1
|
Bhanukiran K, Priya V. Exploring multitarget potential of Piper nigrum fruit constituents for Alzheimer's disease: An AI-driven strategy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156108. [PMID: 39383634 DOI: 10.1016/j.phymed.2024.156108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease that leads to development of cognition and memory dysfunctions. Currently, there is no known cure for AD, although limited medications are approved for the management of disease condition. Various plant-based leads give new hope for considering phytoconstituents as anti-AD drugs. The Piper nigrum L. fruit extract was reported to have anti-Alzheimer's activity. It creates an interest in the finding of active moieties that may be accountable for anti-AD activity. HYPOTHESIS/PURPOSE Identification of multitarget directed ligands isolated from Piper nigrum fruits through AI based studies. STUDY DESIGN The phytochemical analysis of alkaloid fraction was carried out by LCMS, followed by the evaluation of constituents through in silico studies. METHODS The fruits methanolic extract was prepared by cold maceration technique. The chemical profiling of the alkaloidal fraction was carried out using LCMS/MS analysis. The obtained compound's target hit genes were identified through network pharmacology studies using String, Metascape, and Cytoscape tools. Further, docking studies and MD simulations were carried out using AutoDock4 and Desmond-Maestro software. Then, electrochemical properties of hit compound P4 were determined using Gaussview6 software. RESULTS From LCMS/MS analysis data, 29 compounds were considered based on compound intensity and accuracy (>95 %). Then, 41 common gene targets were identified from AD genes and compound-targeted genes. The 41 common genes in the PPI network suggested that AChE and BACE1 were the most abundant proteins. Further, docking studies revealed the hit compound P4 binding interaction and energies when compared to other 28 ligands. The molecular dynamics studies showed that P4-AChE and P4-BACE1 complexes were stable, and there were no RMSD and RMSF fluctuations were observed up to 100 ns. Further, PCA and MM-GBSA analysis data supported that complexes (P4-AChE and P4-BACE1) were stable. The DFT and surface properties indicated that compound P4 was ideal candidate for AD treatment and must be considered for further biological activity studies. CONCLUSION The study identified compound P4 (dehydropipernonaline) from alkaloidal fraction of Piper nigrum fruits, suggesting it may be hit candidate for AD treatment.
Collapse
Affiliation(s)
- Kancharla Bhanukiran
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai 400056, India; Department of Pharmacognosy, GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam 530045, India.
| | - Vishnu Priya
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai 400056, India
| |
Collapse
|
2
|
Pidany F, Kroustkova J, Jenco J, Breiterova KH, Muckova L, Novakova L, Kunes J, Fibigar J, Kucera T, Novak M, Sorf A, Hrabinova M, Pulkrabkova L, Janousek J, Soukup O, Jun D, Korabecny J, Cahlikova L. Carltonine-derived compounds for targeted butyrylcholinesterase inhibition. RSC Med Chem 2024; 15:1601-1625. [PMID: 38784455 PMCID: PMC11110763 DOI: 10.1039/d4md00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/16/2024] [Indexed: 05/25/2024] Open
Abstract
The investigation into human butyrylcholinesterase (hBChE) inhibitors as therapeutic agents for Alzheimer's disease (AD) holds significant promise, addressing both symptomatic relief and disease progression. In the pursuit of novel drug candidates with a selective BChE inhibition pattern, we focused on naturally occurring template structures, specifically Amaryllidaceae alkaloids of the carltonine-type. Herein, we explored a series of compounds implementing an innovative chemical scaffold built on the 3- and 4-benzyloxy-benzylamino chemotype. Notably, compounds 28 (hBChE IC50 = 0.171 ± 0.063 μM) and 33 (hBChE IC50 = 0.167 ± 0.018 μM) emerged as top-ranked hBChE inhibitors. In silico simulations elucidated the binding modes of these compounds within hBChE. CNS availability was predicted using the BBB score algorithm, corroborated by in vitro permeability assessments with the most potent derivatives. Compound 33 was also inspected for aqueous solubility, microsomal and plasma stability. Chemoinformatics analysis validated these hBChE inhibitors for oral administration, indicating favorable gastrointestinal absorption in compliance with Lipinski's and Veber's rules. Safety assessments, crucial for the chronic administration typical in AD treatment, were conducted through cytotoxicity testing on human neuroblastoma (SH-SY5Y) and hepatocellular carcinoma (HepG2) cell lines.
Collapse
Affiliation(s)
- Filip Pidany
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacognosy and Pharmaceutical Botany, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| | - Jana Kroustkova
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacognosy and Pharmaceutical Botany, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| | - Jaroslav Jenco
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacognosy and Pharmaceutical Botany, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| | - Katerina Hradiska Breiterova
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacognosy and Pharmaceutical Botany, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| | - Lubica Muckova
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Lucie Novakova
- Faculty of Pharmacy in Hradec Kralove, Department of Analytical Chemistry, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| | - Jiri Kunes
- Faculty of Pharmacy in Hradec Kralove, Department of Bioorganic and Organic Chemistry, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| | - Jakub Fibigar
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Tomas Kucera
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Martin Novak
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
| | - Ales Sorf
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Martina Hrabinova
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Lenka Pulkrabkova
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Jiri Janousek
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Daniel Jun
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove Sokolska 581 500 05 Hradec Kralove Czech Republic
- Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, University of Defence Trebesska 1575 500 01 Hradec Kralove Czech Republic
| | - Lucie Cahlikova
- Faculty of Pharmacy in Hradec Kralove, Department of Pharmacognosy and Pharmaceutical Botany, Charles University Akademika Heyrovskeho 1203 500 05 Hradec Kralove Czech Republic
| |
Collapse
|
3
|
Kim JH, Han YE, Oh SJ, Lee B, Kwon O, Choi CW, Kim MS. Enhanced neuronal activity by suffruticosol A extracted from Paeonia lactiflora via partly BDNF signaling in scopolamine-induced memory-impaired mice. Sci Rep 2023; 13:11731. [PMID: 37474737 PMCID: PMC10359324 DOI: 10.1038/s41598-023-38773-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
Neurodegenerative diseases are explained by progressive defects of cognitive function and memory. These defects of cognition and memory dysfunction can be induced by the loss of brain-derived neurotrophic factors (BDNF) signaling. Paeonia lactiflora is a traditionally used medicinal herb in Asian countries and some beneficial effects have been reported, including anti-oxidative, anti-inflammatory, anti-cancer activity, and potential neuroprotective effects recently. In this study, we found that suffruticosol A is a major compound in seeds of Paeonia lactiflora. When treated in a SH-SY5 cell line for measuring cell viability and cell survival, suffruticosol A increased cell viability (at 20 µM) and recovered scopolamine-induced neurodegenerative characteristics in the cells. To further confirm its neural amelioration effects in the animals, suffruticosol A (4 or 15 ng, twice a week) was administered into the third ventricle beside the brain of C57BL/6 mice for one month then the scopolamine was intraperitoneally injected into these mice to induce impairments of cognition and memory before conducting behavioral experiments. Central administration of suffruticosol A into the brain restored the memory and cognition behaviors in mice that received the scopolamine. Consistently, the central treatments of suffruticosol A showed rescued cholinergic deficits and BDNF signaling in the hippocampus of mice. Finally, we measured the long-term potentiation (LTP) in the hippocampal CA3-CA1 synapse to figure out the restoration of the synaptic mechanism of learning and memory. Bath application of suffruticosol A (40 µM) improved LTP impairment induced by scopolamine in hippocampal slices. In conclusion, the central administration of suffruticosol A ameliorated neuronal effects partly through elevated BDNF signaling.
Collapse
Affiliation(s)
- June Hee Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Young-Eun Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, 48513, Republic of Korea
| | - Obin Kwon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Chun Whan Choi
- Natural Biomaterial Team, Biocenter, Gyeonggido Business and Science Accelerator, Suwon, 16229, Gyeonggi-do, Republic of Korea.
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
4
|
Nagar S, Pigott M, Kukula-Koch W, Sheridan H. Unravelling Novel Phytochemicals and Anticholinesterase Activity in Irish Cladonia portentosa. Molecules 2023; 28:molecules28104145. [PMID: 37241886 DOI: 10.3390/molecules28104145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Acetylcholinesterase inhibitors remain the mainstay of symptomatic treatment for Alzheimer's disease. The natural world is rich in acetylcholinesterase inhibitory molecules, and research efforts to identify novel leads is ongoing. Cladonia portentosa, commonly known as reindeer lichen, is an abundant lichen species found in Irish Boglands. The methanol extract of Irish C. portentosa was identified as an acetylcholinesterase inhibitory lead using qualitative TLC-bioautography in a screening program. To identify the active components, the extract was deconvoluted using a successive extraction process with hexane, ethyl acetate and methanol to isolate the active fraction. The hexane extract demonstrated the highest inhibitory activity and was selected for further phytochemical investigations. Olivetolic acid, 4-O-methylolivetolcarboxylic acid, perlatolic acid and usnic acid were isolated and characterized using ESI-MS and two-dimensional NMR techniques. LC-MS analysis also determined the presence of the additional usnic acid derivatives, placodiolic and pseudoplacodiolic acids. Assays of the isolated components confirmed that the observed anticholinesterase activity of C. portentosa can be attributed to usnic acid (25% inhibition at 125 µM) and perlatolic acid (20% inhibition at 250 µM), which were both reported inhibitors. This is the first report of isolation of olivetolic and 4-O-methylolivetolcarboxylic acids and the identification of placodiolic and pseudoplacodiolic acids from C. portentosa.
Collapse
Affiliation(s)
- Shipra Nagar
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 02, D02 PN40 Dublin, Ireland
| | - Maria Pigott
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 02, D02 PN40 Dublin, Ireland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | - Helen Sheridan
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 02, D02 PN40 Dublin, Ireland
| |
Collapse
|
5
|
Smyrska-Wieleba N, Mroczek T. Natural Inhibitors of Cholinesterases: Chemistry, Structure-Activity and Methods of Their Analysis. Int J Mol Sci 2023; 24:ijms24032722. [PMID: 36769043 PMCID: PMC9916849 DOI: 10.3390/ijms24032722] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
This article aims to provide an updated description and comparison of the data currently available in the literature (from the last 15 years) on the studied natural inhibitors of cholinesterases (IChEs), namely, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These data also apply to the likely impact of the structures of the compounds on the therapeutic effects of available and potential cholinesterase inhibitors. IChEs are hitherto known compounds with various structures, activities and origins. Additionally, multiple different methods of analysis are used to determine the cholinesterase inhibitor potency. This summary indicates that natural sources are still suitable for the discovery of new compounds with prominent pharmacological activity. It also emphasizes that further studies are needed regarding the mechanisms of action or the structure-activity correlation to discuss the issue of cholinesterase inhibitors and their medical application.
Collapse
|
6
|
Chaichompoo W, Rojsitthisak P, Pabuprapap W, Siriwattanasathien Y, Yotmanee P, Suksamrarn A. Alkaloids with cholinesterase inhibitory activities from the bulbs of Crinum × amabile Donn ex Ker Gawl. PHYTOCHEMISTRY 2023; 205:113473. [PMID: 36244402 DOI: 10.1016/j.phytochem.2022.113473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/01/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Seven previously undescribed alkaloids, crinamabilines A-G, two non-alkaloidal compounds, crinamabidiene and 6-phenylpiperonyl alcohol, two first naturally occurring alkaloids, 3-epibuphanisine and (+)-1β,2β-epoxy-epicrinine, together with nineteen known alkaloids, were isolated from the bulbs of Crinum × amabile Donn ex Ker Gawl. Their structures and absolute configurations were elucidated by NMR, MS and ECD spectroscopic techniques. Ungeremine displayed the most potent inhibitory activity against acetylcholinesterase (IC50 0.21 μM), which was about 6-fold more active than the reference drug, galanthamine (IC50 1.23 μM). Ungeremine also exhibited the strongest inhibitory activity against butyrylcholinesterase (IC50 3.57 μM), which was comparable to galanthamine (IC50 3.11 μM). The molecular docking studies were performed and were well in agreement with the experimental results.
Collapse
Affiliation(s)
- Waraluck Chaichompoo
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Natural Products for Aging and Chronic Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Natural Products for Aging and Chronic Diseases, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Wachirachai Pabuprapap
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Yuttana Siriwattanasathien
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Pathumwadee Yotmanee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| |
Collapse
|
7
|
Albayrak G, Demir S, Koyu H, Baykan S. Anticholinesterase Compounds from Endemic Prangos uechtritzii. Chem Biodivers 2022; 19:e202200557. [PMID: 36201258 DOI: 10.1002/cbdv.202200557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022]
Abstract
In this study, the anticholinesterase effects of the extracts and isolated compounds from the roots of endemic Prangos uechtritzii Boiss & Hausskn (Apiaceae) are reported. A novel polyacetylenic compound; (+)-8-O-methyloplopantriol A along with two known polyacetylenes; (-)-panaxynol, (+)-falcarindiol and fifteen known coumarin derivatives; umbelliferone, 6-formylumbelliferone, suberosin, 7-demethylsuberosin, (+)-ulopterol, tamarin, psoralen, imperatorin, (+)-oxypeucedanin, (+)-oxypeucedanin hydrate, (+)-oxypeucedanin methanolate, (+)-marmesin, (-)-prantschimgin, (+)-decursinol, and (-)-adicardin were isolated from the hexane (Pu-HE), chloroform (Pu-CE), and methanol (Pu-ME) extracts of P. uechtritzii roots. (-)-Panaxynol, (+)-falcarindiol, 6-formylumbelliferone, (+)-decursinol, and (-)-adicardin were obtained from the genus Prangos for the first time. (+)-8-O-Methyloplopantriol A inhibited both AChE (IC50 =194.5±5.8 μM) and BChE (IC50 =51.9±2.96 μM) enzymes. (+)-Falcarindiol, 6-formylumbelliferone, 7-demethylsuberosin, tamarin, and imperatorin also exhibited BChE-specific inhibitory activities (IC50 =27.88-93.86 μM). (+)-Falcarindiol (IC50 =27.88±0.91 μM) and imperatorin (IC50 =30.89±1.40 μM) as the most active components could be led compounds to develop new BChE inhibitors with further research against Alzheimer's disease.
Collapse
Affiliation(s)
- Gokay Albayrak
- Department of Pharmaceutical Botany, Faculty of Pharmacy, İzmir Katip Çelebi University, 35620, İzmir, Turkey
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ege University, 35040, İzmir, Turkey
| | - Serdar Demir
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ege University, 35040, İzmir, Turkey
| | - Halil Koyu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, İzmir Katip Çelebi University, 35620, İzmir, Turkey
| | - Sura Baykan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ege University, 35040, İzmir, Turkey
| |
Collapse
|
8
|
Zhou CX, Li LY, Huang CQ, Guo XD, An XD, Luo FF, Cong W. Investigation of urine metabolome of BALB/c mouse infected with an avirulent strain of Toxoplasma gondii. Parasit Vectors 2022; 15:271. [PMID: 35906695 PMCID: PMC9338554 DOI: 10.1186/s13071-022-05408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022] Open
Abstract
Background The protozoan parasite Toxoplasma gondii is a major concern for human and animal health. Although the metabolic understanding of toxoplasmosis has increased in recent years, the analysis of metabolic alterations through noninvasive methodologies in biofluids remains limited. Methods Here, we applied liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics and multivariate statistical analysis to analyze BALB/c mouse urine collected from acutely infected, chronically infected and control subjects. Results In total, we identified 2065 and 1409 metabolites in the positive electrospray ionization (ESI +) mode and ESI − mode, respectively. Metabolomic patterns generated from principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) score plots clearly separated T. gondii-infected from uninfected urine samples. Metabolites with altered levels in urine from T. gondii-infected mice revealed changes in pathways related to amino acid metabolism, fatty acid metabolism, and nicotinate and nicotinamide metabolism. Conclusions This is the first study to our knowledge on urine metabolic profiling of BALB/c mouse with T. gondii infection. The urine metabolome of infected mouse is distinctive and has value in the understanding of Toxoplasmosis pathogenesis and improvement of treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05408-2.
Collapse
Affiliation(s)
- Chun-Xue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Ling-Yu Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Cui-Qin Huang
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province University & College of Life Science, Longyan University, Longyan, 364012, Fujian, People's Republic of China
| | - Xu-Dong Guo
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Xu-Dian An
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Fang-Fang Luo
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Wei Cong
- Marine College, Shandong University, Weihai, 264209, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Bektašević M, Politeo O, Roje M, Jurin M. Polyphenol Composition, Anticholinesterase and Antioxidant Potential of the Extracts of Clinopodium vulgare L. Chem Biodivers 2022; 19:e202101002. [PMID: 35357745 DOI: 10.1002/cbdv.202101002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/29/2022] [Indexed: 11/11/2022]
Abstract
Clinopidium vulgare L. (wild basil, Lamiaceae) is a well-known medicinal plant used in the traditional medicine in many countries. Medicinal plants present potential sources of bioactive compounds. Many of them are rich in polyphenol compounds that show biological potential in terms of protecting biological molecules from oxidation and in inhibition of cholinesterase enzymes, which may be significant in the treatment of diseases related to oxidative stress. In this work, we examined the chemical composition of Clinopodium vulgare L. hot water and methanol extract using spectroscopic and HPLC/DAD techniques. Using DPPH and FRAP methods the antioxidant activity was analyzed. The ability to protect proteins and lipids from oxidation was also determined as well as the ability of extracts to inhibit cholinesterase enzymes using Ellman's method. Analyzed extracts were rich in polyphenol compounds. Among 16 identified and quantified phenolic compounds dominant were: rosmarinic (26.63 and 34.21 mg/g) and ellagic acid (23.11 and 29.31 mg/g) of hot water and methanol extract, respectively. They show good antioxidant activity and good potential in protecting lipids from oxidation. The ability of extracts to inhibit enzyme acetylcholinesterase was weak, while inhibition of the butyrylcholinesterase was missing. Extracts show prooxidant activity in terms of protecting proteins from oxidation.
Collapse
Affiliation(s)
- Mejra Bektašević
- Department of Biochemistry, Biotechnical Faculty, University of Bihać, Luke Marjanovića bb, 77000, Bihać, Bosnia and Herzegovina
| | - Olivera Politeo
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| | - Marin Roje
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Mladenka Jurin
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| |
Collapse
|
10
|
de Sousa NF, Scotti L, de Moura ÉP, dos Santos Maia M, Soares Rodrigues GC, de Medeiros HIR, Lopes SM, Scotti MT. Computer Aided Drug Design Methodologies with Natural Products in the Drug Research Against Alzheimer's Disease. Curr Neuropharmacol 2022; 20:857-885. [PMID: 34636299 PMCID: PMC9881095 DOI: 10.2174/1570159x19666211005145952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Natural products are compounds isolated from plants that provide a variety of lead structures for the development of new drugs by the pharmaceutical industry. The interest in these substances increases because of their beneficial effects on human health. Alzheimer's disease (AD) affects occur in about 80% of individuals aged 65 years. AD, the most common cause of dementia in elderly people, is characterized by progressive neurodegenerative alterations, as decrease of cholinergic impulse, increased toxic effects caused by reactive oxygen species and the inflammatory process that the amyloid plaque participates. In silico studies is relevant in the process of drug discovery; through technological advances in the areas of structural characterization of molecules, computational science and molecular biology have contributed to the planning of new drugs used against neurodegenerative diseases. Considering the social impairment caused by an increased incidence of disease and that there is no chemotherapy treatment effective against AD; several compounds are studied. In the researches for effective neuroprotectants as potential treatments for Alzheimer's disease, natural products have been extensively studied in various AD models. This study aims to carry out a literature review with articles that address the in silico studies of natural products aimed at potential drugs against Alzheimer's disease (AD) in the period from 2015 to 2021.
Collapse
Affiliation(s)
- Natália Ferreira de Sousa
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Luciana Scotti
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil;,Lauro Wanderley University Hospital (HULW), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil,Address correspondence to this author at the Health Sciences Center, Chemioinformatic Laboratory, Federal University of Paraíba, Paraíba, Brazil; E-mail:
| | - Érika Paiva de Moura
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Mayara dos Santos Maia
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Gabriela Cristina Soares Rodrigues
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Herbert Igor Rodrigues de Medeiros
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Simone Mendes Lopes
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Marcus Tullius Scotti
- Lauro Wanderley University Hospital (HULW), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| |
Collapse
|
11
|
Toplan GG, Taşkın T, İşcan G, Göger F, Kürkçüoğlu M, Civaş A, Ecevit-Genç G, Mat A, Başer KHC. Comparative Studies on Essential Oil and Phenolic Content with In Vitro Antioxidant, Anticholinesterase, Antimicrobial Activities of Achillea biebersteinii Afan. and A. millefolium subsp. millefolium Afan. L. Growing in Eastern Turkey. Molecules 2022; 27:1956. [PMID: 35335326 PMCID: PMC8955464 DOI: 10.3390/molecules27061956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/10/2022] Open
Abstract
The potential applications of Achillea species in various industries have encouraged the examination of their phytochemical components along with their biological potential. In the present study, phenolic contents and essential oil compositions together with the in vitro biological activities of the aerial parts from Achillea biebersteinii Afan. and Achillea millefolium subsp. millefolium Afan. collected from Turkey were evaluated. Different solvent extracts (n-hexane, chloroform, methanol, water) were prepared and their antimicrobial, anticholinesterase, and antioxidant activities were studied. The LC-MS/MS results revealed the presence of 16 different phenolic compounds, including chlorogenic acid, rutin, quercetin, and luteolin glycosides, in methanolic extracts. According to GC-FID and GC/MS results, the primary components of the oils were identified as 1,8-cineole (32.5%), piperitone (14.4%), and camphor (13.7%) in A. biebersteinii and 1,8-cineole (12.3%) and β-eudesmol (8.9%) in A. millefolium subsp. millefolium. The infusion and methanolic extracts of both species were found to be rich in their total phenolic content as well as their antioxidant and anticholinesterase activity. In contrast, the n-hexane and chloroform extracts of both species showed strong antimicrobial activity with MIC values ranging from 15 to 2000 μg/mL. Our findings suggest that the investigated Achillea species could be evaluated as potent natural agents, and further studies into the promising extracts are needed.
Collapse
Affiliation(s)
- Gizem Gülsoy Toplan
- Department of Pharmacognosy, Faculty of Pharmacy, Istinye University, Istanbul 34010, Turkey
| | - Turgut Taşkın
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul 34668, Turkey;
| | - Gökalp İşcan
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey; (G.İ.); (F.G.); (M.K.)
| | - Fatih Göger
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey; (G.İ.); (F.G.); (M.K.)
| | - Mine Kürkçüoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey; (G.İ.); (F.G.); (M.K.)
| | - Ayşe Civaş
- Department of Pharmacy and Pharmaceutical Services, Tuzluca Vocational School, Igdır University, Igdir 76000, Turkey;
| | - Gülay Ecevit-Genç
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey;
| | - Afife Mat
- Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey;
| | - Kemal Hüsnü Can Başer
- Department of Pharmacognosy, Faculty of Pharmacy, Near East University, Nicosia 99138, Cyprus;
| |
Collapse
|
12
|
Lai Shi Min S, Liew SY, Chear NJY, Goh BH, Tan WN, Khaw KY. Plant Terpenoids as the Promising Source of Cholinesterase Inhibitors for Anti-AD Therapy. BIOLOGY 2022; 11:biology11020307. [PMID: 35205173 PMCID: PMC8869317 DOI: 10.3390/biology11020307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Plant-derived terpenes have been a research interest in the recent years, as they are believed to possess the ability to function as a cholinesterase inhibitor. As the deficit of cholinergic activity is one of the factors that causes cognitive impairment in Alzheimer’s disease patients, it serves as a great therapeutic target. It has been found that various terpenoids, such as diterpenoids, triterpenoids and sesquiterpenoids, do have the ability to inhibit cholinesterase activity, and their chemical structures do play a role in this. As terpenoids possess anti-cholinesterase properties, it is encouraged to have future research on drug discovery and development in treating Alzheimer’s disease. Abstract Plant-derived terpenes are the prolific source of modern drugs such as taxol, chloroquine and artemisinin, which are widely used to treat cancer and malaria infections. There are research interests in recent years on terpene-derived metabolites (diterpenes, triterpenes and sesquiterpenes), which are believed to serve as excellent cholinesterase inhibitors. As cholinesterase inhibitors are the current treatment for Alzheimer’s disease, terpene-derived metabolites will have the potential to be involved in the future drug development for Alzheimer’s disease. Hence, a bibliographic search was conducted by using the keywords “terpene”, “cholinesterase” and “Alzheimer’s disease”, along with cross-referencing from 2011 to 2020, to provide an overview of natural terpenes with potential anticholinesterase properties. This review focuses on the extraction, chemical structures and anti-cholinesterase mechanisms of terpenes, which support and encourage future research on drug discovery and development in treating Alzheimer’s disease.
Collapse
Affiliation(s)
- Shereen Lai Shi Min
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Sook Yee Liew
- Chemistry Division, Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Natural Products Research and Drug Discovery (CENAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nelson Jeng Yeou Chear
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia;
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Penang 11800, Malaysia
- Correspondence: (W.-N.T.); (K.Y.K.)
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- Correspondence: (W.-N.T.); (K.Y.K.)
| |
Collapse
|
13
|
Bozkurt B, Ulkar D, Nurlu N, Kaya GI, Unver-Somer N. Chemical profile, acetylcholinesterase, butyrylcholinesterase, and prolyl oligopeptidase inhibitory activity of Glaucium corniculatum subsp. refractum. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
14
|
Huang C, Lin ZJ, Lee CJ, Lai WH, Chen JC, Huang HC. ε-Viniferin and α-viniferin alone or in combination induced apoptosis and necrosis in osteosarcoma and non-small cell lung cancer cells. Food Chem Toxicol 2021; 158:112617. [PMID: 34728247 DOI: 10.1016/j.fct.2021.112617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022]
Abstract
This study investigated the effects and molecular mechanisms of ε-viniferin and α-viniferin in non-small cell lung cancer cell line A549, melanoma cell line A2058, and osteosarcoma cell lines HOS and U2OS. Results showed ε-viniferin having antiproliferative effects on HOS, U2OS, and A549 cells. Compared with ε-viniferin at the same concentration, α-viniferin had higher antiproliferative effects on HOS cells, but not the same effect on U2OS and A549 cells. Lower dose combination of α-viniferin and ε-viniferin had more synergistic effects on A549 cells than either drug alone. α-Viniferin induced apoptosis in HOS cells by decreasing expression of phospho-c-Jun-N-terminal kinase 1/2 (p-JNK1/2) and increasing expression of cleaved Poly (ADP-ribose) polymerase (PARP), whereas α-viniferin in combination with ε-viniferin induced apoptosis in A549 cells by decreasing expression of phospho-protein kinase B (p-AKT) and increasing expression of cleaved PARP and cleaved caspase-3. ε-Viniferin and α-viniferin have not been studied using in vivo tumor models for cancer. This research is the first showing that ε-viniferin treatment resulted in significant inhibition of tumor growth in A549-cell xenograft-bearing nude mice compared with the control group. Consequently, ε-viniferin and α-viniferin may prove to be new approaches and effective therapeutic agents for osteosarcoma and lung cancer treatment.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Zi-Jun Lin
- Center for Teacher Education, National Tsing Hua University, Hsinchu, Taiwan; Department of Applied Science, National Tsing Hua University, Nanda Campus, Hsinchu, Taiwan
| | - Cheng-Ju Lee
- Center for Teacher Education, National Tsing Hua University, Hsinchu, Taiwan; Department of Applied Science, National Tsing Hua University, Nanda Campus, Hsinchu, Taiwan
| | - Wei-Han Lai
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan; Center for Teacher Education, National Tsing Hua University, Hsinchu, Taiwan; Department of Applied Science, National Tsing Hua University, Nanda Campus, Hsinchu, Taiwan
| | - Jui-Chieh Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City, 60004, Taiwan.
| | - Hsiu-Chen Huang
- Center for Teacher Education, National Tsing Hua University, Hsinchu, Taiwan; Department of Applied Science, National Tsing Hua University, Nanda Campus, Hsinchu, Taiwan.
| |
Collapse
|
15
|
KİRKAN B, CEYLAN O, SARIKÜRKCÜ C, TEPE B. Phenolic profile, antioxidant and enzyme inhibitory activity of the ethyl acetate, methanol and water extracts of Capparis spinosa L. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2021. [DOI: 10.21448/ijsm.981149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Adeowo FY, Oyetunji TP, Ejalonibu MA, Ndagi U, Kumalo HM, Lawal MM. Tailored Modeling of Rivastigmine Derivatives as Dual Acetylcholinesterase and Butyrylcholinesterase Inhibitors for Alzheimer's Disease Treatment. Chem Biodivers 2021; 18:e2100361. [PMID: 34547176 DOI: 10.1002/cbdv.202100361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022]
Abstract
Rational modification of known drug candidates to design more potent ones using computational methods has found application in drug design, development, and discovery. Herein, we integrate computational and theoretical methodologies to unveil rivastigmine derivatives as dual inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) for Alzheimer's disease (AD) management. The investigation entails pharmacokinetics screening, density functional theory (DFT) mechanistic study, molecular docking, and molecular dynamics (MD) simulation. We designed over 20 rivastigmine substituents, subject them to some analyses, and identified RL2 with an appreciable blood-brain barrier score and no permeability glycoprotein binding. The compound shows higher acylation energy and a favored binding affinity to the cholinesterase enzymes. RL2 interacts with the AChE and BuChE active sites showing values of -41.1/-39.5 kcal mol-1 while rivastigmine binds with -32.7/-30.7 kcal mol-1 for these enzymes. The study revealed RL2 (4-fluorophenyl rivastigmine) as a potential dual inhibitor for AChE and BuChE towards Alzheimer's disorder management.
Collapse
Affiliation(s)
- Fatima Y Adeowo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, 4001, South Africa
| | | | - Murtala A Ejalonibu
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Umar Ndagi
- Center for Trans-Sahara Disease, Vaccine and Drug Research, IBB University Lapai, Niger State, Minna, Nigeria
| | - Hezekiel M Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Monsurat M Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, 4001, South Africa
| |
Collapse
|
17
|
Uddin MJ, Russo D, Haque MA, Çiçek SS, Sönnichsen FD, Milella L, Zidorn C. Bioactive Abietane-Type Diterpenoid Glycosides from Leaves of Clerodendrum infortunatum (Lamiaceae). Molecules 2021; 26:4121. [PMID: 34299396 PMCID: PMC8306933 DOI: 10.3390/molecules26144121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, two previously undescribed diterpenoids, (5R,10S,16R)-11,16,19-trihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-3,8,11,13-abietatetraene-7-one (1) and (5R,10S,16R)-11,16-dihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-4-carboxy-3,8,11,13-abietatetraene-7-one (2), and one known compound, the C13-nor-isoprenoid glycoside byzantionoside B (3), were isolated from the leaves of Clerodendrum infortunatum L. (Lamiaceae). Structures were established based on spectroscopic and spectrometric data and by comparison with literature data. The three terpenoids, along with five phenylpropanoids: 6'-O-caffeoyl-12-glucopyranosyloxyjasmonic acid (4), jionoside C (5), jionoside D (6), brachynoside (7), and incanoside C (8), previously isolated from the same source, were tested for their in vitro antidiabetic (α-amylase and α-glucosidase), anticancer (Hs578T and MDA-MB-231), and anticholinesterase activities. In an in vitro test against carbohydrate digestion enzymes, compound 6 showed the most potent effect against mammalian α-amylase (IC50 3.4 ± 0.2 μM) compared to the reference standard acarbose (IC50 5.9 ± 0.1 μM). As yeast α-glucosidase inhibitors, compounds 1, 2, 5, and 6 displayed moderate inhibitory activities, ranging from 24.6 to 96.0 μM, compared to acarbose (IC50 665 ± 42 μM). All of the tested compounds demonstrated negligible anticholinesterase effects. In an anticancer test, compounds 3 and 5 exhibited moderate antiproliferative properties with IC50 of 94.7 ± 1.3 and 85.3 ± 2.4 μM, respectively, against Hs578T cell, while the rest of the compounds did not show significant activity (IC50 > 100 μM).
Collapse
Affiliation(s)
- Md. Josim Uddin
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany; (M.J.U.); (S.S.Ç.)
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Daniela Russo
- Department of Science, University of Basilicata, Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy; (D.R.); (L.M.)
- Spinoff BioActiPlant s.r.l., Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy
| | - Md. Anwarul Haque
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan;
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Serhat Sezai Çiçek
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany; (M.J.U.); (S.S.Ç.)
| | - Frank D. Sönnichsen
- Otto Diels Institute for Organic Chemistry, University of Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany;
| | - Luigi Milella
- Department of Science, University of Basilicata, Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy; (D.R.); (L.M.)
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany; (M.J.U.); (S.S.Ç.)
| |
Collapse
|
18
|
Baysal I, Ekizoglu M, Ertas A, Temiz B, Agalar HG, Yabanoglu-Ciftci S, Temel H, Ucar G, Turkmenoglu FP. Identification of Phenolic Compounds by LC-MS/MS and Evaluation of Bioactive Properties of Two Edible Halophytes: Limonium effusum and L. sinuatum. Molecules 2021; 26:molecules26134040. [PMID: 34279385 PMCID: PMC8271801 DOI: 10.3390/molecules26134040] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
This work aimed to evaluate the phenolic content and in vitro antioxidant, antimicrobial and enzyme inhibitory activities of the methanol extracts and their fractions of two edible halophytic Limonium species, L. effusum (LE) and L. sinuatum (LS). The total phenolic content resulted about two-fold higher in the ethyl acetate fraction of LE (522.82 ± 5.67 mg GAE/g extract) than in that of LS (274.87 ± 1.87 mg GAE/g extract). LC-MS/MS analysis indicated that tannic acid was the most abundant phenolic acid in both species (71,439.56 ± 3643.3 µg/g extract in LE and 105,453.5 ± 5328.1 µg/g extract in LS), whereas hyperoside was the most abundant flavonoid (14,006.90 ± 686.1 µg/g extract in LE and 1708.51 ± 83.6 µg/g extract in LS). The antioxidant capacity was evaluated by DPPH and TAC assays, and the stronger antioxidant activity in ethyl acetate fractions was highlighted. Both species were more active against Gram-positive bacteria than Gram negatives and showed considerable growth inhibitions against tested fungi. Interestingly, selective acetylcholinesterase (AChE) activity was observed with LE and LS. Particularly, the water fraction of LS strongly inhibited AChE (IC50 = 0.199 ± 0.009 µg/mL). The ethyl acetate fractions of LE and LS, as well as the n-hexane fraction of LE, exhibited significant antityrosinase activity (IC50 = 245.56 ± 3.6, 295.18 ± 10.57 and 148.27 ± 3.33 µg/mL, respectively). The ethyl acetate fraction and methanol extract of LS also significantly inhibited pancreatic lipase (IC50 = 83.76 ± 4.19 and 162.2 ± 7.29 µg/mL, respectively). Taken together, these findings warrant further investigations to assess the potential of LE and LS as a bioactive source that can be exploited in pharmaceutical, cosmetics and food industries.
Collapse
Affiliation(s)
- Ipek Baysal
- Vocational School of Health Services, Hacettepe University, 06100 Ankara, Turkey;
| | - Melike Ekizoglu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey;
| | - Abdulselam Ertas
- Department of Pharmacognosy, Faculty of Pharmacy, Dicle University, 21280 Diyarbakir, Turkey;
| | - Burak Temiz
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey; (B.T.); (H.G.A.)
| | - Hale Gamze Agalar
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey; (B.T.); (H.G.A.)
| | - Samiye Yabanoglu-Ciftci
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey; (S.Y.-C.); (G.U.)
| | - Hamdi Temel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Dicle University, 21280 Diyarbakir, Turkey;
| | - Gulberk Ucar
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey; (S.Y.-C.); (G.U.)
| | - Fatma Pinar Turkmenoglu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Correspondence:
| |
Collapse
|
19
|
Uysal S, Gevrenova R, Sinan KI, Bayarslan AU, Altunoglu YC, Zheleva-Dimitrova D, Ak G, Baloglu MC, Etienne OK, Lobine D, Mahomoodally MF, Zengin G. New perspectives into the chemical characterization of Sida acuta Burm. f. extracts with respect to its anti-cancer, antioxidant and enzyme inhibitory effects. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Hong Y, Choi YH, Han YE, Oh SJ, Lee A, Lee B, Magnan R, Ryu SY, Choi CW, Kim MS. Central Administration of Ampelopsin A Isolated from Vitis vinifera Ameliorates Cognitive and Memory Function in a Scopolamine-Induced Dementia Model. Antioxidants (Basel) 2021; 10:antiox10060835. [PMID: 34073796 PMCID: PMC8225166 DOI: 10.3390/antiox10060835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/25/2023] Open
Abstract
Neurodegenerative diseases are characterized by the progressive degeneration of the function of the central nervous system or peripheral nervous system and the decline of cognition and memory abilities. The dysfunctions of the cognitive and memory battery are closely related to inhibitions of neurotrophic factor (BDNF) and brain-derived cAMP response element-binding protein (CREB) to associate with the cholinergic system and long-term potentiation. Vitis vinifera, the common grapevine, is viewed as the important dietary source of stilbenoids, particularly the widely-studied monomeric resveratrol to be used as a natural compound with wide-ranging therapeutic benefits on neurodegenerative diseases. Here we found that ampelopsin A is a major compound in V. vinifera and it has neuroprotective effects on experimental animals. Bath application of ampelopsin A (10 ng/µL) restores the long-term potentiation (LTP) impairment induced by scopolamine (100 μM) in hippocampal CA3-CA1 synapses. Based on these results, we administered the ampelopsin A (10 ng/µL, three times a week) into the third ventricle of the brain in C57BL/6 mice for a month. Chronic administration of ampelopsin A into the brain ameliorated cognitive memory-behaviors in mice given scopolamine (0.8 mg/kg, i.p.). Studies of mice’s hippocampi showed that the response of ampelopsin A was responsible for the restoration of the cholinergic deficits and molecular signal cascades via BDNF/CREB pathways. In conclusion, the central administration of ampelopsin A contributes to increasing neurocognitive and neuroprotective effects on intrinsic neuronal excitability and behaviors, partly through elevated BDNF/CREB-related signaling.
Collapse
Affiliation(s)
- Yuni Hong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.H.); (Y.-E.H.); (S.-J.O.); (A.L.)
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Yun-Hyeok Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggido Business and Science Accelerator, Suwon-si 16229, Korea;
| | - Young-Eun Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.H.); (Y.-E.H.); (S.-J.O.); (A.L.)
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.H.); (Y.-E.H.); (S.-J.O.); (A.L.)
- Convergence Research Center for Dementia, KIST, Seoul 02792, Korea
| | - Ansoo Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.H.); (Y.-E.H.); (S.-J.O.); (A.L.)
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea;
| | - Rebecca Magnan
- Department of Neuroscience, Pomona College, Claremont, CA 91711, USA;
| | - Shi Yong Ryu
- Korea Research Institute of Chemical Technology, Daejeon 34122, Korea;
| | - Chun Whan Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggido Business and Science Accelerator, Suwon-si 16229, Korea;
- Correspondence: (C.W.C.); (M.S.K.)
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.H.); (Y.-E.H.); (S.-J.O.); (A.L.)
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
- Correspondence: (C.W.C.); (M.S.K.)
| |
Collapse
|
21
|
Senol Deniz FS, Eren G, Orhan IE, Sener B, Ozgen U, Aldaba R, Calis I. Outlining In Vitro and In Silico Cholinesterase Inhibitory Activity of Twenty-Four Natural Products of Various Chemical Classes: Smilagenin, Kokusaginine, and Methyl Rosmarinate as Emboldening Inhibitors. Molecules 2021; 26:molecules26072024. [PMID: 33916300 PMCID: PMC8037418 DOI: 10.3390/molecules26072024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/04/2022] Open
Abstract
Cholinesterase (ChE) inhibition is an important treatment strategy for Alzheimer’s disease (AD) as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are involved in the pathology of AD. In the current work, ChE inhibitory potential of twenty-four natural products from different chemical classes (i.e., diosgenin, hecogenin, rockogenin, smilagenin, tigogenin, astrasieversianins II and X, astragalosides I, IV, and VI, cyclocanthosides E and G, macrophyllosaponins A-D, kokusaginin, lamiide, forsythoside B, verbascoside, alyssonoside, ipolamide, methyl rosmarinate, and luteolin-7-O-glucuronide) was examined using ELISA microtiter assay. Among them, only smilagenin and kokusaginine displayed inhibitory action against AChE (IC50 = 43.29 ± 1.38 and 70.24 ± 2.87 µg/mL, respectively). BChE was inhibited by only methyl rosmarinate and kokusaginine (IC50 = 41.46 ± 2.83 and 61.40 ± 3.67 µg/mL, respectively). IC50 values for galantamine as the reference drug were 1.33 ± 0.11 µg/mL for AChE and 52.31 ± 3.04 µg/mL for BChE. Molecular docking experiments showed that the orientation of smilagenin and kokusaginine was mainly driven by the interactions with the peripheral anionic site (PAS) comprising residues of hAChE, while kokusaginine and methyl rosmarinate were able to access deeper into the active gorge in hBChE. Our data indicate that similagenin, kokusaginine, and methyl rosmarinate could be hit compounds for designing novel anti-Alzheimer agents.
Collapse
Affiliation(s)
- F. Sezer Senol Deniz
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey; (F.S.S.D.); (B.S.)
| | - Gokcen Eren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey;
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey; (F.S.S.D.); (B.S.)
- Correspondence:
| | - Bilge Sener
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey; (F.S.S.D.); (B.S.)
| | - Ufuk Ozgen
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61080 Trabzon, Turkey;
| | - Randa Aldaba
- Department of Pharmacognosy, Faculty of Pharmacy, Near East University, 99138 Nicosia, Turkey; (R.A.); (I.C.)
| | - Ihsan Calis
- Department of Pharmacognosy, Faculty of Pharmacy, Near East University, 99138 Nicosia, Turkey; (R.A.); (I.C.)
| |
Collapse
|
22
|
Mišković J, Karaman M, Rašeta M, Krsmanović N, Berežni S, Jakovljević D, Piattoni F, Zambonelli A, Gargano ML, Venturella G. Comparison of Two Schizophyllum commune Strains in Production of Acetylcholinesterase Inhibitors and Antioxidants from Submerged Cultivation. J Fungi (Basel) 2021; 7:jof7020115. [PMID: 33557141 PMCID: PMC7913866 DOI: 10.3390/jof7020115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/03/2022] Open
Abstract
In recent years, fungi have been recognized as producers of acetylcholinesterase (AChE) inhibitors, agents important for the prevention of Alzheimer’s disease (AD). This study aimed to examine the AChE inhibitory, the antioxidative and antibacterial activity of two different Schizophyllum commune strains that originated from Serbia (SRB) and Italy (IT). Submerged cultivation of grown mycelia (M) and fermentation broth (F) of ethanol (EtOH) and polysaccharide (PSH) extracts lasted for 7, 14, 21 and 28 days. For AChE activity Ellman method was performed, while for antioxidative activity, sevendifferent assays were conducted: DPPH, ABTS, FRAP, SOA, OH, NO together with total phenolic content. Antimicrobial screen, LC–MS/MS technique and FTIR measurements were performed. Different isolates exhibited different AChE activity, with PSH being the strongest (SRB, M, 28 days IC90 79.73 ± 26.34 µg/mL), while in EtOH extracts, IT stood out (F, 14 days, IC50 0.8 ± 0.6 µg/mL). PSH extracts (7 days) exhibit significant antioxidative activity (AO), opposite to EtOH extracts where 14 and 21days periods stood out. Only tw extracts showed antibacterial activity. Following LC–MS/MS analysis p-hydroxybenzoic and gallic acids were the most abundant phenolics. PSH extracts demonstrated remarkable results, making this study debut and introducing S. commune as a valuable resource of AChE inhibitors.
Collapse
Affiliation(s)
- Jovana Mišković
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, TrgDositejaObradovića 2, 21000 Novi Sad, Serbia; (J.M.); (N.K.)
| | - Maja Karaman
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, TrgDositejaObradovića 2, 21000 Novi Sad, Serbia; (J.M.); (N.K.)
- Correspondence:
| | - Milena Rašeta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (M.R.); (S.B.)
| | - Nenad Krsmanović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, TrgDositejaObradovića 2, 21000 Novi Sad, Serbia; (J.M.); (N.K.)
| | - Sanja Berežni
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (M.R.); (S.B.)
| | - Dragica Jakovljević
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Federica Piattoni
- Laboratory of Genetics & Genomics of Marine Resources and Environment (GenoDream), Department Biological, Geological & Environmental Sciences (BiGeA), University of Bologna, Via S. Alberto 163, 48123 Ravenna, Italy;
| | - Alessandra Zambonelli
- Dipartimento di Scienze e Tecnologie Agroalimentari, University of Bologna, Via Fanin 46, 40127 Bologna, Italy;
| | - Maria Letizia Gargano
- Department of Agricultural and Environmental Science, University of Bari “Aldo Moro”, Via Amendola 165/A, I-70126 Bari, Italy;
| | - Giuseppe Venturella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Via delle Scienze, Bldg. 4, 90128 Palermo, Italy;
| |
Collapse
|
23
|
Orhan IE. Cholinesterase Inhibitory Potential of Quercetin towards Alzheimer's Disease - A Promising Natural Molecule or Fashion of the Day? - A Narrowed Review. Curr Neuropharmacol 2021; 19:2205-2213. [PMID: 33213346 PMCID: PMC9185776 DOI: 10.2174/1570159x18666201119153807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/22/2020] [Accepted: 11/15/2020] [Indexed: 11/22/2022] Open
Abstract
Natural substances are known to have strong protective effects against neurodegenerative diseases. Among them, phenolic compounds, especially flavonoids, come to the fore with their neuroprotective effects. Since quercetin, which is found in many medicinal plants and foods, is also taken through diet, its physiological effects on humans are imperative. Many studies have been published up to date on the neuroprotective properties of quercetin, a flavanol derivative. However, there is no review published so far summarizing the effect of quercetin on the cholinesterase (ChE) enzymes related to the cholinergic hypothesis, which is one of the pathological mechanisms of Alzheimer's Disease (AD). However, ChE inhibitors, regardless of natural or synthetic, play a vital role in the treatment of AD. Although the number of studies on the ChE inhibitory effect of quercetin is limited, it deserves to be discussed in a review article. With this sensitivity, the neuroprotective effect of quercetin against AD through ChE inhibition was scrutinized in the current review study. In addition, studies on the bioavailability of quercetin and its capacity to cross the blood-brain barrier and how this capacity and bioavailability can be increased were given. Generally, studies containing data published in recent years were obtained from search engines such as PubMed, Scopus, and Medline and included herein. Consequently, quercetin should not be considered as a fashionable natural compound and should be identified as a promising compound, especially with increased bioavailability, for the treatment of AD.
Collapse
Affiliation(s)
- Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330Ankara, Turkey
| |
Collapse
|
24
|
Pattanashetti LA, Patil BM, Hegde HV, Kangle RP. Potential ameliorative effect of Cynodon dactylon (L.) pers on scopolamine-induced amnesia in rats: Restoration of cholinergic and antioxidant pathways. Indian J Pharmacol 2021; 53:50-59. [PMID: 33975999 PMCID: PMC8216122 DOI: 10.4103/ijp.ijp_473_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
AIM: The present study explored Cynodon dactylon hydro-ethanolic extract (CDE) effect on scopolamine-induced amnesic rats. MATERIALS AND METHODS: C. dactylon extract was subjected to antioxidant (DPPH and H2O2) and acetylcholinesterase enzyme tests by in vitro methods. Scopolamine (1 mg/kg, i.p) was administered to rats except for normal control. Donepezil (3 mg/kg, p.o), CDE (100, 200, and 400 mg/kg p.o) were administered to treatment groups. Behavioral paradigm: Morris water maze (MWM), elevated plus maze (EPM), and passive avoidance test (PAT) were conducted. Later, rats were sacrificed and brain homogenate was tested for levels of acetylcholinesterase, glutathione, and lipid peroxidase. Histopathology examination of cortex and hippocampus of all the groups was done. STATISTICAL METHOD: The statistical methods used were ANOVA and Tukey's post hoc test. RESULTS: CDE antioxidant activity was demonstrated by decreasing DPPH and H2O2 levels confirmed through in vitro analysis. Treatment group rats reversed scopolamine induced amnesia by improvement in spatial memory, decreased transfer latency and increased step through latency significantly (P<0.001) in behavior models such as morris water maze, elevated plus maze and passive avoidance task respectively. CDE modulated acetylcholine transmission by decreased acetylcholinesterase enzyme level (P < 0.001) and scavenging scopolamine-induced oxidative stress by increased reduced glutathione levels and decreased lipid peroxidation levels in the rat brain. CDE and donepezil-treated rats showed mild neurodegeneration in comparison to scopolamine-induced severe neuronal damage on histopathology examination. CONCLUSION: C. dactylon extract provides evidence of anti-amnesic activity by the mechanism of decreased acetylcholinesterase enzyme level and increased antioxidant levels in scopolamine-induced amnesia in rats.
Collapse
Affiliation(s)
- Laxmi A Pattanashetti
- Department of Pharmacology and Toxicology, KLE College of Pharmacy, Belagavi (A Constituent Unit of K. L. E Academy of Higher Education and Research), Belagavi, Karnataka, India
| | - Basanagouda M Patil
- Department of Pharmacology and Toxicology, KLE College of Pharmacy, Belagavi (A Constituent Unit of K. L. E Academy of Higher Education and Research), Belagavi, Karnataka, India
| | - Harsha V Hegde
- Department of Ethnomedicine and Medicinal Plants, ICMR- National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | - Ranjit P Kangle
- Department of Pathology, Jawaharlal Nehru Medical College, Belagavi, Karnataka, India
| |
Collapse
|
25
|
Kasteel EEJ, Nijmeijer SM, Darney K, Lautz LS, Dorne JLCM, Kramer NI, Westerink RHS. Acetylcholinesterase inhibition in electric eel and human donor blood: an in vitro approach to investigate interspecies differences and human variability in toxicodynamics. Arch Toxicol 2020; 94:4055-4065. [PMID: 33037899 PMCID: PMC7655571 DOI: 10.1007/s00204-020-02927-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
In chemical risk assessment, default uncertainty factors are used to account for interspecies and interindividual differences, and differences in toxicokinetics and toxicodynamics herein. However, these default factors come with little scientific support. Therefore, our aim was to develop an in vitro method, using acetylcholinesterase (AChE) inhibition as a proof of principle, to assess both interspecies and interindividual differences in toxicodynamics. Electric eel enzyme and human blood of 20 different donors (12 men/8 women) were exposed to eight different compounds (chlorpyrifos, chlorpyrifos-oxon, phosmet, phosmet-oxon, diazinon, diazinon-oxon, pirimicarb, rivastigmine) and inhibition of AChE was measured using the Ellman method. The organophosphate parent compounds, chlorpyrifos, phosmet and diazinon, did not show inhibition of AChE. All other compounds showed concentration-dependent inhibition of AChE, with IC50s in human blood ranging from 0.2-29 µM and IC20s ranging from 0.1-18 µM, indicating that AChE is inhibited at concentrations relevant to the in vivo human situation. The oxon analogues were more potent inhibitors of electric eel AChE compared to human AChE. The opposite was true for carbamates, pointing towards interspecies differences for AChE inhibition. Human interindividual variability was low and ranged from 5-25%, depending on the concentration. This study provides a reliable in vitro method for assessing human variability in AChE toxicodynamics. The data suggest that the default uncertainty factor of ~ 3.16 may overestimate human variability for this toxicity endpoint, implying that specific toxicodynamic-related adjustment factors can support quantitative in vitro to in vivo extrapolations that link kinetic and dynamic data to improve chemical risk assessment.
Collapse
Affiliation(s)
- Emma E J Kasteel
- Toxicology Division, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, 3508TD, Utrecht, The Netherlands
| | - Sandra M Nijmeijer
- Toxicology Division, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, 3508TD, Utrecht, The Netherlands
| | - Keyvin Darney
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort, France
| | - Leonie S Lautz
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort, France
| | - Jean Lou C M Dorne
- European Food Safety Authority, Scientific Committee and Emerging Risks Unit, Via Carlo Magno 1A, 43126, Parma, Italy
| | - Nynke I Kramer
- Toxicology Division, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, 3508TD, Utrecht, The Netherlands
| | - Remco H S Westerink
- Toxicology Division, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, 3508TD, Utrecht, The Netherlands.
| |
Collapse
|
26
|
Precision medicine in Alzheimer’s disease: An origami paper-based electrochemical device for cholinesterase inhibitors. Biosens Bioelectron 2020; 165:112411. [DOI: 10.1016/j.bios.2020.112411] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 11/23/2022]
|
27
|
Takomthong P, Waiwut P, Yenjai C, Sripanidkulchai B, Reubroycharoen P, Lai R, Kamau P, Boonyarat C. Structure-Activity Analysis and Molecular Docking Studies of Coumarins from Toddalia asiatica as Multifunctional Agents for Alzheimer's Disease. Biomedicines 2020; 8:biomedicines8050107. [PMID: 32370238 PMCID: PMC7277748 DOI: 10.3390/biomedicines8050107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/21/2023] Open
Abstract
Coumarins, naturally occurring phytochemicals, display a wide spectrum of biological activities by acting on multiple targets. Herein, nine coumarins from the root of Toddalia asiatica were evaluated for activities related to pathogenesis of Alzheimer's disease (AD). They were examined for acetylcholinesterase (AChE) and AChE- or self-induced amyloid beta (Aβ) aggregation inhibitory activities, as well as neuroprotection against H2O2- and Aβ1-42-induced human neuroblastoma SH-SY5Y cell damage. Moreover, in order to understand the mechanism, the binding interactions between coumarins and their targets: (i) AChE and (ii) Aβ1-42 peptide were investigated in silico. All coumarins exhibited mild to moderate AChE and self-induced Aβ aggregation inhibitory actions. In addition, the coumarins substituted with the long alkyl chain at position 6 or 8 illustrated ability to inhibit AChE-induced Aβ aggregation, resulting from their dual binding site at catalytic anionic site and peripheral active site in AChE. Moreover, the most potent multifunctional coumarin, phellopterin, could attenuate neuronal cell damage induced by H2O2 and Aβ1-42 toxicity. Conclusively, seven out of nine coumarins were identified as multifunctional agents inhibiting the pathogenesis of AD. The structure-activity relationship information obtained might be applied for further optimization of coumarins into a useful drug which may combat AD.
Collapse
Affiliation(s)
- Pitchayakarn Takomthong
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (P.T.); (B.S.)
| | - Pornthip Waiwut
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand;
| | - Chavi Yenjai
- Faculty of Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Bungon Sripanidkulchai
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (P.T.); (B.S.)
- Center for Research and Development of Herbal Health Products, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Prasert Reubroycharoen
- Department of Chemical Technology, Faculty of science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Ren Lai
- Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China; (R.L.); (P.K.)
| | - Peter Kamau
- Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China; (R.L.); (P.K.)
| | - Chantana Boonyarat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (P.T.); (B.S.)
- Center for Research and Development of Herbal Health Products, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +66-81-3073313 or +66-43-202305
| |
Collapse
|
28
|
Tancheva LP, Lazarova MI, Alexandrova AV, Dragomanova ST, Nicoletti F, Tzvetanova ER, Hodzhev YK, Kalfin RE, Miteva SA, Mazzon E, Tzvetkov NT, Atanasov AG. Neuroprotective Mechanisms of Three Natural Antioxidants on a Rat Model of Parkinson's Disease: A Comparative Study. Antioxidants (Basel) 2020; 9:antiox9010049. [PMID: 31935828 PMCID: PMC7022962 DOI: 10.3390/antiox9010049] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
We compared the neuroprotective action of three natural bio-antioxidants (AOs): ellagic acid (EA), α-lipoic acid (LA), and myrtenal (Myrt) in an experimental model of Parkinson’s disease (PD) that was induced in male Wistar rats through an intrastriatal injection of 6-hydroxydopamine (6-OHDA). The animals were divided into five groups: the sham-operated (SO) control group; striatal 6-OHDA-lesioned control group; and three groups of 6-OHDA-lesioned rats pre-treated for five days with EA, LA, and Myrt (50 mg/kg; intraperitoneally- i.p.), respectively. On the 2nd and the 3rd week post lesion, the animals were subjected to several behavioral tests: apomorphine-induced rotation; rotarod; and the passive avoidance test. Biochemical evaluation included assessment of main oxidative stress parameters as well as dopamine (DA) levels in brain homogenates. The results showed that all three test compounds improved learning and memory performance as well as neuromuscular coordination. Biochemical assays showed that all three compounds substantially decreased lipid peroxidation (LPO) levels, and restored catalase (CAT) activity and DA levels that were impaired by the challenge with 6-OHDA. Based on these results, we can conclude that the studied AOs demonstrate properties that are consistent with significant antiparkinsonian effects. The most powerful neuroprotective effect was observed with Myrt, and this work represents the first demonstration of its anti-Parkinsonian impact.
Collapse
Affiliation(s)
- Lyubka P. Tancheva
- Department of Behavior Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (S.T.D.); (S.A.M.)
- Correspondence: (L.P.T.); (A.G.A.); Tel.: +359-2979-2175 (L.P.T.); +48-227-367-022 (A.G.A.)
| | - Maria I. Lazarova
- Department of Synaptic Signaling and Communications, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (M.I.L.); (R.E.K.)
| | - Albena V. Alexandrova
- Department Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (A.V.A.); (E.R.T.)
| | - Stela T. Dragomanova
- Department of Behavior Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (S.T.D.); (S.A.M.)
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University, Varna 9002, Bulgaria
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy;
| | - Elina R. Tzvetanova
- Department Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (A.V.A.); (E.R.T.)
| | - Yordan K. Hodzhev
- Department of Sensory Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria;
| | - Reni E. Kalfin
- Department of Synaptic Signaling and Communications, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (M.I.L.); (R.E.K.)
| | - Simona A. Miteva
- Department of Behavior Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (S.T.D.); (S.A.M.)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy;
| | - Nikolay T. Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria;
| | - Atanas G. Atanasov
- Department of Synaptic Signaling and Communications, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; (M.I.L.); (R.E.K.)
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
- Correspondence: (L.P.T.); (A.G.A.); Tel.: +359-2979-2175 (L.P.T.); +48-227-367-022 (A.G.A.)
| |
Collapse
|
29
|
Freyssin A, Page G, Fauconneau B, Rioux Bilan A. Natural stilbenes effects in animal models of Alzheimer's disease. Neural Regen Res 2020; 15:843-849. [PMID: 31719245 PMCID: PMC6990773 DOI: 10.4103/1673-5374.268970] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease is one of the most frequent neurodegenerative diseases. This pathology is characterized by protein aggregates, mainly constituted by amyloid peptide and tau, leading to neuronal death and cognitive impairments. Drugs currently proposed to treat this pathology do not prevent neurodegenerative processes and are mainly symptomatic therapies. However, stilbenes presenting multiple pharmacological effects could be good potential therapeutic candidates. The aim of this review is to gather the more significant papers among the broad literature on this topic, concerning the beneficial effects of stilbenes (resveratrol derivatives) in animal models of Alzheimer’s disease. Indeed, numerous studies focus on cellular models, but an in vivo approach remains of primary importance since in animals (mice or rats, generally), bioavailability and metabolism are taken into account, which is not the case in in vitro studies. Furthermore, examination of memory ability is feasible in animal models, which strengthens the relevance of a compound with a view to future therapy in humans. This paper is addressed to any researcher who needs to study untested natural stilbenes or who wants to experiment the most effective natural stilbenes in largest animals or in humans. This review shows that resveratrol, the reference polyphenol, is largely studied and seems to have interesting properties on amyloid plaques, and cognitive impairment. However, some resveratrol derivatives such as gnetin C, trans-piceid, or astringin have never been tested on animals. Furthermore, pterostilbene is of particular interest, by its improvement of cognitive disorders and its neuroprotective role. It could be relevant to evaluate this molecule in clinical trials.
Collapse
Affiliation(s)
- Aline Freyssin
- University of Poitiers, EA3808 NEUVACOD (Neurovascular Unit and Cognitive Disorders), Pôle Biologie Santé, Poitiers, France
| | - Guylène Page
- University of Poitiers, EA3808 NEUVACOD (Neurovascular Unit and Cognitive Disorders), Pôle Biologie Santé, Poitiers, France
| | - Bernard Fauconneau
- University of Poitiers, EA3808 NEUVACOD (Neurovascular Unit and Cognitive Disorders), Pôle Biologie Santé, Poitiers, France
| | - Agnès Rioux Bilan
- University of Poitiers, EA3808 NEUVACOD (Neurovascular Unit and Cognitive Disorders), Pôle Biologie Santé, Poitiers, France
| |
Collapse
|
30
|
Petry FDS, Coelho BP, Gaelzer MM, Kreutz F, Guma FTCR, Salbego CG, Trindade VMT. Genistein protects against amyloid-beta-induced toxicity in SH-SY5Y cells by regulation of Akt and Tau phosphorylation. Phytother Res 2019; 34:796-807. [PMID: 31795012 DOI: 10.1002/ptr.6560] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/25/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by extracellular deposition of amyloid-β (Aβ) peptide and hyperphosphorylation of Tau protein, which ultimately leads to the formation of intracellular neurofibrillary tangles and cell death. Increasing evidence indicates that genistein, a soy isoflavone, has neuroprotective effects against Aβ-induced toxicity. However, the molecular mechanisms involved in its neuroprotection are not well understood. In this study, we have established a neuronal damage model using retinoic-acid differentiated SH-SY5Y cells treated with different concentrations of Aβ25-35 to investigate the effect of genistein against Aβ-induced cell death and the possible involvement of protein kinase B (PKB, also termed Akt), glycogen synthase kinase 3β (GSK-3β), and Tau as an underlying mechanism to this neuroprotection. Differentiated SH-SY5Y cells were pre-treated for 24 hr with genistein (1 and 10 nM) and exposed to Aβ25-35 (25 μM), and we found that genistein partially inhibited Aβ induced cell death, primarily apoptosis. Furthermore, the protective effect of genistein was associated with the inhibition of Aβ-induced Akt inactivation and Tau hyperphosphorylation. These findings reinforce the neuroprotective effects of genistein against Aβ toxicity and provide evidence that its mechanism may involve regulation of Akt and Tau proteins.
Collapse
Affiliation(s)
- Fernanda Dos Santos Petry
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bárbara Paranhos Coelho
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mariana Maier Gaelzer
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernando Kreutz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fátima Theresinha Costa Rodrigues Guma
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Christianne Gazzana Salbego
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vera Maria Treis Trindade
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
31
|
Curlat S. Recent Studies of (+)-3-Carene Transformations with the Retention of the Native Framework. CHEMISTRY JOURNAL OF MOLDOVA 2019. [DOI: 10.19261/cjm.2019.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
32
|
Wang N, Qiu P, Cui W, Yan X, Zhang B, He S. Recent Advances in Multi-target Anti-Alzheimer Disease Compounds (2013 Up to the Present). Curr Med Chem 2019; 26:5684-5710. [DOI: 10.2174/0929867326666181203124102] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/03/2018] [Accepted: 11/03/2018] [Indexed: 12/21/2022]
Abstract
:
Since the last century, when scientists proposed the lock-and-key model, the discovery of
drugs has focused on the development of drugs acting on single target. However, single-target drug
therapies are not effective to complex diseases with multi-factorial pathogenesis. Moreover, the
combination of single-target drugs readily causes drug resistance and side effects. In recent years,
multi-target drugs have increasingly been represented among FDA-approved drugs. Alzheimer’s
Disease (AD) is a complex and multi-factorial disease for which the precise molecular mechanisms
are still not fully understood. In recent years, rational multi-target drug design methods, which combine
the pharmacophores of multiple drugs, have been increasingly applied in the development of
anti-AD drugs. In this review, we give a brief description of the pathogenesis of AD and provide
detailed discussions about the recent development of chemical structures of anti-AD agents (2013 up
to present) that have multiple targets, such as amyloid-β peptide, Tau protein, cholinesterases,
monoamine oxidase, β-site amyloid-precursor protein-cleaving enzyme 1, free radicals, metal ions
(Fe2+, Cu2+, Zn2+) and so on. In this paper, we also added some novel targets or possible pathogenesis
which have been reported in recent years for AD therapy. We hope that these findings may provide
new perspectives for the pharmacological treatment of AD.
Collapse
Affiliation(s)
- Ning Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Panpan Qiu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Wei Cui
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
33
|
Deveci E, Tel-Çayan G, Duru ME, Öztürk M. Isolation, characterization, and bioactivities of compounds from Fuscoporia torulosa mushroom. J Food Biochem 2019; 43:e13074. [PMID: 31599026 DOI: 10.1111/jfbc.13074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/05/2019] [Accepted: 09/15/2019] [Indexed: 12/14/2022]
Abstract
Chromatographic purification of Fuscoporia torulosa extracts resulted in the isolation and characterization of a new steroid, 5α,8α-epidioxyergosta-6,22-dien-3β-il-palmitate (1) and 10 known compounds (2-11). The structures of compounds were elucidated by IR, NMR, MS analyses, and comparison with literature data. Cytotoxic activities against MCF-7 (breast cancer), PC-3 (prostate cancer), and 3T3 (nontumor) of the extracts and cytotoxic, antioxidant, cholinesterase, and tyrosinase inhibitory activities of all isolated compounds were evaluated. The methanol extract and Compound 8 showed the best cytotoxicity against MCF-7, whereas the hexane extract and Compound 4 displayed the highest cytotoxicity against PC-3. Compounds 10 and 11 displayed higher antioxidant activity than α-tocopherol and butylated hydroxyanisole (BHA) which are used as standards in ABTS•+ , DPPH• , and cupric reducing antioxidant capacity (CUPRAC) assays. Also, cholinesterase inhibitory activity against acetylcholinesterase (AChE) and butrylcholinesterase (BChE), Compounds 4 and 8 were determined as the most active compounds. Among all isolated compounds, Compound 11 exhibited the highest tyrosinase inhibitory activity. PRACTICAL APPLICATIONS: Mushrooms have various important medicinal properties. A detailed study was made to identify the bioactive constituents of Fuscoporia torulosa mushroom and a new (1) and 10 known compounds (2-11) were isolated. Compounds 10 and 11 showed higher antioxidant activity than standards. The methanol extract and Compound 8 exhibited high cytotoxic activity against MCF-7. Compound 8 indicated potent BChE inhibitory activity. This study suggests that natural compounds isolated from F. torulosa mushroom could be used as promising anticancer, antioxidant, and anticholinesterase agents.
Collapse
Affiliation(s)
- Ebru Deveci
- Faculty of Sciences, Department of Chemistry, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Gülsen Tel-Çayan
- Department of Chemistry and Chemical Processing Technologies, Muğla Vocational School, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Mehmet Emin Duru
- Faculty of Sciences, Department of Chemistry, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Mehmet Öztürk
- Faculty of Sciences, Department of Chemistry, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
34
|
Dai W, Sandoval IT, Cai S, Smith KA, Delacruz RGC, Boyd KA, Mills JJ, Jones DA, Cichewicz RH. Cholinesterase Inhibitory Arisugacins L-Q from a Penicillium sp. Isolate Obtained through a Citizen Science Initiative and Their Activities in a Phenotype-Based Zebrafish Assay. JOURNAL OF NATURAL PRODUCTS 2019; 82:2627-2637. [PMID: 31433188 DOI: 10.1021/acs.jnatprod.9b00563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phenotype-based screening of a fungal extract library yielded an active sample from a Penicillium sp. isolate that impaired zebrafish motility. Bioassay-guided purification led to the identification of 14 meroterpenoids including six new metabolites, arisugacins L-Q (4, 5, 8, and 12-14), seven known arisugacins (1-3, 6, 7, 9, and 10), and one known terreulactone (11). Their structures were determined using a combination of NMR and HRESIMS data, evidence secured from theoretical and experimental ECD spectra, and the modified Mosher's method. The purified compounds were tested in zebrafish embryos, as well as in vitro for cholinesterase inhibition activities. Compound 12 produced defects in myotome structure (metameric muscle, which is critical for locomotion) in vivo and showed the most potent and selective acetylcholinesterase inhibitory activity with an IC50 of 191 nM in vitro. The phenotype assay was also used to reveal bioactivities for several previously reported arisugacins, which had failed to show activity in prior cell-based and in vitro testing. This study demonstrates that utilization of the zebrafish phenotype assay is an effective approach for the identification of bioactive extracts, is compatible with the bioassay-guided compound purification strategies, and offers a valuable tool for probing complex natural product sources to detect bioactive small molecules with potential therapeutic or other commercial applications.
Collapse
Affiliation(s)
- Wentao Dai
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Imelda T Sandoval
- Functional and Chemical Genomics Program , Oklahoma Medical Research Foundation , 825 NE 13th Street , Oklahoma City , Oklahoma 73104 , United States
| | - Shengxin Cai
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Kaylee A Smith
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| | - Richard Glenn C Delacruz
- Functional and Chemical Genomics Program , Oklahoma Medical Research Foundation , 825 NE 13th Street , Oklahoma City , Oklahoma 73104 , United States
| | - Kevin A Boyd
- Functional and Chemical Genomics Program , Oklahoma Medical Research Foundation , 825 NE 13th Street , Oklahoma City , Oklahoma 73104 , United States
| | - Jessica J Mills
- Functional and Chemical Genomics Program , Oklahoma Medical Research Foundation , 825 NE 13th Street , Oklahoma City , Oklahoma 73104 , United States
| | - David A Jones
- Functional and Chemical Genomics Program , Oklahoma Medical Research Foundation , 825 NE 13th Street , Oklahoma City , Oklahoma 73104 , United States
| | - Robert H Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center , University of Oklahoma , 101 Stephenson Parkway , Norman , Oklahoma 73019 , United States
| |
Collapse
|
35
|
Lee JP, Kang MG, Lee JY, Oh JM, Baek SC, Leem HH, Park D, Cho ML, Kim H. Potent inhibition of acetylcholinesterase by sargachromanol I from Sargassum siliquastrum and by selected natural compounds. Bioorg Chem 2019; 89:103043. [PMID: 31200287 DOI: 10.1016/j.bioorg.2019.103043] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/24/2022]
Abstract
Six hundred forty natural compounds were tested for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Of those, sargachromanol I (SCI) and G (SCG) isolated from the brown alga Sargassum siliquastrum, dihydroberberine (DB) isolated from Coptis chinensis, and macelignan (ML) isolated from Myristica fragrans, potently and effectively inhibited AChE with IC50 values of 0.79, 1.81, 1.18, and 4.16 µM, respectively. SCI, DB, and ML reversibly inhibited AChE and showed mixed, competitive, and noncompetitive inhibition, respectively, with Ki values of 0.63, 0.77, and 4.46 µM, respectively. Broussonin A most potently inhibited BChE (IC50 = 4.16 µM), followed by ML, SCG, and SCI (9.69, 10.79, and 13.69 µM, respectively). In dual-targeting experiments, ML effectively inhibited monoamine oxidase B with the greatest potency (IC50 = 7.42 µM). Molecular docking simulation suggested the binding affinity of SCI (-8.6 kcal/mol) with AChE was greater than those of SCG (-7.9 kcal/mol) and DB (-8.2 kcal/mol). Docking simulation indicated SCI interacts with AChE at Trp81, and that SCG interacts at Ser119. No hydrogen bond was predicted for the interaction between AChE and DB. This study suggests SCI, SCG, DB, and ML be viewed as new reversible AChE inhibitors and useful lead compounds for the development for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jae Pil Lee
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Myung-Gyun Kang
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Joon Yeop Lee
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Seung Cheol Baek
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hyun Hee Leem
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Myoung-Lae Cho
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
36
|
Chalatsa I, Arvanitis DA, Mikropoulou EV, Giagini A, Papadopoulou-Daifoti Z, Aligiannis N, Halabalaki M, Tsarbopoulos A, Skaltsounis LA, Sanoudou D. Beneficial Effects of Sideritis scardica and Cichorium spinosum against Amyloidogenic Pathway and Tau Misprocessing in Alzheimer's Disease Neuronal Cell Culture Models. J Alzheimers Dis 2019; 64:787-800. [PMID: 29914017 DOI: 10.3233/jad-170862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND Natural products are a significantly underutilized source of potential treatments against human disease. Alzheimer's disease (AD) is a prime example of conditions that could be amenable to such treatments as suggested by recent findings. OBJECTIVE Aiming to identify novel potentially therapeutic approaches against AD, we assessed the effects of Cichorium spinosum and Sideritis scardica extracts, both distinct components of the Mediterranean diet. METHODS/RESULTS After the detailed characterization of the extracts' composition using LC-HRMS methods, they were evaluated on two AD neuronal cell culture models, namely the AβPP overexpressing SH-SY5Y-AβPP and the hyperphosphorylated tau expressing PC12-htau. Initially their effect on cell viability of SH-SY5Y and PC12 cells was examined, and subsequently their downstream effects on AβPP and tau processing pathways were investigated in the SH-SY5Y-AβPP and PC12-htau cells. We found that the S. scardica and C. spinosum extracts have similar effects on tau, as they both significantly decrease total tau, the activation of the GSK3β, ERK1 and/or ERK2 kinases of tau, as well as tau hyperphosphorylation. Furthermore, both extracts appear to promote AβPP processing through the alpha, non-amyloidogenic pathway, albeit through partly different mechanisms. CONCLUSIONS These findings suggest that C. spinosum and S. scardica could have a notable potential in the prevention and/or treatment of AD, and merit further investigations at the in vivo level.
Collapse
Affiliation(s)
- Ioanna Chalatsa
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Demetrios A Arvanitis
- Molecular Biology Division, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleni V Mikropoulou
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina Giagini
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Zeta Papadopoulou-Daifoti
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Anthony Tsarbopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Department of Bioanalytical, GAIA Research Center, The Goulandris Natural History Museum, Kifissia, Greece
| | - Leandros A Skaltsounis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Sanoudou
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Molecular Biology Division, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
37
|
Mendonça de Assis P, Cypriano Dutra R, Amarante CBD, Afonso Miranda Chaves MDG, Moreira CPDS, Brandão MAF, Raposo NRB. Plinia cauliflora (Mart.) Kausel: toxicological assays, biological activities, and elemental analysis of organic compounds. Nat Prod Res 2019; 35:1727-1731. [PMID: 31242771 DOI: 10.1080/14786419.2019.1633642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Jaboticaba, Plinia cauliflora (Mart.) Kausel, is a Brazilian berry traditionally used in folk medicine as treatment for some health conditions. Phenolic compounds such as flavonoids and anthocyanins have previously been detected in the fruit. This current study aimed to evaluate the toxicological effects of jaboticaba peel extract (JPE) on Artemia salina, L929, and MDA-MB-231 cell lines. Besides, JPE antioxidant, acetylcholinesterase, and antifungal activities, and elemental analysis CHNS were also tested. JPE had moderate toxicity (LD50 = 360.92 μg mL-1) on A. salina, non-toxic effect on L929 cell line, and decreased the viability of cancer cell line MDA at 1,000 µg mL-1 and 500 µg mL-1 concentrations. The antioxidant activity toward 2,2-diphenyl-1-picrylhydrazyl (DPPH) performed IC50 = 37.45 ± 0.17 µg mL-1, whereas 45.7% of acetylcholinesterase activity was inhibited. By its elemental composition, JPE is an alternative food supplement and dermocosmetic component. Antifungal potential toward Candida strains was not observed.
Collapse
Affiliation(s)
| | - Rafael Cypriano Dutra
- Laboratório de Autoimunidade e Imunofarmacologia, Departamento de Ciências da Saúde, Universidade Federal de Santa Catarina, Araranguá, Santa Catarina, Brazil
| | | | | | - Carolina Paula de Souza Moreira
- Serviço de Desenvolvimento Tecnológico Farmacêutico, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | | | | |
Collapse
|
38
|
Patil DN, Patil SA, Sistla S, Jadhav JP. Comparative biophysical characterization: A screening tool for acetylcholinesterase inhibitors. PLoS One 2019; 14:e0215291. [PMID: 31150404 PMCID: PMC6544338 DOI: 10.1371/journal.pone.0215291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/30/2019] [Indexed: 02/07/2023] Open
Abstract
Among neurodegenerative diseases, Alzheimer’s disease (AD) is one of the most grievous disease. The oldest cholinergic hypothesis is used to elevate the level of cognitive impairment and acetylcholinesterase (AChE) comprises the major targeted enzyme in AD. Thus, acetylcholinesterase inhibitors (AChEI) constitutes the essential remedy for the treatment of AD. The study aims to evaluate the interactions between natural molecules and AChE by Surface Plasmon Resonance (SPR). The molecules like alkaloids, polyphenols and substrates of AChE have been considered for the study with a major emphasis on affinity and kinetics. To better understand the activity of small molecules, the investigation is supported by both experimental and theoretical approach such as fluorescence, Circular Dichroism (CD) and molecular docking studies. Amongst the screened ones tannic acid showed promising results compared with others. The methodology followed here have highlighted many molecules with a higher affinity towards AChE and these findings may take lead molecules generated in preclinical studies to treat neurodegenerative diseases. Additionally, we suggest a unique signature for the heterogeneous analyte model using competitive experiments for analyzing simultanous interactions of both the analytes.
Collapse
Affiliation(s)
| | - Sushama A. Patil
- Department of Biotechnology, Shivaji University, Kolhapur, MS, India
| | - Srinivas Sistla
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Jyoti P. Jadhav
- Department of Biotechnology, Shivaji University, Kolhapur, MS, India
- * E-mail:
| |
Collapse
|
39
|
Exploration of synthetic antioxidant flavonoid analogs as acetylcholinesterase inhibitors: an approach towards finding their quantitative structure–activity relationship. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02330-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
|
41
|
Therapeutic potential of luteolin in transgenic Drosophila model of Alzheimer’s disease. Neurosci Lett 2019; 692:90-99. [DOI: 10.1016/j.neulet.2018.10.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/20/2018] [Accepted: 10/24/2018] [Indexed: 11/20/2022]
|
42
|
Pope CN, Brimijoin S. Cholinesterases and the fine line between poison and remedy. Biochem Pharmacol 2018; 153:205-216. [PMID: 29409903 PMCID: PMC5959757 DOI: 10.1016/j.bcp.2018.01.044] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/26/2018] [Indexed: 12/20/2022]
Abstract
Acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BChE, EC 3.1.1.8) are related enzymes found across the animal kingdom. The critical role of acetylcholinesterase in neurotransmission has been known for almost a century, but a physiological role for butyrylcholinesterase is just now emerging. The cholinesterases have been deliberately targeted for both therapy and toxicity, with cholinesterase inhibitors being used in the clinic for a variety of disorders and conversely for their toxic potential as pesticides and chemical weapons. Non-catalytic functions of the cholinesterases (ChEs) participate in both neurodevelopment and disease. Manipulating either the catalytic activities or the structure of these enzymes can potentially shift the balance between beneficial and adverse effect in a wide number of physiological processes.
Collapse
Affiliation(s)
- Carey N Pope
- Department of Physiological Sciences, Interdisciplinary Toxicology Program, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
43
|
In silico identification of AChE and PARP-1 dual-targeted inhibitors of Alzheimer’s disease. J Mol Model 2018; 24:151. [DOI: 10.1007/s00894-018-3696-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 05/23/2018] [Indexed: 01/29/2023]
|
44
|
Acetylcholinesterase Inhibition and Antioxidant Activity of N- trans-Caffeoyldopamine and N- trans-Feruloyldopamine. Sci Pharm 2018; 86:scipharm86020011. [PMID: 29617286 PMCID: PMC6027674 DOI: 10.3390/scipharm86020011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/07/2018] [Accepted: 03/24/2018] [Indexed: 11/16/2022] Open
Abstract
Phenolic acids and their derivatives found in nature are well-known for their potential biological activity. In this study, two amides derived from trans-caffeic/ferulic acid and dopamine were synthesized and characterized by Fourier-transform infrared spectroscopy (FTIR), mass spectrometry, proton and carbon-13 nuclear magnetic resonance spectroscopy. The compounds were tested for the inhibition of acetylcholinesterase (AChE) from Electrophorus electricus and for antioxidant activity by scavenging 2,2-diphenyl-1-pycrylhydrazyl free radical (DPPH•) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) radical cation (ABTS•+), reducing ferric ions, and ferrous ions chelation. N-trans-Feruloyldopamine displayed the highest inhibitory effect on AChE with half-maximal inhibitory concentration (IC50) values of 8.52 μM. In addition, an in silico study was done to determine the most favorable AChE cluster with the synthesized compounds. Further, these clusters were investigated for binding positions at the lowest free binding energy. Both synthesized hydroxycinnamates were found to be better antioxidants than the parent acids in in vitro tests applied. N-trans-Caffeoyldopamine showed the best antioxidant activity in the three tested methods—against non-biological stable free radicals IC50 5.95 μM for DPPH•, 0.24 μM for the ABTS•+ method, and for reducing power (ascorbic acid equivalent (AAE) 822.45 μmol/mmol)—while for chelation activity against Fe2+ ions N-trans-feruloyldopamine had slightly better antioxidant activity (IC50 3.17 mM).
Collapse
|
45
|
Abe FR, Soares AMVM, Oliveira DPD, Gravato C. Toxicity of dyes to zebrafish at the biochemical level: Cellular energy allocation and neurotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:255-262. [PMID: 29291525 DOI: 10.1016/j.envpol.2017.12.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Dyes are widely distributed worldwide, and can be found in wastewaters resulting from industrial or urban effluents. Dyes are of particular concern as contaminants of the aquatic environment, since their toxicity remain poorly understood. Thus, the current study was designed to assess the effects induced by the synthetic azo dye Basic Red 51 (BR51) and by the natural naphthoquinone dye erythrostominone (ERY) on zebrafish early life stages (Danio rerio) at different biological organization levels, i.e., studying how changes in biochemical parameters of important physiological functions (neurotransmission and cellular energy allocation) may be associated with behavior alterations (swimming activity). This approach was also used to assess the effects of ERY after its photodegradation resulting in a colorless product(s) (DERY). Results showed that after 96 h exposure to BR51 and Ery, zebrafish embryos consumed less energy (LOEC = 7.5 mg/L), despite the unaltered levels of available energy (carbohydrates, lipids and proteins). Hence, cellular energy allocation (CEA) was significantly increased. On the other hand, only ERY decreased the acetylcholinesterase activity (LOEC = 15 mg/L). Despite that, zebrafish larvae exposed to both dyes until 144 h were less active. In contrast, DERY did not affect any parameter measured. These results indicate an association between a decrease consumption of energy and decrease swimming activity resulting from an environmental stress condition, independently of the neurotoxicity of the dyes. Degradation of ERY by light prevented all toxic effects previously observed, suggesting a cheap, fast and easy alternative treatment of effluents containing this natural dye. All tools assessed in our current study were sensitive as early-warning endpoints of dyes toxicity on zebrafish early life stages, and suggest that the CEA assay might be useful to predict effects on locomotor activity when cholinergic damage is absent.
Collapse
Affiliation(s)
- Flavia R Abe
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil; Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Amadeu M V M Soares
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Danielle P de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Gravato
- Faculty of Sciences and CESAM, University of Lisboa, 1749-016, Campo Alegre, Lisboa, Portugal
| |
Collapse
|
46
|
Orhan IE, Jedrejek D, Senol FS, Salmas RE, Durdagi S, Kowalska I, Pecio L, Oleszek W. Molecular modeling and in vitro approaches towards cholinesterase inhibitory effect of some natural xanthohumol, naringenin, and acyl phloroglucinol derivatives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:25-33. [PMID: 29655693 DOI: 10.1016/j.phymed.2018.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/07/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Many natural products, particularly phenolic compounds, have been reported to have a strong inhibition against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), the key enzymes in the pathology of Alzheimer's disease (AD). HYPOTHESIS Therefore, we hypothesized that some xanthahumol, naringenin, and acyl phloroglucinol derivatives (1-14) isolated from Humulus lupulus L. (hops) may have an inhibitory potential against AChE and BChE. METHODS Inhibitory potential of compounds 1-14 were tested against AChE and BChE using ELISA microtiter assay. Different molecular docking simulations, including IFD and GOLD protocols, were implemented to verify the interactions between the ligands and the active site amino acids and also their binding energies inside the catalytic crevices of AChE and BChE. ADME/Tox analysis were used to determine pharmacological activities of the compounds. RESULTS Among them, 3‑hydroxy‑xanthohumol (IC50 = 51.25 ± 0.88 µM) and xanthohumol (IC50 = 71.34 ± 2.09 µM), displayed a moderate AChE inhibition in comparison to that of the reference (galanthamine, IC50 = 2.52 ± 0.15 µM). In addition to 3‑hydroxy‑xanthohumol (IC50 = 63.07 ± 3.76 µM) and xanthohumol (IC50 = 32.67 ± 2.82 µM), 8-prenylnaringenin (IC50 = 86.58 ± 3.74 µM) also showed micromolar-range inhibition against BChE (galanthamine, IC50 = 46.58 ± 0.91 µM). Rest of the compounds were found to be either inactive or having inhibition below 50%. Prediction of pharmacokinetic studies suggested that all the ligands revealed acceptable drug-like profiles. Docking simulations demonstrate not only the prediction of ligand binding energies of the compounds inside the catalytic domains of the targets, but also highlight the critical amino acids contributing to stabilizations of the ligands. CONCLUSION Our findings revealed that xanthohumol in particular could be considered as lead molecule to explore new cholinesterase inhibitors for AD.
Collapse
Affiliation(s)
- Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey.
| | - Dariusz Jedrejek
- Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, Pulawy 24-100, Poland
| | - F Sezer Senol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey
| | - Ramin Ekhteiari Salmas
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34349, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34349, Turkey
| | - Iwona Kowalska
- Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, Pulawy 24-100, Poland
| | - Lukasz Pecio
- Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, Pulawy 24-100, Poland
| | - Wieslaw Oleszek
- Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, Pulawy 24-100, Poland
| |
Collapse
|
47
|
Shi Y, Wang Q, Gao S. Recent advances in the intramolecular Mannich reaction in natural products total synthesis. Org Chem Front 2018. [DOI: 10.1039/c7qo01079f] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review focuses on selected applications of the intramolecular Mannich reaction as a key step in the total synthesis of natural products (2000–2017).
Collapse
Affiliation(s)
- Yingbo Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- China
| | - Qiaoling Wang
- East China Normal University Library
- Shanghai 200062
- China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
| |
Collapse
|
48
|
Nwidu LL, Elmorsy E, Thornton J, Wijamunige B, Wijesekara A, Tarbox R, Warren A, Carter WG. Anti-acetylcholinesterase activity and antioxidant properties of extracts and fractions of Carpolobia lutea. PHARMACEUTICAL BIOLOGY 2017; 55. [PMID: 28629287 PMCID: PMC6130458 DOI: 10.1080/13880209.2017.1339283] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT There is an unmet need to discover new treatments for Alzheimer's disease. This study determined the anti-acetylcholinesterase (AChE) activity, DPPH free radical scavenging and antioxidant properties of Carpolobia lutea G. Don (Polygalaceae). OBJECTIVE The objective of this study is to quantify C. lutea anti-AChE, DPPH free radical scavenging, and antioxidant activities and cell cytotoxicity. MATERIALS AND METHODS Plant stem, leaves and roots were subjected to sequential solvent extractions, and screened for anti-AChE activity across a concentration range of 0.02-200 μg/mL. Plant DPPH radical scavenging activity, reducing power, and total phenolic and flavonoid contents were determined, and cytotoxicity evaluated using human hepatocytes. RESULTS Carpolobia lutea exhibited concentration-dependent anti-AChE activity. The most potent inhibitory activity for the stem was the crude ethanol extract and hexane stem fraction oil (IC50 = 140 μg/mL); for the leaves, the chloroform leaf fraction (IC50 = 60 μg/mL); and for roots, the methanol, ethyl acetate and aqueous root fractions (IC50 = 0.3-3 μg/mL). Dose-dependent free radical scavenging activity and reducing power were observed with increasing stem, leaf or root concentration. Total phenolic contents were the highest in the stem: ∼632 mg gallic acid equivalents/g for a hexane stem fraction oil. Total flavonoid content was the highest in the leaves: ∼297 mg quercetin equivalents/g for a chloroform leaf fraction. At 1 μg/mL, only the crude ethanol extract oil was significantly cytotoxic to hepatocytes. DISCUSSION AND CONCLUSIONS Carpolobia lutea possesses anti-AChE activity and beneficial antioxidant capacity indicative of its potential development as a treatment of Alzheimer's and other diseases characterized by a cholinergic deficit.
Collapse
Affiliation(s)
- Lucky Legbosi Nwidu
- Department of Experimental Pharmacology and Toxicology, Faculty of Pharmaceutical Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Ekramy Elmorsy
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Jack Thornton
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Buddhika Wijamunige
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Anusha Wijesekara
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Rebecca Tarbox
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Averil Warren
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Wayne Grant Carter
- School of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
- CONTACT Wayne Grant CarterSchool of Medicine, University of Nottingham Medical School, Royal Derby Hospital Centre, Derby, UK
| |
Collapse
|
49
|
Castillo-Ordóñez WO, Tamarozzi ER, da Silva GM, Aristizabal-Pachón AF, Sakamoto-Hojo ET, Takahashi CS, Giuliatti S. Exploration of the Acetylcholinesterase Inhibitory Activity of Some Alkaloids from Amaryllidaceae Family by Molecular Docking In Silico. Neurochem Res 2017; 42:2826-2830. [DOI: 10.1007/s11064-017-2295-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/27/2017] [Accepted: 05/06/2017] [Indexed: 01/24/2023]
|
50
|
Cespedes CL, Balbontin C, Avila JG, Dominguez M, Alarcon J, Paz C, Burgos V, Ortiz L, Peñaloza-Castro I, Seigler DS, Kubo I. Inhibition on cholinesterase and tyrosinase by alkaloids and phenolics from Aristotelia chilensis leaves. Food Chem Toxicol 2017; 109:984-995. [PMID: 28501487 DOI: 10.1016/j.fct.2017.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/02/2017] [Accepted: 05/06/2017] [Indexed: 02/02/2023]
Abstract
It is reported in this study the effect of isolates from leaves of Aristotelia chilensis as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase enzymes. The aim of the paper was to evaluate the activity of A. chilensis towards different enzymes. In addition to pure compounds, extracts rich in alkaloids and phenolics were tested. The most active F5 inhibited AChE (79.5% and 89.8% at 10.0 and 20.0 μg/mL) and against BChE (89.5% and 97.8% at 10.0 and 20.0 μg/mL), showing a strong mixed-type inhibition against AChE and BChE. F3 (a mixture of flavonoids and phenolics acids), showed IC50 of 90.7 and 59.6 μg/mL of inhibitory activity against AChE and BChE, inhibiting the acetylcholinesterase competitively. Additionally, F3 showed and high potency as tyrosinase inhibitor with IC50 at 8.4 μg/mL. Sample F4 (anthocyanidins and phenolic composition) presented a complex, mixed-type inhibition of tyrosinase with a IC50 of 39.8 μg/mL. The findings in this investigation show that this natural resource has a strong potential for future research in the search of new phytotherapeutic treatments for cholinergic deterioration ailments avoiding the side effects of synthetic drugs. This is the first report as cholinesterases and tyrosinase inhibitors of alkaloids and phenolics from A. chilensis leaves.
Collapse
Affiliation(s)
- Carlos L Cespedes
- Biochemistry and Phytochemical-Ecology Lab, Department of Basic Science, Facultad de Ciencias, Universidad del Bio Bio, Chillan, Chile.
| | - Cristian Balbontin
- Plant Production Department, Instituto Nacional de Investigaciones Agropecuarias, Quilamapu, Chillan, Chile
| | - Jose G Avila
- Laboratorio de Fitoquimica, Unidad UBIPRO-FES-Iztacala, UNAM, Tlalnepantla de Baz, Mexico, DF, Mexico
| | - Mariana Dominguez
- Departamento de Biologia Celular y Desarrollo, Laboratorio 305-Sur, Instituto de Fisiologia Celular, UNAM, Ciudad Universitaria, Coyoacan 04510, Mexico, DF, Mexico
| | - Julio Alarcon
- Synthesis and Biotransformation Lab., Department of Basic Science, Facultad de Ciencias, Universidad del Bio Bio, Chillan, Chile
| | - Cristian Paz
- Departamento de Química y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 1011, Temuco, Chile
| | - Viviana Burgos
- Departamento de Química y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 1011, Temuco, Chile
| | - Leandro Ortiz
- Instituto de Ciencias Química, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Ignacio Peñaloza-Castro
- Laboratorio de Fisiologia Vegetal, Unidad UBIPRO-FES-Iztacala, UNAM, Tlalnepantla de Baz, Mexico, DF, Mexico
| | - David S Seigler
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Isao Kubo
- Natural Products Chemistry Lab., ESPM Department, University of California, Berkeley, USA
| |
Collapse
|