOLOGY, AND COGNITION 2022; 30:301-320. [PMID: 35012440 DOI: 10.1080/13825585.2021.2022593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The current study aimed to define and validate the criteria for characterizing possible and probable cognitive deficits based on the psychometric approach using the Uniform data set Czech version (UDS-CZ 2.0) to reduce the rate of misdiagnosis. We computed the prevalence of low scores on the 14 subtests of UDS-CZ 2.0 in a normative sample of healthy older adults and validated criteria for possible and probable cognitive impairment on the sample of amnestic Mild Cognitive Impairment (MCI) patients. The misclassification rate of the validation sample using psychometrically derived criteria remained low: for classification as possible impairment, we found 66-76% correct classification in the clinical sample and only 2-8% false positives in the healthy control validation sample, similar results were obtained for probable cognitive impairment. Our findings offer a psychometric approach and a computational tool to minimize the misdiagnosis of mild cognitive impairment compared to traditional criteria for MCI.
Collapse
Affiliation(s)
- Tomas Nikolai
- Department of Psychology, Charles University, Faculty of Arts, Prague, Czech Republic
- Department of Neurology and Centre of Clinical Neuroscience, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
- Department of Clinical Psychology, Motol University Hospital, Czech Republic
| | - Filip Děchtěrenko
- Department of Psychology, Charles University, Faculty of Arts, Prague, Czech Republic
- Czech Academy of Sciences, Institute of Psychology, Praha, Czech Republic
| | - Beril Yaffe
- Montefiore Medical Center, Bronx, New York, USA
| | - Hana Georgi
- Prague College of Psychosocial Studies, Prague, Czech Republic
| | | | - Markéta Červenková
- Department of Neurology and Centre of Clinical Neuroscience, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Vyhnálek
- International Clinical Research Centre, St. Anne’s University Hospital Brno, Brno, Czech Republic
- Memory Clinic, Department of Neurology, Second Faculty of Medicine and Motol University Hospital, Czech Republic
| | - Ondrej Bezdicek
- Department of Psychology, Charles University, Faculty of Arts, Prague, Czech Republic
- Department of Neurology and Centre of Clinical Neuroscience, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
8
|
Schindler SE, Li Y, Buckles VD, Gordon BA, Benzinger TLS, Wang G, Coble D, Klunk WE, Fagan AM, Holtzman DM, Bateman RJ, Morris JC, Xiong C. Predicting Symptom Onset in Sporadic Alzheimer Disease With Amyloid PET. Neurology 2021; 97:e1823-e1834. [PMID: 34504028 PMCID: PMC8610624 DOI: 10.1212/wnl.0000000000012775] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/12/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To predict when cognitively normal individuals with brain amyloidosis will develop symptoms of Alzheimer disease (AD). METHODS Brain amyloid burden was measured by amyloid PET with Pittsburgh compound B. The mean cortical standardized uptake value ratio (SUVR) was transformed into a timescale with the use of longitudinal data. RESULTS Amyloid accumulation was evaluated in 236 individuals who underwent >1 amyloid PET scan. The average age was 66.5 ± 9.2 years, and 12 individuals (5%) had cognitive impairment at their baseline amyloid PET scan. A tipping point in amyloid accumulation was identified at a low level of amyloid burden (SUVR 1.2), after which nearly all individuals accumulated amyloid at a relatively consistent rate until reaching a high level of amyloid burden (SUVR 3.0). The average time between levels of amyloid burden was used to estimate the age at which an individual reached SUVR 1.2. Longitudinal clinical diagnoses for 180 individuals were aligned by the estimated age at SUVR 1.2. In the 22 individuals who progressed from cognitively normal to a typical AD dementia syndrome, the estimated age at which an individual reached SUVR 1.2 predicted the age at symptom onset (R 2 = 0.54, p < 0.0001, root mean square error [RMSE] 4.5 years); the model was more accurate after exclusion of 3 likely misdiagnoses (R 2 = 0.84, p < 0.0001, RMSE 2.8 years). CONCLUSION The age at symptom onset in sporadic AD is strongly correlated with the age at which an individual reaches a tipping point in amyloid accumulation.
Collapse
Affiliation(s)
- Suzanne E Schindler
- From the Department of Neurology (S.E.S., Y.L., V.D.B., A.M.F., D.M.H., R.J.B., J.C.M.), Knight Alzheimer Disease Research Center (S.E.S., V.D.B., B.A.G., T.L.S.B., G.W., D.C., A.M.F., D.M.H., R.J.B., J.C.M., C.X.), Division of Biostatistics (Y.L., G.W., D.C., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (A.M.F., D.M.H., R.J.B.), Washington University School of Medicine, St. Louis, MO; and Department of Neurology and Psychiatry (W.E.K.), University of Pittsburgh, PA.
| | - Yan Li
- From the Department of Neurology (S.E.S., Y.L., V.D.B., A.M.F., D.M.H., R.J.B., J.C.M.), Knight Alzheimer Disease Research Center (S.E.S., V.D.B., B.A.G., T.L.S.B., G.W., D.C., A.M.F., D.M.H., R.J.B., J.C.M., C.X.), Division of Biostatistics (Y.L., G.W., D.C., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (A.M.F., D.M.H., R.J.B.), Washington University School of Medicine, St. Louis, MO; and Department of Neurology and Psychiatry (W.E.K.), University of Pittsburgh, PA
| | - Virginia D Buckles
- From the Department of Neurology (S.E.S., Y.L., V.D.B., A.M.F., D.M.H., R.J.B., J.C.M.), Knight Alzheimer Disease Research Center (S.E.S., V.D.B., B.A.G., T.L.S.B., G.W., D.C., A.M.F., D.M.H., R.J.B., J.C.M., C.X.), Division of Biostatistics (Y.L., G.W., D.C., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (A.M.F., D.M.H., R.J.B.), Washington University School of Medicine, St. Louis, MO; and Department of Neurology and Psychiatry (W.E.K.), University of Pittsburgh, PA
| | - Brian A Gordon
- From the Department of Neurology (S.E.S., Y.L., V.D.B., A.M.F., D.M.H., R.J.B., J.C.M.), Knight Alzheimer Disease Research Center (S.E.S., V.D.B., B.A.G., T.L.S.B., G.W., D.C., A.M.F., D.M.H., R.J.B., J.C.M., C.X.), Division of Biostatistics (Y.L., G.W., D.C., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (A.M.F., D.M.H., R.J.B.), Washington University School of Medicine, St. Louis, MO; and Department of Neurology and Psychiatry (W.E.K.), University of Pittsburgh, PA
| | - Tammie L S Benzinger
- From the Department of Neurology (S.E.S., Y.L., V.D.B., A.M.F., D.M.H., R.J.B., J.C.M.), Knight Alzheimer Disease Research Center (S.E.S., V.D.B., B.A.G., T.L.S.B., G.W., D.C., A.M.F., D.M.H., R.J.B., J.C.M., C.X.), Division of Biostatistics (Y.L., G.W., D.C., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (A.M.F., D.M.H., R.J.B.), Washington University School of Medicine, St. Louis, MO; and Department of Neurology and Psychiatry (W.E.K.), University of Pittsburgh, PA
| | - Guoqiao Wang
- From the Department of Neurology (S.E.S., Y.L., V.D.B., A.M.F., D.M.H., R.J.B., J.C.M.), Knight Alzheimer Disease Research Center (S.E.S., V.D.B., B.A.G., T.L.S.B., G.W., D.C., A.M.F., D.M.H., R.J.B., J.C.M., C.X.), Division of Biostatistics (Y.L., G.W., D.C., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (A.M.F., D.M.H., R.J.B.), Washington University School of Medicine, St. Louis, MO; and Department of Neurology and Psychiatry (W.E.K.), University of Pittsburgh, PA
| | - Dean Coble
- From the Department of Neurology (S.E.S., Y.L., V.D.B., A.M.F., D.M.H., R.J.B., J.C.M.), Knight Alzheimer Disease Research Center (S.E.S., V.D.B., B.A.G., T.L.S.B., G.W., D.C., A.M.F., D.M.H., R.J.B., J.C.M., C.X.), Division of Biostatistics (Y.L., G.W., D.C., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (A.M.F., D.M.H., R.J.B.), Washington University School of Medicine, St. Louis, MO; and Department of Neurology and Psychiatry (W.E.K.), University of Pittsburgh, PA
| | - William E Klunk
- From the Department of Neurology (S.E.S., Y.L., V.D.B., A.M.F., D.M.H., R.J.B., J.C.M.), Knight Alzheimer Disease Research Center (S.E.S., V.D.B., B.A.G., T.L.S.B., G.W., D.C., A.M.F., D.M.H., R.J.B., J.C.M., C.X.), Division of Biostatistics (Y.L., G.W., D.C., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (A.M.F., D.M.H., R.J.B.), Washington University School of Medicine, St. Louis, MO; and Department of Neurology and Psychiatry (W.E.K.), University of Pittsburgh, PA
| | - Anne M Fagan
- From the Department of Neurology (S.E.S., Y.L., V.D.B., A.M.F., D.M.H., R.J.B., J.C.M.), Knight Alzheimer Disease Research Center (S.E.S., V.D.B., B.A.G., T.L.S.B., G.W., D.C., A.M.F., D.M.H., R.J.B., J.C.M., C.X.), Division of Biostatistics (Y.L., G.W., D.C., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (A.M.F., D.M.H., R.J.B.), Washington University School of Medicine, St. Louis, MO; and Department of Neurology and Psychiatry (W.E.K.), University of Pittsburgh, PA
| | - David M Holtzman
- From the Department of Neurology (S.E.S., Y.L., V.D.B., A.M.F., D.M.H., R.J.B., J.C.M.), Knight Alzheimer Disease Research Center (S.E.S., V.D.B., B.A.G., T.L.S.B., G.W., D.C., A.M.F., D.M.H., R.J.B., J.C.M., C.X.), Division of Biostatistics (Y.L., G.W., D.C., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (A.M.F., D.M.H., R.J.B.), Washington University School of Medicine, St. Louis, MO; and Department of Neurology and Psychiatry (W.E.K.), University of Pittsburgh, PA
| | - Randall J Bateman
- From the Department of Neurology (S.E.S., Y.L., V.D.B., A.M.F., D.M.H., R.J.B., J.C.M.), Knight Alzheimer Disease Research Center (S.E.S., V.D.B., B.A.G., T.L.S.B., G.W., D.C., A.M.F., D.M.H., R.J.B., J.C.M., C.X.), Division of Biostatistics (Y.L., G.W., D.C., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (A.M.F., D.M.H., R.J.B.), Washington University School of Medicine, St. Louis, MO; and Department of Neurology and Psychiatry (W.E.K.), University of Pittsburgh, PA
| | - John C Morris
- From the Department of Neurology (S.E.S., Y.L., V.D.B., A.M.F., D.M.H., R.J.B., J.C.M.), Knight Alzheimer Disease Research Center (S.E.S., V.D.B., B.A.G., T.L.S.B., G.W., D.C., A.M.F., D.M.H., R.J.B., J.C.M., C.X.), Division of Biostatistics (Y.L., G.W., D.C., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (A.M.F., D.M.H., R.J.B.), Washington University School of Medicine, St. Louis, MO; and Department of Neurology and Psychiatry (W.E.K.), University of Pittsburgh, PA
| | - Chengjie Xiong
- From the Department of Neurology (S.E.S., Y.L., V.D.B., A.M.F., D.M.H., R.J.B., J.C.M.), Knight Alzheimer Disease Research Center (S.E.S., V.D.B., B.A.G., T.L.S.B., G.W., D.C., A.M.F., D.M.H., R.J.B., J.C.M., C.X.), Division of Biostatistics (Y.L., G.W., D.C., C.X.), Mallinckrodt Institute of Radiology (B.A.G., T.L.S.B.), and Hope Center for Neurological Disorders (A.M.F., D.M.H., R.J.B.), Washington University School of Medicine, St. Louis, MO; and Department of Neurology and Psychiatry (W.E.K.), University of Pittsburgh, PA
| |
Collapse
|
9
|
Ahn S, Mathiason MA, Yu F. Longitudinal Cognitive Profiles by Anxiety and Depressive Symptoms in American Older Adults With Subjective Cognitive Decline. J Nurs Scholarsh 2021; 53:698-708. [PMID: 34342395 PMCID: PMC8599627 DOI: 10.1111/jnu.12692] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE The objective of this study was to determine how anxiety and/or depressive symptoms differentially affect specific cognitive domains over time in persons with subjective cognitive decline (SCD). DESIGN A longitudinal, observational study was conducted using data from the National Alzheimer's Coordinating Center-Uniform Data Set. Mean follow-up was 4.1 ± 2.4 years. METHODS Using information from a total of 1401 participants (age 74.0 ± 8.2 years), linear mixed-effects regression models were used to assess longitudinal changes in global cognition, episodic memory, attention, language, and executive function by baseline psychological (anxiety [A] and/or depressive [D]) symptoms in individuals with SCD. Reference was the group having no symptoms (A-/D-). FINDINGS The A+/D- group was not associated with any cognitive changes. The A-/D+ group was associated with a greater decline in episodic memory and executive function. The A+/D+ group had a greater decline in attention. Changes in global cognition and language were not predicted by any psychological symptoms. CONCLUSIONS Depressive symptoms predicted lower episodic memory and executive function. CLINICAL RELEVANCE Nurses need to pay attention to depressive symptoms in older adults with SCD because managing depressive symptoms may help protect against cognitive decline more typical of early Alzheimer's dementia.
Collapse
Affiliation(s)
- Sangwoo Ahn
- University of Tennessee College of Nursing, Knoxville, Tennessee, USA
| | | | - Fang Yu
- Edson Chair in Dementia Translational Nursing Science, Arizona State University, Edson College of Nursing and Health Innovation, Phoenix, Arizona, USA
| |
Collapse
|
10
|
Guo M, Schwartz TD, Dunaief JL, Cui QN. Myeloid cells in retinal and brain degeneration. FEBS J 2021; 289:2337-2361. [PMID: 34478598 PMCID: PMC8891394 DOI: 10.1111/febs.16177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022]
Abstract
Retinal inflammation underlies multiple prevalent ocular and neurological diseases. Similar inflammatory processes are observed in glaucomatous optic neuropathy, age-related macular degeneration, retinitis pigmentosa, posterior uveitis, Alzheimer's disease, and Parkinson's disease. In particular, human and animal studies have demonstrated the important role microglia/macrophages play in initiating and maintaining a pro-inflammatory environment in degenerative processes impacting vision. On the other hand, microglia have also been shown to have a protective role in multiple central nervous system diseases. Identifying the mechanisms underlying cell dysfunction and death is the first step toward developing novel therapeutics for these diseases impacting the central nervous system. In addition to reviewing recent key studies defining important mediators of retinal inflammation, with an emphasis on translational studies that bridge this research from bench to bedside, we also highlight a promising therapeutic class of medications, the glucagon-like peptide-1 receptor agonists. Finally, we propose areas where additional research is necessary to identify mechanisms that can be modulated to shift the balance from a neurotoxic to a neuroprotective retinal environment.
Collapse
Affiliation(s)
- Michelle Guo
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Turner D Schwartz
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua L Dunaief
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi N Cui
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Fontaine D, Santucci S. Deep brain stimulation in Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:69-87. [PMID: 34446251 DOI: 10.1016/bs.irn.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Benefits from symptomatic and etiologic treatments in Alzheimer's Disease (AD), the most frequent dementia, are still insufficient. During the last decade, several studies showed that electrical stimulation of memory circuits could enhance memory in humans without memory impairment. First, improvement of verbal recollection was reported after deep brain stimulation (DBS) of the fornix in the hypothalamus in a patient treated for morbid obesity. Several studies in epileptic patients explored by deep electrodes reported that visuo-spatial memorization was facilitated by electrical stimulation of the entorhinal cortex or theta burst stimulation of the fornix. Recent studies suggested that DBS could be useful to modulate memory circuits in patients with cognitive decline. Phase I and II studies (about 50 patients) showed that chronic fornix DBS was safe and could achieved to stabilize or slow the memory decline of some patients with mild to moderate AD, especially older ones with less severe and/or advanced disease. DBS of the cholinergic nucleus of Meynert also has been explored in phase I studies in AD and Parkinson-related dementia. Growing experimental data suggest several mechanisms of action: restoration of hippocampal theta rhythms, enhanced long term potentiation, increase of hippocampal neurogenesis, neuroprotection by release of neurotrophic factors, diffuse reactivation of hypoactive neocortical associative regions. However, DBS in AD is still investigational and numerous issues remain to be solved before envisaging its use in clinical practice, including optimal anatomical DBS target, stimulation modalities (continuous, intermittent, theta-bursts, closed loop stimulation), best candidate patients, relevant targeted symptoms, ethical considerations.
Collapse
Affiliation(s)
- Denys Fontaine
- Department of Neurosurgery, Université Côte d'Azur, CHU de Nice, Nice, France.
| | - Serena Santucci
- Department of Neurosurgery, Université Côte d'Azur, CHU de Nice, Nice, France
| |
Collapse
|
12
|
Blood-Based Biomarkers of Neuroinflammation in Alzheimer's Disease: A Central Role for Periphery? Diagnostics (Basel) 2021; 11:diagnostics11091525. [PMID: 34573867 PMCID: PMC8464786 DOI: 10.3390/diagnostics11091525] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation represents a central feature in the development of Alzheimer’s disease (AD). The resident innate immune cells of the brain are the principal players in neuroinflammation, and their activation leads to a defensive response aimed at promoting β-amyloid (Aβ) clearance. However, it is now widely accepted that the peripheral immune system—by virtue of a dysfunctional blood–brain barrier (BBB)—is involved in the pathogenesis and progression of AD; microglial and astrocytic activation leads to the release of chemokines able to recruit peripheral immune cells into the central nervous system (CNS); at the same time, cytokines released by peripheral cells are able to cross the BBB and act upon glial cells, modifying their phenotype. To successfully fight this neurodegenerative disorder, accurate and sensitive biomarkers are required to be used for implementing an early diagnosis, monitoring the disease progression and treatment effectiveness. Interestingly, as a result of the bidirectional communication between the brain and the periphery, the blood compartment ends up reflecting several pathological changes occurring in the AD brain and can represent an accessible source for such biomarkers. In this review, we provide an overview on some of the most promising peripheral biomarkers of neuroinflammation, discussing their pathogenic role in AD.
Collapse
|
13
|
Liss JL, Seleri Assunção S, Cummings J, Atri A, Geldmacher DS, Candela SF, Devanand DP, Fillit HM, Susman J, Mintzer J, Bittner T, Brunton SA, Kerwin DR, Jackson WC, Small GW, Grossberg GT, Clevenger CK, Cotter V, Stefanacci R, Wise‐Brown A, Sabbagh MN. Practical recommendations for timely, accurate diagnosis of symptomatic Alzheimer's disease (MCI and dementia) in primary care: a review and synthesis. J Intern Med 2021; 290:310-334. [PMID: 33458891 PMCID: PMC8359937 DOI: 10.1111/joim.13244] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/10/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
The critical role of primary care clinicians (PCCs) in Alzheimer's disease (AD) prevention, diagnosis and management must evolve as new treatment paradigms and disease-modifying therapies (DMTs) emerge. Our understanding of AD has grown substantially: no longer conceptualized as a late-in-life syndrome of cognitive and functional impairments, we now recognize that AD pathology builds silently for decades before cognitive impairment is detectable. Clinically, AD first manifests subtly as mild cognitive impairment (MCI) due to AD before progressing to dementia. Emerging optimism for improved outcomes in AD stems from a focus on preventive interventions in midlife and timely, biomarker-confirmed diagnosis at early signs of cognitive deficits (i.e. MCI due to AD and mild AD dementia). A timely AD diagnosis is particularly important for optimizing patient care and enabling the appropriate use of anticipated DMTs. An accelerating challenge for PCCs and AD specialists will be to respond to innovations in diagnostics and therapy for AD in a system that is not currently well positioned to do so. To overcome these challenges, PCCs and AD specialists must collaborate closely to navigate and optimize dynamically evolving AD care in the face of new opportunities. In the spirit of this collaboration, we summarize here some prominent and influential models that inform our current understanding of AD. We also advocate for timely and accurate (i.e. biomarker-defined) diagnosis of early AD. In doing so, we consider evolving issues related to prevention, detecting emerging cognitive impairment and the role of biomarkers in the clinic.
Collapse
Affiliation(s)
| | - S. Seleri Assunção
- US Medical Affairs – Neuroscience, Genentech, A Member of the Roche GroupSouth San FranciscoCAUSA
| | - J. Cummings
- Chambers‐Grundy Center for Transformative NeuroscienceDepartment of Brain HealthSchool of Integrated Health SciencesUniversity of NevadaLas VegasNVUSA
- Lou Ruvo Center for Brain Health – Cleveland Clinic NevadaLas VegasNVUSA
| | - A. Atri
- Banner Sun Health Research InstituteSun CityAZUSA
- Center for Brain/Mind MedicineDepartment of NeurologyBrigham and Women’s HospitalBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| | - D. S. Geldmacher
- Department of NeurologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - S. F. Candela
- Health & Wellness Partners, LLCUpper Saddle RiverNJUSA
| | - D. P. Devanand
- Division of Geriatric PsychiatryNew York State Psychiatric Institute and Columbia University Irving Medical CenterNew YorkNYUSA
| | - H. M. Fillit
- Departments of Geriatric Medicine, Medicine, and NeuroscienceIcahn School of Medicine and Mt. SinaiNew YorkNYUSA
- Alzheimer’s Drug Discovery FoundationNew YorkNYUSA
| | - J. Susman
- Department of Family and Community MedicineNortheast Ohio Medical UniversityRootstownOHUSA
| | - J. Mintzer
- Roper St Francis HealthcareCharlestonSCUSA
- Ralph H. Johnson VA Medical CenterCharlestonSCUSA
| | | | - S. A. Brunton
- Department of Family MedicineTouro UniversityVallejoCAUSA
| | - D. R. Kerwin
- Kerwin Medical CenterDallasTXUSA
- Department of Neurology and NeurotherapeuticsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - W. C. Jackson
- Departments of Family Medicine and PsychiatryUniversity of Tennessee College of MedicineMemphisTNUSA
| | - G. W. Small
- Division of Geriatric PsychiatryUCLA Longevity CenterSemel Institute for Neuroscience & Human BehaviorUniversity of California – Los AngelesLos AngelesCAUSA
| | - G. T. Grossberg
- Division of Geriatric PsychiatrySt Louis University School of MedicineSt LouisMOUSA
| | - C. K. Clevenger
- Department of NeurologyNell Hodgson Woodruff School of NursingEmory UniversityAtlantaGAUSA
| | - V. Cotter
- Johns Hopkins School of NursingBaltimoreMDUSA
| | - R. Stefanacci
- Jefferson College of Population HealthThomas Jefferson UniversityPhiladelphiaPAUSA
| | - A. Wise‐Brown
- US Medical Affairs – Neuroscience, Genentech, A Member of the Roche GroupSouth San FranciscoCAUSA
| | - M. N. Sabbagh
- Lou Ruvo Center for Brain Health – Cleveland Clinic NevadaLas VegasNVUSA
| |
Collapse
|
14
|
Zhao X, Li C, Ding G, Heng Y, Li A, Wang W, Hou H, Wen J, Zhang Y. The Burden of Alzheimer's Disease Mortality in the United States, 1999-2018. J Alzheimers Dis 2021; 82:803-813. [PMID: 34092643 DOI: 10.3233/jad-210225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The increasing prevalence of Alzheimer's disease (AD), along with the associated burden on healthcare systems, presents a substantial public health challenge. OBJECTIVE This study aimed to investigate trends in AD mortality and the relevant burden across the United States (U.S.) from 1999 to 2018 and to predict mortality trends between 2019 and 2023. METHODS Data on AD-related deaths between 1999 and 2018 were collected from the WONDER database administered by the U.S. Centers for Disease Control and Prevention (CDC). The Joinpoint Regression Program was used to analyze mortality trends due to AD. Years of life lost (YLL) were calculated to explore the burden of AD deaths. An autoregressive integrated moving average (ARIMA) model was employed to forecast mortality trends from 2019 to 2023. RESULTS Over a recent 20-year period, the number of AD deaths in the U.S. increased from 44,536 (31,145 females and 13,391 males) to 122,019 (84,062 females and 37,957 males). The overall age-adjusted mortality rate increased from 16.5/100,000 in 1999 to 30.5/100,000 in 2018. AD mortality is projected to reach 42.40/100000 within the year 2023. Overall, AD resulted in 322,773.00 YLL (2.33 per 1000 population) in 1999 and 658,501.87 YLL (3.68 per 1000 population) in 2018. CONCLUSION Our findings demonstrate an increase in AD mortality in the U.S. from 1999 to 2018 as well as a rapid increase from 2019 to 2023. The high burden of AD deaths emphasizes the need for targeted prevention, early diagnosis, and hierarchical management.
Collapse
Affiliation(s)
- Xuan Zhao
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Cancan Li
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Guoyong Ding
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Yuanyuan Heng
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - An Li
- Blood Research Institute, Blood Center of Wisconsin, part of Versiti, Milwaukee, WI, USA
| | - Wei Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.,School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Haifeng Hou
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Jun Wen
- School of Business and Law, Edith Cowan University, Perth, Australia
| | - Yanbo Zhang
- The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
15
|
McDade E, Llibre-Guerra JJ, Holtzman DM, Morris JC, Bateman RJ. The informed road map to prevention of Alzheimer Disease: A call to arms. Mol Neurodegener 2021; 16:49. [PMID: 34289882 PMCID: PMC8293489 DOI: 10.1186/s13024-021-00467-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/10/2021] [Indexed: 12/31/2022] Open
Abstract
Alzheimer disease (AD) prevention trials hold the promise to delay or prevent cognitive decline and dementia onset by intervening before significant neuronal damage occurs. In recent years, the first AD prevention trials have launched and are yielding important findings on the biology of targeting asymptomatic AD pathology. However, there are limitations that impact the design of these prevention trials, including the translation of animal models that recapitulate key stages and multiple pathological aspects of the human disease, missing target validation in asymptomatic disease, uncertain causality of the association of pathophysiologic changes with cognitive and clinical symptoms, and limited biomarker validation for novel targets. The field is accelerating advancements in key areas including the development of highly specific and quantitative biomarker measures for AD pathology, increasing our understanding of the course and relationship of amyloid and tau pathology in asymptomatic through symptomatic stages, and the development of powerful interventions that can slow or reverse AD amyloid pathology. We review the current status of prevention trials and propose key areas of needed research as a call to basic and translational scientists to accelerate AD prevention. Specifically, we review (1) sporadic and dominantly inherited primary and secondary AD prevention trials, (2) proposed targets, mechanisms, and drugs including the amyloid, tau, and inflammatory pathways and combination treatments, (3) the need for more appropriate prevention animal models and experiments, and (4) biomarkers and outcome measures needed to design human asymptomatic prevention trials. We conclude with actions needed to effectively move prevention targets and trials forward.
Collapse
Affiliation(s)
- Eric McDade
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| | - Jorge J. Llibre-Guerra
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| | - David M. Holtzman
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| | - John C. Morris
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| | - Randall J. Bateman
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| |
Collapse
|
16
|
Brisson M, Brodeur C, Létourneau‐Guillon L, Masellis M, Stoessl J, Tamm A, Zukotynski K, Ismail Z, Gauthier S, Rosa‐Neto P, Soucy J. CCCDTD5: Clinical role of neuroimaging and liquid biomarkers in patients with cognitive impairment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 6:e12098. [PMID: 33532543 PMCID: PMC7821956 DOI: 10.1002/trc2.12098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 04/21/2023]
Abstract
Since 1989, four Canadian Consensus Conferences on the Diagnosis and Treatment of Dementia (CCCDTDs) have provided evidence-based dementia diagnostic and treatment guidelines for Canadian clinicians and researchers. We present the results from the Neuroimaging and Fluid Biomarkers Group of the 5th CCCDTD (CCCDTD5), which addressed topics chosen by the steering committee to reflect advances in the field and build on our previous guidelines. Recommendations on Imaging and Fluid Biomarker Use from this Conference cover a series of different fields. Prior structural imaging recommendations for both computerized tomography (CT) and magnetic resonance imaging (MRI) remain largely unchanged, but MRI is now more central to the evaluation than before, with suggested sequences described here. The use of visual rating scales for both atrophy and white matter anomalies is now included in our recommendations. Molecular imaging with [18F]-fluorodeoxyglucose ([18F]-FDG) Positron Emisson Tomography (PET) or [99mTc]-hexamethylpropyleneamine oxime/ethylene cysteinate dimer ([99mTc]-HMPAO/ECD) Single Photon Emission Tomography (SPECT), should now decidedly favor PET. The value of [18F]-FDG PET in the assessment of neurodegenerative conditions has been established with greater certainty since the previous conference, and it has now been recognized as a useful biomarker to establish the presence of neurodegeneration by a number of professional organizations around the world. Furthermore, the role of amyloid PET has been clarified and our recommendations follow those from other groups in multiple countries. SPECT with [123I]-ioflupane (DaTscanTM) is now included as a useful study in differentiating Alzheimer's disease (AD) from Lewy body disease. Finally, liquid biomarkers are in a rapid phase of development and, could lead to a revolution in the assessment AD and other neurodegenerative conditions at a reasonable cost. We hope these guidelines will be useful for clinicians, researchers, policy makers, and the lay public, to inform a current and evidence-based approach to the use of neuroimaging and liquid biomarkers in clinical dementia evaluation and management.
Collapse
Affiliation(s)
- Mélanie Brisson
- Centre hospitalier de l'université de QuébecQuebec CityCanada
| | | | | | | | - Jon Stoessl
- Vancouver Coastal Health, University of British‐ColumbiaVancouverCanada
| | | | | | - Zahinoor Ismail
- Department of Psychiatry, Hotchkiss Brain Institute and O'Brien Institute for Public HealthUniversity of CalgaryCalgaryCanada
| | | | - Pedro Rosa‐Neto
- McGill Center for Studies in AgingCanada
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMontrealCanada
| | - Jean‐Paul Soucy
- Centre hospitalier de l'université de MontréalMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMontrealCanada
- PERFORM Center, Concordia UniversityMontrealCanada
| |
Collapse
|
17
|
Ahn S, Mathiason MA, Lindquist R, Yu F. Factors predicting episodic memory changes in older adults with subjective cognitive decline: A longitudinal observational study. Geriatr Nurs 2020; 42:268-275. [PMID: 32919799 DOI: 10.1016/j.gerinurse.2020.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 01/25/2023]
Abstract
Episodic memory is affected early in the neuropathological process of Alzheimer's dementia. This study was performed to identify longitudinal associations between baseline vascular/neuropsychiatric risk factors and episodic memory changes over 4.1 ± 2.4 years in 1,401 older adults with subjective cognitive decline (age 74.0 ± 8.2 years). Data were from the National Alzheimer's Coordinating Center-Uniform Data Set and linear mixed effects regression models were used. Reference was those without risk factors. Participants with hypercholesterolemia and with former cigarette smoking had higher episodic memory scores, but current smokers had fewer points than reference at their first and follow-up visits. Despite no difference at baseline, episodic memory scores decreased in those with depressive symptoms relative to reference over time. In older adults with subjective cognitive decline, interventions managing current smoking and depressive symptoms could preserve episodic memory, which may result in delaying the onset of Alzheimer's dementia. Further research is required for the role of cholesterol and smoking.
Collapse
Affiliation(s)
- Sangwoo Ahn
- University of Tennessee College of Nursing, Knoxville, TN, United States.
| | | | - Ruth Lindquist
- University of Minnesota School of Nursing, Minneapolis, MN, United States.
| | - Fang Yu
- University of Minnesota School of Nursing, Minneapolis, MN, United States.
| |
Collapse
|
18
|
Kiselica AM, Webber TA, Benge JF. Using multivariate base rates of low scores to understand early cognitive declines on the uniform data set 3.0 Neuropsychological Battery. Neuropsychology 2020; 34:629-640. [PMID: 32338945 PMCID: PMC7484046 DOI: 10.1037/neu0000640] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Low neuropsychological test scores are commonly observed even in cognitively healthy older adults. For batteries designed to assess for and track cognitive decline in older adults, documenting the multivariate base rates (MBRs) of low scores is important to differentiate expected from abnormal low score patterns. Additionally, it is important for our understanding of mild cognitive impairment and preclinical declines to and determine how such score patterns predict future clinical states. METHOD The current study utilized Uniform Data Set Neuropsychological Battery 3.0 (UDS3NB) data for 5,870 English-speaking, older adult participants from the National Alzheimer's Coordinating Center from 39 Alzheimer's disease Research Centers from March 2015 to December 2018. MBRs of low scores were identified for 2,608 cognitively healthy participants that had completed all cognitive measures. The association of abnormal MBR patterns with subsequent conversion to mild cognitive impairment and dementia were explored. RESULTS Depending on the operationalization of "low" score, the MBR of demographically adjusted scores ranged from 1.40 to 79.2%. Posttest probabilities using MBR methods to predict dementia status at 2-year follow up ranged from .06 to .33, while posttest probabilities for conversion to mild cognitive impairment (MCI) ranged from .12-.32. CONCLUSIONS The data confirm that abnormal cognitive test scores are common among cognitively normal older adults. Using MBR criteria may improve our understanding of MCI. They may also be used to enrich clinical trial selection processes through recruitment of at-risk individuals. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Troy A Webber
- Mental Health Care Line, Michael E. DeBakey VA Medical Center
| | - Jared F Benge
- Department of Neurology, Baylor Scott and White Health
| |
Collapse
|
19
|
Pharmacogenetic studies in Alzheimer disease. NEUROLOGÍA (ENGLISH EDITION) 2020; 37:287-303. [DOI: 10.1016/j.nrleng.2018.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/29/2018] [Indexed: 11/21/2022] Open
|
20
|
Qin Z, Gu M, Zhou J, Zhang W, Zhao N, Lü Y, Yu W. Triggering receptor expressed on myeloid cells 2 activation downregulates toll-like receptor 4 expression and ameliorates cognitive impairment in the Aβ 1-42 -induced Alzheimer's disease mouse model. Synapse 2020; 74:e22161. [PMID: 32412103 DOI: 10.1002/syn.22161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/18/2020] [Accepted: 05/04/2020] [Indexed: 01/15/2023]
Abstract
Increasing evidence suggests that changes in the triggering receptor expressed on myeloid cells 2 (TREM2) is closely correlated with the pathological development of Alzheimer's disease (AD). However, the biological function and related role of this change remain poorly understood. Higher TREM2 expression has been reported in the brain of AD patients than in normal controls. Here, levels of TREM2 gene and protein levels were observed to be higher in both cortex and hippocampus of the Aβ1-42 -induced AD mice than in those of the wild type mice. Together with in vitro experimental data, we found that the anti-inflammatory role of TREM2 was, to some extent, limited and potentially counteracted by the hyperactive toll-like receptor 4 (TLR4) in the AD mice. In this context, Interleukin 4 (IL-4), as an agonist of TREM2, was administered to the AD mice to persistently activate TREM2. Interestingly, TREM2 activation in IL-4-treated AD mice led to an elevation in lysosomes and microtubule-associated protein 1 light chain 3 (LC3) II/I expression, demonstrating that the level of microglia autophagy was increased. Increased autophagy significantly downregulated the expression levels of caspase recruitment domain-containing protein 9 (CARD9) and TLR4, potentially weakening the CARD9-TLR4 pathway and suppressing the TLR4-mediated pro-inflammatory effect in IL-4-treated AD mice. Furthermore, data acquired from Morris water maze testing indicated that IL-4 administration could ameliorate cognitive impairment in the AD mice. In conclusion, the findings from in vitro and in vivo experiments suggest that TREM2 might represent a potential drug target to treat neuroinflammation in AD.
Collapse
Affiliation(s)
- Zhangjin Qin
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Gu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Zhou
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Wenbo Zhang
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nan Zhao
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weihua Yu
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Wang H, Fan Z, Shi C, Xiong L, Zhang H, Li T, Sun Y, Guo Q, Tian Y, Qu Q, Zhang N, Cheng Z, Wu L, Wu D, Han Z, Tian J, Xie H, Tan S, Gao J, Luo B, Pan X, Peng G, Qin B, Tang Y, Wang K, Wang T, Zhang J, Zhao Q, Gauthier S, Yu X. Consensus statement on the neurocognitive outcomes for early detection of mild cognitive impairment and Alzheimer dementia from the Chinese Neuropsychological Normative (CN-NORM) Project. J Glob Health 2020; 9:020320. [PMID: 31893029 PMCID: PMC6925962 DOI: 10.7189/jogh.09.020320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Huali Wang
- Dementia Care & Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,Beijing Dementia Key Lab, Beijing, China.,National Clinical Research Center for Mental Disorders, Key Laboratory for Mental Health, National Health Commission, Beijing, China
| | - Zili Fan
- Dementia Care & Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,Beijing Dementia Key Lab, Beijing, China.,National Clinical Research Center for Mental Disorders, Key Laboratory for Mental Health, National Health Commission, Beijing, China
| | - Chuan Shi
- National Clinical Research Center for Mental Disorders, Key Laboratory for Mental Health, National Health Commission, Beijing, China.,Department of Clinical Psychological Assessment, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
| | - Lingchuan Xiong
- Dementia Care & Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,Beijing Dementia Key Lab, Beijing, China.,National Clinical Research Center for Mental Disorders, Key Laboratory for Mental Health, National Health Commission, Beijing, China
| | - Haifeng Zhang
- Dementia Care & Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,Beijing Dementia Key Lab, Beijing, China.,National Clinical Research Center for Mental Disorders, Key Laboratory for Mental Health, National Health Commission, Beijing, China
| | - Tao Li
- Dementia Care & Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,Beijing Dementia Key Lab, Beijing, China.,National Clinical Research Center for Mental Disorders, Key Laboratory for Mental Health, National Health Commission, Beijing, China
| | - Yongan Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Qihao Guo
- Department of Geriatrics, Shanghai Sixth Hospital, Shanghai, China
| | - Yanghua Tian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiumin Qu
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nan Zhang
- Department of Neurology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Zaohuo Cheng
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Daxing Wu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jinzhou Tian
- Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hengge Xie
- Department of Neurology, China PLA General Hospital, Beijing, China
| | - Shuping Tan
- Beijing Huilongguan Hospital, Beijing, China
| | - Jingfang Gao
- Zhejiang University of Traditional Chinese Medicine First Affiliated Hospital, Hangzhou, China
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoping Pan
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guoping Peng
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Qin
- Beijing Hospital, National Health Commission, Beijing, China
| | - Yi Tang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Qianhua Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Serge Gauthier
- McGill Center for Studies in Aging, McGill University, Montreal, Canada
| | - Xin Yu
- Dementia Care & Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,Beijing Dementia Key Lab, Beijing, China.,National Clinical Research Center for Mental Disorders, Key Laboratory for Mental Health, National Health Commission, Beijing, China
| |
Collapse
|
22
|
Morant AV, Vestergaard HT, Lassen AB, Navikas V. US, EU, and Japanese Regulatory Guidelines for Development of Drugs for Treatment of Alzheimer's Disease: Implications for Global Drug Development. Clin Transl Sci 2020; 13:652-664. [PMID: 32043310 PMCID: PMC7359941 DOI: 10.1111/cts.12755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023] Open
Abstract
Drug development guidelines from regulatory authorities provide important information to sponsors on requirements for clinical evidence needed to support approval of new drugs. In the field of Alzheimer’s disease (AD), recently published guidelines are available from EU, US, and Japanese regulatory authorities. In this review, these three guidelines are compared and discussed with emphasis on the recommendations provided for demonstration of efficacy in pivotal clinical trials conducted in predementia stages of AD. Similarities and differences are highlighted, and impact for global drug development is discussed in the context of the new International Conference on Harmonization E17 guideline on multiregional clinical trials. The AD field is characterized by significant challenges as, to date, no drug approval precedence exists in predementia AD despite numerous and ambitious efforts to slow the progression of the disease by pharmacologic intervention. Despite these uncertainties regulatory authorities across regions have blazed a trail for proactive multistakeholder collaboration, involvement, and continuous dialogue, setting a positive example on how to foster a supportive environment for development of new and meaningful treatments for patients with AD globally.
Collapse
|
23
|
Delgado C, Vergara RC, Martínez M, Musa G, Henríquez F, Slachevsky A. Neuropsychiatric Symptoms in Alzheimer's Disease Are the Main Determinants of Functional Impairment in Advanced Everyday Activities. J Alzheimers Dis 2020; 67:381-392. [PMID: 30584142 DOI: 10.3233/jad-180771] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neuropsychiatric symptoms and cognitive impairment are independent contributors of functional impairment in activities of daily living (ADL) in Alzheimer's disease (AD) patients. ADL could be divided according to its complexity in three subdomains: basic (BADL), instrumental (IADL), and advanced (a-ADL). OBJECTIVE Studying the cognitive and neuropsychiatric determinants of BADL, IADL, and a-ADL in normal cognitive elders and AD patients. METHODS 144 subjects were graduated using the clinical dementia rating (CDR) in CDR = 0, n = 52 (control group) and 92 AD patients CDR = 0.5, n = 34 and CDR = 1&2, n = 58. They were assessed with measures of cognitive performance and neuropsychiatric symptoms that were included in regression models to measure the best predictors for each ADL subdomain at every CDR status. RESULTS AD patients were significantly older, and had significantly more severe functional impairment, neuropsychiatric symptoms, and cognitive decline than controls. The best predictors of functional impairment in controls and CDR = 0.5 AD patients were neuropsychiatric symptoms; in the CDR 0.5 patients, apathy severity was the most important determinant of IADL and a-ADL impairment. While in the CDR 1&2 AD patients, cognitive impairment was the principal determinant of functional impairment, being memory the best determinant of IADL and a-ADL impairment, while global cognition was of BADL impairment. CONCLUSIONS The contribution of cognitive impairment and neuropsychiatric symptoms varied according to the subdomain of ADL, and the CDR. In very mild AD and controls the neuropsychiatric symptoms are the best predictors of more complex ADL impairment, while cognitive impairment is more important at mild to moderate states of AD.
Collapse
Affiliation(s)
- Carolina Delgado
- Departments of Neurology and Neurosurgery, Hospital Clínico Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo C Vergara
- Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Melissa Martínez
- Departments of Neurology and Neurosurgery, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Gada Musa
- Gerosciences Center for Brain Health and Metabolism (GERO), Santiago, Chile.,Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department, ICBM, East Neuroscience Department, Faculty of Medicine, University of Chile, Santiago, Chile.,Memory and Neuropsychiatric Clinic (CMYN), Neurology Department. Hospital del Salvador & University of Chile, Santiago, Chile
| | - Fernando Henríquez
- Gerosciences Center for Brain Health and Metabolism (GERO), Santiago, Chile.,Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department, ICBM, East Neuroscience Department, Faculty of Medicine, University of Chile, Santiago, Chile.,Memory and Neuropsychiatric Clinic (CMYN), Neurology Department. Hospital del Salvador & University of Chile, Santiago, Chile
| | - Andrea Slachevsky
- Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Gerosciences Center for Brain Health and Metabolism (GERO), Santiago, Chile.,Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department, ICBM, East Neuroscience Department, Faculty of Medicine, University of Chile, Santiago, Chile.,Memory and Neuropsychiatric Clinic (CMYN), Neurology Department. Hospital del Salvador & University of Chile, Santiago, Chile
| |
Collapse
|
24
|
Aljanabi NM, Mamtani S, Al-Ghuraibawi MMH, Yadav S, Nasr L. Alzheimer's and Hyperglycemia: Role of the Insulin Signaling Pathway and GSK-3 Inhibition in Paving a Path to Dementia. Cureus 2020; 12:e6885. [PMID: 32190448 PMCID: PMC7058396 DOI: 10.7759/cureus.6885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In this project, we are trying to review the articles that discuss the relationship between insulin signaling and Alzheimer's disease (AD). Another focus of this project is to find the best treatment regimen that can reduce the progression of AD in patients with impaired glucose metabolism. We used Pubmed database to collect our data and used the following keywords: Alzheimer’s disease, insulin signaling pathway, type 3 diabetes, type 2 diabetes, insulin, and insulin resistance in our revision; we included free articles that were published in the last 10 years and excluded articles that were written in any language other than English. We reviewed 68 articles. Forty-nine out of 68 articles were containing materials that are relevant for this project. We found that there is a relation between AD and the insulin signaling pathway. Insulin signaling pathway impairment leads to hyperphosphorylation of Tau protein, which plays a vital role in AD pathology. The effect of insulin on cognition is bidirectional; the intranasal route of insulin showed to have a promising effect on cognition improvement. Subcutaneous and intravenous insulin can increase the risk of dementia. Further studies are encouraged to use a specific anti-diabetic medication that can reduce the progression of AD.
Collapse
Affiliation(s)
- Nawar Muneer Aljanabi
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Sahil Mamtani
- Infectious Diseases Research, Veterans Affairs Medical Center, Lebanon, USA
| | | | | | - Lubna Nasr
- Geriatrics, University of Miami Miller School of Medicine, Miami, USA
| |
Collapse
|
25
|
Balogh N, Åstrand R, Wallin A, Rolstad S. The five-items memory screen-extended variant: A tool for assessing memory. Acta Neurol Scand 2020; 141:162-167. [PMID: 31675428 DOI: 10.1111/ane.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/10/2019] [Accepted: 10/29/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE The detection of memory impairment is an important part of dementia screening. However, the scope of memory measures in current screening batteries is limited. There is a need for a short yet sensitive instrument for early detection of memory impairment that could serve as a complement to existing globally oriented screening tests, for example, Mini-Mental State Examination (MMSE). To that end, the current study investigates the sensitivity and psychometric properties of the memory screening instrument The Five-Items Memory Screen -Extended Variant (FIMS-XV). METHODS Hundred and forty-five participants included in the Gothenburg Mild Cognitive Impairment Study-27 patients with subjective cognitive impairment (SCI), 73 with mild cognitive impairment (MCI), and 45 with mild dementia-underwent cognitive screening including the MMSE and FIMS-XV. Ninety participants also underwent extensive neuropsychological testing. RESULTS The FIMS-XV showed high internal consistency and strong correlations with established neuropsychological memory tests. Both the FIMS-XVdelayed recall score and the FIMS-XV total score differentiated mild dementia patients from patients with SCI and MCI. CONCLUSIONS The FIMS-XV shows promise as a sensitive tool for screening for memory impairment in all putative phases of dementia.
Collapse
Affiliation(s)
- Nora Balogh
- Neurochemistry and Psychiatry University of Gothenburg Sahlgrenska Academy Gothenburg Sweden
| | | | - Anders Wallin
- Neurochemistry and Psychiatry University of Gothenburg Sahlgrenska Academy Gothenburg Sweden
| | - Sindre Rolstad
- Neurochemistry and Psychiatry University of Gothenburg Sahlgrenska Academy Gothenburg Sweden
| |
Collapse
|
26
|
Li H, Zhang L, Qin C. Current state of research on non-human primate models of Alzheimer's disease. Animal Model Exp Med 2019; 2:227-238. [PMID: 31942555 PMCID: PMC6930996 DOI: 10.1002/ame2.12092] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
With the increasingly serious aging of the global population, dementia has already become a severe clinical challenge on a global scale. Dementia caused by Alzheimer's disease (AD) is the most common form of dementia observed in the elderly, but its pathogenetic mechanism has still not been fully elucidated. Furthermore, no effective treatment strategy has been developed to date, despite considerable efforts. This can be mainly attributed to the paucity of animal models of AD that are sufficiently similar to humans. Among the presently established animal models, non-human primates share the closest relationship with humans, and their neural anatomy and neurobiology share highly similar characteristics with those of humans. Thus, there is no doubt that these play an irreplaceable role in AD research. Considering this, the present literature on non-human primate models of AD was reviewed to provide a theoretical basis for future research.
Collapse
Affiliation(s)
- Hong‐Wei Li
- NHC Key Laboratory of Human Disease Comparative MedicinePeking Union Medical College (PUMC)BeijingChina
- Key Laboratory of Human Diseases Animal ModelState Administration of Traditional Chinese MedicinePeking Union Medical College (PUMC)BeijingChina
- The Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)Peking Union Medical College (PUMC)BeijingChina
- Ministry of HealthComparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative MedicinePeking Union Medical College (PUMC)BeijingChina
- Key Laboratory of Human Diseases Animal ModelState Administration of Traditional Chinese MedicinePeking Union Medical College (PUMC)BeijingChina
- The Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)Peking Union Medical College (PUMC)BeijingChina
- Ministry of HealthComparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative MedicinePeking Union Medical College (PUMC)BeijingChina
- Key Laboratory of Human Diseases Animal ModelState Administration of Traditional Chinese MedicinePeking Union Medical College (PUMC)BeijingChina
- The Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)Peking Union Medical College (PUMC)BeijingChina
- Ministry of HealthComparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| |
Collapse
|
27
|
Silajdžić E, Björkqvist M. A Critical Evaluation of Wet Biomarkers for Huntington's Disease: Current Status and Ways Forward. J Huntingtons Dis 2019; 7:109-135. [PMID: 29614689 PMCID: PMC6004896 DOI: 10.3233/jhd-170273] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is an unmet clinical need for objective biomarkers to monitor disease progression and treatment response in Huntington's disease (HD). The aim of this review is, therefore, to provide practical advice for biomarker discovery and to summarise studies on biofluid markers for HD. A PubMed search was performed to review literature with regard to candidate saliva, urine, blood and cerebrospinal fluid biomarkers for HD. Information has been organised into tables to allow a pragmatic approach to the discussion of the evidence and generation of practical recommendations for future studies. Many of the markers published converge on metabolic and inflammatory pathways, although changes in other analytes representing antioxidant and growth factor pathways have also been found. The most promising markers reflect neuronal and glial degeneration, particularly neurofilament light chain. International collaboration to standardise assays and study protocols, as well as to recruit sufficiently large cohorts, will facilitate future biomarker discovery and development.
Collapse
Affiliation(s)
- Edina Silajdžić
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Maria Björkqvist
- Department of Experimental Medical Science, Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Yagi T, Kanekiyo M, Ito J, Ihara R, Suzuki K, Iwata A, Iwatsubo T, Aoshima K. Identification of prognostic factors to predict cognitive decline of patients with early Alzheimer's disease in the Japanese Alzheimer's Disease Neuroimaging Initiative study. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:364-373. [PMID: 31440579 PMCID: PMC6698925 DOI: 10.1016/j.trci.2019.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Introduction The objective of this study was to determine the factors including neuropsychological test performances and cerebrospinal fluid (CSF) biomarkers which can predict disease progression of early Alzheimer's disease (AD) in a Japanese population. Methods The group classification on early AD population in both Japanese Alzheimer's Disease Neuroimaging Initiative (J-ADNI) and North American ADNI (NA-ADNI) was performed using the inclusion criteria including brain amyloid positivity on positron emission tomography or CSF. Participants with early AD from each cohort were stratified into two groups based on a cutoff 1.0 of Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) change at month 24 (m24): participants in "progress group" have CDR-SB change ≥ 1.0 and participants in "stable group" have CDR-SB change < 1.0. Then, we performed identification of prognostic factors from baseline items including neuropsychological scores (Assessment Scale-Cognitive Subscale[ADAS-cog 13], Mini-Mental State Examination (MMSE), CDR, FAQ, and Geriatric Depression Scale ), CSF markers (t-tau, p-tau, and beta-amyloid 1-42), vital signs (body weight, pulse rate, etc.,), by using two statistical approaches, Welch's t-test and simple linear regression by ordinary least squares. Comparisons between participants with J-ADNI and participants with NA-ADNI were also performed. Results Trends of CDR-SB changes were very similar between J-ADNI and NA-ADNI early AD population enrolled in this study. Baseline levels of CSF t-tau, p-tau, Mini-Mental State Examination, FAQ, and ADAS-cog13 were identified as prognostic factors in both J-ADNI and NA-ADNI. Based on a detailed subscale analysis on ADAS-cog13, four subscales (Q1: word recall, Q3: construction, Q4: delayed word recall, and Q8: word recognition) were identified as prognostic factors in both J-ADNI and NA-ADNI. Discussion Characterizing population with early AD can provide benefits for promoting efficiency in conducting AD clinical trials for disease-modifying treatments. Thus, implementing these prognostic factors into clinical trials may be potentially a good method to enrich participants with early AD who are suitable for evaluating treatment effects.
Collapse
Affiliation(s)
- Takuya Yagi
- Eisai Co., Ltd., Koishikawa, Bunkyo-ku, Tokyo, Japan
| | | | - Junichi Ito
- Eisai Co., Ltd., Tokodai, Tsukuba-shi, Ibaraki, Japan
| | - Ryoko Ihara
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, Tokyo, Japan
| | - Kazushi Suzuki
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, Tokyo, Japan
| | - Atsushi Iwata
- Department of Neurology, The University of Tokyo Hospital, Tokyo, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ken Aoshima
- Eisai Co., Ltd., Koishikawa, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
29
|
Tarawneh R. Cerebrospinal Fluid Markers of Synaptic Injury and Functional Connectivity in Alzheimer Disease: Protocol for a Cross-Sectional Study. JMIR Res Protoc 2019; 8:e14302. [PMID: 31271547 PMCID: PMC6668296 DOI: 10.2196/14302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/23/2019] [Accepted: 06/27/2019] [Indexed: 12/30/2022] Open
Abstract
Background Synaptic loss is the best surrogate for cognitive decline in Alzheimer disease (AD) and is more closely associated with cognitive function than amyloid or tau pathologies. Neurogranin (Ng) and synaptosome–associated protein-25 (SNAP-25) have demonstrated utility as cerebrospinal fluid (CSF) markers of synaptic injury in presymptomatic and symptomatic AD. While these synaptic markers have been shown to correlate with cognitive impairment and whole brain or regional atrophy in previous studies of AD, to our knowledge, the relationship between fluid markers of synaptic injury and functional brain imaging has not been previously investigated. Objective The main objective of this study is to examine the relationship between CSF markers of synaptic injury (Ng and SNAP-25) and functional connectivity (FC) in the default mode and semantic memory networks in individuals with mild cognitive impairment (MCI) and mild dementia due to AD (Clinical Dementia Rating [CDR] 0.5-1) and cognitively normal controls (CDR 0), adjusting for age, gender, and the apolipoprotein E4 (APOE4) genotype. Secondary objectives include investigating the associations between CSF markers of amyloid and tau pathology (CSF tau, p-tau181, and Aβ42) and FC in the default mode and semantic memory networks in AD (CDR 0.5-1) and controls (CDR 0), adjusting for age, gender, and the APOE4 genotype. Methods This is a cross-sectional study of individuals with MCI or mild dementia due to AD (CDR 0.5-1; n=20), and cognitively normal controls (CDR 0; n=20). Participants will undergo detailed clinical and neuropsychological assessments, CSF biomarker assessments (CSF Ng, SNAP-25, tau, p-tau181, and Aβ42 levels) and functional magnetic resonance imaging assessments, using a Siemens 3.0 Tesla Prisma scanner, during resting state and during the performance of a semantic memory task. All study procedures will be completed within 4 months of enrollment. Partial correlation analyses will examine associations of CSF biomarker measures with FC in the default mode and semantic memory networks in AD and controls. Results This study was funded by the Chronic Brain Injury Discovery Themes of the Ohio State University College of Medicine. Study enrollment began in April 2018. Study procedures and data analysis are currently underway. Results are expected by December 2019. Conclusions Findings from this study will further support the utility of CSF Ng and SNAP-25 as markers of synaptic injury by examining their associations with functional alterations in cortical networks affected by early AD pathology. International Registered Report Identifier (IRRID) DERR1-10.2196/14302
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
30
|
Finnegan ME, Visanji NP, Romero-Canelon I, House E, Rajan S, Mosselmans JFW, Hazrati LN, Dobson J, Collingwood JF. Synchrotron XRF imaging of Alzheimer's disease basal ganglia reveals linear dependence of high-field magnetic resonance microscopy on tissue iron concentration. J Neurosci Methods 2019; 319:28-39. [PMID: 30851339 DOI: 10.1016/j.jneumeth.2019.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/02/2019] [Accepted: 03/02/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chemical imaging of the human brain has great potential for diagnostic and monitoring purposes. The heterogeneity of human brain iron distribution, and alterations to this distribution in Alzheimer's disease, indicate iron as a potential endogenous marker. The influence of iron on certain magnetic resonance imaging (MRI) parameters increases with magnetic field, but is under-explored in human brain tissues above 7 T. NEW METHOD Magnetic resonance microscopy at 9.4 T is used to calculate parametric images of chemically-unfixed post-mortem tissue from Alzheimer's cases (n = 3) and healthy controls (n = 2). Iron-rich regions including caudate nucleus, putamen, globus pallidus and substantia nigra are analysed prior to imaging of total iron distribution with synchrotron X-ray fluorescence mapping. Iron fluorescence calibration is achieved with adjacent tissue blocks, analysed by inductively coupled plasma mass spectrometry or graphite furnace atomic absorption spectroscopy. RESULTS Correlated MR images and fluorescence maps indicate linear dependence of R2, R2* and R2' on iron at 9.4 T, for both disease and control, as follows: [R2(s-1) = 0.072[Fe] + 20]; [R2*(s-1) = 0.34[Fe] + 37]; [R2'(s-1) = 0.26[Fe] + 16] for Fe in μg/g tissue (wet weight). COMPARISON WITH EXISTING METHODS This method permits simultaneous non-destructive imaging of most bioavailable elements. Iron is the focus of the present study as it offers strong scope for clinical evaluation; the approach may be used more widely to evaluate the impact of chemical elements on clinical imaging parameters. CONCLUSION The results at 9.4 T are in excellent quantitative agreement with predictions from experiments performed at lower magnetic fields.
Collapse
Affiliation(s)
- Mary E Finnegan
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK; Department of Bioengineering, Imperial College London, London, UK
| | - Naomi P Visanji
- The Edmond J Safra Program in Parkinson's Disease and the Morton & Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, M5T 2S8, Canada
| | - Isolda Romero-Canelon
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Emily House
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Surya Rajan
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | - Jon Dobson
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Joanna F Collingwood
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK; Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
31
|
Knopman DS, Petersen RC, Jack CR. A brief history of "Alzheimer disease": Multiple meanings separated by a common name. Neurology 2019; 92:1053-1059. [PMID: 31028129 DOI: 10.1212/wnl.0000000000007583] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/25/2019] [Indexed: 12/16/2022] Open
Abstract
The field of Alzheimer disease (AD) has a nosologic problem: The diagnostic label "Alzheimer disease" has several distinctive meanings. The term probable AD was introduced in 1984 to designate a clinically diagnosed acquired and progressive amnestic dementia for which there was no evidence for another etiology. Probable AD represented a clinicopathologic entity that assumed a specific and sensitive linkage between amnestic dementia and the neuropathology of β-amyloid-containing neuritic plaques and tau-containing neurofibrillary tangles. The clinicopathologic model represented by probable AD was adapted in abbreviated form for population-based studies and general clinical practice, although the uncertainty connoted by "probable" was often overlooked. Representing the growing public awareness of later life cognitive impairment, a vernacular meaning of AD arose out of the clinicopathologic model in which AD represented all dementia not due to another clinically apparent cause. In contrast, by the 1990s, neuropathologists settled on a definition of AD based entirely on a sufficient burden of neuritic plaques and neurofibrillary tangles at postmortem examination, regardless of antemortem clinical status. In the last decade, the availability of fluid and imaging biomarkers that measure β-amyloid and tau abnormalities has enabled antemortem pathobiological diagnoses, highlighting the divide between the clinicopathologic model, the vernacular usage, and the pathobiological models. Each definition has value. However, the meanings of AD as defined by each of these models are not interchangeable. The pathobiological one is the only one that is unambiguous.
Collapse
Affiliation(s)
- David S Knopman
- From the Departments of Neurology (D.S.K., R.C.P.) and Radiology (C.R.J.), Mayo Clinic, Rochester, MN.
| | - Ronald C Petersen
- From the Departments of Neurology (D.S.K., R.C.P.) and Radiology (C.R.J.), Mayo Clinic, Rochester, MN
| | - Clifford R Jack
- From the Departments of Neurology (D.S.K., R.C.P.) and Radiology (C.R.J.), Mayo Clinic, Rochester, MN
| |
Collapse
|
32
|
Novak P, Kontsekova E, Zilka N, Novak M. Ten Years of Tau-Targeted Immunotherapy: The Path Walked and the Roads Ahead. Front Neurosci 2018; 12:798. [PMID: 30450030 PMCID: PMC6224648 DOI: 10.3389/fnins.2018.00798] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
Neurofibrillary pathology comprised of pathological tau protein is closely tied to a range of neurodegenerative disorders, the most common of which is Alzheimer's disease. While they are individually rarer, a range of other disorders, the tauopathies (including Pick's disease, progressive supranuclear palsy, corticobasal degeneration, primary progressive aphasia, and ∼50% of behavioral variant frontotemporal dementia cases) display pronounced underlying tau pathology. In all cases, the distribution and amount of tau pathology closely correlates with the severity and phenotype of cognitive impairment, and with the pattern and degree of brain atrophy. Successfully counteracting tau pathology is likely to halt or slow the progression of these debilitating disorders. This makes tau a target of prime importance, yet an elusive one. The diversity of the tau proteome and post-translational modifications, as well as pathophysiology of tau are reviewed. Beginning 2013, a range of tau-targeted immunotherapies have entered clinical development; these therapies, and their common themes and differences are reviewed. The manuscript provides an extensive discussion on epitope selection for immunotherapies against tau pathology, on immunological mechanisms involved in their action, and challenges such as immune senescence, vaccine design, or evolution of epitopes. Furthermore, we provide methodological recommendations for the characterization of active vaccines and antibodies, animal models, and the target itself - the diseased tau proteome.
Collapse
Affiliation(s)
- Petr Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- AXON Neuroscience CRM Services SE, Bratislava, Slovakia
| | - Eva Kontsekova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- AXON Neuroscience SE, Larnaca, Cyprus
| |
Collapse
|
33
|
CSF Aβ1–42, but not p-Tau181, Predicted Progression from Amnestic MCI to Alzheimer’s Disease Dementia. Neuromolecular Med 2018; 20:491-497. [DOI: 10.1007/s12017-018-8516-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/05/2018] [Indexed: 10/28/2022]
|
34
|
Molecular imaging in dementia: Past, present, and future. Alzheimers Dement 2018; 14:1522-1552. [DOI: 10.1016/j.jalz.2018.06.2855] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/02/2018] [Accepted: 06/03/2018] [Indexed: 12/14/2022]
|
35
|
Ekman U, Ferreira D, Westman E. The A/T/N biomarker scheme and patterns of brain atrophy assessed in mild cognitive impairment. Sci Rep 2018; 8:8431. [PMID: 29849029 PMCID: PMC5976713 DOI: 10.1038/s41598-018-26151-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/03/2018] [Indexed: 12/24/2022] Open
Abstract
The objective of this study was to evaluate the A/T/N biomarker scheme in relation with brain atrophy patterns in individuals with mild cognitive impairment (MCI). Of the 154 participants with MCI, 74 progressed to AD within 36-months, and 80 remained stable. In addition, 101 cognitively healthy participants and 102 participants with AD were included. The A/T/N classification was assessed with cerebrospinal fluid markers. Each individual was rated as either positive (abnormal) or negative (normal) on each biomarker. Brain atrophy was assessed with visual ratings from magnetic resonance imaging. None of the individuals with MCI progressed to AD if they had a negative "A" biomarker in conjunction with minimal atrophy. In contrary, several individuals with MCI progressed to AD if they had a positive "A" biomarker in conjunction with minimal atrophy. Numerous individuals with MCI showed inconsistency in the neurodegeneration domain ("N") regarding t-tau and atrophy. The assessment of the A/T/N classification scheme in addition with brain atrophy patterns in MCI, increases the knowledge of the clinical trajectories and the variability within the neurodegeneration domain. This emphasises that individuals with MCI display heterogeneous longitudinal patterns closely connected to their biomarker profiles, which could have important clinical implications.
Collapse
Affiliation(s)
- Urban Ekman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden.
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience: King's College London, London, UK
| |
Collapse
|
36
|
Paolacci L, Giannandrea D, Mecocci P, Parnetti L. Biomarkers for Early Diagnosis of Alzheimer's Disease in the Oldest Old: Yes or No? J Alzheimers Dis 2018; 58:323-335. [PMID: 28436390 DOI: 10.3233/jad-161127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In recent years, many efforts have been spent to identify sensitive biomarkers able to improve the accuracy of Alzheimer's disease (AD) diagnosis. Two different workgroups (NIA-AA and IWG) included cerebrospinal fluid (CSF) and neuroimaging findings in their sets of criteria in order to improve diagnostic accuracy as well as early diagnosis. The number of subjects with cognitive impairment increases with aging but the oldest old (≥85 years of age), the fastest growing age group, is still the most unknown from a biological point of view. For this reason, the aim of our narrative mini-review is to evaluate the pertinence of the new criteria for AD diagnosis in the oldest old. Moreover, since different subgroups of oldest old have been described in scientific literature (escapers, delayers, survivors), we want to outline the clinical profile of the oldest old who could really benefit from the use of biomarkers for early diagnosis. Reviewing the literature on biomarkers included in the diagnostic criteria, we did not find a high degree of evidence for their use in the oldest old, although CSF biomarkers seem to be still the most useful for excluding AD diagnosis in the "fit" subgroup of oldest old subjects, due to the high negative predictive value maintained in this age group.
Collapse
Affiliation(s)
- Lucia Paolacci
- Department of Medicine, Section of Gerontologyand Geriatrics, University of Perugia, Perugia, Italy
| | - David Giannandrea
- Department of Medicine, Section of Neurology, Center for Memory Disturbances-Lab of Clinical Neurochemistry, University of Perugia, Perugia, Italy.,Neurology Unit, Presidio Ospedaliero Alto Chiascio, USL 1 Umbria, Italy
| | - Patrizia Mecocci
- Department of Medicine, Section of Gerontologyand Geriatrics, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Department of Medicine, Section of Neurology, Center for Memory Disturbances-Lab of Clinical Neurochemistry, University of Perugia, Perugia, Italy
| |
Collapse
|
37
|
Goldman JG, Holden SK, Litvan I, McKeith I, Stebbins GT, Taylor JP. Evolution of diagnostic criteria and assessments for Parkinson's disease mild cognitive impairment. Mov Disord 2018; 33:503-510. [DOI: 10.1002/mds.27323] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jennifer G. Goldman
- Department of Neurological Sciences, Section of Parkinson Disease and Movement Disorders; Rush University Medical Center; Chicago Illinois USA
| | - Samantha K. Holden
- Department of Neurology; University of Colorado, Department of Neurology; Aurora Colorado USA
| | - Irene Litvan
- Department of Neurosciences; University of California San Diego, Department of Neurosciences; San Diego California USA
| | - Ian McKeith
- Institute of Neuroscience; Newcastle University; Newcastle upon Tyne United Kingdom
| | - Glenn T. Stebbins
- Department of Neurological Sciences, Section of Parkinson Disease and Movement Disorders; Rush University Medical Center; Chicago Illinois USA
| | - John-Paul Taylor
- Institute of Neuroscience; Newcastle University; Newcastle upon Tyne United Kingdom
| |
Collapse
|
38
|
Ferreira D, Jelic V, Cavallin L, Oeksengaard AR, Snaedal J, Høgh P, Andersen BB, Naik M, Engedal K, Westman E, Wahlund LO. Electroencephalography Is a Good Complement to Currently Established Dementia Biomarkers. Dement Geriatr Cogn Disord 2018; 42:80-92. [PMID: 27595479 DOI: 10.1159/000448394] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Dementia biomarkers that are accessible and easily applicable in nonspecialized clinical settings are urgently needed. Quantitative electroencephalography (qEEG) is a good candidate, and the statistical pattern recognition (SPR) method has recently provided promising results. We tested the diagnostic value of qEEG-SPR in comparison to cognition, structural imaging, and cerebrospinal fluid (CSF) biomarkers. METHODS A total of 511 individuals were recruited from the multicenter NORD EEG study [141 healthy controls, 64 subjective cognitive decline, 124 mild cognitive impairment, 135 Alzheimer's disease (AD), 15 dementia with Lewy bodies/Parkinson's disease with dementia (DLB/PDD), 32 other dementias]. The EEG data were recorded in a standardized way. Structural imaging data were visually rated using scales of atrophy in the medial temporal, frontal, and posterior cortex. RESULTS qEEG-SPR outperformed structural imaging, cognition, and CSF biomarkers in DLB/PDD diagnosis, outperformed structural imaging in AD diagnosis, and improved the differential diagnosis of AD. In addition, qEEG-SPR allowed differentiation of two clinically different AD subtypes. CONCLUSION Adding qEEG to the diagnostic workup substantially increases the detection of AD pathology even in pre-dementia stages and improves differential diagnosis. EEG could serve as a good complement to currently established dementia biomarkers since it is cheap, noninvasive, and extensively applied outside academic centers.
Collapse
Affiliation(s)
- Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tariq S, Barber PA. Dementia risk and prevention by targeting modifiable vascular risk factors. J Neurochem 2017; 144:565-581. [PMID: 28734089 DOI: 10.1111/jnc.14132] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/23/2017] [Accepted: 07/15/2017] [Indexed: 01/04/2023]
Abstract
The incidence of dementia is expected to double in the next 20 years and will contribute to heavy social and economic burden. Dementia is caused by neuronal loss that leads to brain atrophy years before symptoms manifest. Currently, no cure exists and extensive efforts are being made to mitigate cognitive impairment in late life in order to reduce the burden on patients, caregivers, and society. The most common type of dementia, Alzheimer's disease (AD), and vascular dementia (VaD) often co-exists in the brain and shares common, modifiable risk factors, which are targeted in numerous secondary prevention trials. There is a growing need for non-pharmacological interventions and infrastructural support from governments to encourage psychosocial and behavioral interventions. Secondary prevention trials need to be redesigned based on the risk profile of individual subjects, which require the use of validated and standardized clinical, biological, and neuroimaging biomarkers. Multi-domain approaches have been proposed in high-risk populations that target optimal treatment; clinical trials need to recruit individuals at the highest risk of dementia before symptoms develop, thereby identifying an enriched disease group to test preventative and disease modifying strategies. The underlying aim should be to reduce microscopic brain tissue loss by modifying vascular and lifestyle risk factors over a relatively short period of time, thus optimizing the opportunity for preventing dementia in the future. Collaboration between international research groups is of key importance to the optimal use and allocation of existing resources, and the development of new techniques in preventing dementia. This article is part of the Special Issue "Vascular Dementia".
Collapse
Affiliation(s)
- Sana Tariq
- Seaman Family MR Center, Foothills Medical Centre, Calgary, AB, Canada.,Hotchkiss Brain Institute, Foothills Medical Center, Room 1A10 Health Research Innovation Center, Calgary, AB, Canada
| | - Philip A Barber
- Hotchkiss Brain Institute, Foothills Medical Center, Room 1A10 Health Research Innovation Center, Calgary, AB, Canada.,Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, Calgary, AB, Canada
| |
Collapse
|
40
|
Josef Golubic S, Aine CJ, Stephen JM, Adair JC, Knoefel JE, Supek S. MEG biomarker of Alzheimer's disease: Absence of a prefrontal generator during auditory sensory gating. Hum Brain Mapp 2017; 38:5180-5194. [PMID: 28714589 DOI: 10.1002/hbm.23724] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 12/17/2022] Open
Abstract
Magnetoencephalography (MEG), a direct measure of neuronal activity, is an underexplored tool in the search for biomarkers of Alzheimer's disease (AD). In this study, we used MEG source estimates of auditory gating generators, nonlinear correlations with neuropsychological results, and multivariate analyses to examine the sensitivity and specificity of gating topology modulation to detect AD. Our results demonstrated the use of MEG localization of a medial prefrontal (mPFC) gating generator as a discrete (binary) detector of AD at the individual level and resulted in recategorizing the participant categories in: (1) controls with mPFC generator localized in response to both the standard and deviant tones; (2) a possible preclinical stage of AD participants (a lower functioning group of controls) in which mPFC activation was localized to the deviant tone only; and (3) symptomatic AD in which mPFC activation was not localized to either the deviant or standard tones. This approach showed a large effect size (0.9) and high accuracy, sensitivity, and specificity (100%) in identifying symptomatic AD patients within a limited research sample. The present results demonstrate high potential of mPFC activation as a noninvasive biomarker of AD pathology during putative preclinical and clinical stages. Hum Brain Mapp 38:5180-5194, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Cheryl J Aine
- Department of Radiology, UNM School of Medicine, Albuquerque, New Mexico.,The Mind Research Network, Albuquerque, New Mexico
| | | | - John C Adair
- Department of Neurology, UNM School of Medicine, Albuquerque, New Mexico.,New Mexico VA Healthcare System, Albuquerque, New Mexico
| | - Janice E Knoefel
- Department of Neurology, UNM School of Medicine, Albuquerque, New Mexico.,Department of Internal Medicine, UNM School of Medicine, Albuquerque, New Mexico
| | - Selma Supek
- Department of Physics, Faculty of Science, University of Zagreb, Croatia
| |
Collapse
|
41
|
Tarawneh R, D'Angelo G, Crimmins D, Herries E, Griest T, Fagan AM, Zipfel GJ, Ladenson JH, Morris JC, Holtzman DM. Diagnostic and Prognostic Utility of the Synaptic Marker Neurogranin in Alzheimer Disease. JAMA Neurol 2017; 73:561-71. [PMID: 27018940 DOI: 10.1001/jamaneurol.2016.0086] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IMPORTANCE Synaptic loss is an early pathologic substrate of Alzheimer disease (AD). Neurogranin is a postsynaptic neuronal protein that has demonstrated utility as a cerebrospinal fluid (CSF) marker of synaptic loss in AD. OBJECTIVE To investigate the diagnostic and prognostic utility of CSF neurogranin levels in a large, well-characterized cohort of individuals with symptomatic AD and cognitively normal controls. DESIGN, SETTING, AND PARTICIPANTS A cross-sectional and longitudinal observational study of cognitive decline in patients with symptomatic AD and cognitively normal controls was performed. Participants were individuals with a clinical diagnosis of early symptomatic AD and cognitively normal controls who were enrolled in longitudinal studies of aging and dementia at the Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, from January 21, 2000, through March 21, 2011. Data analysis was performed from November 1, 2013, to March 31, 2015. MAIN OUTCOMES AND MEASURES Correlations between baseline CSF biomarker levels and future cognitive decline in patients with symptomatic AD and cognitively normal controls over time. RESULTS A total of 302 individuals (mean [SE] age, 73.1 [0.4] years) were included in this study (95 patients [52 women and 43 men] with AD and 207 controls [125 women and 82 men]). The CSF neurogranin levels differentiated patients with early symptomatic AD from controls with comparable diagnostic utility (mean [SE] area under the receiver operating characteristic curve, 0.71 [0.03]; 95% CI, 0.64-0.77) to the other CSF biomarkers. The CSF neurogranin levels correlated with brain atrophy (normalized whole-brain volumes: adjusted r = -0.38, P = .02; hippocampal volumes: adjusted r = -0.36, P = .03; entorhinal volumes: adjusted r = -0.46, P = .006; and parahippocampal volumes: adjusted r = -0.47, P = .005, n = 38) in AD and with amyloid load (r = 0.39, P = .02, n = 36) in preclinical AD. The CSF neurogranin levels predicted future cognitive impairment (adjusted hazard ratio, 1.89; 95% CI, 1.29-2.78; P = .001 as a continuous measure, and adjusted hazard ratio, 2.78; 95% CI, 1.13-5.99; P = .02 as a categorical measure using the 85th percentile cutoff value) in controls and rates of cognitive decline (Clinical Dementia Rating sum of boxes score: β estimate, 0.29; P = .001; global composite scores: β estimate, -0.11; P = .001; episodic memory scores: β estimate, -0.18; P < .001; and semantic memory scores: β estimate, -0.06; P = .04, n = 57) in patients with symptomatic AD over time, similarly to the CSF proteins VILIP-1, tau, and p-tau181. CONCLUSIONS AND RELEVANCE The CSF levels of the synaptic marker neurogranin offer diagnostic and prognostic utility for early symptomatic AD that is comparable to other CSF markers of AD. Importantly, CSF neurogranin complements the collective ability of these markers to predict future cognitive decline in cognitively normal individuals and, therefore, will be a useful addition to the current panel of AD biomarkers.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri2Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri3Charles F. and Joanne Knight Alzheimer Disease Research Center, Wash
| | - Gina D'Angelo
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri5Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri
| | - Dan Crimmins
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Elizabeth Herries
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Terry Griest
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Anne M Fagan
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri2Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri3Charles F. and Joanne Knight Alzheimer Disease Research Center, Wash
| | - Gregory J Zipfel
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri7Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri
| | - Jack H Ladenson
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri2Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri3Charles F. and Joanne Knight Alzheimer Disease Research Center, Wash
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri2Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri3Charles F. and Joanne Knight Alzheimer Disease Research Center, Wash
| |
Collapse
|
42
|
Ferreira D, Verhagen C, Hernández-Cabrera JA, Cavallin L, Guo CJ, Ekman U, Muehlboeck JS, Simmons A, Barroso J, Wahlund LO, Westman E. Distinct subtypes of Alzheimer's disease based on patterns of brain atrophy: longitudinal trajectories and clinical applications. Sci Rep 2017; 7:46263. [PMID: 28417965 PMCID: PMC5394684 DOI: 10.1038/srep46263] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/08/2017] [Indexed: 12/27/2022] Open
Abstract
Atrophy patterns on MRI can reliably predict three neuropathological subtypes of Alzheimer’s disease (AD): typical, limbic-predominant, or hippocampal-sparing. A method to enable their investigation in the clinical routine is still lacking. We aimed to (1) validate the combined use of visual rating scales for identification of AD subtypes; (2) characterise these subtypes at baseline and over two years; and (3) investigate how atrophy patterns and non-memory cognitive domains contribute to memory impairment. AD patients were classified as either typical AD (n = 100), limbic-predominant (n = 33), or hippocampal-sparing (n = 35) by using the Scheltens’ scale for medial temporal lobe atrophy (MTA), the Koedam’s scale for posterior atrophy (PA), and the Pasquier’s global cortical atrophy scale for frontal atrophy (GCA-F). A fourth group with no atrophy was also identified (n = 30). 230 healthy controls were also included. There was great overlap among subtypes in demographic, clinical, and cognitive variables. Memory performance was more dependent on non-memory cognitive functions in hippocampal-sparing and the no atrophy group. Hippocampal-sparing and the no atrophy group showed less aggressive disease progression. Visual rating scales can be used to identify distinct AD subtypes. Recognizing AD heterogeneity is important and visual rating scales may facilitate investigation of AD heterogeneity in clinical routine.
Collapse
Affiliation(s)
- Daniel Ferreira
- Department of Neurobiology, Care Sciences and Society, Centre for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Chloë Verhagen
- Department of Neurobiology, Care Sciences and Society, Centre for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden.,Department of Psychology, Faculty of Social and Behavioural Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Lena Cavallin
- Department of Clinical Science, Intervention and Technology, Division of Medical Imaging and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital in Huddinge, Huddinge, Sweden
| | - Chun-Jie Guo
- Department of Neurobiology, Care Sciences and Society, Centre for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden.,Department of Radiology, The First Hospital of Jilin University, Jilin, China
| | - Urban Ekman
- Department of Neurobiology, Care Sciences and Society, Centre for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - J-Sebastian Muehlboeck
- Department of Neurobiology, Care Sciences and Society, Centre for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Simmons
- Department of Neurobiology, Care Sciences and Society, Centre for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health, London, UK.,NIHR Biomedical Research Unit for Dementia, London, UK
| | - José Barroso
- Faculty of Psychology, University of La Laguna, Tenerife, Spain
| | - Lars-Olof Wahlund
- Department of Neurobiology, Care Sciences and Society, Centre for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Centre for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
43
|
Ferreira D, Hansson O, Barroso J, Molina Y, Machado A, Hernández-Cabrera JA, Muehlboeck JS, Stomrud E, Nägga K, Lindberg O, Ames D, Kalpouzos G, Fratiglioni L, Bäckman L, Graff C, Mecocci P, Vellas B, Tsolaki M, Kłoszewska I, Soininen H, Lovestone S, Ahlström H, Lind L, Larsson EM, Wahlund LO, Simmons A, Westman E. The interactive effect of demographic and clinical factors on hippocampal volume: A multicohort study on 1958 cognitively normal individuals. Hippocampus 2017; 27:653-667. [DOI: 10.1002/hipo.22721] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel Ferreira
- Division of Clinical Geriatrics; Centre for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Karolinska Institutet; Stockholm 14157 Sweden
| | - Oskar Hansson
- Department of Clinical Sciences; Clinical Memory Research Unit, Lund University; Malmö 20502 Sweden
| | - José Barroso
- Department of Clinical Psychology; Psychobiology and Methodology, University of La Laguna; La Laguna 38071 Spain
| | - Yaiza Molina
- Department of Clinical Psychology; Psychobiology and Methodology, University of La Laguna; La Laguna 38071 Spain
- Faculty of Health Sciences; University Fernando Pessoa Canarias, Las Palmas de Gran Canaria; Spain
| | - Alejandra Machado
- Department of Clinical Psychology; Psychobiology and Methodology, University of La Laguna; La Laguna 38071 Spain
| | | | - J-Sebastian Muehlboeck
- Division of Clinical Geriatrics; Centre for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Karolinska Institutet; Stockholm 14157 Sweden
| | - Erik Stomrud
- Department of Clinical Sciences; Clinical Memory Research Unit, Lund University; Malmö 20502 Sweden
| | - Katarina Nägga
- Department of Clinical Sciences; Clinical Memory Research Unit, Lund University; Malmö 20502 Sweden
| | - Olof Lindberg
- Division of Clinical Geriatrics; Centre for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Karolinska Institutet; Stockholm 14157 Sweden
- Department of Clinical Sciences; Clinical Memory Research Unit, Lund University; Malmö 20502 Sweden
| | - David Ames
- National Ageing Research Institute; Parkville; Victoria 3050 Australia
- University of Melbourne Academic Unit for Psychiatry of Old Age; St George's Hospital, Kew; Victoria 3101 Australia
| | - Grégoria Kalpouzos
- Aging Research Center (ARC); Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University; 113 30 Stockholm Sweden
| | - Laura Fratiglioni
- Aging Research Center (ARC); Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University; 113 30 Stockholm Sweden
- Stockholm Gerontology Research Centre; Stockholm 11330 Sweden
| | - Lars Bäckman
- Aging Research Center (ARC); Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University; 113 30 Stockholm Sweden
- Stockholm Gerontology Research Centre; Stockholm 11330 Sweden
| | - Caroline Graff
- Division of Neurogeriatrics; Department of Neurobiology Care Sciences and Society, Centre for Alzheimer Research, Karolinska Institutet; Stockholm 14157 Sweden
- Department of Geriatric Medicine; Karolinska University Hospital Huddinge; Stockholm 14186 Sweden
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics; University of Perugia; Perugia 06100 Italy
| | - Bruno Vellas
- INSERM U 558; University of Toulouse; Toulouse 31024 France
| | - Magda Tsolaki
- 3rd Department of Neurology; Aristoteleion Panepistimeion Thessalonikis; Thessaloniki 54124 Greece
| | | | - Hilkka Soininen
- University of Eastern Finland and Kuopio University Hospital; Kuopio 70211 Finland
| | - Simon Lovestone
- Department of Psychiatry; Warneford Hospital University of Oxford; Oxford OX37JX United Kingdom
| | - Håkan Ahlström
- Department of Surgical Sciences; Radiology, Uppsala University; Uppsala 75185 Sweden
| | - Lars Lind
- Department of Medical Sciences; Uppsala University; Uppsala 75185 Sweden
| | - Elna-Marie Larsson
- Department of Surgical Sciences; Radiology, Uppsala University; Uppsala 75185 Sweden
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics; Centre for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Karolinska Institutet; Stockholm 14157 Sweden
| | - Andrew Simmons
- Division of Clinical Geriatrics; Centre for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Karolinska Institutet; Stockholm 14157 Sweden
- NIHR Biomedical Research Centre for Mental Health; London SE58AF United Kingdom
- NIHR Biomedical Research Unit for Dementia; London SE58AF United Kingdom
- Institute of Psychiatry; King's College London; London SE58AF United Kingdom
| | - Eric Westman
- Division of Clinical Geriatrics; Centre for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Karolinska Institutet; Stockholm 14157 Sweden
- Institute of Psychiatry; King's College London; London SE58AF United Kingdom
| | | | | |
Collapse
|
44
|
Chiotis K, Saint-Aubert L, Boccardi M, Gietl A, Picco A, Varrone A, Garibotto V, Herholz K, Nobili F, Nordberg A, Frisoni GB, Winblad B, Jack CR. Clinical validity of increased cortical uptake of amyloid ligands on PET as a biomarker for Alzheimer's disease in the context of a structured 5-phase development framework. Neurobiol Aging 2017; 52:214-227. [DOI: 10.1016/j.neurobiolaging.2016.07.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 06/10/2016] [Accepted: 07/06/2016] [Indexed: 12/31/2022]
|
45
|
Sonni I, Ratib O, Boccardi M, Picco A, Herholz K, Nobili F, Varrone A. Clinical validity of presynaptic dopaminergic imaging with 123I-ioflupane and noradrenergic imaging with 123I-MIBG in the differential diagnosis between Alzheimer's disease and dementia with Lewy bodies in the context of a structured 5-phase development framework. Neurobiol Aging 2017; 52:228-242. [DOI: 10.1016/j.neurobiolaging.2016.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/23/2016] [Accepted: 04/21/2016] [Indexed: 11/27/2022]
|
46
|
|
47
|
Millar PR, Balota DA, Maddox GB, Duchek JM, Aschenbrenner AJ, Fagan AM, Benzinger TLS, Morris JC. Process dissociation analyses of memory changes in healthy aging, preclinical, and very mild Alzheimer disease: Evidence for isolated recollection deficits. Neuropsychology 2017; 31:708-723. [PMID: 28206782 DOI: 10.1037/neu0000352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Recollection and familiarity are independent processes that contribute to memory performance. Recollection is dependent on attentional control, which has been shown to be disrupted in early stage Alzheimer's disease (AD), whereas familiarity is independent of attention. The present longitudinal study examines the sensitivity of recollection estimates based on Jacoby's (1991) process dissociation procedure to AD-related biomarkers in a large sample of well-characterized cognitively normal middle-aged and older adults (N = 519) and the extent to which recollection discriminates these individuals from individuals with very mild symptomatic AD (N = 64). METHOD Participants studied word pairs (e.g., knee bone), then completed a primed, explicit, cued fragment-completion memory task (e.g., knee b_n_). Primes were either congruent with the correct response (e.g., bone), incongruent (e.g., bend), or neutral (e.g., &&&). This design allowed for the estimation of independent contributions of recollection and familiarity processes, using the process dissociation procedure. RESULTS Recollection, but not familiarity, was impaired in healthy aging and in very mild AD. Recollection discriminated cognitively normal individuals from the earliest detectable stage of symptomatic AD above and beyond standard psychometric tests. In cognitively normal individuals, baseline CSF measures indicative of AD pathology were related to lower initial recollection and less practice-related improvement in recollection over time. Finally, presence of amyloid plaques, as imaged by PIB-PET, was also related to less improvement in recollection over time. CONCLUSIONS These findings suggest that attention-demanding memory processes, such as recollection, may be particularly sensitive to both symptomatic and preclinical AD pathology. (PsycINFO Database Record
Collapse
Affiliation(s)
- Peter R Millar
- Department of Psychological & Brain Sciences, Washington University in St. Louis
| | - David A Balota
- Department of Psychological & Brain Sciences, Washington University in St. Louis
| | | | - Janet M Duchek
- Department of Psychological & Brain Sciences, Washington University in St. Louis
| | | | - Anne M Fagan
- Department of Neurology, Washington University in St. Louis
| | - Tammie L S Benzinger
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in St. Louis
| | - John C Morris
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in St. Louis
| |
Collapse
|
48
|
Tremblay C, François A, Delay C, Freland L, Vandal M, Bennett DA, Calon F. Association of Neuropathological Markers in the Parietal Cortex With Antemortem Cognitive Function in Persons With Mild Cognitive Impairment and Alzheimer Disease. J Neuropathol Exp Neurol 2017; 76:70-88. [PMID: 28158844 PMCID: PMC7526851 DOI: 10.1093/jnen/nlw109] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The associations between cognitive function and neuropathological markers in patients with mild cognitive impairment (MCI) and Alzheimer disease (AD) remain only partly defined. We investigated relationships between antemortem global cognitive scores and β-amyloid (Aβ), tau, TDP-43, synaptic proteins and other key AD neuropathological markers assessed by biochemical approaches in postmortem anterior parietal cortex samples from 36 subjects (12 MCI, 12 AD and 12 not cognitively impaired) from the Religious Orders Study. Overall, the strongest negative correlation coefficients associated with global cognitive scores were obtained for insoluble phosphorylated tau (r2 = -0.484), insoluble Aβ42 (r2 = -0.389) and neurofibrillary tangle counts (r2 = -0.494) (all p < 0.001). Robust inverse associations with cognition scores were also established for TDP-43-positive cytoplasmic inclusions (r2 = -0.476), total insoluble tau (r2 = -0.385) and Aβ plaque counts (r2 = -0.426). Sarkosyl (SK)- or formic acid (FA)-extracted tau showed similar interrelations. On the other hand, synaptophysin (r2 = +0.335), pS403/404 TDP-43 (r2 = +0.265) and septin-3 (r2 = +0.257) proteins positively correlated with cognitive scores. This study suggests that tau and Aβ42 in their insoluble aggregated forms, synaptic proteins and TDP-43 are the markers in the parietal cortex that are most strongly associated with cognitive function. This further substantiates the relevance of investigating these markers to understand the pathogenesis of AD and develop therapeutic tools.
Collapse
Affiliation(s)
- Cyntia Tremblay
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
- Centre Hospitalier Universitaire de Québec (CHU-Q) Research Center, Neuroscience Axis, Québec, QC, Canada
| | - Arnaud François
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
- Centre Hospitalier Universitaire de Québec (CHU-Q) Research Center, Neuroscience Axis, Québec, QC, Canada
| | - Charlotte Delay
- Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement (RID-AGE) Research Group, University of Lille, INSERM U1167, Lille University Medical Center, Institut Pasteur de Lille, Lille, France (CD)
| | - Laure Freland
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
- Centre Hospitalier Universitaire de Québec (CHU-Q) Research Center, Neuroscience Axis, Québec, QC, Canada
| | - Milène Vandal
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
- Centre Hospitalier Universitaire de Québec (CHU-Q) Research Center, Neuroscience Axis, Québec, QC, Canada
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Québec, QC, Canada
- Centre Hospitalier Universitaire de Québec (CHU-Q) Research Center, Neuroscience Axis, Québec, QC, Canada
| |
Collapse
|
49
|
Boland K, Moschetti V, Dansirikul C, Pichereau S, Gheyle L, Runge F, Zimdahl-Gelling H, Sand M. A phase I, randomized, proof-of-clinical-mechanism study assessing the pharmacokinetics and pharmacodynamics of the oral PDE9A inhibitor BI 409306 in healthy male volunteers. Hum Psychopharmacol 2017; 32. [PMID: 28120486 DOI: 10.1002/hup.2569] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/14/2016] [Accepted: 12/06/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase (PDE) inhibitors are hypothesized to improve cognition in schizophrenia and Alzheimer disease by increasing cGMP levels in certain brain regions. This phase I, randomized, parallel-group, double-blind, placebo-controlled study provides proof-of-mechanism evidence for BI 409306, a novel, oral PDE9A inhibitor. METHODS In healthy males, exposure of BI 409306 (25-, 50-, 100-, and 200-mg single dose) and placebo was assessed in plasma and cerebrospinal fluid (CSF). Effect of BI 409306 on CSF cGMP levels was evaluated, and adverse events (AEs) were monitored. RESULTS In all enrolled subjects (N = 20), plasma BI 409306 concentration increased rapidly (median tmax : 0.75-1.25 hr) followed by rapid increases in CSF (median tmax : 1.5-2.0 hr). Maximum CSF cGMP concentrations were achieved within 2 to 5 hr, declining to baseline levels 10 to 14 hr after dosing. Dose-dependent increases in plasma and CSF exposure and CSF cGMP were shown. BI 409306 was safe and well tolerated. Most AEs were mild to moderate in intensity and study procedure-related. CONCLUSIONS BI 409306 increased rapidly in plasma and was subsequently detected in CSF, resulting in dose-dependent increases in cGMP levels in CSF. Results indicate BI 409306 efficiently crosses the blood-CSF barrier, with an acceptable level of AEs.
Collapse
Affiliation(s)
- Katja Boland
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | | | - Solen Pichereau
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Lien Gheyle
- Clinical Research, SGS, Life Science Services, Antwerpen, Belgium
| | - Frank Runge
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Michael Sand
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| |
Collapse
|
50
|
Xiong C, Luo J, Morris JC, Bateman R. Linear Combinations of Multiple Outcome Measures to Improve the Power of Efficacy Analysis ---Application to Clinical Trials on Early Stage Alzheimer Disease. ACTA ACUST UNITED AC 2017; 1:36-58. [PMID: 29546251 DOI: 10.1080/24709360.2017.1331821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Modern clinical trials on Alzheimer disease (AD) focus on the early symptomatic stage or even the preclinical stage. Subtle disease progression at the early stages, however, poses a major challenge in designing such clinical trials. We propose a multivariate mixed model on repeated measures to model the disease progression over time on multiple efficacy outcomes, and derive the optimum weights to combine multiple outcome measures by minimizing the sample sizes to adequately power the clinical trials. A cross-validation simulation study is conducted to assess the accuracy for the estimated weights as well as the improvement in reducing the sample sizes for such trials. The proposed methodology is applied to the multiple cognitive tests from the ongoing observational study of the Dominantly Inherited Alzheimer Network (DIAN) to power future clinical trials in the DIAN with a cognitive endpoint. Our results show that the optimum weights to combine multiple outcome measures can be accurately estimated, and that compared to the individual outcomes, the combined efficacy outcome with these weights significantly reduces the sample size required to adequately power clinical trials. When applied to the clinical trial in the DIAN, the estimated linear combination of six cognitive tests can adequately power the clinical trial.
Collapse
Affiliation(s)
- Chengjie Xiong
- Division of Biostatistics, Washington University, St. Louis, MO.,Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO
| | - Jingqin Luo
- Division of Public Health, Department of Surgery, Washington University, St. Louis, MO.,Biostatistics Core, Siteman Cancer Center, Washington University, St. Louis, MO
| | - John C Morris
- Department of Neurology, Washington University, St. Louis, MO.,Department of Pathology and Immunology, Washington University, St. Louis, MO.,Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO
| | - Randall Bateman
- Department of Neurology, Washington University, St. Louis, MO.,Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO
| |
Collapse
|